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1 Research Unit of Biodiversity (UO-PA-CSIC), University of Oviedo, Mieres, Spain, 2 Ecology Unit, Department of Biology of Organisms and Systems, University of Oviedo,

Oviedo, Spain, 3 Group of Biodiversity and Conservation Genetics (GECOBI), Argentinian Museum of Natural Sciences ‘Bernardino Rivadavia’, Buenos Aires, Argentina,
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Abstract

Counting rare and elusive animals and evaluating their demographic status, are fundamental yet challenging aspects of
population ecology and conservation biology. We set out to estimate population size (Nc), genetic effective population size
(Ne gen), sex ratio, and movements based on genetic tagging for the threatened Cantabrian capercaillie. We used 9
microsatellite loci to genotype 134 droppings collected at 34 display areas during the breeding season. Using genetic
capture-mark-recapture, we estimated 93 individuals (Nc, 95% CI: 70–116) in an area of about 500 km2, with sex ratio biased
towards males (1:1.6). Estimated Ne gen (35.5) was 38% of Nc, notably higher than the published average in wild populations.
This capercaillie population is small and well within concern in terms of population viability. By genetic tagging, we
detected mostly short movements; just a few males were recaptured between contiguous display areas. Non-invasive
surveys of endangered populations have a great potential, yet adequate sample size and location are key to obtain reliable
information on conservation status.

Citation: Morán-Luis M, Fameli A, Blanco-Fontao B, Fernández-Gil A, Rodrı́guez-Muñoz R, et al. (2014) Demographic Status and Genetic Tagging of Endangered
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Introduction

We deem populations as endangered when they are small,

declining, or both; they are susceptible to environmental and

demographic stochasticity, loss of genetic variability, and inbreed-

ing depression [1,2]. On top of that, we know that fragmentation

often increases extinction risk, either directly due to lessened

connectivity or indirectly due to Allee effects [3]. Then, it is

important to know when a population is threatened, and its status

needs to be soundly assessed.

Cantabrian capercaillie (Tetrao urogallus cantabricus), a polygynous

forest galliform found in the fragmented forest ecosystem of NW

Spain (Figure 1), is one of the most endangered tetraonids [4]. Its

range has declined steeply since the early 1980s [5,6], and it has

been isolated long enough from other capercaillie populations to

be considered an Evolutionary Significant Unit [7]. The subspe-

cies has additional biogeographical interest due to its location at

the rear edge of the species range [8]. In the early 2000s, six

hundred individuals were coarsely estimated in an area of

occupancy of 1700 km2 [4]. Since then, unpublished data suggest

that present capercaillie presence in eastern and central parts of

the range (Figure 1B) is tenuous at best. However, these population

estimates had been based on direct observations, whose accuracy is

debatable and context-dependent (e.g. [9,10]). Usually the bias is

higher in rare and elusive species [11]. But even in more

conspicuous species, direct counts entail potential biases for the

more cryptic components of the population (e.g. [12,13]).

Capercaillie is a good example: in the breeding season, they

gather at display areas, where dominant males display and court

the smaller, less showy females [14]. If birds were displaying, an

experienced observer might see or hear the dominant males, and

perhaps some females. However, direct counts at display areas are

not an appropriate method to detect females, which have a cryptic

plumage and attend display areas for shorter periods [14,15], or

subordinate/non-breeding males [16]. Thus, direct counts at

display areas typically underestimate real numbers in capercaillie

[17]. Nonetheless, even with these coarse estimates, the population

of Cantabrian capercaillie is small and declining.

In conservation biology it is relevant to know which proportion

of the population contributes to reproduction. The demographic

effective population size (Ne) is roughly equivalent to the number of

breeders in a given year [18], and is largely influenced by sex ratio

and mating systems [19,20]. In polygynous species with lekking

behavior such as capercaillie, a few males monopolize mating

[16,21], reducing notably Ne below the number of sexually mature

adults in the population. Fluctuations in population size, variability

in individual reproductive success, and unequal sex ratios are thus

responsible for additional reductions of Ne [18,22,23]. Ultimately,

populations with low Ne are more prone to extinction [24]. Several

methods based on genetic data, have been developed to compute

Ne-related indices [25,26]. One of them is the genetic effective

population size (Ne gen), defined as the number of breeding
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individuals in a theoretical population that would lose genetic

diversity at the same rate as the real population being studied [27].

However, Ne gen is not an easy parameter to estimate in the wild;

localized breeding in continuous populations may be subjected to

the effects of isolation by distance, affecting Ne gen estimates and

being sensitive to the geographical scale of the sampling [28].

Non-invasive census methods based on DNA analysis are now

available, ‘capturing’ the genetic material instead of the individual

itself [29,30]. They increase capture probabilities while greatly

reducing disturbances. Genetic estimates are based on the

individual identification of materials left behind by the animal,

like feces, feathers or hairs, a sort of molecular tagging (e.g.

[31,32]). Therefore individuals can be tracked, and specific

methods have been developed to estimate abundance and effective

population size, even from a single sampling session [33]. Last but

not least, with an adequate sampling design, these methods allow

to minimize potential biases due to differences in behavior and

habitat use of the different components of the population [12].

We performed a genetic survey of Cantabrian capercaillies in a

large portion of the extant distribution using multilocus genotyping

of capercaillie droppings as individual molecular tagging. We

aimed at getting information on abundance, sex ratio, effective

population size, and movements to determine conservation status

and inform management decisions.

Methods

Ethics statement
Cantabrian capercaillie is an endangered subspecies, and access

is restricted to areas where spring display has been recorded. The

environmental authorities of Asturias and Castilla y León granted

the required permits for this study, which is solely based on non-

intrusive sampling of droppings. The survey was specifically

designed to minimize disturbance to capercaillie behavior. Each

sampling session was carried out by two people, starting well after

capercaillie displays were over. The study did not require ethical

approval.

Study area and field survey
We conducted our study in the western part of the Cantabrian

Range, where capercaillie inhabits a mountainous landscape with

highly fragmented forests [6,34]. We surveyed some of the least

disturbed forest patches, that combined higher habitat suitability

and current capercaillie presence [35] (Figure 1B). However, there

are several, recently described leks south of our study area, which

were not covered by the aforementioned study of habitat suitability

[36].

We defined five survey zones in the study area, essentially

following the main sub-watersheds (Figure 1C, Table 1). All zones

Figure 1. Distribution of Cantabrian capercaillie (Tetrao urogallus cantabricus) and location of the study area. A) Distribution of
capercaillie in central and southwestern Europe (dark grey). B) Location of the study sites (filled dots) over an index of habitat suitability [31]. C) Detail
of the study area; different symbols show display areas where samples were collected in spring 2009 in each of five watersheds: Muniellos (stars),
Hermo (triangles), Degaña (squares), Leitariegos (diamonds) and Alto Sil (dots). The legend shows habitat suitability according to [31].
doi:10.1371/journal.pone.0099799.g001
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are in sites designated as EU Natura 2000 (Habitats Directive 92/

43/CEE). In addition, three of them (Leitariegos, Hermo and

Degaña) are also included in a regional park, and the other one

(Muniellos) is a natural reserve where only a few visits are allowed

per day along a designated foot path. The total study area was

about 500 km2 with a forest cover of 45%.

Sampling took place from April to early June 2009, i.e. during

the mating season of Cantabrian capercaillie. We searched for

droppings in forest patches that included 52 previously known

display areas (i.e. sites where one or more cocks consistently

display for females [37]). Our survey included 71% of all known

display areas in the study area with occupancy data since 2000.

Each display area was surveyed during 2 to 3 hours by two people

and each sample location was recorded with a GPS (65m). We

selected droppings based on their appearance (size, shape and

content) and distance (25 m for those similar-looking samples).

Droppings were stored into tubes with silica-gel and frozen at -

20uC until DNA extraction. We performed a second survey after

2–3 weeks in those places where no sample could be found during

the first visit.

Laboratory procedures
We extracted genomic DNA, from a pool of 291 samples

distributed throughout the study area (Figure 1C). Polymerase

chain reaction (PCR) amplifications were conducted for 9

microsatellite loci, previously developed for Tetrao urogallus

(TUD2, TUD4, TUD5, TUT1, TUT3), and Tetrao tetrix (TTD2,

TTD6, BG10, BG15) [38–40]. PCR-amplifications were per-

formed in 10 ml reactions mix containing 2 ml of extract DNA, 1x

Taq buffer (750 mm Tris-HCl, 200 mM (NH4)2SO4, 0.1% (v/v)

Tween 20), 3 mM MgCl2, 0.2 mM of each nucleotide, 4.2 pmoles

of each primer, 0.108 mg/ ml de BSA and 0.335 units of DNA Taq

polymerase (Fermentas). PCR conditions consisted of 3 minutes at

94uC plus 35 cycles of 45 seconds denaturing at 94uC, 45 seconds

annealing at 54uC (for BG10 and BG15) or at 59uC (for the rest of

the primers), 45 seconds extension at 72uC, and 5 minutes at 72uC
for the final extension. We amplified microsatellite loci individually

and negative controls were included in all amplification reactions.

Extraction and amplification were performed in dedicated and

separated. Extraction was confirmed by amplifying a single

microsatellite (TUT1). When a sample did not render a positive

result, a second PCR was performed. Samples that tested positive

in one of the two independent PCRs were included in the analysis

for the next step.

Each sample was amplified 2–7 times to minimize genotyping

errors, following a modification of the multiple-tube approach

[41,42]. A consensus genotype was determined for each sample

after a minimum of two independent positive PCRs for

heterozygotes, and three for homozygotes.

To determine the sex of each identified individual, we used

capercaillie-specific sex primers [43], derived from the chromo-

some-specific intron size difference in the CHD1 gene (located in

bird sexual chromosomes). These primers produce sex-specific

short fragments (about 200 bp), and perform well with degraded

DNA samples, such as those coming from feces. Consensus

genotypes were determined following the same criteria as for

microsatellite loci, i.e. a minimum of two independent positive

PCRs for heterozygotes (ZW, females) and three for homozygotes

(ZZ, males).

Genotyping was performed in two laboratories (GECOBI Lab,

Argentina and UMIB-Molecular Ecology Lab, Spain), using two

different sequencing machines, MegaBace 1000 automated

Sequencer (Argentina) and ABI Prism 3100 Genetic Analyzer

(Spain). Microsatellites were genotyped in three post-PCR

multiplexes, based on allele size ranges and fluorescent dyes.

When genotyping is performed by several laboratories and/or

platforms, calibration and standardizing of allele size designation is

necessary [44,45]. We standardized microsatellite scores with

template DNA from samples containing the full range of alleles

found in our study area. We established standardization rules

following [45] recommendations. Sizing was double-blind

checked, using two different software packages: MegaBACE

Fragment Profiler 1.2 software (Amersham Biosciences) and

GeneMarker v1.3 (Soft Genetics LLC). We then performed

double-blind re-screening of all samples in both labs, to confirm

standardization rules, and inconsistencies other than size shifts

were also discussed. When required, new amplifications were

performed and samples were re-screened again. If the inconsis-

tency persisted, the locus was not considered in that sample.

Genotyping data
We estimated the number of alleles observed per locus (A),

observed and expected heterozygosities (Ho and He respectively),

and deviations from Hardy-Weinberg equilibrium (HWE), using

GENEPOP 4.2 [46].

The amount of target DNA available in fecal samples is often

low, leading to an increase of genotyping errors [30,41].

Genotyping errors (false alleles and allelic dropout) at each locus

across PCRs were checked using GIMLET v.1.3.3 [47]. With the

estimated error rates, we compared the results from independent

PCRs and the associated consensus genotype for all the amplified

samples, regardless they were included in the final dataset (i.e. 212

feces, see Results). We used MICRO-CHECKER 2.2 [48] to

check for large allele dropout, stuttering and null alleles that can

underestimate the number of individuals inflating the proportion

Table 1. Minimum (Nmin) and estimated (Nc) number of capercaillies in the study area.

Survey zone Nmin Nmin female: Nmin male Nc (95% CI) Nc female: Nc male

Muniellos 15 7:7 (1) 19 (15–26) -

Hermo 7 2:5 (0) - -

Degaña 17 6:10 (1) - -

Leitariegos 4 1:2 (1) - -

Alto Sil 13 4:8 (1) - -

Total 56 20:32 (4) 93 (70–116) 28:44

Population size (Nc) was estimated both for the whole study area and for Muniellos, the best represented zone in the samples. Separate estimates for each sex (Nc male,
Nc female) are indicated for the whole study area. Numbers in parentheses indicate individuals that could not be sexed.
doi:10.1371/journal.pone.0099799.t001
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of homozygotes. This software analyzes deviations from Hardy-

Weinberg proportions using consensus genotypes of all different

individuals identified, to detect loci with potential errors.

To check the power of the chosen microsatellite loci for

identifying individuals, we calculated the probability that two

individuals, drawn at random from the population, would share

the same multilocus genotype (probability of identity, PID; [51]),

even if they are full siblings or have a high degree of kinship (PID-

sib, [51]). This probability depends on the number of selected loci

used to construct the genotype, the variability of these loci, and the

relatedness of individuals within the population. Both PID and PID-

sib for each marker, and also cumulative PID and PID-sib for each

multilocus genotype were calculated with GIMLET v.1.3.3 [47].

We considered that the risk of two individuals sharing the same

genotype was negligible if PID-sib (more conservative than PID) was

lower than 0.01, as recommended for our population size

estimates [51]. Then we estimated the minimum number of

genotyped loci required to unequivocally individualize the

samples, and discarded those samples not reaching the threshold.

For final individual identification results, we used the Difference

in Capture History test (DCH) and the Examining-Bimodality test

(EB) implemented in DROPOUT [49], using recommended

values for PID and PID-sib [50] (see below). DCH examines if the

rate of adding new individuals by adding more loci exceeds that

expected just by increasing resolution, also a typical sign of a likely

genotyping error. EB test looks for an over-abundance of

genotypes observed only once, a typical sign of errors arisen

during the genotyping process.

To reduce overestimation bias due to genotyping errors, we

checked all pairs of samples differing in one or two alleles at one

locus, or in two alleles at one or two loci. We evaluated consensus

genotypes of these pairs of samples with a ‘matching approach’

[52]: for each pair, we identified the alleles that matched, and

determined the probability of obtaining that particular set of

matches by chance from two different capercaillie. If this

probability is lower than PID-sib (see below), then we assumed that

the samples probably came from the same individual. Otherwise,

we kept the original consensus and considered they came from

different capercaillies.

The reliability of each multilocus genotype obtained, was

determined using RELIOTYPE [53]. Only scores with above 95%

reliability were considered ‘acceptable’ without further analysis.

Samples with lower scores were evaluated using information from

sex primers and dropping location in the field, following the

approach proposed by [54], adapted for our dataset and species:

when the ‘unacceptable’ sample genotype corresponded to a

recapture, i.e. when the genotype was identical to genotypes of

other droppings, we considered (1) whether there was consistency

of sex determination between the unacceptable sample and the

other droppings belonging to the same genotype (sex agreement),

(2) whether the dropping with the unacceptable genotype was

collected in the same display area as another dropping with

identical genotype (display area agreement) and (3) if the dropping

with the unacceptable genotype was collected within a distance

shorter than the maximum distance recorded in our dataset

between samples with the same genotype (distance agreement). If

the dropping in question passed two of the three agreement tests, it

was recoded as ‘acceptable’ and kept in the database for further

analysis. Otherwise, the sample was discarded.

Minimum and estimated population size (Nmin, Nc)
The total number of unique allelic combinations represents the

minimum number of individuals inhabiting the area (minimum

population size, Nmin), and provides a first approximation to the

actual size of the population. Nmin was calculated using the

‘regroup genotypes’ function, implemented in GIMLET v.1.3.3

[47] and checked using DROPOUT [49] to verify whether

genotyping errors were reduced to a non-significant level removing

the risk of ‘shadow effects’[50].

From genotyped samples, capture-mark-recapture (CMR)

estimates specifically developed for DNA-based recaptures can

be obtained [29]. Unlike standard CMR studies, in DNA-based

approaches an individual can be captured more than once per

session (i.e. can be detected in more than one sample). Also,

specific methods can estimate abundance from a single sampling

session as long as individuals are sampled sufficiently to estimate

recapture probabilities [55,56]. To estimate census population size

Nc, we used a method based on genetic tagging [57] implemented

in CAPWIRE software [55]. Each identified individual was treated

as a ‘mark’ (initial capture), and a ‘recapture’ was recorded

whenever an identical genotype was found in another independent

DNA sample [29,50]. To reduce over-sampling of a particular

individual, if two samples, sharing the same XY coordinates and

considered a priori as independent based on appearance, corre-

sponded to identical genotypes, only one of them was included in

CMR estimates. From the 132 reliable genotypes (see Results),

eight additional samples were excluded from CMR estimates

following this procedure, so that final number of samples

considered for CMR estimates was 124. We also estimated Nc

for males and females separately (Nc males and Nc females respectively).

Our samples were relatively fresh and were collected during two

months of intensive sampling. This sampling period was short

enough to approximate the assumption of a closed population.

The method accounts for capture heterogeneity using a likelihood

ratio test to choose between two options: the even capture

probability model (ECM) considers that every individual is equally

likely to be captured, while the two innate rates model (TIRM)

considers the population as a mixture of individuals that differ in

capture probabilities, and is based on the simplest of those mixture

models, with two groups of individuals with distinct capture

probabilities [55].

We did not consider spatially explicit capture–recapture

methods (SECR) because the lekking behavior of capercaillie in

the breeding season does not fulfill the assumptions of independent

spatial distribution and occupation of home ranges [58].

Genetic effective population size (Ne gen)
We estimated the genetic effective population size (Ne gen) in the

study area (i.e. effective population size as a consequence of

population dynamics reaching back a few generations [59]). In

addition, we estimated also Ne gen in a subset of samples

corresponding to Muniellos reserve, an area well represented in

the dataset. We used two different approaches, specifically

designed for single sample sessions, to estimate Ne gen. First, we

used a method based on the random linkage disequilibrium, and

implemented in the software LDNe 1.31 [60]. This method

assumes that only genetic drift - not mutation, selection or

migration - is responsible for the signal in the data. Rare alleles

incorrectly increase Ne gen estimates, although this bias can be

corrected by filtering out alleles below a given threshold of

occurrence (Pcrit). We used Pcrit of 0.02 and 0.045 for the whole

study area and Muniellos subset, respectively, based on sample size

(i.e. number of individuals) [26], and we run the program under

random mating reproductive strategy. We chose a jacknife

procedure to get the 95% confidence intervals. We examined

the effects of sample size (i.e. number of individuals) on Ne gen by

subsampling from 10 samples to total sample size via bootstrap re-

sampling (100 iterations per sample size). We estimated Ne gen at
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each sample size as the mean value obtained of 100 iterations.

Since spatial distribution of samples can influence Ne estimates

[28], and our aim was to obtain a representative value for the

whole study area, bootstraping was performed considering a

stratified subsampling based in the five subzones of our study area,

so that a proportional amount of samples from each area are

included in each bootstrap.

We also estimated Ne gen using the Approximate Bayesian

Computation method (ABC) implemented in ONeSAMP 1.2.

[61], which can increase accuracy and precision [33]. The user

must provide presumed lower and upper bounds for Ne gen. Taking

into account that Ne gen is usually much lower than census size, we

used 2–50 as lower and upper bounds, respectively, for the whole

study area (2–20 for Muniellos).

ONeSAMP cannot process multiple missing data per sample.

Therefore we used the most complete subset of individuals

correctly genotyped for these estimates (48 and 15 for the whole

area and Muniellos, respectively). We used LDNe estimates to

calculate the ratio Ne gen: Nc, so that both parameters are derived

from the same samples (i.e. from the same individuals).

Genetic tagging
We estimated maximum distances between recaptures of

genetically-tagged individuals. To put those distances in context,

we also calculated distances among display areas, as indication of

the potential maximum distances for recaptures in the study area.

Results

Reliability of DNA genotyping
We obtained DNA from 212 samples (79% extraction success),

and got consensus genotypes from 134 samples (63.2%, amplifi-

cation success): in 128 samples consensus were reached with $7

microsatellite loci, and in 6 additional samples consensus were

reached with only 5–6 loci; the latter included unique allele

combinations and could be unequivocally individualized.

The number of alleles per microsatellite locus ranged between 3

and 6, and allele size ranged 121–234 (Table 2). The proportion of

scoring errors across PCRs was 0.02, both for dropout and false

allele (GIMLET 1.3.3). Mean error rate across loci was 0.03,

dropout showing the highest probability (highest values found in

TUT3, 0.15); mean rate for false alleles was 0.02 (GIMLET 1.3.3).

Three loci (TUD4, BG10, TUT1) were not in Hardy-Weinberg

equilibrium (GENEPOP 4.2, Table 2). We found no evidence for

large allele dropout or scoring errors due to stuttering. The

presence of null alleles was suggested for loci TUD5, TUT1 and

BG10 (MICROCHECKER 2.2).

PID calculations showed that the power of the loci used to

discriminate between individuals was high. The probability that

two related individuals shared the same genotype for the nine loci

used (cumulative PID-sib) was 0.002 (Table 2, Figure 2). We

followed a conservative threshold of the number of loci necessary

to distinguish individuals ($7 loci unambiguously genotyped,

cumulative PID-sib ,0.01; [50,51].

When using a 7-loci consensus genotype as NLbase for DHC test

(DROPOUT 2.3.1), results indicated that the contribution of each

locus to the number of new individuals was well within the

expected confidence intervals. We obtained the same results

considering only those samples without missing values. We did not

find any sign of bimodality (Bimodality test, DROPOUT),

suggesting that there is not an over-abundance of genotypes

observed only once, and discarding this potential source of error.

One sample from the 134 consensus genotypes was discarded

during the ‘matching approach’.
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Average reliability of the consensus genotypes estimated with

RELIOTYPE was 97.5%. Only 11 (8.9%) of our 133 samples

were ,95% reliable and therefore scored as ‘unacceptable’. Mean

reliability value of these unacceptable samples was 75.0360.05

SE. Nine of these samples had genotypes corresponding to

recaptures (i.e. there were more samples with identical genotypes),

and only 2 of them corresponded to unique genotypes. We applied

the sex, display area and distance agreement tests to the 9

unacceptable samples corresponding to recaptures, and all them

passed at least two of the three agreement tests. The two

unacceptable unique genotypes could not be tested because they

were found only once. One of them corresponded to the only

sample found in a certain lek, and minimum distance to any other

sample (5960 m) was larger than maximum distance recorded in

our dataset between samples with the same genotype (3355 m);

therefore it was kept in the database. The other unacceptable

unique genotype was excluded from the database for further

analyses, reducing to 132 the number of reliable consensus

genotypes.

Minimum and estimated population size (Nmin, Nc), and
sex ratio

We identified 56 different genotypes/individuals, which repre-

sent the minimum number of capercaillies (Nmin) in the study area.

We detected 22 individuals more than once. The average number

of observations per sampled individual was 2.21 (range 1–12),

which should provide reliable estimates for a population #100

individuals [55].

Population size estimate Nc (CAPWIRE, two innate rates model

- TIRM) was 93 individuals in the study area (95% CI: 70–116).

We estimated Nc = 19 individuals (95% CI: 15–26, average

recapture = 3.53) in Muniellos. We were able to assign sex to

91% of the individuals, and found 19 females (Nmin female) and 32

males (Nmin male). Estimated Nc female was 28 (95% CI: 20–41,

average recapture = 1.63) and Nc male was 44 (95% CI: 33–56,

average recapture = 2.75). Sex ratio, estimated as Nc female: Nc male

was 1:1.57.

Genetic effective population size (Ne gen)
LDNe and ONeSAMP yielded similar estimates of Ne gen for the

whole study area: 35.5 (95% CI, 21.6 – 67.7) and 32.8 (95% CI

25.5 – 46.1), respectively. For Muniellos, LDNe yielded a slightly

lower value (6.8, 95% CI: 2.5 – 22.5) than ONeSAMP (9.8, 95%

CI: 8.1 – 12.3).

Different Pcrit did not alter LDNe estimates (Table S1). The

results using 6 and 9 microsatellite loci in ONeSAMP were similar,

but results in LDNe were less consistent and showed larger CIs

when considering just 6 loci. Different priors did not yield very

different estimates in ONeSAMP (Table S2).

Subsampling indicated that Ne gen estimates for the whole area

were relatively insensitive to sample sizes (i.e. number of

individuals) larger than 35 (Figure 3). Standard error also gets

substantially lower above this sample size. It is noticeable that for a

quite small sample size (N = 15), Ne gen values for Muniellos were

relatively consistent, irrespective of the approach and parameters

considered, while for the whole area a similar sample size was

clearly below the minimum threshold to get a reliable estimate.

The ratio Ne gen: Nc was 0.38 for the whole area and 0.36 for

Muniellos.

Genetic tagging
Movements were estimated from genetic recaptures in 22

individuals, 7 females and 15 males. Three additional individuals

were also recaptured (and included in CMR analyses), but

movements were not calculated for them because their location

was not obtained with GPS. Median planimetric distances

recorded between recaptures were 337 m for females and 399 m

for males, although the latter showed a distribution skewed

towards longer distances (Figure 4). Mean distance between

contiguous, sampled display areas was 1362 m (6142 SE), and the

maximum distance between sampled areas was 40,855 m. Three

Figure 2. Multilocus probability of identity for unrelated (PID)
and sibling (PID-sib) capercaillies. Probabilities were estimated with
all the identified individuals (N = 56). Microsatellites are ordered from
least to most informative. Arrows indicate the first value of PID and
PID-sib below 0.01.
doi:10.1371/journal.pone.0099799.g002

Figure 3. Estimates of Ne gen from LDNe method vs. number of
identified individuals. Each data point represents the arithmetic
mean (6 SE) of 100 bootstrapping iterations, stratified among the five
zones in our study area.
doi:10.1371/journal.pone.0099799.g003
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males were recaptured in more than one display area, although

these recaptures corresponded to contiguous display areas.

Discussion

Previous studies have reported that the Cantabrian subspecies of

capercaillie is endangered, based on severe reduction of display

area occupancy [4]. Our abundance estimates show that decline in

display area occupancy is indeed associated with a very low

population size, well within concern in terms of population

viability (e.g. [62,63]). We estimated that 93 individuals (Nc, 70–

116 95% CI) gathered for their spring courtship in 34 display areas

(Figure 1), in an area that likely harbours most of the extant

population.

Sex ratio and descriptive genetic parameters
We found a higher proportion of males in the population (sex

ratio 1:1.6). The combination of a small population size and its

inherent risk of extinction with a male-biased sex ratio in a

polygynous species such as capercaillie, could constitute an

additional threat [64] if sustained over generations. However,

such result is not rare in wild birds, and is not necessarily

associated to poor conservation status. Higher female mortality or

differential behavior and ecology leading to male-biased sampling

schemes could explain skewed sex ratios [65], although less

intrusive surveys like ours may better approach actual sex ratios

[66,67]. We also obtained a lower recapture rate for females,

which could indicate shorter or more discontinuous presence of

the latter in display areas [14,15], reducing in turn the odds of

finding their droppings.

Despite the small number of extant individuals in the

population, expected and observed heterozygosity levels and

number of alleles (Table 2) were within the range of other, less

threatened capercaillie populations [68]. Our results are also

higher than previously reported values for Cantabrian capercaillie

(He = 0.50 and A = 3.40) [69]. The latter discrepancy is likely due

to substantial differences in scope and sampling area of both

studies: we aimed at obtaining a higher resolution in a smaller

area, where not only decline but also genetic isolation processes

seemed to be less acute.

Genetic effective population size
The ratio between genetic effective population size and census

population size (Ne gen: Nc) was 0.38, suggesting that the proportion

of the population contributing to reproduction is relatively large

[24]. Our result is notably higher than the empirical average

across many taxa, 0.1 [18], although that ratio seems largely

context-dependent. Demographic factors such as fluctuation in

population size, variance in family size, and unequal sex-ratio add

large variability to Ne: Nc [22,70]. Taxonomic group is also

relevant, and published averages for birds (0.21) are closer to our

result [18]. Perhaps more relevant, recent evidence showed that

the contemporary Ne gen of a population is sensitive to the

geographic scale of the survey [28]. Thus, not only sample size but

also the spatial distribution of samples can affect Ne gen estimates

(note that we obtained similar results for the whole study area and

the subset of Muniellos, 0.38 and 0.36, respectively). In addition,

since the population has been declining, our Ne gen: Nc ratio may be

somewhat slightly inflated: the genetic effective size Ne gen can be

roughly related to the number of breeders in previous generations,

whereas Nc corresponds to present population size [71]. At any

rate, evaluating Ne gen and Ne gen: Nc ratios makes special sense in

intra-specific comparisons and in population monitoring, following

specific and comparable sampling designs.

Genetic tagging
We detected mostly short movements of capercaillie within the

breeding season (Figure 4), and just a few males recaptured

between contiguous leks. Overall, breeding capercaillie tend to

stick to one lek during display season [72]. However, in small

fragmented capercaillie populations females could be forced to

visit several leks to find a mate [73]. Our data, albeit limited in

sample size, do not conform to the latter. It is also known that non-

breeding capercaillies move more among leks than breeders

[16,73]. We cannot infer the age from our samples, yet detected

inter-lek movements could be due to juvenile individuals. It would

also be very interesting to use genetic tagging of this population in

autumn, when dispersal of juveniles could perhaps change the

picture offered by our spring data.

Despite its potential, genetic tagging has not often been used to

estimate individual movements (but see [74–76]). There are

undoubtedly caveats that prevent straightforward comparison

between genetic tagging and directly recorded movements,

essentially because the former does not really contact and follow

the individuals. In addition, individual recaptures will usually be

relatively low. However, genetic tagging does not require

capturing the animals, which is often an issue in endangered

populations. It could also complement radio tracking to get

appropriate sample size when logistics are demanding or budget is

tight.

Influence of survey design on population estimates
Monitoring is important to evaluate the status of populations, to

support management decisions, and eventually to evaluate the

efficiency of those decisions. However, deficient monitoring

programs can lead to wrong conclusions, even entailing risks for

the targeted species (e.g. [77]). Surveys intended to estimate

population size should be designed to include all sectors of the

population [12,13]. Besides, the design should take into account

the natural history and behavioral peculiarities of the focal species.

In this sense, capercaillie gather at display areas in spring, so it is

important to know which proportion of known display areas were

included in the survey. Our estimates included 71% of known

lekking places in the study area. These results provide reference for

Figure 4. Maximum distances between recaptures. Box-plot
shows the distribution of maximum distances (m) between genetic
recaptures. Center lines show the median; box limits indicate the 25th
and 75th percentiles, and whiskers extend 1.5 times the interquartile
range. Red and blue dots indicate females and males, respectively
(n = 22); the arrow and value at the right end of the plot indicate a male
outlier beyond the axis range.
doi:10.1371/journal.pone.0099799.g004
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future monitoring, or to establish comparisons with similar surveys

elsewhere.

Sample size can also have a substantial effect on estimates of Ne

gen and Ne gen: Nc ratios, and could lead to inconsistencies or even

absurd results if below a minimum threshold (Figure 3). This has

been a mostly overlooked aspect, which could be partly responsible

for the large variability of published in results of Ne gen: Nc ratio.
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Table S1 Estimated Ne gen from LDNe. Genetic effective

population size (Ne gen, 95% CI in parentheses), estimated for the

whole study area and for Muniellos reserve. We show estimates
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including all microsatellite loci used in our study (9 loci), and

excluding those that were not in Hardy-Weinberg equilibrium.
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35. Quevedo M, Bañuelos MJ, Obeso JR (2006) The decline of Cantabrian

capercaillie: How much does habitat configuration matter? Biological Conser-
vation 127: 190–200. DOI: 10.1016/j.biocon.2005.07.019
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