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1 Introduction

Theories of massive gravity in three dimensions have received a lot of attention in recent

years. Contrary to ordinary 3D Einstein-Hilbert gravity, they contain propagating bulk

gravitons, albeit massive ones. Three-dimensional gravity has often been considered as

an interesting toy model for quantum gravity and massive gravity theories open up the

perspective of finding toy models for quantum gravity, in the presence of propagating

spin-2 particles.

Most of the 3D massive gravity theories considered so far are naturally formulated

as higher-derivative theories, i.e. their action consists of an Einstein-Hilbert term, supple-

mented with a three-derivative Lorentz-Chern-Simons term (introduced in [1, 2]) and a

particular curvature squared term (introduced in [3, 4]). The most general of these models

is known as General Massive Gravity (GMG), while particular limits are known as Topo-

logically Massive Gravity (TMG) and New Massive Gravity (NMG). When studied around

a Minkowski background, it has been shown that GMG can be made ghost-free, both at

the linearized [3, 4] and at the non-linear level [5–8]. When studied around an AdS back-

ground, the presence of the boundary can however introduce subtleties. Indeed, imposing

non-trivial boundary conditions for the metric field [9] can lead to degrees of freedom at

the boundary of AdS (often called boundary gravitons), that constitute a two-dimensional
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conformal field theory. The central charges of the latter are not guaranteed to be positive,

if the bulk theory is ghost-free. This is indeed what goes wrong in GMG, that suffers from

a tension between requiring absence of ghost-like bulk degrees of freedom and requiring

positivity of the central charges of the dual CFT. Recently, it was shown that this tension

can be resolved in a different 3D massive gravity model, called ‘Zwei-Dreibein Gravity’

(ZDG) [10]. ZDG is a bigravity model, in the spirit of [11], written in first order form as

in [12].1 It describes two Dreibeine, whose dynamics is determined by an Einstein-Hilbert

term for each of them, along with particular non-derivative coupling terms. As formulated

in this way, it is thus a two-derivative model, that moreover in particular limits can lead

to other known 3D massive gravity models, such as NMG and dRGT gravity [14]. At the

linearized level, it propagates two massive helicity-2 modes and it was shown in [10, 15]

that there exist sectors in the parameter space of ZDG for which the model is ghost-free,

both at the linear and non-linear level. Furthermore, it was argued that there exist regions

of the parameter space for which bulk ghost-freeness and positivity of the central charges

of the dual CFT are compatible.

Even though unitarity is difficult to achieve, higher-derivative massive gravity theories,

such as GMG have found use as potential gravity duals for logarithmic conformal field the-

ories (LCFTs). The latter were introduced in [16] and are typically non-unitary. They are

nevertheless often considered in condensed matter physics, e.g. in the context of critical phe-

nomena and percolation. As it turns out, at specific ‘critical points’ in the parameter space

of these higher-derivative gravity models, some of the linearized modes of these theories

degenerate with other modes and are replaced by new so-called ‘logarithmic modes’, that

are characterized by different fall-off behavior towards the AdS boundary [17–22]. Theories

at such specific parameter values are often denoted as ‘critical gravities’. Adopting bound-

ary conditions that retain the logarithmic modes and applying the rules of the AdS/CFT

correspondence, one finds that the degenerate and corresponding logarithmic modes are

dual to operators that constitute a Jordan cell of the Hamiltonian. The CFT Hamiltonian

is thus no longer diagonalizable and this feature is the hall mark of an LCFT. Critical

gravities can thus be conjectured to give gravity duals of LCFTs and this correspondence

has been termed the AdS/LCFT correspondence (see [23] for a recent review).

In this paper, we will argue that the existence of critical points in the parameter

space, at which logarithmic modes appear in the linearized spectrum, is not only a feature

of the higher-derivative gravity models, but also of the recently introduced ZDG model.

We will show this first at the linearized level. We will in particular show that there exist

regions in the ZDG parameter space, where the massive gravitons become massless and

thus coincide with pure gauge modes. We will show that instead logarithmic modes appear

in the linearized spectrum, that behave similarly to the analogous modes found in higher-

derivative critical gravities. The existence of these modes can be seen as a serious hint that

ZDG can be added to the class of gravity theories that are, at specific parameter values,

dual to LCFTs. We will argue that the dual LCFTs have zero central charges. According

to the AdS/LCFT proposal, the degenerate modes and their logarithmic partners are dual

1See [13] for earlier related models.
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to operators, whose two-point functions are governed by quantities, called ‘new anomalies’.

We will calculate the value of these new anomalies on the gravity side via a procedure

outlined in [24].

We will also confirm that the existence of these logarithmic modes is not an artifact

of the linearized approximation, but that there exist solutions of the full theory, that

exhibit this logarithmic fall-off behavior. This lends further credibility to the idea that the

ZDG parameter space features critical points at which the theory can be dual to LCFTs.

The non-linear solutions we will discuss are AdS waves, that are the ZDG analogue of the

solutions discussed in [25]. In order to find these solutions, we will use the fact that bimetric

theories, such as ZDG, can alternatively be thought of as higher-derivative theories for a

single metric field [26]. We will express ZDG as a theory whose equations of motion involve

an infinite number of derivatives for a single Dreibein and we will show that this allows

us to explicitly find AdS waves. We will confirm that AdS waves that exhibit logarithmic

asymptotic behavior exist at critical points.

This paper is organized as follows. In section 2 we study the ghost-free ZDG model

linearized around a maximally symmetric solution. Critical points are discussed and it will

be argued that at those points ZDG can be conjectured to be dual to an LCFT with zero

central charges. The values of the new anomalies characterizing the dual LCFTs will be

calculated. In section 3 we study the non-linear ZDG model and show that full solutions

with logarithmic behavior can be found. To do this, we first argue that ZDG can be

rewritten as a theory for a single Dreibein involving an infinite number of derivatives. This

observation will be used to find AdS wave solutions, that fall off logarithmically at critical

points. We end with conclusions and an outlook in section 4.

2 The linear theory

In this section we will briefly review the ghost-free ZDGmodel and consider its linearization.

We will discuss the linearized dynamics of fluctuations around a maximally symmetric

background and show that there exist critical points in the parameter space where massive

modes become massless and logarithmic modes appear, similarly to what happens in critical

NMG. The existence of these modes leads one to conjecture that ZDG at such critical points

is dual to an LCFT and we discuss the corresponding new anomalies.

2.1 The ZDG model

In three dimensions, Zwei-Dreibein gravity can be described as a family of actions with

Lagrangian density [10]:

LZDG = −MP

{

σe1 aR1
a + e2 aR2

a +
α1

6
m2ǫabce1

ae1
be1

b +
α2

6
m2ǫabce2

ae2
be2

c

− 1

2
m2β1ǫabce1

ae1
be2

c − 1

2
m2β2ǫabce1

ae2
be2

c

}

.

(2.1)

We use a form notation as in [8] where products of form fields are to be understood as

exterior products. The basic variables of this model are two Lorentz vector valued one-

forms, the Dreibeine eI
a with I = 1, 2, and a pair of Lorentz vector valued connection
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one-forms ωI
a, whose curvature two-forms RI

a are given by:

RI
a = dωI

a +
1

2
ǫabcωI bωI c . (2.2)

The independent parameters of (2.1) are two cosmological parameters αI , two coupling

constants βI and the Planck mass MP . Besides these, we have introduced a convenient,

but redundant parameter m2 with mass-squared dimension and a sign parameter σ = ±1.

A Hamiltonian analysis reveals that, for generic coupling constants β1 and β2, the ZDG

Lagrangian describes 3 bulk degrees of freedom, of which two correspond to the helicity-±2

modes of a massive graviton. The third degree of freedom is potentially ghost-like; there

do however exist regions of the parameter space where it is removed. An easy way to

achieve this, is by restricting the theory to β1β2 = 0 and assuming invertibility of one of

the Dreibeine [10, 15, 27].2 In this work we will choose to work with the β2 = 0 sector of

the theory, which is ghost-free for invertible e1
a.

The equations of motion for e1
a, e2

a and ωI
a, derived from the Lagrangian density (2.1),

with β2 = 0 are given by:

0 = σRa
1 +

1

2
m2ǫabc [α1e1 be1 c − 2β1e1 be2 c] , (2.3)

0 = Ra
2 +

1

2
m2ǫabc [α2e2 be2 c − β1e1 be1 c] , (2.4)

0 = T a
I . (2.5)

Here, the T a
I are the torsion 2-forms, given by:

TI
a = DIeI

a ≡ deI
a + ǫabcωI beI c , (2.6)

where DI is the covariant derivative with respect to ωI
a for I = 1, 2. Note that the

curvature and torsion 2-forms satisfy the Bianchi identities:

DIRI
a = 0 , DITI

a = ǫabcRI beI c . (2.7)

Each of the kinetic terms of the Dreibeine are invariant under their own diffeomorphisms

and local Lorentz transformations. Due to the presence of the interaction term, these

symmetries are broken to their diagonal subgroups, defined by identifying the two sets of

gauge parameters.

ZDG allows for maximally symmetric vacua, given by:

e1
a = ēa , e2

a = γēa , ωI
a = ω̄a , (2.8)

where γ is a scaling parameter. The ēa and ω̄a are a Dreibein and spin-connection for a

maximally symmetric space-time with cosmological constant Λ and as such obey:

dω̄a +
1

2
ǫabcω̄bω̄c −

1

2
Λǫabcēbēc = 0 , (2.9)

D̄ēa ≡ dēa + ǫabcω̄bēc = 0 . (2.10)

2An alternative way to remove the ghost degree of freedom without restricting the parameters of the

theory is to assume invertibility of the linear combination β1e1
a + β2e2

a.
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Indeed, it can then be seen that (2.8) is a solution of the ZDG equations of motion, provided

that the scaling parameter γ and cosmological constant Λ obey:

α1 = 2γβ1 − σ
Λ

m2
, γ2α2 = β1 −

Λ

m2
. (2.11)

For given values of the parameters αI , βI , these can be seen as two equations that can be

solved to express γ and Λ in terms of the ZDG parameters.

2.2 Linearized theory

We will now linearize ZDG around an AdS3 space-time with cosmological constant Λ,

characterized by the Dreibein ēa and spin-connection ω̄a as described above. We thus

expand the two Dreibeine and spin-connections, taking the scaling parameter γ of (2.8)

into account, as follows:

e1
a = ēa + κh1

a , ωI
a = ω̄a + κvI

a , (2.12)

e2
a = γ (ēa + κh2

a) ,

where κ is a small expansion parameter. The linear terms in the expansion of the La-

grangian density (2.1) cancel when eqs. (2.11) hold. The quadratic Lagrangian for the

fluctuations hI µ
a and vI µ

a is given by:

L(2) =− σMP

[

h1 aD̄v1
a +

1

2
ǫabcēa (v1 bv1 c − Λh1 bh1 c)

]

− γMP

[

h2 aD̄v2
a +

1

2
ǫabcēa (v2 bv2 c − Λh2 bh2 c)

]

(2.13)

− 1

2
m2γβ1MP ǫ

abcēa (h1 b − h2 b) (h1 c − h2 c) .

Provided σ + γ 6= 0, this Lagrangian can be diagonalized by performing the linear field

redefinition:

(σ + γ)h+
a = σh1

a + γh2
a , h−

a = h1
a − h2

a ,

(σ + γ)v+
a = σv1

a + γv2
a , v−

a = v1
a − v2

a . (2.14)

In terms of these fields the linearized Lagrangian becomes:

L(2) =− (σ + γ)MP

[

h+ aD̄v+
a +

1

2
ǫabcē

a
(

v+
bv+

c − Λh+
bh+

c
)

]

(2.15)

− σγ

(σ + γ)
MP

[

h− aD̄v−
a +

1

2
ǫabcē

a
(

v−
bv−

c − Λh−
bh−

c
)

+
1

2
M2ǫabcē

ah−
bh−

c

]

,

where the mass parameter M is given in terms of the ZDG parameters as:

M2 = m2β1
σ + γ

σ
. (2.16)

By solving the equations of motion for v±
a in terms of the perturbations h±

a and substi-

tuting the result back into the Lagrangian, one can see that (2.15) reduces to the sum of a

linearised Einstein-Hilbert Lagrangian for h+µν = h+µaēν
a and a Fierz-Pauli Lagrangian

for h−µν = h−µaēν
a, that describes two massive helicity-±2 modes with mass M in an

AdS3 background.

– 5 –



J
H
E
P
0
4
(
2
0
1
4
)
0
1
2

2.3 Critical points

The diagonalization described above fails when σ + γ = 0 and the Fierz-Pauli mass in

eq. (2.16) vanishes. This corresponds to a critical point3 in the ZDG parameter space,

where logarithmic modes appear, as we will now show.

In terms of the fields:

h−µ
a = m2β1 (h1µ

a − h2µ
a) , h+µ

a = h1µ
a + h2µ

a ,

v−µ
a = m2β1 (v1µ

a − v2µ
a) , v+µ

a = v1µ
a + v2µ

a .

the Lagrangian (2.13) becomes:

L(2) =
MP

2m2β1

(

h+ aD̄v−
a + h− aD̄v+

a + ǫabcē
a
(

v+
bv−

c − Λh+
bh−

c
)

(2.17)

− ǫabcē
ah−

bh−
c
)

.

This Lagrangian corresponds to the first order form of the Lagrangian for linearized critical

NMG, where the massive modes degenerate with the massless ones and new, logarithmic

solutions appear [18, 21]. The only difference with the critical NMG case is the appearance

of the coupling constant β1 as an overall factor.

The equations of motion derived from the Lagrangian density (2.17) are given by:

D̄v−
a − Λǫabcēbh− c = 0 ,

D̄v+
a − Λǫabcēbh+ c = 2ǫabcēbh− c , (2.18)

D̄h±
a + ǫabcēbv± c = 0 .

The last of these equations can be used to express v±
a in terms of h±

a. One finds:

v±µ
a(h±) = − det(ē)−1ενρσ

(

ēσ
aēµ b −

1

2
ēµ

aēσ b

)

D̄νh± ρ
b . (2.19)

Furthermore, by acting on the equations (2.18) with ερµνD̄ρ and using the identity D̄D̄fa =

ǫabcR̄bfc =
1
2Λǫ

abcǫbdeē
dēefc one can derive the constraints:

εµνρēµ
aēν

bh− ρ b = 0 , (2.20)

which imply that the field h−µν = h−µaēν
a is symmetric:

h− [µν] = 0 . (2.21)

Plugging (2.19) into the first two equations of (2.18) and writing them with free space-time

indices we obtain:

Gµν(h−) = 0 , Gµν(h+) = h−µν − ḡµνh− , (2.22)

3In fact, there is a line of critical points. Indeed, for σ+ γ = 0, the parameter relations (2.11) reduce to

α1 = −σ
(

2β1 + Λ/m2
)

and α2 = β1 − Λ/m2. For a given value of the cosmological constant, there is thus

a free parameter β1 left. In the following, we will however keep on using the terminology ‘critical point’,

often using the plural form to emphasize that there is a continuous family of critical points in ZDG.
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where Gµν(h) is the linearized Einstein tensor which is invariant under linearized diffeo-

morphisms by construction:

Gµν(h) = −1

2
ε(µ

αρεν)
βσD̄αD̄βhρσ − 1

2
Λ(h(µν) − ḡµνh) . (2.23)

One can see that these linearized equations of motion are equivalent to the NMG lin-

earized equations of motion at the critical point, see ref. [21]. In particular, the analysis

of the solutions carries over without modification. We can thus conclude that at critical

points, linearized ZDG exhibits logarithmic modes with exactly the same properties as the

analogous modes in critical NMG.

We have thus found critical points where the linearized Lagrangian (2.17) and equa-

tions of motion (2.18) are equivalent to the critical NMG ones. These critical points thus

constitute a generalization of the NMG critical point. NMG can be retreived from ZDG by

performing a limiting procedure, outlined in appendix A, but this limit requires starting

from the part of the ZDG parameter space where the sign parameter σ = −1. In contrast,

in the above discussion, we have not assumed this and it is possible to find regions in the

ZDG parameter space where σ + γ = 0 for positive σ. The critical points found here are

thus indeed more general than the NMG one.

2.4 New anomaly

In the above section, we have confirmed the existence of critical points in linearized ZDG,

where logarithmic modes appear that have the same properties as the logarithmic modes

that appear in critical higher-derivative gravity theories, such as critical NMG. In the

NMG case, the appearance of these modes led to the conjecture that the field theory

dual to critical NMG is an LCFT with zero central charges, once appropriate boundary

conditions are taken into account. The NMG logarithmic modes can be seen to be dual to

the logarithmic partners of the stress-energy tensor components in the dual LCFT. Even

though the central charges are zero, the two-point functions of the stress-energy tensor

modes and their logarithmic partners are non-trivial and determined by new quantities,

called the ‘new anomalies’. A simple way to calculate these new anomalies on the gravity

side was given in [24].

Similar conclusions hold at the ZDG critical points. Again, the central charges [10]:

cL/R = 12πℓMP (σ + γ) , (2.24)

where Λ = −1/ℓ2, vanish at a critical point. The two-point functions of the cL/R = 0 LCFT

should instead be characterized by the new anomalies bL/R. These can be calculated via the

limiting procedure of ref. [24]. In order to do this, we need to know the conformal weights

(h, h̄) of the operators dual to the left and right moving massless and massive modes, that

are present in the linearized spectrum of non-critical ZDG. These weights can be obtained

– 7 –
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via an analysis similar to the one presented in [28] and are given by:

Left : (hL, h̄L) = (2, 0) , Right : (hR, h̄R) = (0, 2) , (2.25)

Massive Left : (hM,L, h̄M,L) =

(

3

2
+

1

2

√

1 + ℓ2M2,−1

2
+

1

2

√

1 + ℓ2M2

)

, (2.26)

Massive Right : (hM,R, h̄M,R) =

(

−1

2
+

1

2

√

1 + ℓ2M2,
3

2
+

1

2

√

1 + ℓ2M2

)

, (2.27)

where M2 is given by eq. (2.16). The left and right moving new anomalies can then be

calculated via [24]:

bL/R = lim
σ+γ→0

cL/R

hL/R − hM,L/R
. (2.28)

Evaluating this limit explicitly, we find the critical ZDG new anomalies:

bL/R = −48πσMP

ℓm2β1
. (2.29)

Equality of the new anomalies is due to the fact that ZDG is a parity even theory. In

the NMG limit of ZDG (see appendix A) the new anomalies reduce to bNMG
L/R = −12σ′ℓ/G,

where σ′ is the NMG sign parameter. This result agrees with the known expression obtained

in [29] at the NMG critical point defined by m2 = −(2σ′ℓ2)−1. The difference in the

ZDG case is that the new anomaly is a function of the coupling constant β1, instead of

a fixed combination of ℓ/G. This again makes clear that the ZDG critical points are a

generalization of the NMG critical point.

3 Non-linear theory

In this section, we will look at ZDG solutions at the non-linear level, in order to confirm that

the above found logarithmic modes are not just an artifact of the linearized approximation.

To this end we construct AdS wave solutions of ZDG and show that at a critical point their

wave profiles contain terms with a similar behavior as that of the logarithmic modes. In

order to obtain these AdS wave solutions, we will first show that ZDG can be understood

as a theory with a single Dreibein that however contains an infinite number of higher-

derivative terms. We will argue that on an AdS wave solution, the contributions due to all

higher-derivative terms can be summed into a closed expression. The resulting equations

of motion reduce to a fourth order differential equation for the wave profile, that can be

solved explicitly.

3.1 ZDG as a higher-derivative theory

In [26], it was observed that bimetric theories can be thought of as higher-derivative theo-

ries. In this section we make this connection explicit in the ZDG case with β2 = 0. First

we observe that we can solve the equations of motion (2.3) to obtain an expression for e2
a

in terms of e1
a. Using the property ερστR1στ

a = det(e1)e1
σ aG1

ρ
σ, we obtain the following

expression for e2
a:

e2µ
a =

α1

2β1
e1µ

a +
σ

m2β1
S1µ

a , (3.1)

– 8 –
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where S1µ
a ≡ S1µνe

ν a
1 and S1µν = R1µν − 1

4R1g1µν is the Schouten tensor of g1µν ≡
e1µ

ae1 ν
bηab. In this approach to ZDG, we identify g1µν with the physical metric, as we

had to assume e1
a to be invertible for the absence of ghosts and e2

a can be expressed as

a function of e1
a and its derivatives.4 The field e2 represents the higher-derivative content

of the theory. It is similar to the auxiliary field in the two-derivative formulation of NMG

in the sense that it can be solved for algebraically upon using the equations of motion.

Using the relation (3.1), we can solve the torsion equation T2
a = 0 for ω2

a(e1) as a

power series in 1/m2. By expressing ω2
a as:

ω2µ
a =

∞
∑

n=0

1

m2n
Ω(2n)
µ

a , (3.2)

and solving T2
a = de2

a + ǫabcω2
be2

c = 0 order by order in 1/m2 we find:

Ω(0)
µ

a = ω1µ
a , Ω(2)

µ
a = −2σ

α1
C1µ

a ,

Ω(2k)
µ

a = − 2σ

α1
det(e1)

−1ενρσǫbcd

(

e1 ν
ae1µ

b − 1

2
e1 ν

be1µ
a

)

Ω(2k−2)
ρ

cS1σ
d ,

(3.3)

for k > 1. Here C1µ
a ≡ C1µνe

ν a
1 and C1µν = det(e1)

−1εµ
αβDαS1βν is the Cotton tensor

associated with g1µν . This result enables us to write R2
a as a series in 1/m2:

R2
a =

∞
∑

n=0

1

m2n
R

(2n) a
2 , (3.4)

where the coefficients in this expansion are given by:

R
(0) a
2 = R1

a , R
(2) a
2 = −2σ

α1
DC1

a ,

R
(2k) a
2 = DΩ(2k) a +

1

2

k−1
∑

i=1

ǫabcΩ
(2i) bΩ(2k−2i) c ,

(3.5)

with C1µ
a ≡ e1ν

aC1
ν
µ. The covariant derivative D is defined with respect to ω1

a. Replac-

ing these expressions into the equation of motion (2.4) for e2
a we obtain a higher order

differential equation for e1
a as a power series in 1/m2. In appendix B we have computed

the terms up to order 1/m4.

The equation of motion for e1
a thus obtained contains an infinite number of terms

and features infinitely many derivatives. Note that higher-derivative actions with more

than four derivatives can, unlike ZDG, propagate two or more massive gravitons (see [30]

for an example). Typically however, in cases where this happens, there are terms with

more than four derivatives acting on the metric field. This is not the case here as Ω(2n)

contains contractions of the Cotton tensor with (2n − 2) Schouten tensors and hence R2

is an infinite series of terms that are products of terms that have at most four derivatives

4Since e2 can be expressed in terms of e1 and its derivatives on-shell, it is possible to find the inverse of

e2 as an infinite expansion in 1/m2.
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acting on the metric tensor. The resulting equations of motion thus do contain an infinite

amount of derivatives, but the maximum amount of derivatives acting on the metric is four.

Also note that in the case of an infinite number of derivatives, the initial value problem

and ensuing counting of degrees of freedom is subtle (see e.g. [31] for a discussion on these

issues). The above higher-derivative formulation is thus not at odds with the fact that

ZDG propagates a single massive graviton.

3.2 AdS waves

To study critical behaviour in non-linear ZDG we look for propagating waves on an AdS3
background with logarithmic decay, analogously to the situation in NMG, as studied in [25].

As an Ansatz we consider a Kerr-Schild deformation of AdS3:

gµν = ḡµν − f(u, y)kµkν , (3.6)

where ḡµν is the AdS background and kµ is a light-like vector.5 The function f(u, y) is

the wave profile. Using Poincare coordinates this leads to the following expression for the

AdS3 wave space-time Ansatz:

ds2 =
ℓ2

y2
(−f(u, y)du2 − 2dudv + dy2) . (3.7)

We will choose the following Dreibeine for this metric:

e0 =
ℓ

y

(

√

f(u, y)du+
1

√

f(u, y)
dv

)

, e1 =
ℓ

y

1
√

f(u, y)
dv , e2 =

ℓ

y
dy . (3.8)

In order to find the AdS wave solutions, we will follow the same procedure that was

outlined in the previous section, in which ZDG was rewritten as a higher-derivative theory.

We recall that the equation of motion in this formulation is given by eq. (2.4), where e2
a

is understood to be written in terms of e1
a as in (3.1). We thus use (3.8) as an ansatz for

the Dreibein e1
a and find that e2

a, as determined by (3.1), is given by:

e2
0 = g(u, y)du+ h(u, y)dv , e2

1 = p(u, y)du+ q(u, y)dv , e2
2 = s(u, y)dy , (3.9)

where:

g(u, y) =
1

2m2ℓβ1y
√

f(u, y)

(

2m2ℓ2γβ1f(u, y) + σy

(

∂

∂y
− y

∂2

∂y2

)

f(u, y)

)

,

h(u, y) =
γℓ

y
√

f(u, y)
= q(u, y) , (3.10)

p(u, y) =
σ

2m2ℓβ1
√

f(u, y)

(

∂

∂y
− y

∂2

∂y2

)

f(u, y) , s(u, y) =
γℓ

y
.

The parameter γ appearing in these functions can be determined from (2.11). In order to

write down the equation of motion (2.4), we also need to evaluate the series expansion (3.2)

5We take kµ∂µ = (y/ℓ)∂v.
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for ω2
a. Explicitly calculating (3.3) for this solution, we see that all contributions to Ω

(2n)
µ

a

with n > 0 have the same form:6

Ω(2n)
µ

a =

(

σ

ℓ2α1

)n

ℓy
∂3f(u, y)

∂y3
kµkνe

ν a
1 . (3.11)

We can then sum all orders of 1/m2 into a closed expression for ω2
a. We find:

ω2µ
a = ω1µ

a − σℓy

σ − α1ℓ2m2

∂3f(u, y)

∂y3
kµkνe

ν a
1 . (3.12)

Replacing this into the equation of motion (2.4), we see that the latter reduces to the

following fourth order differential equation for the wave profile:

1

y2
√

f(u, y)

[

y4
∂4f(u, y)

∂y4
+ 2y3

∂3f(u, y)

∂y3

−
(

1 +M2ℓ2
)

(

y2
∂2f(u, y)

∂y2
− y

∂f(u, y)

∂y

)]

= 0 . (3.13)

Here M2 is the Fierz-Pauli mass (2.16) and we have used the parameter relations (2.11).

The equation (3.13) can be solved by separation of variables and proposing that the

solutions behave polynomially in y : f(u, y) = f̃(u)yn. The power n is determined as a

solution of the indicial equation:

n(n− 2)
(

n(n− 2)−M2ℓ2
)

. (3.14)

In general, this equation has four roots n = {0, 2, n+, n−}, with n± = 1±
√
1 +M2ℓ2.

The generic solution for the wave profile is then:

f(u, y) = f0(u) + f2(u)

(

y

ℓ

)2

+ f+(u)

(

y

ℓ

)n+

+ f−(u)

(

y

ℓ

)n−

. (3.15)

The constant and the quadratic terms can always be removed by local transformations [32].

The relevant parts are then given by the terms involving yn± . At special points in the

parameter space the roots n± become degenerate, as we will discuss in the next subsection.

Since the expressions for Ω(2n) a are all proportional to each other, the AdS wave solu-

tion (3.15) is not only a solution to the full theory, but it will solve the equations of motion

at every order of 1
m2 , provided that the parameters appearing in n± are properly adjusted.

3.3 Special points

At the ZDG critical points, one has that σ + γ = 0 and thus M2 = 0. At such points

n+ = 2 and n− = 0 and the indicial equation (3.14) thus has two degenerate solutions,

6It might seem strange that this expression contains only three derivatives for every value of n, in view

of the fact that Ω
(2n)a
µ contains more derivatives for larger n, in order to balance the mass dimensions of the

corresponding m−2n in the series (3.2). For this particular ansatz however, the ℓ-parameter features as an

extra dimensionfull parameter that can be used to balance dimensions and this explains why it is possible

that all Ω
(2n)
µ

a feature the same number of derivatives.
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instead of four distinct ones. The order of the differential equation (3.13) at the critical

points is still four however, and four distinct, albeit potentially non-polynomial solutions

should still exist. Ignoring the constant and quadratic solutions that can be removed by

local transformations, one finds the following solutions:

fc(u, y) = fL(u) ln

(

y

ℓ

)

+ f2L(u)

(

y

ℓ

)2(y

ℓ

)

. (3.16)

One thus finds AdS waves with logarithmic decay at the critical point and this is a clear

sign that the existence of logarithmic modes in critical ZDG persists at the non-linear level

and is not merely an artifact of the linearized approximation.

There is another class of special points, where a degeneracy in the indicial equa-

tion (3.14) takes place. At these points, M2 = −1/ℓ2 and n± = 1. The indicial equa-

tion (3.14) thus only has three roots, one of which is degenerate. The equation (3.13) is

again still of order four and thus one non-polynomial solution should exist. The following

solutions (again ignoring the ones that can be removed by local transformations) are found:

fs(u, y) =

(

y

ℓ

)(

f1(u) + f1L(u) ln

(

y

ℓ

))

. (3.17)

One thus finds one AdS wave with logarithmic decay at these special points. This solution

was also found in the Isham, Salam, Strathdee f − g theory [33] in [34].

This point already appears as a special point in NMG and it is known that for this

special point, NMG has black hole solutions that are not locally isometric to AdS3 [4, 35].

At this point, the linearized Fierz-Pauli action in AdS3 features an extra gauge invariance,

with scalar parameter. Linearized NMG, being a sum of a linearized Einstein-Hilbert and

Fierz-Pauli action for two different fluctuations, inherits this linearized gauge invariance.

The same holds for ZDG as can be seen from eq. (2.15) and the ensuing discussion. At the

linearized level, NMG and ZDG at those critical points thus only propagate one degree of

freedom. This however is no longer true at the non-linear level and the extra linearized

gauge invariance is an accidental one.

NMG at this point has been dubbed ‘Partially Massless Gravity’ (PMG), as the mas-

sive mode becomes partially massless [36, 37]. In [24], it was argued that solutions with

logarithmic decay appear in PMG, of the type given in (3.17) and that this can be taken

as a sign that the dual field theory is an LCFT. Interestingly, we have found above that

also PMG, originally found as a special version of NMG, can be generalized to a class of

special points in the ZDG parameter space.

4 Conclusions and outlook

In this paper, we have shown that the parameter space of ZDG around AdS3 has critical

points, where solutions with logarithmic fall-off behavior appear, both at the linearized

and non-linear level. These critical points and logarithmic solutions are similar to the ones

that appear in critical NMG. Although NMG can be retrieved from ZDG in a particular

limit, the critical points found here do however not simply correspond to the NMG one,

but can rather be seen as a generalization of the NMG critical point.
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Note that the existence of the ZDG logarithmic solutions found in this paper is non-

trivial. In both NMG and ZDG, criticality is signaled when massive modes become massless

and degenerate with pure gauge modes. In both cases, one can argue via continuity that

new solutions, that are not massive nor massless modes, should appear at a critical point.

In NMG, that is naturally formulated as a four-derivative theory, this argument is based on

the fact that the equations of motion remain fourth order at the critical point, and hence

there should still be four distinct linearized modes. Since the massive modes coincide with

the pure gauge modes, new solutions that are not massive, nor pure gauge should appear

in the spectrum. They turn out to be solutions of a particular fourth-order differential

equation, featuring a fourth-order differential operator that is the square of a second order

one [21] and such equations typically feature the logarithmic modes. In ZDG, the equations

of motion at critical points are still a system of coupled second-order differential equations

for two metric fields and there should again still be four distinct linearized modes. What is

non-trivial in ZDG is that the new modes that appear instead of the massive modes at the

critical point are logarithmic. Indeed, the logarithmic behavior is typical for solutions of

particular differential equations of order higher than two and ZDG is naturally formulated

in terms of coupled second-order equations. In this paper, we have however seen that

the new solutions at the ZDG critical points are logarithmic. At the linearized level,

this stems from the fact that the linearized critical ZDG equations of motion are the

same as the linearized NMG ones. At the non-linear level, we have shown that ZDG

can alternatively be rewritten as a higher-derivative theory (involving an infinite number

of higher-derivatives) for a single Dreibein and it is this higher-derivative character of

ZDG that is ultimately responsible for the existence of AdS waves with logarithmic fall-off

behavior at the critical points.

As in the critical higher-derivative massive gravity cases, the existence of logarithmic

modes can be seen as a hint that critical ZDG theories are dual to logarithmic conformal

field theories, once appropriate boundary conditions are imposed. In order to show this in

more detail, more checks need to be performed however. In particular, precise calculations

of two- and three-point functions, as was done for TMG and NMG in [29, 38, 39], via e.g.

holographic renormalization should be performed. The conjecture can also be shown by

calculations of the classical and one-loop partition functions on the gravity side (see [40, 41]

for examples in higher-derivative theories) and checking that the results conform with the

structure expected for an LCFT. Performing these checks will require an extension of the

AdS/CFT holographic dictionary and methods to bigravity theories, such as ZDG and we

will leave this for the future.
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A NMG limit

In our convention for the parameters of the Lagrangian of ZDG (2.1) the limit to NMG is

slightly different from the one given in [10]. To flow to NMG, we should take σ = −1 and

make the field redefinition

e2
a = γe1

a +
λ

m2
fa , ω2

a = ω1
a − λha . (A.1)

NMG can then be obtained from the flow:

MP (λ) =
1

λ
M ′ , γ(λ) = 1 + σ′λ ,

α1(λ) =

(

6− Λ0

m2

)

λ+
2(1 + σ′λ)

λ
, β1(λ) =

1

λ
+ λ , (A.2)

α2(λ) =
1

λ
− 2σ′ ,

and sending λ → 0. Here σ′ = ±1 is a new sign parameter and Λ0 is a new cosmological

parameter. The Lagrangian 3-form (2.1) then becomes:

LNMG = M ′

{

− σ′e1 aR
a
1 +

Λ0

6
ǫabce1 ae1 be1 c + haT

a
1

− 1

m2

(

faR
a
1 +

1

2
ǫabce

a
1f

bf c

)}

.

(A.3)

This action is the Chern-Simons-like formulation of New Massive Gravity as considered

in [8], with a Planck mass M ′ = (8πG)−1.

B ZDG as a higher-derivative theory

In this appendix we give an expression of the ZDG equations of motion as a function of a

single metric with higher-derivative contributions up to order 1/m4. This can be obtained

by substituting (3.4) with coefficients (3.5) into the equation of motion (2.4). The equation

of motion is rewritten in a second-order form, using the metric gµν = e1µ
ae1 ν

bηab to raise

and lower indices. The result is:

0 =
√−gMP

{(

1 +
α1α2σ

2β2
1

)

Gµν −
(

α2
1α2

4β2
1

− β1

)

m2gµν +
1

m2
Eµν +

1

m4
Fµν

+O
(

1

m6

)}

,

(B.1)

where here and in the following we have omitted the label 1, used to denote the Dreibein.

The symmetric tensors Eµν and Fµν carry terms with four and six derivatives respectively.
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They are:

Eµν =− 2σ

α1

[

✷Rµν−
1

4
(gµν✷R+∇µ∇νR)− 3RµρR

ρ
ν + gµνRρσR

ρσ − 1

2
gµνR

2 +
3

2
RRµν

]

+
α2

2β2
1

[

gµνRρσR
ρσ − 5

8
gµνR

2 +
3

2
RRµν − 2RµρR

ρ
ν

]

, (B.2)

Fµν =
4

α2
1

{

∇ρ
[

S(µ
σ∇ν)Sρσ − S(µ|

σ∇ρS|ν)σ − Sρ
σ∇(µSν)σ + 2Sσ

µ∇[ρSσ]ν + Sσ
ρ∇σSµν

]

+∇ρSλσ∇[λSρ]σgµν − 2∇ρSσ
ν∇[σSρ]µ

}

. (B.3)

We would like to stress that at order 1/m2 the above equations of motion cannot be

integrated to an action, unless the following relation between the ZDG parameters holds:

− σ

α1
=

α2

2β2
1

. (B.4)

If the ZDG parameters are restricted in this way, the 1/m2 contributions to (B.1), given

explicity in (B.2), can be integrated to an action proportional to RµνR
µν − 3

8R
2. This

combination of R2 terms corresponds to the higher-curvature part of the NMG action.

This is not a coincidence as can be seen by explicitly performing the NMG limit. Indeed,

after substituting (A.2) into the coefficients in eq. (B.1), we see that the terms at order 1/m4

scale as λ and hence vanish in the λ → 0 limit, while the remaining coefficients become:

MP

(

1 +
α1α2σ

2β2
1

)

= σ′ +O(λ) ,

−MP

(

α2
1α2

4β2
1

− β1

)

m2 = Λ0 +O(λ) , (B.5)

−MP
2σ

α1
= 1 +O(λ) ,

MP
α2

2β2
1

=
1

2
+O(λ) .

In particular, the last two equations show that the λ → 0 limit enforces the parameter

relation (B.4) and as a consequence the NMG equations of motion [3, 4] that result from

eq. (B.1) in the λ → 0 limit

0 = σ′Gµν + Λ0gµν +
1

m2

[

✷Rµν −
1

4
(gµν✷R+∇µ∇νR)− 4RµρR

ρ
ν

+
9

4
RRµν +

3

2
gµνRρσR

ρσ − 13

16
gµνR

2

]

,

(B.6)

can be integrated to an action, even if for the generic ZDG equations of motion (B.1) this

is not possible order by order in m2.

Note that the utility of the higher-derivative formulation of ZDG will very much depend

on the specific application one has in mind. In this paper, we have used this formulation

in order to obtain AdS wave solutions. For other applications, e.g. in AdS/CFT, an action
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for which the variational principle is well-defined, is required and one will have to resort

to the two-derivative Zwei-Dreibein formulation. Note that even if the higher-derivative

terms could be integrated to an action, a formulation without higher derivatives is still

more useful in order to set up a well-defined variational principle, as is discussed in the

NMG case in [42].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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