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Glucocorticoids (GCs) are widely used as anti-inflammatory and immunosuppressive agents. Several
studies have indicated the important role of dendritic cells (DCs), highly specialized antigen-presenting
and immunomodulatory cells, in GC-mediated suppression of adaptive immune responses. Recently, we
demonstrated that triiodothyronine (T3) has potent immunostimulatory effects on bone marrow-derived
mouse DCs through a mechanism involving T3 binding to cytosolic thyroid hormone receptor (TR) b1,
rapid and sustained Akt activation and IL-12 production. Here we explored the impact of GCs on T3-med-
iated DC maturation and function and the intracellular events underlying these effects. Dexamethasone
(Dex), a synthetic GC, potently inhibited T3-induced stimulation of DCs by preventing the augmented
expression of maturation markers and the enhanced IL-12 secretion through mechanisms involving
the GC receptor. These effects were accompanied by increased IL-10 levels following exposure of T3-con-
ditioned DCs to Dex. Accordingly, Dex inhibited the immunostimulatory capacity of T3-matured DCs on
naive T-cell proliferation and IFN-c production while increased IL-10 synthesis by allogeneic T cell cul-
tures. A mechanistic analysis revealed the ability of Dex to dampen T3 responses through modulation
of Akt phosphorylation and cytoplasmic-nuclear shuttling of nuclear factor-jB (NF-jB). In addition,
Dex decreased TRb1 expression in both immature and T3-maturated DCs through mechanisms involving
the GC receptor. Thus GCs, which are increased during the resolution of inflammatory responses, coun-
teract the immunostimulatory effects of T3 on DCs and their ability to polarize adaptive immune
responses toward a T helper (Th)-1-type through mechanisms involving, at least in part, NF-jB- and
TRb1-dependent pathways. Our data provide an alternative mechanism for the anti-inflammatory effects
of GCs with critical implications in immunopathology at the cross-roads of the immune-endocrine
circuits.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Glucocorticoids (GCs) are widely used as anti-inflammatory and
immunosuppressive agents in many autoimmune and allergic dis-
eases and in transplantation to prevent rejection. These steroid
hormones are biological mediators naturally released during the
course of inflammatory or stress responses [1]. Synthesis of GCs
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provokes a crucial negative feedback that limits the magnitude of
immune responses, thus preventing potential damage to the host.

GCs affect growth, differentiation and function of many im-
mune cell types, including T cells, macrophages, monocytes and
dendritic cells (DCs). Most of their immunosuppressive effects
are mediated through cytosolic ligand-inducible receptors [2].
Inactive GC receptors (GRs) are associated with heat shock pro-
teins, which act as chaperones. Upon GC binding, this complex dis-
sociates and the activated GR translocates to the nucleus where it
binds to specific DNA motifs (GC-responsive elements) and to tran-
scription factors such as activator protein 1 (AP1) and nuclear fac-
tor jB (NF-jB), thereby regulating the expression of a number of
genes involved in the resolution of immune responses [3,4].
Through regulation of gene expression, GCs attenuate the produc-
tion of pro-inflammatory mediators, including cytokines (interleu-
kin 1 [IL-1], IL-2, tumor necrosis factor-a [TNF-a], interferon-c
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[IFN-c]), prostaglandins and nitric oxide. Moreover, GCs also inhi-
bit expression of cell adhesion molecules involved in immune cell
trafficking and may induce selective death of effector T cells [5–7].

The immunoregulatory activities of GCs have been primarily
attributed to their ability to influence the T lymphocyte compart-
ment [8]. However, it is now clear that they can also affect other
cells within the immune system network. In this regard, several
studies highlighted a main role for antigen-presenting cells (APCs)
as mediators of GC-mediated immunosuppression. Among APCs,
DCs are believed to be the most efficient cells capable of stimulat-
ing naive T lymphocytes and inducing antigen-specific immune re-
sponses [9]. Given the remarkable plasticity of these cells,
manipulation of their function to favor the induction of DCs with
immunogenic or tolerogenic properties could be exploited in order
to stimulate or attenuate immune responses [10].

DCs can display two phenotypic stages, being either immature
or mature which is eventually reflected by their different func-
tional properties. DCs patrolling peripheral tissues which are in di-
rect contact with the external environment are in an immature
state (iDCs), scanning self and foreign antigens. In the absence of
inflammatory stimuli, these cells exhibit high endocytic capacity
and express low levels of major histocompatibility complex class
II (MHC II) and co-stimulatory molecules. iDCs may be activated
by inflammatory stimuli derived from tissue injury, necrotic cells
or pathogens, leading to the generation of mature DCs (mDCs).
During this process DCs up-regulate expression of the MHC II
and co-stimulatory molecules, secrete a wide variety of pro-
inflammatory cytokines, reduce the ability of taking up antigens,
and augment their ability to stimulate T cells [11]. After in vitro
or in vivo exposure to lipopolysaccharides (LPS) or other microbial
products, DCs undergo activation and maturation through different
signaling pathways including mitogen-activated protein kinase ki-
nase 1 (MAPKK1)/extracellular signal-regulated kinase (ERK),
which favors DC survival, and the Akt- and NF-jB pathways, which
allow for DC maturation [12,13]. Signaling through NF-jB also
determines the increased expression of MHC II and co-stimulatory
molecules, release of pro-inflammatory cytokines and chemokines,
and DC recruitment to secondary lymphoid organs. This coordi-
nated process leads to sustained T-cell stimulatory capacity and
IL-12 production, which results in the induction of protective T
helper (Th)-1-type immunity [12].

GCs may influence DCs virtually at all levels of the differentia-
tion or maturation process. While they stimulate antigen uptake,
GCs can also suppress T cell activation through inhibition of MHC
II, co-stimulatory molecules and cytokine expression. In addition,
GCs not only suppress DC activity, they also endow DCs with toler-
ogenic properties through induction of IL-10 synthesis [14].

Thyroid hormones (THs) are essential for normal growth, devel-
opment, differentiation and metabolism. The classic genomic ac-
tions of THs are mediated by nuclear TH receptors (TRs) that act
as hormone-inducible transcription factors. TRs are encoded by
two different gene loci, TRA and TRB. The TRA gene, located on chro-
mosome 17, encodes one triiodothyronine (T3)-binding TRa1 and
two splicing variants (TRa2 and TRa3). These TRa1 variants have
no T3-binding activity. Truncated TRs, transcribed from an internal
promoter, give rise to TRDa1 and TRDa2 that retain most of the
T3-binding domain. Through alternative promoter usage, the TRB
gene yields TRb1, TRb2, TRb3 and the truncated variant TRDb3
which is unable to bind the thyroid hormone. The TRa1, TRa2,
TRb1 and TRb3 isoforms are widely expressed, whereas TRb2 is pre-
dominantly restricted to the hypothalamus-pituitary axis. How-
ever, the notion of classical or genomic mechanisms as unique
actions mediated by TRs has been challenged in the past decade
by descriptions of TH actions that involve extranuclear (nonge-
nomic) effects in a variety of cell types. These TH-dependent path-
ways are associated with extranuclear TRs localized within the
cytoplasm and the plasma membrane and to TH-dependent effects
mediated by the cell surface abc3 integrin. Several cytoplasmic T3
actions mediated by TRs are linked to activation of the phosphati-
dyl inositol 3-kinase (PI3K) pathway in alveolar cells and human
fibroblasts. Moreover, activation of Akt, a critical component of cell
growth and survival, has been detected in islet b cells upon engage-
ment of TRb1 and activation of PI3K-p85 [15].

A characteristic of T3 action is the multihormonal interaction in
the final expression of a specific metabolic effect. Several reports
indicated that T3 increases rat growth hormone synthesis in rat
pituitary cell lines and that GCs synergistically stimulate T3 action
at this level [16]. Diverse reports have also demonstrated that GCs
increase the mRNAs of T3-regulated hepatic genes [17–19]. Dexa-
methasone (Dex), a synthetic GC, has been reported to potentiate
T3-induced metamorphosis and increase TRs in Xenopus tadpole
tails [20]. In this regard, we have demonstrated that Dex enhances
T3-dependent actions in the liver through an increase of TRb1

expression [21].
Recently, we provided the first evidence of the expression of TRs

in both immature and LPS-matured bone marrow-derived mouse
DCs, showing higher expression of TRb1 than TRa1. Strikingly,
the expression of cytoplasmic TRb1 was markedly increased com-
pared with that of nuclear TRb1. Furthermore, we found that phys-
iological levels of T3 stimulated the expression of DC maturation
markers (MHC II, CD80, CD86 and CD40), markedly increased the
secretion of IL-12, and stimulated the ability of DCs to induce naïve
T cell proliferation and IFN-c production in allogeneic T cell cul-
tures [22]. Analysis of the mechanisms involved in these effects re-
vealed the ability of T3 to increase Akt phosphorylation
independently of PI3K activation, which was essential for support-
ing T3-induced DC maturation and IL-12 production. This effect
was dependent on intact TRb1 signaling as small interfering
RNA-mediated silencing of TRb1 expression prevented T3-induced
DC maturation and IL-12 secretion as well as Akt activation. In
turn, T3 up-regulated TRb1 expression through mechanisms
involving NF-jB signaling facilitating a positive regulatory loop
to control hormone-dependent TRb1 signaling [23].

In the present study we aim to examine the interplay between
THs and GCs within the DC compartment and to analyze the
molecular mechanisms underlying these biological effects.
2. Experimental

2.1. Mice

Female C57BL/6 (B6; H-2b) mice were obtained from Ezeiza
Atomic Center (Buenos Aires, Argentina). Mice were maintained
under specific pathogen-free conditions and used at 6–10 week-
old. Animal protocols were in compliance with the Guide for the
Care and Use of Laboratory Animals published by the NIH and
the local institutional animal care committee.
2.2. DC preparation and culture

DCs were obtained as described by Inaba et al. [24]. Briefly, bone
marrow progenitors were collected from the femurs of C57BL/6
mice, cultured in RPMI 1640 10% fetal calf serum (FCS) depleted
of THs by treatment with resin AG-1-X8 (Bio-Rad), in the presence
of GM-CSF from supernatant of J558 cell line and fed every 2 days.
At day 8 of cell culture, >85% of the harvested cells expressed MHC
II, CD40, CD80 and CD11c, but not Gr-1. iDCs were cultured with T3
(5 nM, DCT3), lipopolysaccharides (LPS; 100 ng/mL; Escherichia coli
strain 0111:B4; Sigma; DCLPS), Dex (10 nM, DCDex) and RU486
(10�8 to 10�6 M, DCRU486) for different time periods. Parallel cul-
tures were maintained without stimuli and used as controls (DC).
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T3 (3,30,5-triiodo-L-thyronine), Dex and RU486 were purchased
from Sigma Chemical Co. (USA) and prepared according to the man-
ufacturer’s recommended protocol.

2.3. Flow cytometric analysis of DC phenotype

DCs were washed twice with PBS supplemented with 2% (vol/
vol) FCS and resuspended in 10% (vol/vol) FCS in PBS. Cells were
then incubated with the following fluorochrome-conjugated
monoclonal antibodies (mAbs) for 30 min at 4 �C: fluorescein iso-
thiocyanate (FITC)-anti-CD11c, phycoerythrin (PE)-anti-IA/IE
(MHC II), PE-anti-CD40, PE-anti-CD80, and PE-anti-CD86 (all from
BD PharMingen, San Diego, California, USA). Cells were then pro-
cessed and analyzed in an FACS canto II flow cytometer (BD Biosci-
ences PharMingen, NJ, USA) using FlowJo software (Tree Star,
Ashland, OR, USA).

2.4. Cytokine determination

Intracellular cytokine detection was assessed by flow cytometry
as described [25] using PE-conjugated anti-IL-12 mAb (BD Biosci-
ences PharMingen, New Jersey, USA). Briefly, DCs incubated with
T3 or LPS in presence of Dex, were exposed to brefeldin A (10 lg/
ml; Sigma) for the last 4 h of cell culture. Cells were then fixed with
1% (vol/vol) paraformaldehyde, treated with FACS permeabilizing
solution and stained with an optimal concentration of anti-cyto-
kine mAb or an appropriate isotype control (all from BD Biosci-
ences PharMingen). Cells (at least 10,000 viable cells) were then
analyzed in FACS canto II flow cytometer (BD Biosciences PharMin-
gen, New Jersey, USA) using Flowjo software (Tree Star, Ashland,
OR).

IL-12p70, IL-10 and IFN-c detection was performed in cell cul-
ture supernatants using standard capture enzyme-linked immuno-
sorbent assays (ELISA) (BD Biosciences PharMingen, New Jersey,
USA). Coating Abs included a rat anti-mouse IL-12p70 mAb (clone
C15.6), rat anti-mouse IL-10 mAb (clone JES5–2A5) and rat anti-
mouse IFN-c mAb (clone R4–6A2). Detection Abs included biotin-
ylated rat anti-mouse IL-12p70 mAb (clone C17.8), biotinylated
rat anti-mouse IL-10 mAb (clone SXC-1) and biotinylated rat
anti-mouse IFN-c mAb (clone XMG1.2). Streptavidin-horseradish
peroxidase and 3,30,5,50-tetramethylbenzidine were used as en-
zyme and substrate, respectively.

2.5. Allogeneic T cell cultures

Allogeneic T cell cultures were performed to assess the ability of
DCs to stimulate allogeneic splenocytes in vitro as described [22].
Briefly, allogeneic splenocytes (1 � 105 cells/well, responder cells)
were incubated for 3 days with irradiated DCs (30 Gy, stimulator
cells) at a ratio of 1:15 (DC/splenocytes) in 96-well round-bottom
plates. On day 2, 0.5 lCi (0.0185 MBq)/well of [3H]-thymidine
(Amersham Life Sciences, Buckinghamshire, UK) was incorporated
into each well for 18 h. Proliferation was determined as counts per
minute of triplicate determinations.

2.6. Apoptosis assay

DC apoptosis was analyzed by flow cytometry following double
labeling of cells with FITC-conjugated annexin V Ab and 7-amino-
actinomycin D (7-AAD) as described [26].

2.7. Preparation of total, nuclear and cytoplasmic extracts

To obtain DC total cell lysates, 5 � 106 cells were resuspended
in 100 ll of RIPA buffer and protease inhibitors, and incubated
on ice for 30 min, followed by removal of DNA and cell debris by
centrifugation at 10,000g for 20 min at 4 �C. Nuclear and cytoplas-
mic DC extracts were obtained by subcellular fractionation as de-
scribed previously [27]. Briefly, 6 � 106 cells were resuspended in
200 ll of buffer (10 mM HEPES, pH 7.9, 10 mM KCl, 0.1 mM EDTA,
0.1 mM EGTA, 1 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl
fluoride) Then, 25 ll of 10% (vol/vol) Nonidet P-40 were added
and the solution was incubated on ice for 15 min. The supernatant
containing cytoplasm was collected by centrifugation. The nuclear
pellet was resuspended in 50 ll of ice-cold buffer (20 mM HEPES,
pH 7.9, 0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol,
1 mM phenylmethylsulfonyl fluoride), and the tube was vigorously
rocked at 4 �C for 15 min on a shaking platform. The nuclear ex-
tract was centrifuged for 5 min in a microcentrifuge at 4 �C, and
the supernatant was collected. Total protein concentration was
measured by the Bradford technique [28]. The reactions which in-
volved Phospho-Akt immunodetection were stopped at the indi-
cated times by adding cold saline solution and samples were
centrifuged. Cell pellets were resuspended in loading buffer
(60 mM Tris, pH 6.8, 2.3% SDS, 10% glycerol, 0.01% bromphenol
blue, and 5% 2-ME) and boiled at 96 �C for 5 min. Aliquots were
stored at �80 �C until use for Western blotting.

2.8. Western blotting

Antibodies directed to TRb1 (sc-738 mouse monoclonal), NF-jB-
p65 (sc-8008 mouse monoclonal), Actin (sc-8432 mouse monoclo-
nal) and HRP-conjugated anti-mouse or anti-rabbit IgG were
obtained from Santa Cruz Biotechnology, Inc (Santa Cruz, Califor-
nia, USA). Abs directed to Phospho-Akt (5473, rabbit monoclonal)
and IjB-e (611408, mouse monoclonal) was purchased from Cell
Signaling Technology, Inc (Massachusetts, USA) and BD Biosciences
(PharMingen, New Jersey, USA), respectively.

DC extracts were separated by SDS–PAGE, transferred to nitro-
cellulose membranes (Biorad Laboratories, Hercules, California,
USA), and then blocked with 5% bovine albumin in PBS containing
0.05% Tween 20. Membranes were then blotted with Abs against
TRb1, NF-jB-p65, Actin, Phospho-Akt (1:1000 dilution) and IjB-e
(1:500 dilution) followed by HRP-conjugated anti-rabbit or anti-
mouse IgG. Specific bands were developed by ECL (Amersham Life
Sciences, Buckinghamshire, UK). Control of protein loading was re-
vealed by actin immunodetection in the same blots.

2.9. Statistical analysis

Analysis of intergroup differences was conducted by one-way
analysis of variance (ANOVA), followed by the Student–
Newman–Keuls test. P values less than 0.05 were considered
statistically significant. All experiments were performed at least
in triplicate.
3. Results

3.1. Dex prevents T3-induced DC maturation

To analyze the interplay between T3 and GCs in the control of
immune cell functions we studied the effects of Dex on T3-induced
DC maturation and function. For this, we first cultured iDCs with
T3 (DCT3) or LPS (positive control, DCLPS) in the absence or the pres-
ence of Dex (DCDex) and evaluated the cell surface phenotype (MHC
II, CD40, CD80 and CD86). As shown in Fig. 1, treatment of DCs with
Dex alone (DCDex) did not alter the levels of CD40 and MHC II
expression, yet it significantly inhibited expression of co-stimula-
tory molecules including CD80 (B7.1) and CD86 (B7.2). As ex-
pected, T3 and LPS both induced DC maturation, as demonstrated
by the increased levels of MHC II, CD40, CD80 and CD86 on the



Fig. 1. Effect of Dex on cell surface phenotypic markers of T3-matured DCs. Bone marrow-derived iDCs differentiated with GM-CSF for 8 days (DC) were subjected to
maturation with T3 (5 nM, DCT3) or LPS (100 ng/ml, positive control, DCLPS) in the absence or the presence of Dex (10 nM, DCDex) for 18 h. Cell surface phenotype was analyzed
by flow cytometry of DC using PE-conjugated anti-MHC II (IA/IE), anti-CD40, anti-CD80 and anti-CD86 mAbs. (A) Representative histograms of three independent
experiments are gated on CD11c+ cells. Upper values represent percentages of positive cells, whereas lower values represent mean fluorescence intensity (MFI). Black
histograms, nonspecific binding determined with isotype-matched control antibodies; white histograms, phenotypic markers. (B) Results are expressed as the percentage of
positive cells (left panel) and MFI (right panel) within the CD11c+ population. Data are expressed as mean ± SD and are from a representative experiment from a total of three
with similar results, #p < 0.001, ⁄p < 0.001, +p < 0.05 vs DC Control, ⁄⁄p < 0.001 vs DCT3 Control; ⁄⁄⁄p < 0.001 vs DCLPS Control.
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surface of bone marrow-derived DCs. Addition of Dex and T3 to DC
cultures resulted in downregulation of MHC II and co-stimulatory
molecules. As previously reported, LPS-matured DCs showed de-
creased expression of MHC II, CD40, CD80 and CD86 when exposed
to Dex [29]. These results indicate an inhibitory role of GCs in T3-
induced DC maturation.
3.2. Dex controls the balance of pro- and anti-inflammatory cytokines
in T3-matured DC

To investigate whether the inhibition in the maturation pheno-
type induced by Dex in T3-matured DCs was associated with a
modified cytokine profile, we examined the ability of Dex to mod-
ulate cytokine production induced by T3. As expected, DCs exposed
to T3 and LPS showed a significant increase in the frequency of IL-
12-producing CD11c+ DCs (Fig. 2A and B). Exposure to maturing
DCs to Dex significantly suppressed their ability to produce IL-12
in response to T3 or LPS. To determine whether this effect was
mediated by the steroid hormone receptor GR, T3 or LPS-matured
DCs were pretreated with the GR antagonist RU486. As shown in
Fig. 2A and B, Dex-inhibition of pro-inflammatory cytokine produc-
tion induced by T3 or LPS was mediated through GR as RU486 hin-
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T3-matured DCs with anti-annexin-V Ab and 7-AAD to detect early
apoptotic cells. Remarkably, Dex did not increase the percentage of
apoptotic cells over the 18 h-treatment period examined (data not
shown), suggesting that inhibition of splenocyte proliferation in-
duced by Dex/T3-treated DCs was not due to increased apoptosis
or DC death.

In turn, reduction of the allostimulatory capacity of T3- and LPS-
matured DCs induced by Dex was also evidenced by the lower pro-
duction of the effector cytokine IFN-c in culture supernatants of
splenocytes co-cultured with Dex and T3- or LPS-conditioned
DCs (Fig. 4A). In agreement, secretion of IL-10 was substantially in-
creased on T cells co-cultured with allogeneic T3- or LPS-condi-
tioned DCs in the presence of Dex (Fig. 4B). These data indicate
that Dex counteracts the immunostimulatory capacity of DCs ma-
tured in the presence of T3.

3.4. Dex prevents T3-induced Akt activation

As T3 induces Akt phosphorylation which in turn favors matu-
ration and T-cell stimulatory function of DCs [23] and these effects
are diminished in the presence of Dex, we then investigated the ef-
fects of Dex on T3-induced Akt activation. Phosphorylation of Akt
was examined in total cellular extracts from DCs exposed at vari-
ous time points (5, 15, 30, 60 min and 18 h) to T3 stimulation in
the presence or the absence of Dex. As expected, a significant in-
crease in Ser 473 phosphorylation of Akt was detected as early as
5 min following exposure of DCs to T3 with a peak at 15 min of
incubation. The increase in Akt phosphorylation persisted even at
18 h following addition of the thyroid hormone (Fig. 5A and B).
The presence of Dex not only delayed the kinetics of T3-induced
Akt phosphorylation, as the peak was detected at 30 min of incuba-
tion (Fig. 5A and B), but it also induced less phosphorylation at all
time points analyzed when compared with T3 alone. Interestingly,
Akt activation in Dex/T3-stimulated DCs reached levels compara-
ble to control DCs after 18 h of cell culture.

3.5. Dex inhibits TRb1 expression on DC through a GR-dependent
mechanism

Given the ability of GCs to modulate TH actions through TR
modulation [21], the positive effects of T3 on TRb1 expression
and the pivotal role of TRb1 on the stimulatory effects of T3 and
Akt phosphorylation [23], we evaluated the effects of Dex on
TRb1 expression in T3-matured DCs. Dex treatment of both iDCs
(DC) and DCs matured with LPS (DCLPS) led to a significant decrease
in the expression of TRb1 (Fig. 6A and B). Furthermore, Dex-
induced inhibition of TRb1 expression was abolished by RU486,
suggesting involvement of GR leveling this regulatory effect. Like-
wise, Dex prevented T3-induced up-regulation of TRb1 through a
mechanism involving the GR.
3.6. Dex attenuates T3-induced cytoplasmic-nuclear shuttling of the
NF-jB transcription factor

Since T3 induces cytoplasmic-nuclear shuttling of the NF-jB
transcription factor to modulate DC functionality [22] and the
NF-jB pathway is directly involved in TRb1 expression [23], we
next evaluated the effects of Dex on cytoplasmic and nuclear levels
of NF-jB-p65 and IjB-e in T3-matured DCs. In agreement with our
previous report, T3 increased the presence of NF-jB-p65 in the nu-
cleus and significantly reduced cytoplasmic NF-jB-p65 as well as
total IjB-e levels (Fig. 7A and B). Addition of Dex abolished these
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effects, indicating that the inhibitory activity of Dex on T3 effects
involves, at least in part, modulation of the NF-jB pathway.
Control, ##p < 0.05 vs DCT3 + Dex.
4. Discussion

DCs are critical ‘‘decision-making’’ cells that must integrate sig-
nals from several pathways and receptors, including those arising
from engagement of uptake and pattern recognition receptors,
pro-inflammatory and anti-inflammatory cytokines, chemokines
and hormones to determine the type and magnitude of adaptive
immune responses [31]. Biological signals that control these cells
can ultimately drive the direction of antigen-specific immune re-
sponses. GCs and THs are primary regulators of metabolic and
endocrine processes, but they also have essential roles in immune
and inflammatory responses [32,22]. Our study reports a major
inhibitory role of GCs on the immunostimulatory capacity of T3-
induced mature DCs and the molecular mechanisms underlying
this effect.

Although the effects of Dex on LPS-activated DCs are well estab-
lished [33,34] and the action of T3 and LPS in DC are exerted in a
similar fashion, the mechanisms underlying T3-immunostimula-
tory effects do not involve the main signaling pathways activated
by LPS [23,12,13]. Therefore, the effects of Dex on the biological
activities of T3 cannot be predicted in advance. Exposure of iDCs
to Dex considerably prevents the ability of T3 to promote DC mat-
uration and drive T-cell activation and Th1 polarization. In fact, the
MHC II and co-stimulatory molecules are substantially downregu-
lated when mDCs are exposed to Dex. This effect is also reflected
by the reduced frequency of CD11c+ DCs producing IL-12, a potent
pro-inflammatory cytokine responsible of generating Th1 cells
which battle against intravesicular pathogens and tumors but also
initiate autoimmune disorders. Interestingly, the ability of RU486
to counteract the inhibitory effects of GCs, strongly suggests the
involvement of GR, disregarding unspecific membrane effects
[35,2,36]. In turn and accordingly to the results presented, it is well
known that GCs are potent inhibitors of LPS- or CD40L-induced
phenotypic DC maturation and production of the pro-inflamma-
tory cytokines IL-12p70 and TNF-a [37]. Moreover, RU486 pre-
vented Dex-induced inhibition of TNF-a and IL-1b production by
both rat bone marrow-derived and splenic DCs, indicating that
GC effects on LPS-matured DCs are mediated through GR [34]. In
agreement, corticosterone, the endogenous murine GC, function-
ally impaired DC maturation and cytokine production and reduced
the ability of DC to prime naive CD8+ T cells in vivo. This inhibition
occurred via the GR with concentrations of corticosterone similar
to those observed in animals undergoing stress responses [38].

We have previously found that, unlike LPS, T3 was not able to
induce the synthesis of IL-10 by DCs [22]. Although Dex alone do
not alter the synthesis of IL-10 in cultured DCs, this anti-inflamma-
tory cytokine is increased in T3-conditioned DC cultures similarly
to LPS-stimulated DCs following Dex treatment in agreement with
previous reports [34,39]. These findings support the regulatory role
of GCs in attenuating T3-dependent pro-inflammatory effects.
Accordingly, we find an altered cytokine balance in the presence
of Dex with an increased IL-10/IFN-c ratio following co-culture of



Fig. 7. Effect of Dex on cytoplasmic-nuclear shuttling of NF-jB-p65 and the levels
of IjB-e in T3-matured DCs. Bone marrow-derived iDCs differentiated with GM-CSF
for 8 days were maturated by T3 (5 nM) in the absence or the presence of Dex
(10 nM) for 18 h. (A) Representative Western blot analysis of nuclear and
cytoplasmic DC extracts (40 lg) for immunodetection of NF-jB-p65. Anti-Histone
H1 and tubulin Abs were used to control the purity of subcellular fractions. Actin
was used as a control of equal protein loading (lower panel). (B) Representative
Western blot analysis of protein extracts (40 lg) for immunodetection of IjB-e.
Actin was used as a control of equal protein loading (lower panel).
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allogeneic T cells with T3-conditioned DCs (DCT3). Taken together,
these data demonstrate that DCs treated with Dex maintain an
immature or tolerogenic state even in the presence of T3 where
they preferentially secrete the immunomodulatory cytokine IL-10
rather than the pro-inflammatory counterpart IL-12, favoring T cell
tolerance and suppression of host immunity [22]. In this regard,
treatment of developing DCs with IL-10 promotes the generation
of immature tolerogenic DCs that induce anergic CD4+ and CD8+

T cells in vitro, and regulatory CD4+ T cells in vivo [40,41]. Interest-
ingly, other groups have reported an altered DC-cytokine profile in
the presence of Dex and other corticosteroids with increased IL-10
production [42,43,33] and a durable immature state, which could
have been the result of high endogenous production of IL-10
[44]. Furthermore, Woltman et al. have shown that hyporespon-
siveness and anergic states could be reversed by blocking both
IL-10 and the inhibitory molecule programmed cell death ligand-
1 (PD-L1) on DCs [45]. However, other studies showed that anti-
IL-10 antibodies were unable to reduce DC induction of regulatory
T cells [46], suggesting alternative mechanisms involved in this
effect. In this regards, we have recently identified a tolerogenic
circuit propagated from DCs to T cells by which galectin-1, a b-
galactoside-binding lectin, drives the differentiation of tolerogenic
DCs through mechanisms involving DC-derived IL-27 and T-cell
derived IL-10 [47].

Consistently with our previous findings [23], exposure of DCs to
T3 results in a rapid and sustained increase in Akt phosphorylation,
which was essential for supporting T3-induced DC maturation and
IL-12 production. In the present study, T3-induced Akt phosphory-
lation is rapidly inhibited in the presence of Dex and this inhibition
lasts for several hours. These results may be the result of a rapid
non-genomic activation and a parallel prolonged genomic regula-
tion of GR-dependent mechanisms [48]. Accordingly, other authors
reported the involvement of Akt activation in GC effects on human
CD4+ T cells [49] and chondrocytes [50].

Although we have demonstrated a physical interaction of GR
with a consensus site for GC response element (GRE) present in
the TRb1 promoter that is responsible for Dex-induced TRb1
expression in the liver [21], in the present study we find that
Dex decreases TRb1 expression in iDCs, LPS- and T3-maturated
DCs. Since the magnitude of the cellular response to THs depends
on the abundance and/or affinity of TRs, it is possible that altera-
tions in the number or affinity of TRs as a result of physiologic or
pathologic stimuli could modify tissue responses to T3 [51]. In this
regard, Dex-induced inhibition of TRb1 expression in DCs should
be involved, at least in part, in GC-mediated impairment of the
immunostimulatory capacity of T3-induced DCs. The opposite reg-
ulation of TRb1 by Dex in the liver and DCs reinforces the tissue-
specific actions of GCs [52]. Accordingly, previous studies reported
an increase in vitamin D receptor (a hormone receptor with similar
features and mechanisms of action as TR) by GCs in kidney, adypo-
cytes, squamous cell carcinoma and human breast cancer cell lines
whereas a considerable decrease was observed in intestinal muco-
sa [53,54]. In turn, the sensitivity and specificity of the GC response
are determined by the complementary actions of individual GR iso-
forms that contribute to tissue- and cell-specific effects of GCs. The
GR gene yields two distinct mRNAs by alternative splicing that re-
sult in the production of two GR isoforms termed GRa and GRb.
GRb does not bind GCs, resides constitutively in the nucleus of
cells, and acts as a dominant-negative inhibitor of GRa on genes
both positively and negatively regulated by GCs. These GR isoforms
show a widespread tissue distribution, but their relative levels dif-
fer both within and among tissues [52]. Although a similar GRa
mRNA and protein expression in both human monocytes and iDCs
has been reported, GRb mRNA levels remained constant and very
low throughout DC differentiation and maturation at 3–4 logs low-
er than that of GRa [55]. However, GR functionality is modulated at
multiple levels that exceed GR isoform profile [56].

Previously, we have demonstrated an increase in cytoplasmic-
nuclear shuttling of NF-jB-p65 after exposure of DCs to T3; this ef-
fect was associated with increased activity of the NF-jB pathway
during T3-induced DC maturation and IL-12 production [22].
Furthermore, the immunostimulatory effects induced by T3 were
significantly prevented by specific NF-jB inhibitors and NF-jB-
siRNA [23]. The transcription of pro-inflammatory cytokines
including IL-12p70 is controlled, at least in part, by the transcrip-
tion factor NF-jB [57]. In this regard, GC-dependent repression of
NF-jB-dependent transcriptional targets through direct physical
association between GR and NF-jB in the nucleus has been consis-
tently reported in several studies [58–60]. Moreover, inhibition of
NF-jB activity by GCs has been proposed to be mediated by in-
creased synthesis of IjBs, which sequester NF-jB in an inactive
cytoplasmic form [61]. Hence, inhibition of T3-effects by Dex on
DCs should be achieved, at least in part, through inhibition of
NF-jB signaling. Furthermore, reduction of TRb1 expression may
also be explained by the presence of the functional consensus site
for NF-jB located �644 to �652 bp up to the starting ATG tran-
scription site of its gene recently reported by our group [23].
Therefore GC inhibition of the NF-jB pathway both at cytoplasmic
and nuclear levels may lead to reduced NF-jB-dependent regula-
tion of TRb1 expression. Interestingly, other nuclear receptors also
appear to be regulated by NF-jB; this includes the androgen recep-
tor to which NF-jB specifically binds the �574/�565 promoter re-
gion and mediates repression of its transcriptional activity [62].

In conclusion, the results presented here reinforce the dynamic
interrelationship between GCs and THs and their tissue-specific
regulation and mechanisms of action, highlighting a novel molec-
ular mechanism for the broad anti-inflammatory and immunosup-
pressive activities of GCs. In particular, our data reveals an
inhibitory effect of GCs in T3-induced DC maturation and immuno-
stimulatory capacity through mechanisms involving, at least in
part, NF-jB and TRb1 dependent signaling pathways. As these
results were obtained in the presence of physiological T3
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concentrations, these findings are relevant given the main role of
THs in the initiation of immune responses, the widespread use of
GC-based therapies and the prevalence of hypothyroid pathologies.
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