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We prove some results on the Wadge order on the space of sets of natural numbers

endowed with Scott topology, and more generally, on omega-continuous domains. Using

alternating decreasing chains we characterize the property of Wadge hardness for the

classes of the Hausdorff difference hierarchy (iterated differences of open sets). A similar

characterization holds for Wadge one-to-one and finite-to-one completeness. We consider

the same questions for the effectivization of the Wadge relation. We also show that for

the space of sets of natural numbers endowed with the Scott topology, in each class of

the Hausdorff difference hierarchy there are two strictly increasing chains of Wadge

degrees of sets properly in that class. The length of these chains is the rank of the

considered class, and each element in one chain is incomparable with all the elements in

the other chain.

1. Introduction

Wadge reducibility between subsets of possibly uncountable topological spaces is the

topological version of the classical many-one reducibility between subsets of discrete

countable spaces like words or integers. Since Wadge reducibility defines a preorder on

subsets of the topological space, one can consider the associated equivalence relation,

whose classes are called Wadge degrees. The theory of Wadge degrees is remarkable in

the case of Polish (i.e. completely metrizable with some countable dense subset) zero-

dimensional (i.e. admitting some basis of clopen sets) topological spaces, for instance

the Cantor space 2ω and the Baire space Nω with the product of discrete topologies.

William W. Wadge (1972) developed such theory by looking at reductions between sub-

sets of Nω as winning strategies in adequate infinite games, the now so-called Wadge

games. The strength of Wadge’s theory comes from Martin’s result (1975) about deter-

minacy of Borel games. The Wadge order on Borel subsets of Nω is well-founded and

almost total: every antichain has only two elements, and it is constituted by the Wadge
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degree of a set and that of its complement. In spaces that are not totally disconnected

this beauty breaks down. For instance, in the real line R, the Wadge order is not well

founded (Hertling 1996a,1996b), for each 2 ≤ ξ < ω1 there are chains of proper Σ0

ξ sets

indexed by any countable ordinal (Ikegami 2010) and, letting ⊆∗ denote inclusion up to a

finite set, the preorder (PN,⊆∗) (hence also any partial order of cardinality ℵ1) can be em-

bedded in the Wadge preorder of Borel subsets of R (Ikegami, Schlicht & Tanaka 2012).

Also in every metric space which is positive-dimensional (i.e. at some point there is no

clopen local base), there are 2ℵ0 Wadge incomparable sets in the Hausdorff class D2 of

differences of two open sets (Schlicht 2012).

Outside zero-dimensional Polish spaces, Wadge theory has been first considered in the

space PN of sets of natural numbers endowed with the Scott topology (which is T0 but not

T2, i.e., not Hausdorff), by A. Tang (1979,1981). Then it has been extensively studied by

V. Selivanov in a series of papers (Selivanov 2004, 2005a, 2005b, 2006, 2008 and references

there) in the context of ω-continuous domains. Although much of Wadge theory fails in

spaces with Scott topology, a non trivial part remains. For instance, Selivanov showed

the non existence of self-dual degrees in the Hausdorff difference hierarchy.

Another problem is to understand what part of Wadge theory remains in effective topo-

logical spaces by considering effective reductions. Since Borel determinacy gives highly

non computable game strategies, the main tool used in classical Wadge theory is not

available. As pointed out to us by an anonymous referee, it follows from Fokina, Fried-

man and Tornquist 2010 that the structure of effective Wadge degrees is very different,

even for the Baire space: the ordered structure of inclusion on computably enumerable

subsets of N can be embedded into the effective Wadge hierarchy of Σ0

2
subsets of the

Baire space; cf. Proposition 3.8 infra.

In this paper we concentrate on Wadge theory on the classes the Hausdorff difference

hierarchy, i.e. on ∆0

2
Borel sets. We also consider the same problems but using only ef-

fective reductions. With this study we provide the general framework for the particular

cases of effective Wadge hardness we used to define highly random reals in (Becher and

Grigorieff 2005, 2009). The paper is organized as follows. §2 recalls the basic definitions

of the Borel and Hausdorff hierarchies and some material on domains and effective ver-

sions of various notions. In §3 we present Wadge reductions in general topological spaces,

and their effective versions. We make explicit the relation between Wadge complete-

ness and universality, and we recall what is already known about Wadge theory outside

zero-dimensional spaces. In §4 we prove the main results of the paper. Theorem 4.8 char-

acterizes Wadge hardness for the classes of the Hausdorff difference hierarchy in terms of

alternating decreasing chains. Theorem 4.14 gives a similar characterization for Wadge

one-to-one and finite-to-one completeness. We prove effective versions of these results.

Theorem 4.23 shows that, for the space of sets of natural numbers endowed with the

Scott topology, in each class of the Hausdorff hierarchy there are two strictly increasing

chains of Wadge degrees of sets properly in that class. The length of these chains is the

rank of the considered class, and each element in one chain is incomparable with all

the elements in the other chain. This result builds on the construction done by Selivanov

(2005b) of two incomparable Wadge degrees which properly belong to an arbitrarily given

Hausdorff class. Finally in §5 we prove results on Wadge theory for the Borel class Σ0

2
.
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2. Preliminaries

For any set A, PA denotes the powerset of A and P<ωA denotes the family of all finite

subsets of A. We write N for the set of natural numbers. When X is a subset of N, and

i ∈ N, X + i = {n + i ∣ n ∈ X} and iX = {i n ∣ n ∈X}. Subsets of N are simply called sets,

subsets of PN are called families, and collections of subsets of PN are called classes. As

usual, Nω is the set of infinite sequences of natural numbers (the Baire space), and Z,Q,R

denote the sets of integer, rational and real numbers, respectively. Greek letters α,β, γ, δ

are used to denote ordinals. We write ω for the first infinite ordinal, ω1 for the first

uncountable ordinal, and ωCK

1
for the least non computable ordinal (the Church-Kleene

ordinal). For any two ordinals α,β, α ∼ β means that they have the same parity.

2.1. Borel and Hausdorff Hierarchies

Following (Selivanov 2005b, 2008), we consider the Borel hierarchy and the Hausdorff-

Kuratowski difference hierarchy in a general topological space P . The Borel hierarchy

consists of classes of subsets of P , namelyΣ0

α,Π
0

α,∆
0

α, where 1 ≤ α < ω1. They are defined

by induction on α : Σ0

1
is the class of open subsets of P , Σ0

2
is the class of countable

unions of differences of open subsets of P , and, for α > 2, Σ0

α is the class of countable

unions of sets in ⋃β<αΠ0

β. The class Π0

α is the class of complements of sets in Σ0

α and

∆0

α =Σ
0

α ∩Π
0

α. The class Gδ (respectively Fσ) is the family of countable intersections of

open sets (respectively countable unions of closed sets). In general, it is a proper subclass

of Π0

2
(respectively Σ0

2
).

For an ordinal 1 ≤ α < ω1, the operation Dα sends an α-sequence of sets (Aβ)β<α to

the set Dα((Aβ)β<α) = ⋃{Aβ ∖ ∪γ<βAγ ∣ β < α, β /∼ α} (recall that β /∼ α means that

α,β have different parities). The Hausdorff hierarchy is constituted by the Hausdorff

classes Dα, co-Dα where 1 ≤ α < ω1. The class Dα consists of all subsets of P of the

form Dα((Aβ)β<α), where (Aβ)β<α is an α-sequence of open subsets of P (with no loss

of generality, this α-sequence can be supposed increasing with respect to the inclusion

relation). The class co-Dα is the class of complements of sets in Dα. The Hausdorff-

Kuratowski hierarchy is obtained by replacing open sets by sets in a Σ0

ξ class, ξ < ω1 : its

classes are denoted by Dα(Σ0

ξ) and co-Dα(Σ0

ξ). Hausdorff-Kuratowski theorem ensures

that ⋃1≤α<ω1
Dα(Σ0

ξ) = ∆0

ξ+1 for any 1 ≤ ξ < ω1.

When the space P is not obvious from the context, or when we want to make it explicit,

we will add a parenthesized reference to the space P , writing Σ0

α(P ), Π
0

α(P ), ∆
0

α(P ),
Gδ(P ), Fσ(P ), Dα(P ), Dα(Σ

0

ξ(P )), co-Dα(Σ
0

ξ(P )). Let us mention the following clas-

sical result.

Fact 2.1. If f ∶ P → Q is continuous then the inverse image of a subset of Q in some

Borel or Hausdorff-Kuratowski class of Q is in the corresponding class of subsets of P .

2.2. Domains

We briefly recall the main definitions and refer the reader to classical papers and books,

for instance (Abramsky & Jung 1994; Edalat 1997; Gierz & al. 2003). A directed com-
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plete partial order (dcpo) is a partially ordered set (P,⊑) such that every non empty

directed subset S has a least upper bound (denoted by ⊔S). A subset X of P is an

upset (respectively downset) if, for all x, y ∈ P , if x ∈ X and x ⊑ y (respectively y ⊑ x)
then y ∈ X . The Scott topology on a dcpo P admits as closed sets all downsets closed

under suprema of directed subsets of P . Thus, open subsets are upsets O such that every

directed set with supremum in O has an element in O. The Scott topology is T0 (if x ≠ y
then there exists an open set which contains only one of the two points x, y). The order

relation ⊑ can be recovered from the Scott topology as the specialization order: x ⊑ y if

and only if every open set which contains x also contains y. A function f ∶ P →Q between

two dcpo’s is continuous with respect to the Scott topologies if and only if it is increasing

and preserves suprema of directed subsets: if S ⊆ P is directed then f(⊔S) = ⊔f(S).

The approximation (or way-below) relation in a dcpo (P,⊑) is defined as follows: x≪ y

if, for all directed subsets S, y ⊑ ⊔S implies x ⊑ s for some s ∈ S. Thus, x ≪ y ⇒ x ⊑ y

and x′ ⊑ x ≪ y ⊑ y′ ⇒ x′ ≪ y′. An element x ∈ P is compact (or finite) if x ≪ x. If

x is compact then x ≪ y ⇔ x ⊑ y. The set of compact elements is denoted K(P ). A
continuous domain is a dcpo such that, for every x ∈ P , the set ↡x = {z ∈ P ∣ z ≪ x} is
directed and x = ⊔ ↡x. A basis of a continuous domain is any set B such that, for all x,

B∩ ↡x is directed and x = ⊔(B∩ ↡x). An ω-continuous domain is a dcpo admitting a

countable basis. An ω-algebraic domain is a dcpo for which K(P ) is a countable basis. If

B is a basis of a continuous domain then the sets ↟b, for b ∈ B, form a topological basis,

where ↟x = {y ∣ x≪ y}. Let us mention the classical interpolation property.

Fact 2.2. Let B be a basis of the continuous domain P . Suppose y ∈ P and X ⊆ P is

finite such that for each x ∈ X , x≪ y. Then, there exists b ∈ B such that for each x ∈ X

x≪ b and b≪ y.

2.3. The Scott Domain PN

The ordered set (PN,⊆) is an ω-algebraic domain, its compact elements are the finite

sets and X ≪ Y if and only if X is finite and included in Y . A topological basis of the

Scott topology is the class {BA ∣ A ∈ P<ωN} where BA = {X ∈ PN ∣ A ⊆ X}. The Scott

topology gives “positive information” about sets, and contrasts with the Cantor topology

on 2ω which gives positive and negative information about sets via their characteristic

functions. As recalled before, the Scott topology on PN is T0: if i ∈ X ∖ Y , the open set

B{i} contains X but not Y .

As observed by Selivanov (2005b) the classes of finite rank of the Scott Borel hierarchy

in PN do not coincide with the corresponding ones in the Cantor space 2ω : for all n ∈ N,
n ≥ 1, Σ0

n(PN) ⊊ Σ0

n(2
ω) ⊊ Σ0

n+1(PN). For instance, X = PN ∖ {N}, defined by the

formula ∃x (x ∉ X), is Σ0

1
(2ω) and Σ0

2
(PN) but neither Scott open nor Scott closed.

However, the classes of infinite rank of the Borel hierarchy in PN and 2ω coincide. The

only subfamilies of PN which are both open and Fσ are ∅ and PN. To see why, suppose

O is open, O ≠ ∅, and X is Fσ, X ≠ PN. Let X = ⋃i∈N(PN ∖ Oi) where Oi is open.

Observe that Oi is non empty. Choose finite sets A and Bi, for i ∈ N, such that BA ⊆ O
and BBi

⊆ Oi. Let C = A ∪⋃i∈NBi. Then C ∈ O since C ⊇ A and C ∈ Oi since C ⊇ Bi.
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Thus, C is in O ∖ X , showing O ≠ X . A map f ∶ PN → PN is Scott continuous if and

only if f(X) = ⋃A⊆X,A∈P<ωN f(A) for all X . If f ∶ PN → PN is a continuous bijection

then there exists a permutation θ ∶ N → N such that for all X , f(X) = {θ(x) ∣ x ∈ X}.
In particular, f−1 is also continuous. Indeed, the inclusion order is a topological notion

(namely, the specialization order) hence f is an automorphism of (PN,⊆) and as such,

respects unions and maps singleton sets into singleton sets. Let us mention a classical

result which shows that PN is “universal” for ω-continuous domains.

Fact 2.3. Let (bn)n∈N enumerate a countable basis of the ω-continuous domain (P,⊑).
Let ϕ ∶ P → PN be such that ϕ(x) = {n ∣ bn ≪ x}.

1 The map ϕ is a dcpo embedding (i.e. an isomorphism between (P,⊑) and (ϕ(P ),⊆)
such that {x ∈ P ∣ ϕ(x) ⊆ Z} is directed for any Z ∈ PN).

2 The map ϕ is is a topological embedding of P into PN (i.e. an homeomorphism from

P to the subspace ϕ(P ) of PN). Then, for any Borel or Hausdorff-Kuratowski class

Γ, {ϕ(Z) ∣ Z ∈ Γ(P )} = Γ(ϕ(P )) = {X ∩ ϕ(P ) ∣ X ∈ Γ(PN)}.
3 ϕ(P ) is Π0

2
in PN.

Proof. We just prove items 2 and 3. Since ϕ is injective, it suffices to consider the case of

basic open sets ↟bn’s of P . Observe that ϕ(↟bn) = {ϕ(x) ∣ x ∈ P, bn ≪ x} = B{n} ∩ ϕ(P ).
This proves item 2. For item 3 observe that X ∈ ϕ(P ) if and only if, relative to the

approximation relation ≪ of P , {bi ∣ i ∈ X} is a directed downset. Letting R = {(i, j) ∣
bi ≪ bj}, this means that X satisfies the formulas ∀i, j ∃k (i, j ∈ X ⇒ (k ∈ X ∧ (i, k) ∈
R ∧ (j, k) ∈ R)) and ∀i, j (j ∈ X ∧ (i, j) ∈ R⇒ i ∈ X), i.e., X ∈ ϕ(P ) if and only if X is

in the Π0

2
families ⋂i,j∈N ⋃k∈Zi,j

(B{k} ∪ (PN ∖B{i,j})) and ⋂(i,j)∈R(B{i} ∪ (PN∖ B{j})),
where Zi,j = {k ∣ (i, k) ∈ R and (j, k) ∈ R}.

Remark 2.4. Fact 2.3 allows us to transfer properties from PN to ω-continuous domains.

2.4. Effectivization

2.4.1. Presentations of topological spaces. The following definition slightly departs from

(Weihrauch 2000, page 63).

Definition 2.5. Let P,Q be T0 second-countable topological spaces.

1 A presentation of the topology of P is an enumeration (not necessarily injective)

(Un)n∈N of some topological basis of P . For convenience, we shall sometimes consider

enumerations indexed by N2 or P<ωN.
2 A presentation (Un)n∈N is effective if {(i, j) ∣ Ui ⊆ Uj} is computably enumerable.

An effective topological space consists of a T0 second-countable topological space P

together with an effective presentation of P .

3 Relative to a presentation (Un)n∈N of the topology of P , an element x of P is effective

(respectively computable) if the set {i ∈ N ∣ x ∈ Ui} is computably enumerable (re-

spectively computable). Let α < ωCK
1

be an infinite computable ordinal. A sequence

(xβ)β<α of elements of P is effective (respectively computable) if there exists a com-

putable relation R ⊆ N2, isomorphic to the ordering of α, such that, letting ρ ∶ N→ α
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be the isomorphism between (N,R) and (α,<), the relation {(n, i) ∣ xρ(n) ∈ Ui} is

computably enumerable (respectively computable). In that case, each element of the

α-sequence is effective (respectively computable).

4 Relative to presentations (Un)n∈N, (Vn)n∈N of the topologies of P and Q, a continuous

map f ∶ P → Q is effective if the set {(i, j) ∣ f(Ui) ⊆ Vj} is computably enumerable.

Effective α-sequences of maps are defined as above.

Fact 2.6. Effective maps are closed under composition. They send effective elements

onto effective elements, idem with α-sequences for α < ωCK

1
.

Remark 2.7. If (Un)n∈N, (Vn)n∈N are presentations of the topological spaces P and Q,

then (Ui × Vj)i,j∈N is a presentation of the product topological space P ×Q.

2.4.2. Effective Borel and Hausdorff hierarchies. Fixing a presentation (On)n∈N of the

topology of P , one defines the effective versions of the Borel and Hausdorff-Kuratowski

hierarchies: the classes Σ0

α, Π
0

α, ∆
0

α, Dα, co-Dα, Dα(Σ0

ξ), co-Dα(Σ0

ξ), for 1 ≤ α, ξ < ωCK
1

.

The class Σ0

1
consists of those open sets which are of the form ⋃i∈I Oi where I is a c.e.

(computably enumerable) subset of N. The class Σ0

2
consists of those sets of the form

⋃n∈N(⋃i∈In Oi) ∖ (⋃j∈Jn
Oj) where {(n, i) ∣ i ∈ In} and {(n, j) ∣ i ∈ Jn} are c.e. All Borel

classes of finite rank are obtained in a similar way. For the infinite ranks, the definition

involves a more complex machinery of Borel codes which can be developed in several

ways, cf. (Moschovakis 1979/2009, §3H, 7B), (Marker 2002, §7), (Selivanov 2008, §3.2),

or (Becher and Grigorieff 2012, §5.3 to 5.5). The effective Hausdorff-Kuratowski classes

are obtained similarly. Fact 2.1 has an effective version.

Fact 2.8. If f ∶ P → Q is effective then the inverse image of a subset of Q in an effective

Borel or Hausdorff-Kuratowski class of Q is in the corresponding effective class of P .

2.4.3. Effective ω-continuous domains. Definition 2.5 extends to domains.

Definition 2.9.

1 A presentation of an ω-continuous domain P is an enumeration of some basis of P .

2 A presentation (pn)n∈N is effective if {(i, j) ∣ pi ≪ pj} is computably enumerable. An

effective ω-continuous domain consists of an ω-continuous domain P together with

an effective presentation of P .

Fix some presentations (pn)n∈N, (qn)n∈N of the (not necessarily effective) ω-continuous

domains P and Q.

3 An element x ∈ P is domain-effective (respectively domain-computable) if the set

{i ∈ N ∣ pi ≪ x} is computably enumerable (respectively computable). For α < ωCK
1

,

domain-effective (respectively domain-computable) α-sequences are defined as in Def-

inition 2.5 using the set {(n, i) ∣ pi ≪ xρ(n)}. Each element of a domain-effective (re-

spectively domain-computable) α-sequence is domain-effective (respectively domain-

computable).

4 A continuous map f ∶ P →Q is domain-effective if {(i, j) ∣ qj ≪ f(pi)} is computably

enumerable. For α < ωCK

1
, domain-effective α-sequences of maps are defined as above.
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Example 2.10. Consider the sequence (BA)A∈P<ωN, where BA = {X ∈ PN ∣ A ⊆ X}. It
is an effective presentation of PN, (called the canonical presentation). An element X ∈
PN is domain-effective (respectively domain-computable) relative to this presentation

if and only if it is a computably enumerable (respectively computable) subset of N.

A map f ∶ PN→ PN is domain-effective if and only if there exists a computable function

g ∶ P<ωN → N such that, for all X , f(X) = ⋃A⊆X,A∈P<ωNWg(A) where We denotes the

computably enumerable subset of N with code e.

Remark 2.11. If (pn)n∈N, (qn)n∈N are presentations of the ω-continuous domains P and

Q then (pi, qj)i,j∈N is a presentation of the product ω-continuous domain P ×Q.

Fact 2.12. Let (pn)n∈N, (qn)n∈N be presentations of the ω-continuous domains P,Q.

A domain-effective map f ∶ P → Q between ω-continuous domains sends any domain-

effective element of P to a domain-effective element of Q. Idem with domain-effective

α-sequences for α < ωCK

1
.

2.4.4. Topological effectiveness versus domain effectiveness. While Definition 2.5 gives

the notions of element, sequence and map that are topology-effective, Definition 2.9 does

it for the domain-effective notions. Since x ∈↟pi ⇔ pi ≪ x, for elements and sequences

the two definitions of effectivity coincide.

Fact 2.13. Let (pn)n∈N be a presentation of the ω-continuous domain P . An element

x ∈ P is domain-effective (respectively domain-computable) if and only if it is topology-

effective (respectively topology-computable). Idem with α-sequences, for 1 ≤ α < ωCK

1
.

In the case of ω-algebraic domains, Definition 2.5 and 2.9 the notion of effectivity

coincides not only for elements and sequences but also for space presentations and maps.

Fact 2.14. Let (pn)n∈N be a presentation of the ω-algebraic domain P consisting of

compact elements. Let (qn)n∈N be a presentation of the ω-continuous domain Q.

1 The presentation (pn)n∈N of the ω-continuous domain is effective if and only if so is

the presentation (↟pn)n∈N of the Scott topology of P .

2 A map f ∶ P → Q is domain-effective if and only if it is topology-effective.

Proof. Since pi ∈↟pi we have ↟pi ⊆↟pj⇔ pj ≪ pi and f(↟pi) ⊆↟qj ⇔ qj ≪ f(pi).

Finally, topological effective maps are also domain-effective.

Proposition 2.15. Let (pn)n∈N, (qn)n∈N be presentations of the ω-continuous domains

P,Q, such that (pn)n∈N is domain-effective. Then, a topology-effective map f ∶ P →Q is

also domain-effective.

Proof. Let S = {(i, j) ∣ qj ≪ f(pi)} and T = {(i, j) ∣ f(↟pi) ⊆ ↟qj} be the two com-

putably enumerable sets ensuring the domain-effectiveness and the topology-effectiveness

of f . Inclusion S ⊆ T is straightforward. Though, in general, S and T are distinct, we

show that S = {(i, j) ∣ ∃k (pk ≪ pi ∧ (k, j) ∈ T )}. In particular, if T is computably enu-

merable then so is S. Implication pk ≪ pi ∧ (k, j) ∈ T ⇒ (i, j) ∈ S is trivial. Conversely, if

(i, j) ∈ S then qj ≪ f(pi) = ⊔i∈Nf(pin) where (pin)n∈N is some increasing chain included



Verónica Becher & Serge Grigorieff 8

in ↡pi with supremum pi. By interpolation (cf. Fact 2.2), let qj ≪ y ≪ ⊔i∈Nf(pin). By
definition of ≪, there is some n such that y ⊑ f(pin) hence qj ≪ f(pin). Thus, letting
k = in, we have pk ≪ pi and (k, j) ∈ S ⊆ T .

2.4.5. Effective embedding in PN. We give a version of Fact 2.3 that effectivizes the

embedding of an ω-continuous domain P in PN.

Fact 2.16. Let (pn)n∈N be a presentation of the ω-continuous domain (P,⊑).

1 An element x ∈ P is effective (respectively computable) if and only if the set ϕ(x) =
{n ∈ N ∣ pn ≪ x} is effective (respectively computable) relative to the canonical

presentation of PN. Idem with α-sequences for α < ωCK
1

.

2 If the presentation (↟pn)n∈N is effective then ϕ is a topology-effective embedding of

(P,⊑) in (PN,⊆) (relative to the canonical presentation of PN). As a consequence,

for every effective Borel or Hausdorff-Kuratowski class Γ,

{ϕ(Z) ∣ Z ∈ Γ(P )} = Γ(ϕ(P )) = {X ∩ϕ(P ) ∣ X ∈ Γ(PN)}.
3 If the presentation (pn)n∈N is effective then ϕ(P ) is Π0

2
in PN.

Proof. 2. For A ∈ P<ωN, ↟A ≪ ϕ(↟ pi) if and only if ϕ(↟ pi) ⊆ BA if and only if

∀n ∈ A ∀k (pi ≪ pk ⇒ n ∈ ϕ(pk)) if and only if ∀n ∈ A ∀k (pi ≪ pk ⇒ pn ≪ pk) if and
only if ∀n ∈ A (↟pi ⊆↟pn). The universal quantification is bounded by the finite set A, so

this last formula gives the computable enumerability of the set {(A, i) ∣ ↟A ⊇ ϕ(↟pi)}.
3. Observe that in the proof of Fact 2.3 item 3, the sets R and {(i, j, k) ∣ k ∈ Zi,j} are

computably enumerable.

Note 2.17. Item 1 in Fact 2.16 does not need that the presentation (pn)n∈N be effective.

3. Wadge Theory and Its Effectivization

3.1. Wadge Hardness and Completeness

Definition 3.1. (Wadge 1972) Let P,Q be two topological spaces and C ⊆ P(P ).

1 X ⊆ P is Wadge reducible to Y ⊆ Q, written X ≤W Y , if X = f−1(Y ) for some

continuous f ∶ P →Q.

2 A set Y ⊆ Q is Wadge hard for C if every X ∈ C is Wadge reducible to Y .

3 In case P = Q, the set Y ⊆ Q is Wadge complete for C if it is Wadge hard for C and

it belongs to C.

4 Wadge reducibility, Wadge hardness and Wadge completeness are finite-to-one or one-

to-one when the associated reductions are, respectively, finite-to-one or one-to-one.

5 The preordering ≤W on subsets of P induces an equivalence relation. Its equivalence

classes are called Wadge degrees.

Definition 3.2. Relative to fixed presentations (Un)n∈N and (Vn)n∈N of the topological

spaces P,Q, effective Wadge reducibility, hardness and completeness are obtained by

requiring that only effective maps be considered in Definition 3.1.

One-to-one and finite-to-one Wadge reducibilities are not equivalent.
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Proposition 3.3. In the Scott domain PN, Wadge reducibility, finite-to-one and one-

to-one reducibilities are not equivalent. Idem with effective reducibilities.

Proof. Let O1 = ⋃n∈NB{n}, O2 = ⋃n>0 B{n}, O3 = ⋃n>0 B{0,n}. The complements of

these families respectively contain one set (namely ∅), two sets (namely ∅ and {0}), and
infinitely many sets (namely ∅, {0} and all subsets of PN ∖ {0}). Thus, there can be no

injective reduction of O2 to O1, and no finite-to-one reduction of O3 to both O1 and O2.

However, there is a finite-to-one effective reduction of O2 to O1, namely, f(X) =X ∖{0}.
Also, there is an effective reduction g of O3 to both O1 and O2: g(X) =X , if 0 ∈X and

there is n > 0 such that n ∈X ; otherwise g(X) = ∅.

Remark 3.4. Related to the above proposition, cf. Theorem 4.17 and Corollary 4.16.

For zero-dimensional Polish spaces, Wadge theory has beautiful properties.

Theorem 3.5. (Wadge 1972) Let P,Q be zero-dimensional Polish spaces.

1 (Duality theorem). Let A ⊆ P , B ⊆ Q be Borel sets. Then A ≤W B or B ≤W (P ∖A).
2 (Hardness theorem) For all ξ < ω1, the following conditions are equivalent:

— A is not Π0

ξ(P ).

— A is Wadge hard forΣ0

ξ(S) for some uncountable zero-dimensional Polish space S.

— A is Wadge hard forΣ0

ξ(S) for every uncountable zero-dimensional Polish space S.

Remark 3.6. The zero-dimensional hypothesis is necessary in Theorem 3.5 (cf. Hertling

1996a,1996b; Ikegami 2010; Schlicht 2011). For instance, consider the closed interval

A = [0,+∞[ in the real line. Its complement R ∖ A = ]− ∞,0[ is open. Let B = {α ∈
Nω ∶ ∀n α(n) /= 0}, so B is not open. Since Wadge reductions are continuous, necessarily

B /≤W R ∖ A (a reduction is impossible because the inverse image of an open set by a

continuous map must be open) and A /≤W B (a reduction is impossible because every

continuous map from a connected space to a totally disconnected space is constant).

Wadge Duality theorem does not hold in Scott spaces. This contradicts (Tang 1981, page

365 line 2) where the theorem is qualified as “straightforward” for PN. The failure of the
Duality theorem leads to the well known observation that Wadge games, the main tool

in Wadge theory, can not be used to investigate the Wadge hierarchy on spaces that are

not zero-dimensional and Polish.

Proposition 3.7. Wadge Duality theorem fails in the Scott domain PN.

Proof. Let X = B{0}, Y = P<ωN. Since PN ∖ X is closed but Y is not closed, we have

Y /≤W PN ∖ X . Let us see that X /≤W Y. Since 2N + 1 /∈ X but {0} ∪ 2N + 1 ∈ X , any
reduction f ∶ PN → PN from X to Y should be such that f(2N + 1) /∈ Y hence infinite

and f({0}∪ 2N+ 1) ∈ Y hence finite. But this is a contradiction since, being continuous,

reductions are increasing with respect to subset inclusion.

Theorem 3.5 does not have an effective version because determinacy is not guaranteed

in the effective world. As pointed to us by an anonymous referee, the arguments given

by Fokina, Friedman and Tornquist (2010) yield the following result.
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Proposition 3.8. The ordered structure of inclusion on computable (respectively com-

putably enumerable) subsets of N can be embedded into the ordered structure of effective

Wadge degrees (i.e. degrees relative to computable reductions) of Π0

1
(respectively Σ0

2
)

subsets of the Baire space.

Proof. We follow the arguments in the proof of Theorem 9 in Fokina, Friedman and

Tornquist (2010). Their Theorem 6 establishes that there is a uniform sequence (An)n∈N
of nonempty Π0

1
subsets of Nω such that, for each n, there is no hyperarithmetical function

F ∶ Nω → Nω such that F (An) ⊆ ⋃m≠nAm. We also use that the computable sequence

0ω is in no An, stated as a Remark after their Theorem 5.

Case of computable subsets of N. For f ∈ Nω and k ∈ N, let kf ∈ Nω be such that

(kf)(0) = k and (kf)(x) = f(x + 1) for all x ∈ N. For X ⊆ N computable, let A∗X be the

Π0

1
set ⋃n∈X nAn. Consider F ∶ Nω → Nω such that, for f ∈ Nω, F (f) = f if f(0) ∈X and

F (f) = 0ω otherwise. Then F is computable and reduces A∗X to A∗Y for any X ⊆ Y ⊆ N.
Suppose now that X,Y are subsets of N, X /⊆ Y , and F ∶ Nω → Nω reduces A∗X to A∗Y . For

g ∈ Nω, let g− ∈ Nω be obtained by removing the first element of g, i.e. g−(x) = g(x+1) for
all x. Pick some k ∈X∖Y and let G ∶ Nω → Nω be such that G(f) = F (kf)− for all f ∈ Nω.

Since k ∈ X , G(Ak) = F (kAk)− ⊆ (A∗Y )− = ⋃m∈Y Am. Since k ∉ Y , the assumed property

of the An’s ensures that G hence also the reduction F cannot be hyperarithmetical. Thus,

there is no computable reduction of A∗X to A∗Y .

Case of computably enumerable subsets of N. For X ⊆ N computably enumerable, let

A
†
X be the Σ0

2
set 0<ω1A∗X . Let (ni)i∈N be a computable enumeration of X and consider

the map F ∶ Nω → Nω such that F (0p1nif) = 0p+i1nif for all p, i ∈ N, f ∈ Nω, and F

takes value 0ω elsewhere. Then F is computable and reduces A†
X to A†

Y for any X ⊆ Y .

As before, A†
X cannot be effectively reduced to A†

Y in case X /⊆ Y .

3.2. Universality

It turns out that universality is related toWadge completeness, cf. (Moschovakis 1979/2009,

page 27) or (Kechris 1995, page 85, proof of Theorem 14.2).

Definition 3.9. Let P,Q be topological spaces, Γ a Borel or Hausdorff-Kuratowski class.

1 A set U ∈ Γ(P ×Q) is P -universal for the class Γ(Q) if Γ(Q) = {Up ∣ p ∈ P} where

Up = {q ∣ (p, q) ∈ U}.
2 A set S ∈ Γ(Q) is strongly P -universal for Γ(Q) if there exists a continuous map

Φ ∶ P ×Q → Q such that Γ(Q) = {Φ−1p (S) ∣ p ∈ P} with Φp(q) = Φ(p, q). If Φ is one-

to-one in its second argument then S is said to be one-to-one strongly P -universal.

3 Fix some presentations of P,Q. If Γ is an effective class, we get corresponding effective

notions by requiring equality Γ(Q) = {Up ∣ p ∈ P, p effective} in item 1 and equality

Γ(Q) = {Φ−1p (S) ∣ p ∈ P, p effective} with Φ an effective map in item 2.

Remark 3.10.

1 If there is some strongly P -universal set S for Γ(Q) then there is some P -universal

set U for Γ(Q) : let U = Φ−1(S), for a witness Φ of the strong P -universality of S.
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2 Effective strong universality is a variant of the notion of universal partial computable

function in Blum’s isomorphism theorem (recall that a partial computable ψ ∶ N → N

is universal if there is some computable f ∶ N2 → N such that for all e, x ∈ N, {e}(x) =
ψ(f(e, x)), cf. Rogers 1967, pages 54, 191).

Wadge completeness lies between universality and strong universality.

Proposition 3.11. Let Γ be a Borel or Hausdorff-Kuratowski class. Let P,Q be topo-

logical spaces.

1 If S is (one-to-one) strongly P -universal for Γ(Q) then S is (one-to-one) Wadge

complete for Γ(Q). An effective version holds relative to fixed presentations of P,Q.

2 Let C(Q,Q) be the set of continuous maps Q → Q endowed with any topology at

least as fine as the topology of pointwise convergence. If S is Wadge complete for

Γ(Q) then U = {(f, q) ∈ C(Q,Q) ×Q ∣ f(q) ∈ S} is C(Q,Q)-universal for Γ(Q). An
effective version holds relative to presentations of Q and of a topology on C(Q,Q)
finer than that of pointwise convergence.

Proof. 1. Let X be in Γ(Q). Since S is strongly universal, there exists p ∈ P such that

X = Φ−1p (S) where Φp ∶ Q → Q is the continuous map q ↦ Φ(p, q). Notice that if Φ is

injective in the second argument, then Φp is injective.

2. The map a ∶ (f, q) ↦ f(q) is continuous C(Q,Q)×Q→ Q, so a−1 preserves Borel and

Hausdorff-Kuratowski classes. Thus, U = a−1(S) ∈ Γ(C(Q,Q) ×Q). Since S ∈ Γ(Q), the
set Uf is in Γ(Q) for all f ∈ C(Q,Q). Since S is Wadge hard for Γ(Q), every X ∈ Γ(Q) is
of the formX = f−1(S) for some f ∈ C(Q,Q). Hence, f−1(S) = Uf . If Q is not a countable

set, the pointwise topology on C(Q,Q) has no countable basis. For the effective version we

need a finer topology: If (Vi)i∈N is a presentation of Q, a convenient topology on C(Q,Q)
has a presentation (VA)A∈P<ωN2 where VA = {f ∈ C(Q,Q) ∣ ∀(i, j) ∈ A f(Ui) ⊆ Uj}.
Wadge completeness coincides with strong universality when this last condition is not void.

Fact 3.12. If there is a strongly P -universal set for Γ(Q) then every Wadge complete set

for Γ(Q) is strongly P -universal for Γ(Q). One-to-one and effective versions also hold.

Proof. Suppose U is a strongly P -universal set for Γ(Q) and V is a Wadge complete

set for Γ(Q). Any continuous reduction from V to U composed with a witness of the

strongly P -universality of U yields a witness of the strongly P -universality of V .

There are also cases in which universality grants Wadge completeness.

Fact 3.13. Suppose h ∶ P ×Q → Q is a homeomorphism. If U is P -universal for Γ(Q)
then h(U) is one-to-one Wadge complete for Γ(Q).
By classical arguments (Kechris, 1995) Wadge hardness and P -universality can be lifted

with set-theoretical operations of complements, (countable) unions, intersections and

differences. When P , P 2 and Pω (endowed with the product topologies) are all home-

omorphic (for example Nω, 2ω or PN), one can lift Wadge completeness (respectively,

P -universality) for a class Dα(Σξ(Q)) to that for a class Dβ(Σµ(Q)) as long as either

ξ < µ or else ξ = µ and α is less or equal to β.
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3.3. Known Outside the Baire Space

The following simple result shows that PN is for ω-continuous domains what the Baire

space Nω is for Polish spaces. It can be seen as an extension of Facts 2.3 and 2.16.

Proposition 3.14. For every Polish space (respectively ω-continuous domain) Q there

is a Nω-universal (respectively PN-universal) set for Σ0

1
(Q). Given presentations of the

topological spaces Nω and Q (respectively the ω-continuous domains PN and Q), this

universal set is in the effective class relative to the associated presentation of Nω × Q
(respectively PN ×Q), cf. Remarks 2.7, 2.11.

Proof. We argue for the case of ω-continuous domains. Let (bi)i∈N be a presentation

of Q. Let U = {(X,x) ∈ PN ×Q ∣ ∃i ∈ X bi ≪ x}. Observe that U ∈ Σ0

1
(PN ×Q) since

U = ⋃i∈N B{i}× ↟ bi. Clearly, U is in the effective class Σ0

1
(PN×Q). Also, U is PN-universal

for Σ0

1
(Q) since, for every I ⊆ N, the open set O = ⋃i∈I ↟bi, of Q is equal to UI .

Applying Fact 3.13 and Proposition 3.14, one obtains the existence of Wadge complete

sets for domains such as PN, a result proved in (Selivanov 2005b).

Corollary 3.15. (Selivanov 2005b) If an ω-continuous domain Q is homeomorphic to

PN×Q then it admits some one-to-one Wadge complete set for each Borel or Hausdorff-

Kuratowski class.

Tang (1979) proved that a family A ∈∆0

2
(PN) is in ⋃n<ω Dn(PN) if and only if there

is a finite bound on the length of A-alternating monotone chains. Of course, for finite

chains there is no distinction between increasing or decreasing chains. Using alternating

trees Selivanov (2005b, 2006) extended and refined this result for ω-algebraic domains.

A slight variation of the proof goes through with ω-continuous domains, cf. (Selivanov

2008), (Becher and Grigorieff 2012).

Proposition 3.16. (Selivanov 2005b, Proposition 6.4 i) Let P be an ω-continuous do-

main and n ∈ N. Every set in ∆0

2
(P ) but not in co-Dn(P ) is Wadge hard for Dn(P ).

Polish spaces and ω-continuous domains have been put in an elegant unifying frame-

work: the quasi-Polish spaces (de Brecht 2011). Up to homeomorphism, quasi-Polish

spaces coincide with the Π0

2
subspaces of PN. Wadge hardness results transfer from

PN to quasi-Polish spaces as follows.

Proposition 3.17. Let Γ is Σ0

α(PN) with α ≥ 3 or Π0

α(PN) with α ≥ 2. Let P be a

topological space. Any set H ⊆ P that is Wadge hard for Γ(PN) is also Wadge hard for

Γ(Q) for every quasi-Polish space Q.

Proof. Since every quasi-Polish space is homeomorphic to a Π0

2
subspace of PN, we

can suppose Q is a Π0

2
subspace of PN. The hypothesis on Γ ensures that Q is in Γ(PN).

If A ∈ Γ(Q) then A = A′ ∩Q for some A′ ∈ Γ(PN) hence A ∈ Γ(PN). The restriction to

Q of any continuous reduction of A′ to H is a reduction of A to H .
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4. Wadge Hardness and Alternating Decreasing Chains

4.1. Alternating Chains

Recall that we write α ∼ β to indicate that α and β have the same parity.

Definition 4.1. Let (P,⊑) be a dcpo, A a subset of P and α an ordinal.

1 An (α+ 1)-sequence (xβ)β≤α of elements of P is an A-alternating decreasing chain if

— xβ ⊐ xδ for all β < δ ≤ α, and

— xβ ∈ A if and only if β /∼ α (thus, xα ∉ A).

2 An A-special (α + 1)-chain is an A-alternating decreasing chain (xβ)β≤α such that

— (xβ ⊒ x ⊐ xβ+1)⇒ (x ∈ A⇔ β /∼ α), and
— (xα ⊒ x)⇒ (x ∉ A)

Note 4.2. If (xβ)β≤α is A-alternating and γ < α then (xβ)β≤γ is A-alternating if and

only if γ ∼ α.

Remark 4.3. As proved by Selivanov (2005b, 2008), when α is infinite and A is ∆0

2

A-alternating increasing chains do not exist. In fact, if A is in the difference of two open

sets and the supremum of an increasing chain (xn)n∈N is in A then the xn’s are in A for

all n large enough. By considering countable unions, it follows that the same is true if A

is Σ0

2
. This property forbids A-alternation of increasing infinite chains if A is ∆0

2
.

4.2. Wadge Hardness and Alternating Decreasing (α + 1)-Chains
If A is in ∆0

2
then long A-alternating decreasing infinite chains do exist in PN.

Proposition 4.4. Let α ≥ 1 be a countable ordinal.

1 There exists a family A ∈ Dα(PN) and an A-special chain (Xβ)β≤α such that Xα

and Xβ ∖Xβ+1, for all β < α, are infinite subsets of N.

2 If α < ωCK
1

then A can be taken in the effective class Dα(PN) and the chain can be

taken computable (cf. Definition 2.9).

Proof. Let β ↦ aβ be a bijection α → 3N. Let (Aβ)β≤α be a family of pairwise disjoint

infinite subsets of 3N + 1. For β ≤ α, let Xβ = (3N + 2) ∪ ⋃β≤δ<α({aδ} ∪ Aδ). Then

Xβ ∖Xβ+1 = {aβ}∪Aβ and Xα = 3N+2 are infinite sets. For β < α, define an open family

Uβ = {Z ∣ ∃γ ≤ β aγ ∈ Z}. With these open families, define a family A = Dα((Uβ)β<α) =
⋃β<α,β/∼αUβ ∖⋃γ<β Uγ in Dα(PN). Observe that a set X is in A if and only if it meets

{aβ ∣ β < α} and the least β < α such that aβ ∈ X has parity different from that of α.

In particular, if Xβ ⊇ X ⊃ Xβ+1 then X ∈ A if and only if β /∼ α. Thus (Xβ)β≤α is an

A-special chain. Effectivization is straightforward.

In general in continuous domains, long decreasing chains may not exist. For instance

in the ω-algebraic domain (2≤ω ,⊑) of finite and infinite binary words with the prefix

ordering, every decreasing chain is finite. However, in case a long decreasing chain exists

then it can always be viewed as an A-alternating chain for some A ∈∆0

2
.
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Proposition 4.5. Let P be a continuous domain and α < ω1 be an ordinal.

1 Every strictly decreasing chain (xβ)β≤α in P is A-special for some A ∈Dα(P ).
2 Suppose P is ω-continuous and fix some presentation of P . If α < ωCK

1
and the chain

is computable then we can take A ∈ Dα(P ).
Proof. Let B be a basis of P . In the vein of Fact 2.3, we use the isomorphism ψ between

(P,⊑) and a subspace of (P(B),⊆) such that ψ(x) = B∩ ↡x = {b ∈ B ∣ b ≪ x}. Thus,
(ψ(xβ))β≤α is a strictly decreasing chain. Let Uβ = ⋃{↟b ∣ b ∈ ψ(x0)∖ψ(xβ+1)} for β < α.
The Uβ ’s are strictly increasing open subsets of P . Let A =Dα((Uβ)β<α). The set A is in

Dα(P ). Suppose β < α and xβ ⊒ x ⊐ xβ+1. Then ψ(xβ) ⊇ ψ(x) ⊃ ψ(xβ+1), so that x ∈ Uδ if

and only if ψ(x) meets ψ(x0) ∖ψ(xδ+1) if and only if δ ≥ β. In particular, x ∈ Uβ ∖⋃γ<β.

Thus, x ∈ A if and only if β /∼ α (hence, β ∼ α + 1). Finally, suppose xα ⊒ x. Then
ψ(xα) ⊇ ψ(x) and x is in no Uβ hence x ∉ A. For the effective version, using a presentation
(bi)i∈N, replace ψ with ϕ of Facts 2.3 and 2.16 such that ϕ(x) = {i ∈ N ∣ bi ≪ x}. The
computability of the chain (xβ)β≤α ensures that of (ϕ(x0) ∖ ϕ(xβ+1))β≤α.
Note 4.6. An effective chain is not enough for the above proof: being differences of com-

putably enumerable sets, the sets ϕ(x0)∖ϕ(xβ+1) might not be computably enumerable.

Remark 4.7. The proof of Proposition 4.5 amounts to a proof for the case P = P(κ),
where κ is cardinal, and a transfer to all continuous domains having a basis of cardinality

≤ κ via an obvious extension of Fact 2.3. Idem for effectivization with κ = ω and Fact 2.16.

We present now one of the main theorems of the paper. For the effective part of

the result we use the following convention: effective reductions P → Q are relative to

the presentations (↟pn)n∈N and (↟qn)n∈N of the Scott topologies on P,Q associated to

presentations (pn)n∈N and (qn)n∈N of the ω-continuous domains P,Q.

Theorem 4.8. Let Q be a continuous domain, H ⊆ Q and α < ω1 be an ordinal.

1 The following conditions are equivalent.

(i) H is Wadge hard for Dα(P ) for every continuous domain P .

(ii) H is Wadge hard for Dα(PN).
(iii)H is Wadge hard for Dα(P ) for some continuous domain P admitting a strictly

decreasing chain of length α + 1.
(iv) There exists a decreasing H-alternating chain in Q of length α + 1.

2 Suppose Q is an ω-continuous domain and fix some presentation (qn)n∈N of Q. If

α < ωCK
1

the following conditions are equivalent.

(ie) H is Wadge hard for Dα(P ) and effectively Wadge hard for Dα(P ) for every

effective ω-continuous domain P (cf. Definition 2.9).

(iie)H is effectively Wadge hard for Dα(PN).
(iiie)H is effectively Wadge hard for Dα(P ) for some effective ω-algebraic domain P

admitting a computable strictly decreasing chain of length α + 1.
(ive) There exists an effective decreasing H-alternating chain in Q of length α + 1.



Wadge Hardness in Scott Spaces and Its Effectivization 15

Proof. (i)⇒ (ii). Particularize item (i) with P = PN.
(ii)⇒ (iii). Let P = PN and use Proposition 4.4.

(iii)⇒ (iv). By Proposition 4.5, the strictly decreasing chain in P of length α+1 given

by (iii) is A-alternating for some A ∈ Dα(P ). A continuous reduction of A to H maps

this A-alternating chain onto a decreasing H-alternating chain in Q.

(iv)⇒ (i). Let (yβ)β≤α be a decreasing H-alternating chain of length α + 1. Suppose
X is a set in Dα(P ). Then X = ⋃β<α,β/∼α Vβ ∖⋃γ<β Vγ for some increasing chain (Vβ)β≤α
of open sets. Define τ ∶ P → α + 1 and f ∶ P → Q as follows: for z ∈ P ,

τ(z) = { least β < α such that z ∈ Vβ if z ∈ ⋃β<α Vβ
α otherwise.

f(z) = yτ(z)
Since the Vβ ’s are increasing and are open hence are upsets in P , τ is decreasing and f

is increasing. Letting B be a basis of P , we have Vβ = ⋃c∈Iβ ↟c for some Iβ ⊆ B. Thus,

z ∈ Vβ ⇔ ∃c ∈ Iβ c≪ z

⇔ ∃c ∈ Iβ ∃b ∈ B c≪ b≪ z (by the interpolation property)

⇔ ∃b ∈ B (b≪ z ∧ b ∈ Vβ)
τ(z) = min{τ(b) ∣ b ∈ B, b≪ z}
f(z) = max⊑{f(b) ∣ b ∈ B, b≪ z}.

The last equality shows that f is continuous. Finally, observe that z ∈ X if and only if

τ(z) < α and τ(z) /∼ α if and only if f(z) = yτ(z) ∈ H . Thus, f reduces X to H .

(ie)⇒ (iie)⇒ (iiie). Idem as (i)⇒ (ii)⇒ (iii).
(iiie) ⇒ (ive). By Proposition 4.5, the chain in P of length α + 1 given by (iii) is

A-alternating for some A ∈ Dα(P ). Observe that an effective reduction from A to H

maps this computable chain onto an effective decreasing H-alternating chain.

(ive)⇒ (ie). Suppose X ∈ Dα(P ). Keeping the notation as in the proof of (iv)⇒ (i),
we first show that the reduction f ∶ P → Q of X to H is domain-effective. Let (pi)i∈N and

(qℓ)ℓ∈N be presentations of P and Q such that (pi)i∈N is effective, i.e. {(i, j) ∣ pi ≪ pj} is
computably enumerable. Since α < ωCK

1
and the chain (yβ)β≤α is effective, there exists

an initial segment S of N, a set R ⊂ S2 and a map ρ ∶ S → α + 1 such that

— ρ is an isomorphism (necessarily unique) between (S,R) and (α + 1,≤),
— the relation {(n, ℓ) ∣ qℓ ≪ yρ(n)} is computably enumerable.

Since X ∈ Dα(P ), we can suppose that {(n, j) ∣ pj ∈ Iρ(n)} is a computably enumerable

set. Let a ∈ S be such that α = ρ(a). For ℓ, i ∈ N,
qℓ ≪ f(pi) ⇔ qℓ ≪ yτ(pi)

⇔ qℓ ≪ max ({yβ ∣ τ(pi) ≤ β ≤ α})
⇔ qℓ ≪ yα or ∃β < α (qℓ ≪ yβ and β ≥ τ(pi))
⇔ qℓ ≪ yα or ∃β < α (qℓ ≪ yβ and pi ∈ Vβ)
⇔ qℓ ≪ yα or ∃β < α (qℓ ≪ yβ and ∃pj ∈ Iβ pj ≪ pi)
⇔ qℓ ≪ yρ(a) or ∃n ≠ a ∃j (qℓ ≪ yρ(n) and pj ∈ Iρ(n) and pj ≪ pi) .

Thus, the set {(i, ℓ) ∣ qℓ ≪ f(pi)} is obtained via conjunction, disjunction and projection

of computably enumerable sets. As such, it is computably enumerable. This proves f is

a domain-effective map.
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If P is ω-algebraic and the pn’s are compact elements then Fact 2.14 ensures that the

reduction f is also topology-effective. In the general case where P is only ω-continuous,

we argue as follows. Consider the map ϕ ∶ P → PN such that ϕ(x) = {n ∈ N ∣ pn ≪ x}.
Since the presentation (pn)n∈N of P is effective, Fact 2.16 ensures that ϕ is a topological

embedding which is topology-effective (relatively to the canonical presentation of PN)
and that ϕ(X) = Y ∩ ϕ(P ) for some Y ∈ Dα(PN). Since PN is an effective ω-algebraic

domain, the above argument applied to the subset Y of PN, yields a reduction g ∶ PN→ Q

of Y to H which is topology-effective. The composition g ○ϕ ∶ P → Q is then a reduction

of X to H which is also topology-effective.

Remark 4.9. Letting α = 1 the characterization of hardness for Σ0

1
(PN) given by The-

orem 4.8 is in the vein of the work done in (Becher and Grigorieff 2009).

The next Corollary was known for the domain PN (Selivanov 2005b), cf. Corollary 3.15.

Corollary 4.10. Let Q be a continuous domain and α < ω1 be a countable ordinal.

1 If Q admits some strictly decreasing chain of length α + 1 then there exists a Wadge

complete set for Dα(Q). In particular, this applies if Q = PN.
2 Suppose Q is an effective ω-continuous domain. If Q admits some computable strictly

decreasing chain of length α + 1 then there exists a Wadge complete set for Dα(Q)
which is also effectivelyWadge complete for Dα(Q). In particular, this applies ifQ = PN.

Proof. By Proposition 4.5, the assumed strictly decreasing chain of length α + 1 is

H-special, hence H-alternating for some H ∈ Dα(Q). Thus item (iv) of Theorem 4.8 is

satisfied; then, item (i) of Theorem 4.8 also holds, hence H is as desired. The possible

instantiation Q = PN comes from Proposition 4.4. Effectivization is straightforward.

4.3. One-to-one Wadge Completeness and Alternating Decreasing Chains

Universal properties as those in part 1 (i) of Theorem 4.8 cannot hold with one-to-one

Wadge reductions f ∶ P → Q since such reductions can only exist if Q has cardinality

at least that of P . Therefore, we shall restrict to ω-continuous domains. The version of

Theorem 4.8 for one-to-one hardness relies on the following notion.

Definition 4.11. Let (P,⊑) be an ordered set and α an ordinal.

1 A strictly decreasig chain (xβ)β≤α is scattered if there exist one-to-one continuous

maps θβ ∶ PN→ P , for β ≤ α, such that

θα(PN) ⊆ {x ∣ xα ⊒ x}, and θβ(PN) ⊆ {x ∣ xβ ⊒ x ⊐ xβ+1} for β < α.
2 Let A ⊆ P . A strictly decreasig chain (xβ)β≤α is A-scattered if it is scattered for

one-to-one continuous maps θβ ∶ PN→ P , for β ≤ α, such that

θβ(PN) ⊆ A if β /∼ α, and θβ(PN) ⊆ P ∖A if β ∼ α.

3 Suppose (P,⊑) is an ω-continuous domain. Fix some presentation of P . If α < ωCK

1
,

a scattered chain (xβ)β≤α is effective if it is an effective (α + 1)-sequence of elements

of P and (θβ)β≤α is an effective (α + 1)-sequence of maps PN→ P .
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Proposition 4.12. Let (Xβ)β≤α be a strictly decreasing sequence of subsets of N, of

length (α + 1).
1 The following conditions are equivalent.

(a) The chain (Xβ)β≤α is scattered.

(b)Xα and each of Xβ ∖Xβ+1, for β < α, is an infinite set.

2 Suppose (Xβ)β≤α is A-special for some A ⊆ PN. Then, a third equivalent condition is

(c) (Xβ)β≤α is A-scattered.
Proof. (a) ⇒ (b). Suppose the chain is scattered. Then, with the notation of Def-

inition 4.11, for β < α, (θβ({0, . . . , n}))n∈N is a strictly increasing sequence of sets in

{X ∣Xβ ⊇X ⊃Xβ+1}. Thus, Xβ ∖Xβ+1 is infinite. Similarly, Xα is infinite.

(b) ⇒ (a). Consider bijective maps µα ∶ N → Xα and µβ ∶ N → Xβ ∖Xβ+1, for β < α.
For Z ∈ PN, let θα(Z) = µα(Z) and, for β < α, θβ(Z) = Xβ+1 ∪ µβ(Z). The condition of

Definition 4.11 item 1 is true, hence the chain is scattered.

In case the chain is A-special, (b)⇒ (c) and (c)⇒ (a) are straightforward.

Corollary 4.13. Let α < ω1 be an ordinal. There exists A ∈Dα(PN) and an A-scattered
chain of length α + 1. If α < ωCK

1
then we can take A ∈ Dα(PN) and get a computable

A-scattered chain of length α + 1.

Proof. Use Propositions 4.4 and 4.12.

To characterize effective Wadge one-to-one hardness we use the same convention as in

Theorem 4.8: effective reductions P → Q are relative to the presentations (↟pn)n∈N and

(↟qn)n∈N of the Scott topologies on P,Q for presentations (pn)n∈N and (qn)n∈N of the

ω-continuous domains P,Q.

Theorem 4.14. Let Q be an ω-continuous domain, H ⊆ Q and α < ω1 be an ordinal.

1 The following conditions are equivalent.

(i) H is one-to-one Wadge hard for Dα(P ) for every ω-continuous domain P .

(ii) H is one-to-one Wadge hard for Dα(PN).
(iii)H is one-to-one Wadge hard for Dα(P ) for some continuous domain P admitting

a scattered chain of length α + 1.

(iv) There exists an H-scattered chain in Q of length α + 1.

2 Fix some presentation (qn)n∈N ofQ. If α < ωCK
1

the following conditions are equivalent.

(ie) H is one-to-one Wadge hard for Dα(P ) and effectively one-to-one Wadge hard

for Dα(P ) for every effective ω-continuous domain P (cf. Definition 2.9).

(iie) H is effectively one-to-one Wadge hard for Dα(PN).
(iiie)H is effectively one-to-one Wadge hard for Dα(P ) for some effective ω-algebraic

domain P admitting a computable scattered chain of length α + 1.

(ive) There exists an effective H-scattered chain in Q of length α + 1.
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Proof. (i)⇒ (ii). Particularize item (i) with P = PN.
(ii)⇒ (iii). Let P = PN and use Corollary 4.13.

(iii) ⇒ (iv). By Proposition 4.5, the strictly decreasing chain in P of length α + 1

given by (i) is A-special for some A ∈ Dα(P ). Being scattered and A-special, this chain

is A-scattered. A one-to-one continuous reduction of A to H maps this A-scattered chain

onto an H-scattered chain in Q.

(iv)⇒ (i). Fix some presentation (bi)i∈N of P . Let (yβ)β≤α be the H-scattered chain

and θβ’s, β ≤ α, the one-to-one continuous maps PN→ P as in Definition 4.11. We keep

the notations in the proof of the same implication in Theorem 4.8. Let f ∶ P → Q be the

continuous reduction of X to H constructed in this proof: f(z) = yτ(z) where τ(z) is the
least β < α such that z ∈ Bβ if z ∈ ⋃β<α Vβ and τ(z) = α otherwise. We introduce another

map g ∶ P → Q such that g(z) = θτ(z)({i ∣ bi ≪ z}). Let us see that g ∶ P → Q reduces

A to H . If z ∈ A then f(z) = yτ(z) ∈ H . Suppose τ(z) < α. We know that θτ(z) maps

PN into {y ∣ yτ(z) ⊒ y ⊐ yτ(z)+1}. Since yτ(z) ∈ H , θτ(z) maps PN into H . In particular,

g(z) = θτ(z)({i ∣ bi ≪ z}) ∈ H . The case τ(z) = α is similar. If z ∉ A the proof can be

treated similarly.

We now check that g ∶ P → Q is one-to-one. Suppose z, t ∈ P and z ≠ t. If τ(z) < τ(t)
then xτ(z) ⊒ g(z) ⊐ xτ(z)+1 ⊒ xτ(t) ⊒ g(t) hence g(z) ≠ g(t). If τ(z) = τ(t) then, for the

same β = τ(z), we have g(z) = θβ({i ∣ bi ≪ z}) and g(t) = θβ({i ∣ bi ≪ t}). Since z ≠ t
we have {i ∣ bi ≪ z} ≠ {i ∣ bi ≪ t}. Since θβ is one-to-one we have g(z) ≠ g(t). Let us

now see that g ∶ P → Q is continuous. It is clear that g is increasing. Suppose z = ⊔n∈Nzn
where (zn)n∈N is an increasing sequence of elements of P . Since z ∈ Vτ(z) and Vτ(z) is

open, for n large enough, zn is also in Vτ(z) hence τ(zn) ≤ τ(z). Now, τ ∶ P → {β ∣ β ≤ α}
is decreasing so that τ(zn) ≥ τ(z). Thus, we get equality τ(zn) = τ(z). Consequently,
g(z) and the g(zn)’s, for n large enough, are of the form θβ(z) and θβ(zn) for the same

β = τ(z). Since θβ is continuous we get g(z) = θβ(z) = ⊔n∈Nθβ(zn) = ⊔n∈Ng(zn). This
proves continuity of g.

Using Corollary 4.13, the implications (ie)⇒ (iie)⇒ (iiie)⇒ (ive)⇒ (ie) are proved
as in Theorem 4.8.

The next Corollary was known for the domain PN, (Selivanov 2005b), cf. Corollary 3.15.

Corollary 4.15. Let Q be an ω-continuous domain and α < ω1 be a countable ordinal.

1 If Q admits some scattered chain of length α+1 then there exists a one-to-one Wadge

complete set for Dα(Q). In particular, this applies if Q = PN.
2 Suppose Q is ω-continuous and admits an effective presentation. Fix such an effective

presentation. If Q admits some computable scattered chain of length α+1 then there

exists a one-to-one Wadge complete set for Dα(Q) which is also effectively Wadge

complete for Dα(Q). In particular, this applies if Q = PN.
Proof. Using Corollary 4.13 the proof is similar to that of Corollary 4.10.

Wadge completeness does not coincide with one-to-one Wadge completeness in PN.
Corollary 4.16. There are Wadge complete families for Dα(PN) which are not Wadge

one-to-one complete.
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Proof. Consider a partition (Aβ)β<α of N in infinite sets and let Aα = ∅. Let Xβ =

⋃β≤δ≤αAδ and Uβ be the sets that meet ⋃γ≤β Aγ . Let H =Dα((Uβ)β<α). Since (Xβ)β<α
is a decreasing H-alternating chain, Theorem 4.8 ensures that H is Wadge complete for

Dα(PN). Observe that ⋃β<αUβ = PN∖{∅}. Thus, every decreasing H-alternating chain

of lenghth α + 1 has the empty set as last element hence it cannot be scattered. This

shows that H cannot be Wadge one-to-one complete.

4.4. Finite-to-one Wadge Completeness and Alternating Decreasing Chains

In the case of the ω-continuous domain (PN,⊆) finite-to-one and one-to-one Wadge

hardness concide.

Theorem 4.17. Let H ⊆ PN.
1 The following conditions are equivalent.

(i) H is finite-to-one Wadge hard for Dα(PN).
(ii) H is one-to-one Wadge hard for Dα(P ) for every ω-continuous domain P .

2 Fix some presentation of Q. If α < ωCK
1

the following conditions are equivalent.

(ie) H is effectively finite-to-one Wadge hard for Dα(PN).
(iie)H is one-to-one Wadge hard for Dα(P ) and effectively one-to-one Wadge hard

for Dα(P ) for every effective ω-continuous domain (cf. Definition 2.9).

Proof. (i)⇒ (ii). Consider the family A ∈Dα(PN) and the A-special chain (Xβ)β≤α
in PN given by Proposition 4.4. Consider bijections µα ∶ N→Xα and, for β < α, µβ ∶ N→

Xβ ∖Xβ+1. Let Xα,n = µα({0, . . . , n}) and, for β < α, let Xβ,n = Xβ+1 ∪ µβ({0, . . . , n}).
Let f ∶ PN→ PN be a finite-to-one continuous reduction of A to H and let Zβ = f(Xβ),
for β ≤ α. Consider some β < α. The sequence (Xβ,n)n∈N is an infinite chain in PN of

sets containing Xβ+1 and contained in Xβ . Since f is increasing we have Zβ = f(Xβ) ⊇
f(Xβ,n) ⊇ f(Xβ+1) = Zβ+1. Since f is finite-to-one, (f(Xβ,n))n∈N contains infinitely

many distinct sets. In particular, Zβ ∖Zβ+1 must be an infinite set. A similar argument

shows that Zα is also an infinite set. Let θα ∶ PN → PN be such that θα(X) = µα(X)
for all X ∈ PN. For β < α, let θβ ∶ PN → PN be such that θα(X) = f(Xβ+1 ∪ µβ(X)).
These maps θβ , β ≤ α, are continuous one-to-one maps PN → PN. Clearly, θα(∅) = ∅
and θα(N) = Xα. And for β < α, θβ(∅) = Zβ+1 and θβ(N) = Zβ. Recall that (Xβ)β≤α is

A-special. Thus, for all X ∈ PN, the set µα(X), being included in Xα, is not in A. For
β < α, the set Xβ+1∪µβ(X), being included in Xβ and containing strictly Xβ+1, is in A if

and only if β /∼ α. Since f is a reduction of A to H, the range of θα is included in PN∖H
and, for β < α, the range of θβ is included in H if β /∼ α, and it is included in PN ∖H
if β ∼ α. This proves that the chain (Zβ)β≤α is H-scattered. Applying Theorem 4.14, we

get the wanted condition (ii).

(ie)⇒ (iie). Routine variation of the above argument.

(ii)⇒ (i) and (iie)⇒ (ie) are obvious.
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4.5. Increasing Chains of Wadge Degrees

Combining a construction given by Selivanov (2005b) with decreasing chains of sets, we

get increasing chains of properDα(PN)Wadge degrees. We write N<ω for the set of finite

sequences of natural numbers, and N≤ω for N<ω ∪Nω. nil denotes the empty sequence.

Definition 4.18. (Selivanov 2005b) Suppose α is infinite. Let T ⊂ N≤ω be a well-founded

tree (i.e. T is closed under prefix and has no infinite branch) with rank α. Let ξ ∶ N<ω → 2N

be an injective map such that, ξ(nil) = 0. Let e ∶ N<ω → P<ω(2N) be the map such that,

for every σ ∈ T , e(σ) = {ξ(τ) ∣ τ prefix of σ}. Let B(T ) = {X ∈ PN ∣ ∀σ ∈ T X /⊆ e(σ)}.
And, for each ordinal α, let Yα = {e(σ) ∣ σ ∈ T has odd length } and Zα = Yα ∪B(T ).
Theorem 4.19. (Selivanov 2005b, Lemma 5.8 and Propositions 5.9 and 6.4) B(T ) is
open and Yα, Zα are two proper Dα(PN) families that are Wadge incomparable.

Before entering the construction of the chains of Wadge degrees, a simple lemma.

Lemma 4.20. Let E be a topological space.

1 If A ∈Dα(E) and L ⊆ E is open then A ∩L ∈Dα(E).
2 If α is infinite, A ∈Dα(E) and F ⊆ E is closed then A ∩ F ∈Dα(E).
3 Suppose β > 0, β + α = α (i.e. α ≥ βω). If C ∈ Dβ(E), D ∈ Dα(E), L is open and

C ⊆ L and L and D are disjoint then C ∪D ∈Dα(E).
Proof. 1. If A =Dα((Uβ)β<α) then A ∩L =Dα((Uβ ∩L)β<α).
2. Let L = E ∖ F . Let A = Dα((Uβ)β<α) where the Uβ ’s are open. In case α is odd,

let X0 = ∅, X1 = L and, for β < α, let X2+β = L ∪Uβ . In case α is even, let X0 = L and

X1+β = L ∪Uβ . Now, 2 + α = 1 + α = α (since α is infinite) and A ∩F =Dα((Xβ)β<α).
3. Suppose C = Dβ((Uγ)γ<β) and D = Dα((Vδ)δ<α). Case β ∼ α. Let Wγ = Uγ ∩L for

γ < β, Wβ+δ = Vδ ∪L for δ < α. Then,
Dα((Wγ)γ<α) = Dβ((Uγ ∩L)γ<β) ∪ (Dα((Vδ ∪L)β≤δ<α) ∖⋃γ<β Uγ ∩L)

= (C ∩L) ∪ ((D ∖L) ∖⋃γ<β Uγ ∩L)
= (C ∩L)∪ (D ∖L)
= C ∪D.

Case β /∼ α. Let W0 = ∅, W1+γ = Uγ ∩ L for γ < β, Wβ+δ = Vδ ∪ L for δ < α, and

argue similarly.

Definition 4.21. Let (aδ)δ<α be a one-to-one enumeration of 2N + 3. For β < α let Uβ

be the open family of sets containing 1 and meeting {aγ ∣ γ ≤ β}. Let A =Dα((Uδ)δ<α) ∈
Dα(PN). For β < α, set Aβ =Dβ((Uδ)δ<β)∩P(2N+ 1). Let Yα as in Definition 4.18 and

let Yα,β =Aβ ∪ Yα and Zα,β = (B(T )∩ B{0}) ∪ Yα,β .
The following result is straightforward.

Proposition 4.22.

1 Yα,β is included in P(2N)∪P(2N + 1).
2 A set X is in A if and only if 1 ∈ X and X meets 2N + 3 and the least δ such that

aδ ∈X is such that δ /∼ α.
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3 A set X is in Aβ if and only if 1 ∈ X , X ⊆ 2N + 1 and X meets {aδ ∣ δ < β} and the

least δ such that aδ ∈X is such that δ /∼ β.
4 For β ≤ α, set Xβ = {aδ ∣ δ ≥ β} ∪ {1}. The sequence (Xδ)δ≤α is a decreasing A-

alternating chain. The sequence (Xδ)δ≤β is alternating relative to Yα,β and to Zα,β.

5 If X ∈ B(T ) (cf. Definition 4.18) then (X ∩ 2N)∪ I ∈ B(T ) for every I ⊆ 2N + 1.
Theorem 4.23.

1 If ω ≤ β + α = α then Yα,β and Zα,β are proper families in Dα(PN).
2 If ω ≤ β < γ < α then Yα,β <W Yα,γ and Zα,β <W Zα,γ .

3 If ω ≤ β, δ and β, δ < α then Yα,β and Zα,δ are Wadge incomparable.

4 For α < ωCK
1

, Yα,β and Zα,δ are proper families in Dα(PN), and the effective coun-

terparts of items 2 and 3 hold.

Proof. 1. First, we show that Yα,β ∈Dα(PN). Since P(2N+ 1) is closed in PN, item 2

of Lemma 4.20 ensures that Aβ ∈Dβ(PN). Now, Aβ is included in the open family B{1}
which is disjoint from Yα since all sets in Yα ⊂ P(2N). Item 3 of Lemma 4.20 ensures

that Yα,β = Aβ ∪ Yα ∈ Dα(PN). We now prove that Zα,β ∈ Dα(PN). The family Yα is

disjoint from B(T ) hence from B(T )∩B{0}. Also, B(T )∩B{0} is disjoint from Aβ since

every set in B(T )∩B{0} contains 0 whereas all sets in Aβ are included in 2N + 1. Thus,

B(T ) ∩ B{0} is disjoint from Yα,β . Since B(T ) ∩ B{0} is open, applying again item 3 of

Lemma 4.20, we see that Zα,β = (B(T )∩B{0})∪ Yα,β is in Dα(PN). Finally, notice that

the map f ∶X ↦ (X ∩2N)∪{2n+3 ∣ 2n+1 ∈X} is continuous and reduces Yα to Yα,β . The

map sending X to f(X) if X ∉ B(T ) and to f(X) ∪ {0} if X ∈ B(T ) is also continuous

and reduces Zα to Zα,β. Since Yα and Zα are outside co-Dα(PN) (cf. Theorem 4.19) so

are Yα,β and Zα,β.

2. The reducibilities Yα,β ≤W Yα,γ and Zα,β ≤W Zα,γ can be both witnessed by a same

continuous map f ∶ PN→ PN,
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

if β /∼ γ then f(X) = (X ∩ 2N) ∪ {aδ+1 ∣ δ < β and aδ ∈ X} ∪ (X ∩ {1})
if β ∼ γ then f(X) = (X ∩ 2N) ∪ (X ∩ ({aδ ∣ δ < β} ∪ {1}))∪M,

where M = {aβ} if X meets 2N + 1 and M = ∅ otherwise.

We now show that the reducibilities are strict. Towards a contradiction, suppose that

there is a reduction f from Yα,γ to Yα,β . Then the decreasing Yα,γ-alternating chain

(Xδ)δ≤γ would be mapped onto a Yα,β-alternating chain (f(Xδ))δ≤γ (recall that by item

4 of Proposition 4.22, Xβ = {aδ ∣ δ ≥ β} ∪ {1} ). Let ε ∈ {0,1} be least such that

f(Xε) ∈ Yα,β . Since Yα,β ⊂ P(2N)∪P(2N+ 1), we have f(Xε) ∈ P(2N)∪P(2N+ 1). The
chain being strictly decreasing, we see that the family {f(Xδ) ∣ ε ≤ δ ≤ γ} is included

either in P(2N) or in P(2N+ 1). Now, Yα,β ∩P(2N) = Yα contains no infinite decreasing

chain. Thus, {f(Xδ) ∣ ε ≤ δ ≤ γ} ⊆ P(2N + 1). Since the chain (f(Xδ))2≤δ≤γ is also

Yα,β-alternating and has length γ + 1 (since γ is infinite), this contradicts the fact that

Yα,β ∩ P(2N + 1) = Aβ does not contain alternating chains longer than β + 1. To see

that Zα,β <W Zα,γ , observe that B(T ) is an upset, hence it has no infinite decreasing

alternating chain. Then argue as for Yα,γ /<W Yα,β .

3. Let us check that Yα,β /≤W Zα,δ. Towards a contradiction, suppose that f reduces

Yα,β to Zα,δ. Since N ∉ Yα,β we have f(N) ∉ Zα,β . In particular, f(N) ∉ B(T ) ∩ B{0}.
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Hence, either f(N) ∉ B(T ) or 0 ∉ f(N). Suppose f(N) ∉ B(T ). Then f(N) ⊆ e(σ) for
some σ ∈ T . In particular, f(N) is finite hence has finitely many subsets. This contradicts

the fact that the infinite decreasing Yα,β-alternating chains are mapped by f to infinite

decreasing Zα,δ-alternating chains below f(N). If, instead, 0 ∉ f(N), then 0 ∉ f(X) (for
all X) hence f reduces Yα,β to Yα,δ = Aδ ∪ Yα hence to Aδ (since all sets in Yα contain

0 whereas no f(X) does). This is already a contradiction since δ < α, Yα,β is a proper

Dα(PN) set by item 1, and Aδ is a Dδ(PN) set by the proof of item 1. Finally, we check

that Zα,δ /≤W Yα,β . Since N ∈ Zα,δ (it is in B(T )) we have f(N) ∈ Yα,β . If f(N) ∈ Yα then

f(N) is finite. This contradicts the existence of infinite alternating decreasing chains.

Thus, f(N) ∈ Aβ hence f(N) is included in 2N + 1. Since f is increasing, f takes values

in P(2N + 1). Thus, f reduces Zα,δ to Aβ . But β < α, Zα,δ is a proper Dα(PN) set by

item 1, and Aβ is a Dβ(PN) set by the proof of item 1, the same contradiction as before.

4. Since α < ωCK
1

, the tree T in Definition 4.18 can be taken computable. Then Yα is

a computable subfamily of P<ωN and B(T ) is an effective open family. We can take a

computable enumeration (aδ)δ<α as in Definition 4.21. Thus, the Yα,β ’s and Zα,γ ’s are in

Dα(PN). To see that for β < γ, Yα,β is effectively reducible to Yα,γ , and Zα,β is effectively

reducible to Zα,γ , observe that the map f defined in the proof of item 2 is effective.

5. Wadge Hardness in PN Versus Wadge Hardness in Other Spaces

Due to the universality property of PN (cf. Proposition 3.14), Wadge hardness relative

to a Borel class of PN is stronger than Wadge hardness relative to the same Borel class

of many other spaces.

5.1. Simple Wadge Complete Sets in PN for Σ0

2

Definition 5.1. Let S2 = {X ∈ PN ∣ ∃n (2n ∈ X ∧ 2n + 1 ∉X)}.
Proposition 5.2. The family S2 is Wadge complete for Σ0

2
(PN) and effectively Wadge

complete for Σ0

2
(PN).

Proof. From its definition it is clear that S2 is Σ0

2
(PN). Consider a Σ0

2
(PN) family

X = ⋃n∈N{Z ∣ ∃A ∈ An Z ⊇ A} ∖ {Z ∣ ∃B ∈ Bn Z ⊇ B}, where the An’s and Bn’s are

families of finite sets. Define f ∶ PN→ PN as

f(X) = {2n ∣ ∃A ∈ An A ⊆X} ∪ {2n + 1 ∣ ∃B ∈ Bn B ⊆X}.
Then, X ∈ X ⇔ ∃n (2n ∈ f(X) ∧ 2n + 1 ∉ f(X)) ⇔ f(X) ∈ S2. Observe that f is

continuous hence it is a reduction of X to S2. In case X is Σ0

2
(PN) then the An, Bn are

uniformly computably enumerable so that f is effective.

5.2. Alternating Increasing Chains for Σ0

2
(PN) Families

As stated in Remark 4.3, in ω-continuous domains there are no increasing A-alternating

chains of length ω when A is ∆0

2
. This is not true anymore for A in Σ0

2
.
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Proposition 5.3. For every ordinal α < ω1, there exists in PN an S2-alternating in-

creasing chain with length α. If α < ωCK
1

then the sequence can be taken computable.

Proof. Let (aβ)β<α be an injective enumeration of N. Let

X2β = {2aγ,2aγ + 1 ∣ γ < β} ∪ {2aβ} and X2β+1 =X2β ∪ {2aβ + 1}.
Clearly, (Xβ)β<α is increasing, and for each β < α, X2β ∈ S2 but X2β+1 is not.

Remark 5.4. As a corollary, we see that the space 2≤ω, where all increasing chains have

length at most ω + 1, contains no Wadge hard set for Σ0

2
(PN).

The above proposition can be improved. We first define a notion of alternating chain.

Definition 5.5. Let (E,≤) be a linear ordering and A ⊆ E. Let (P,⊑) be a partially

ordered set and H ⊆ P .

1 A is an alternation on E if, for all a, b ∈ E, the following conditions are satisfied.

— If b is successor to a then a ∈ A if and only if b ∉ A.

— If a has no predecessor nor successor then a ∉ A.

2 An (H,A)-alternating E-chain in P is an E-sequence (xa)a∈E of elements of P that

satisfies the following conditions: for all a, b ∈ E,

— a ≤ b (in the linear order E) if and only if xa ⊑ xb (in the partial order P ),

— xa ∈ H if and only if a ∈ A.

We now define a very rich linear order with respect to alternation.

Definition 5.6. Let (R,≤) be the totally ordered set obtained from R by replacing each

rational number by a chain of type Z. Formally, R = (R∖Q)∪ (Q×Z) with the following

order: for x ∈ R ∖Q, q, q′ ∈ Q, z, z′ ∈ Z,

x < (q, z)⇔ x < q, (q, z) < x⇔ q < x, (q, z) < (q′, z′)⇔ q < q′ or (q = q′ and z < z′) .

Remark 5.7. The above linear order is very rich in the following sense. In a linear order

(E,≤) let ∼E be the equivalence relation such that x ∼E y if and only if there are finitely

many elements between x and y (i.e. we identify an element with its successor if there

is one). If (E,≤) has countably many successor pairs and its quotient is embedded in R

then (E,≤) is embedded in R.
Proposition 5.8. Le P be an ω-continuous domain and H ⊆ P .

1 If H is Wadge hard for Σ0

2
(PN) then P contains an (H,A)-alternating R-chain

for every alternation A on R (cf. Definition 5.6). In particular, the set P ∖H has

cardinality 2ℵ0 .

2 Suppose P is an ω-continuous domain and fix some presentation (pi)i∈N of P . IfH ⊆ P
is effectively Wadge hard for Σ0

2
(PN) then, for every alternation A on R which is

computable as a subset of Q × Z, P contains an (H,A)-alternating R-chain (uξ)ξ∈R
such that the sets

{(q, n, i) ∣ q ∈ Q, n ∈ Z, pi ≪ u(q,n)} and {(q, i) ∣ q ∈ Q,∀x ∈ R ∖Q (q < x⇒ pi ≪ ux)}

are both computably enumerable. In particular, the set P ∖H has cardinality 2ℵ0 .
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Note 5.9. It is known that any Borel subset of a Polish space is either countable or has

cardinality 2ℵ0 . The same is true in any quasi-Polish space, hence in any ω-continuous

domain, since its Borel sets are those of a Polish topology on the same space (de Brecht

2011). Since the Cantor space 2ω is T1, any singleton set is closed. Hence, any set with

countable complement is in Π0

2
(2ω) and it cannot be Wadge hard for Σ0

2
(2ω). This easy

argument, showing that the complement of any set A ⊆ 2ω which is Wadge hard for

Σ0

2
(2ω) has cardinality 2ℵ0 , breaks down in the Scott domain PN. If X ∈ PN, X /= ∅

then the singleton family {X} is in Π0

2
(PN) but it is not closed in PN. Thus, a family

with a countable complement need not to be in Π0

2
(PN).

Proof of Proposition 5.8. 1. For every alternation A on R, we construct in PN an

(S2,A)-alternating R-chain (Xξ)ξ∈R. For every q ∈ Q, let εq = 0 if (q,0) ∈ A and εq = 1

if (q,0) ∉ A. Let (Eq)q∈Q be a partition of 2N into infinite sets. For every q ∈ Q, let

ϕq ∶ Z→ Eq be some bijective map. The R-chain is defined as follows.

For q ∈ Q, n ∈ Z, x ∈ R ∖Q,
X(q,2n+εq) = (⋃r∈Q,r<qEr) ∪ {ϕq(p), ϕq(p) + 1 ∣ p ∈ Z, p < n}

X(q,2n+εq+1) = X(q,2n) ∪ {ϕq(n)}
Xx = ⋃q∈Q,q<xEq

It is easy to check that this chain is (S2,A)-alternating. Suppose now that H ⊆ P

is Wadge hard for Σ0

2
(PN). Let f ∶ PN → P be continuous such that f−1(H) = S2.

Then f maps this (S2,A)-alternating R-chain onto an (H,A)-alternating R-chain in P .

If x, y ∈ R ∖ Q and x < y then Xx ⊂ Xq,0 ⊂ Xq,1 ⊂ Xy. Applying the reduction f ,

we get f(Xx) ⊑ f(Xq,0) ⊑ f(Xq,1) ⊑ f(Xy). Since Xq,0 ∈ S2 ⇔ Xq,1 ∉ S2 we have

f(Xq,0) ∈ H ⇔ f(Xq,1) ∉ H hence f(Xq,0) ⊏ f(Xq,1) and f(Xx) ⊏ f(Xy). Thus, P ∖H
has cardinality 2ω since it contains the pairwise distinct elements f(Xx)’s, x ∈ R ∖Q.

2. Observe that the map q ↦ εq is computable and take a computable partition (Eq)q∈Q
and a computable sequence of bijections ϕq.

5.3. Classical Families Hard for Σ0

2
(2ω) but Not Hard for Σ0

2
(PN)

A priori, modulo the obvious bijection between the Cantor space 2ω and PN, families

of 2ω that are Wadge hard for a class in 2ω may seem good candidates to be also hard

families for the same class in PN. This is not the case. We state here some counterex-

amples. For results about the Wadge hardness of classical Σ0

3
(PN) families for various

classes and spaces, we refer the reader to (Becher and Grigorieff 2009).

Theorem 5.10. Let θ ∶ PN→ 2ω be the bijection which maps a set to its characteristic

function. Then,

1 θ(P<ωN) is Wadge Σ0

2
(2ω)-complete and effectively Wadge Σ0

2
(2ω)-complete. In par-

ticular, θ(P<ωN) is in Σ0

2
(2ω) ∖Π0

2
(2ω).

2 P<ωN ∈ Σ0

2
(PN) ∖Π0

2
(PN).

3 P<ωN is Wadge hard for Σ0

2
(2ω) and for Π0

1
(PN).

4 P<ωN Wadge reduces no non-empty Σ0

1
(PN) family.

5 No subfamily of P<ωN is Wadge hard for Σ0

2
(PN).

Items 3,4,5 hold with effective versions.
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Proof. 1. Classical result (Kechris 1995), θ(PN) is just the set of all sequences even-

tually equal to 0.

2. We use an argument from (Selivanov 2005b). If P<ωN were Π0

2
(PN) then the family

of infinite sets would be Σ0

2
(PN), hence a countable union of differences of open sets

⋃n∈N Un ∖Vn. If X ∈ Un ∖Vn then there exists A finite such that A ⊂X and A ∈ Un. Since
X ∉ Vn which is an upset, also A ∉ Vn. Thus, Un ∖Vn contains a finite set, contradiction.

3. That P<ωN is Wadge hard for Σ0

2
(2ω) follows easily from the fact that the set

of sequences eventually equal to 0 is Σ0

2
(2ω)-complete, and the continuity of the map

θ−1 ∶ 2ω → PN (indeed it is an effective map). For the second assertion, any family Y in

Π0

1
(PN) can be written Y = {Z ∣ ∀A ∈ A A /⊆ Z} where A is a subfamily of P<ωN. Define

f ∶ PN → PN such that f(Z) = N if Z contains some A ∈ A and f(Z) = ∅, otherwise.
Then, f is a reduction of X to P<ωN.
4. Since P<ωN is closed under subsets, and continuous reductions PN → PN are in-

creasing, every family X ⊂ PN which is Wadge reducible to P<ωN is closed under subsets.

In particular, no non-empty Σ0

1
(PN) family admits a continuous reduction to P<ωN.

5. Observe that P<ωN contains only chains of length ω and apply Proposition 5.8.

Acknowledgements: The authors are indebted to an anonymous referee for a huge
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