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STRONGLY MIXING CONVOLUTION OPERATORS ON

FRÉCHET SPACES OF HOLOMORPHIC FUNCTIONS

SANTIAGO MURO, DAMIÁN PINASCO, MARTÍN SAVRANSKY

Abstract. A theorem of Godefroy and Shapiro states that non-trivial

convolution operators on the space of entire functions on C
n are hyper-

cyclic. Moreover, it was shown by Bonilla and Grosse-Erdmann that

they have frequently hypercyclic functions of exponential growth. On

the other hand, in the infinite dimensional setting, the Godefroy-Shapiro

theorem has been extended to several spaces of entire functions defined

on Banach spaces. We prove that on all these spaces, non-trivial convo-

lution operators are strongly mixing with respect to a gaussian proba-

bility measure of full support. For the proof we combine the results pre-

viously mentioned and we use techniques recently developed by Bayart

and Matheron. We also obtain the existence of frequently hypercyclic

entire functions of exponential growth.

Introduction

If T is a continuous linear operator acting on some topological vector space

X, the T -orbit of a vector x ∈ X is the set Orb(x, T ) := {x, Tx, T 2x, . . . }.

The operator T is said to be hypercyclic if there exist some vector x ∈

X, called hypercyclic vector, whose T -orbit is dense in X. Other forms

of hypercyclicity where defined and studied in the literature. Specially,

T is frequently hypercyclic if there exist a vector x ∈ X, called frequently

hypercyclic vector, whose T -orbit visits each non-empty open set along a set

of integers having positive lower density.

Several criteria to determine if an operator is hypercyclic have been stud-

ied. It is known that a large supply of eigenvectors implies hypercyclicity. In

particular, if the eigenvectors associated to eigenvalues of modulus less than

1 and the eigenvectors associated to eigenvalues of modulus greater than 1

span dense subspaces, then the operator is hypercyclic. This result is due to
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Godefroy and Shapiro [21]. They also prove there that non-trivial convolu-

tion operators, i.e. operators that commute with translations and which are

not multiples of the identity, on the space of entire functions on C
n are hyper-

cyclic. This result has also been extended to some spaces of entire functions

on infinite dimensional Banach spaces (see [2, 5, 10, 27, 28]). The Gode-

froy - Shapiro theorem has been improved by Bonilla and Grosse-Erdmann.

They showed that non-trivial convolution operators are even frequently hy-

percyclic, and have frequently hypercyclic entire functions satisfying some

exponential growth condition (see [7]).

Recent work developed by Bayart and Matheron [4] provides some other

eigenvector criteria to determine whether a given continuous map T : X →

X acting on a topological space X admits an ergodic probability measure,

or a strong mixing one. When the measure is strictly positive on any non

void open set of X, ergodic properties on T imply topological counterparts.

In particular, if a continuous map T : X → X happens to be ergodic with

respect to some Borel probability measure µ with full support, then almost

every x ∈ X (relative to µ) has a dense T -orbit. Moreover, from Birkhoff’s

ergodic theorem, we can obtain frequent hypercyclicity.

In this article we study convolution operators on spaces of entire func-

tions defined on Banach spaces. We show that under suitable conditions,

non-trivial convolution operators are strongly mixing, and in particular, fre-

quently hypercyclic. In the same spirit as Bonilla and Grosse-Erdmann,

we also obtain the existence of frequently hypercyclic entire functions of

exponential growth associated to these operators. We also prove the exis-

tence of frequently hypercyclic subspaces for a given non-trivial convolution

operator, that is, the existence of closed infinite-dimensional subspaces in

which every non-zero vector is a frequently hypercyclic function. Finally, we

study particular cases of non-trivial convolution operators such as transla-

tions and partial differentiation operators. In this cases we obtain bounds

of the exponential growth of the frequently hypercyclic entire functions.

1. Holomorphic functions of A-bounded type

In this section we recall the basic properties of holomorphic functions on

Banach spaces, the best general reference here is [15]. We also introduce the

spaces of entire functions HbA(E) and convolution operators therein.

Throughout this article E is a complex Banach space. A mapping P :

E → C is a continuous k-homogeneous polynomial if there exists a (neces-

sarily unique) continuous and symmetric k-linear form L : Ek → C such

that P (z) = L(z, . . . , z) for all z ∈ E. For example, given γ ∈ E′, the

function P (z) = γ(z)k is a k−homogeneous polynomial. The space of all

continuous k-homogeneous polynomials from E to C, endowed with the norm



STRONGLY MIXING CONVOLUTION OPERATORS ON FRÉCHET SPACES 3

‖P‖P(kE) = sup‖z‖E=1 |P (z)| is a Banach space and it will be denoted by

P(kE). The space P(0E) is just C. The space of finite type polynomials,

denoted by Pf (
kE), is the subspace of P(kE) spanned by {γ(·)k}γ∈E′ .

The space of holomorphic functions from E to C is denoted by H(E).

If f =
∑

k≥0 fk is the Taylor series expansion of such a function, then it

converges uniformly in some neighborhood around the point of expansion.

The space of holomorphic functions whose Taylor series have infinite radius

of uniform convergence is denoted Hb(E). Such functions are bounded on

bounded sets, and are said to be of bounded type. The space Hb(E) is a

Fréchet space when considered with the topology of uniform convergence on

bounded sets of E.

Given P ∈ P(kE), a ∈ E and 0 ≤ j ≤ k, let Paj ∈ Pk−j(E) be the

polynomial defined by

Paj (x) =
∨
P (aj , xk−j) =

∨
P (a, ..., a
︸ ︷︷ ︸

j

, x, ..., x
︸ ︷︷ ︸

k−j

),

where
∨
P is the unique symmetric k-linear form associated to P . We write

Pa instead of Pa1 .

Let us recall the definition of a polynomial ideal [19, 20].

Definition 1.1. A Banach ideal of scalar-valued continuous k-homogeneous

polynomials, k ≥ 0, is a pair (Ak, ‖ · ‖Ak
) such that:

(i) For every Banach space E, Ak(E) = Ak ∩P(kE) is a linear subspace

of P(kE) and ‖ ·‖Ak(E) is a norm on it. Moreover, (Ak(E), ‖ ·‖Ak(E))

is a Banach space.

(ii) If T ∈ L(E1, E) and P ∈ Ak(E), then P ◦ T ∈ Ak(E1) with

‖P ◦ T‖Ak(E1) ≤ ‖P‖Ak(E)‖T‖
k.

(iii) z 7→ zk belongs to Ak(C) and has norm 1.

The concept of holomorphy type was introduced by Nachbin [26]. We will

use it in the following slightly modified version (see [25]).

Definition 1.2. Consider the sequence A = {Ak}
∞
k=0, where for each k, Ak

is a Banach ideal of k-homogeneous polynomials. We say that {Ak}k is a

holomorphy type if there exists constants c, ck,l such that ck,l ≤ ck for every

0 ≤ l ≤ k and such that for every Banach space E, P ∈ Ak(E) and a ∈ E,

(1) Pal belongs to Ak−l(E) and ‖Pal‖Ak−l(E) ≤ ck,l‖P‖Ak(E)‖a‖
l.

There is a natural way to associate to a holomorphy type A a class of

entire functions of bounded type on a Banach space E, as the set of entire

functions with infinite A-radius of convergence at zero, and hence at every

point (see [10, 18]).
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Definition 1.3. Let A = {Ak}k be a holomorphy type and E be a Banach

space. The space of entire functions of A-bounded type on E is the set

HbA(E) :=

{

f ∈ H(E) : dkf(0) ∈ Ak(E) for every k and lim
k→∞

∥
∥
∥
dkf(0)

k!

∥
∥
∥

1/k

Ak

= 0

}

.

We consider in HbA(E) the family of seminorms {ps}s>0, given by

ps(f) =
∞∑

k=0

sk
∥
∥
∥
∥

dkf(0)

k!

∥
∥
∥
∥
Ak

,

for all f ∈ HbA(E). It is easy to check that (HbA(E), {ps}s>0) is a Fréchet

space.

The following example collects some of the spaces of entire functions of

bounded type that may be constructed in this way. See the references given

in each case for the definition and details.

Example 1.4. (i) If we let Ak = Pk, the ideal of all k-homogeneous

continuous polynomials, then the topology induced on HbA(E) by

{ps}s>0 is equivalent to the usual topology of uniform convergence

on bounded sets. Therefore HbA(E) = Hb(E).

(ii) If A is the sequence of ideals of nuclear polynomials then HbA(E) is

the space of holomorphic functions of nuclear bounded type HNb(E)

defined by Gupta and Nachbin (see [24]).

(iii) If E is a Hilbert space and A is the sequence of ideals of Hilbert-

Schmidt polynomials, then HbA(E) is the space Hhs(E) of entire

functions of Hilbert-Schmidt type (see [17, 27]).

(iv) If A is the sequence of ideals of approximable polynomials, then

HbA(E) is the space Hbc(E) of entire functions of compact bounded

type (see for example [1, 2]).

(v) If A is the sequence of ideals of weakly continuous on bounded sets

polynomials, then HbA(E) is the space Hwu(E) of weakly uniformly

continuous holomorphic functions on bounded sets defined by Aron

in [1].

(vi) If A is the sequence of ideals of extendible polynomials, then HbA(E)

is the space of extendible functions of bounded type defined in [9].

(vii) If A is the sequence of ideals of integral polynomials, thenHbA(BE) is

the space of integral holomorphic functions of bounded typeHbI(BE)

defined in [13].

Given A = {Ak}k a holomorphy type, the Borel transform is the operator

β : HbA(E)′ → H(E′) which assigns to each element ϕ ∈ HbA(E)′ the holo-

morphic function β(ϕ) ∈ H(E′), given by β(ϕ)(γ) = ϕ(eγ). The following

proposition is well-known (see for example [14, p.264] or [18, p.915]).
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Proposition 1.5. Let A = {Ak}k be a holomorphy type and E be a Banach

space such that finite type polynomials are dense in Ak(E) for every k. Then

the Borel transform is an injective linear transformation.

Finite type polynomials are dense in Ak(E) in many cases. For example,

finite type polynomials are dense in the spaces of nuclear, Hilbert-Schmidt

and approximable polynomials. They are also dense in P(kE) if E is c0 or

the Tsirelson space and in the spaces of integral and extendible polynomials

if E is Asplund [12]. On the other hand, separability is a necessary condition

to deal with hypercyclicity issues on HbA(E) and, up to our knowledge, on

every example of separable space of polynomials, finite type polynomials are

dense.

We also note that a holomorphy type such that finite type polynomials

are dense is essentially what is called an α-β-holomorphy type in [14] and a

π1-holomorphy type in [18, 5].

We denote by τx(f) := f(x + ·) the translation operator by x, which is

a continuous linear operator on HbA(E) (see [10, 18]). The following is the

usual definition of convolution operator.

Definition 1.6. Let A = {Ak}k be a holomorphy type and E be a Banach

space. A linear continuous operator T defined on HbA(E) is a convolution

operator, if for every x ∈ E we have T ◦ τx = τx ◦T . We say that T is trivial

if it is a multiple of the identity.

The following proposition provides a description of convolution operators

on HbA(E). Its proof follows as [10, Proposition 4.7].

Proposition 1.7. Let A = {Ak}k be a holomorphy type and E be a Banach

space. Then for each convolution operator T : HbA(E) → HbA(E) there

exists a linear functional ϕ ∈ HbA(E)′ such that

T (f) = ϕ ∗ f,

for every f ∈ HbA(E), where ϕ ∗ f(x) := ϕ(τxf) = ϕ(f(x+ ·)).

Proof. Let ϕ = δ0 ◦ T , i.e. ϕ(f) = T (f)(0) for f ∈ HbA(E). Then ϕ ∈

HbA(E)′ and

T (f)(x) = [τxT (f)] (0) = T (τxf)(0) = ϕ(τxf) = ϕ ∗ f(x),

for every f ∈ HbA(E) and x ∈ E. �

2. Strongly mixing convolution operators

In this section we prove our first main theorem, which states that under

some fairly general conditions on the space E and the holomorphy type
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A, non-trivial convolution operators on HbA(E) are strongly mixing in the

gaussian sense. First we recall the following definitions.

Definition 2.1. A Borel probability measure on X is gaussian if and only

if it is the distribution of an almost surely convergent random series of the

form ξ =
∑∞

n=0 gnxn, where (xn) ⊂ X and (gn) is a sequence of independent,

standard complex gaussian variables.

Recall that for an operator T : X → X we say that µ is a T -invariant

ergodic measure if µ(A) = µ(T−1A) for all measurable sets A ⊂ X and if

given A, B measurable sets of positive measure then one can find an integer

n ≥ 0 such that T n(A)∩B 6= ∅. When the measure µ is strictly positive on

all non void open sets, ergodicity implies that T is topologically transitive,

hence hypercyclic. Additionally, Birkhoff’s ergodic theorem implies that T

is frequently hypercyclic.

We are specially interested in a condition stronger that ergodicity, namely

strongly mixing with respect to some gaussian probability measure.

Definition 2.2. We say that an operator T ∈ L(X) is strongly mixing in the

gaussian sense if there exists some gaussian T -invariant probability measure

µ on X with full support such that for any measurable sets A, B ⊂ X we

have

lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B).

We will use the following theorem due to Bayart and Matheron, which is

a corollary of [4, Theorem 1.1].

Theorem 2.3 (Bayart-Matheron). Let X be a complex separable Fréchet

space, and let T ∈ L(X). Assume that for any D ⊂ T such that T \ D is

dense in T, the linear span of
⋃

λ∈T\D ker(T − λ) is dense in X. Then T

is strongly mixing in the gaussian sense. In particular, T is a frequently

hypercyclic operator.

The next lemma is the key to prove that convolution operators are strongly

mixing and it we will be used throughout the article.

Lemma 2.4. Let E be a Banach space with separable dual and let A be a

holomorphy type such that finite type polynomials are dense in Ak(E) for

every k. Let φ ∈ H(E′) not constant and B ⊂ C. Suppose that there exist

γ0 ∈ E′ such that φ(γ0) is an accumulation point of B. Then span{eγ :

φ(γ) ∈ B} is dense in HbA(E).

Proof. Let Φ ∈ HbA(E)′ be a functional vanishing on {eγ : φ(γ) ∈ B}.

Note that this means that β(Φ) vanishes on φ−1(B). By Proposition 1.5, it

suffices to show that β(Φ) = 0.
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Fix γ0 ∈ E′ such that φ(γ0) is an accumulation point of B. We claim that

there exist a sequence of complex lines Lk, k ∈ N, through γ0 such that φ is

not constant on each Lk and
⋃

k Lk is dense in E′. Indeed, let {Uk}k∈N, be

open sets that form a basis of the topology of E′. Since φ is not constant,

there exists, for each k, a complex line Lk through γ0 that meets Uk and on

which φ is not constant.

Now let k ∈ N. Since φ is not constant on Lk, φ|Lk
is an open mapping,

and hence γ0 is an accumulation point of φ−1(B) ∩ Lk. But, β(Φ) vanishes

on φ−1(B). Thus, β(Φ) also vanishes on Lk. Since
⋃

k Lk is dense in E′,

β(Φ) = 0. �

We are now able to prove that convolution operators on HbA(E) are

strongly mixing in the gaussian sense.

Theorem 2.5. Let A = {Ak}k be a holomorphy type and E a Banach space

with separable dual such that the finite type polynomials are dense in Ak(E)

for every k. If T : HbA(E) → HbA(E) is a non-trivial convolution operator,

then T is strongly mixing in the gaussian sense.

Proof. Let ϕ ∈ HbA(E)′ be the linear functional defined in the proof of

Proposition 1.7. Since T is not a multiple of the identity it follows that ϕ

is not a multiple of δ0. Also, the fact that ϕ is not a multiple of δ0 implies

that β(ϕ) is not a constant function. Indeed, if β(ϕ) were constant then

λ := ϕ(1) = β(ϕ)(0) = β(ϕ)(γ) = ϕ(eγ) for all γ ∈ E′. But, on the other

hand, λ = λδ0(e
γ) for all γ ∈ E′ and we would have that ϕ = λδ0.

It is rather easy to find eigenvalues and eigenvectors for T . Given γ ∈ E′,

T (eγ) = ϕ ∗ eγ = [x 7→ ϕ(τxe
γ)] = ϕ(eγ)

[

x 7→ eγ(x)
]

= β(ϕ)(γ)eγ .

By Theorem 2.3, it suffices to prove that the set of unimodular eigenvectors

{eγ ∈ HbA(E) : |β(ϕ)(γ)| = 1} is big enough. Let us first prove that it is

not empty. Define

V = {γ ∈ E′ : |β(ϕ)(γ)| < 1} and W = {γ ∈ E′ : |β(ϕ)(γ)| > 1}.

Let us check that V,W ⊂ E′ are non void open sets. Indeed, if V = ∅, or

W = ∅, then 1
β(ϕ) , or β(ϕ), would be a nonconstant bounded entire function.

Since β(ϕ)(E′) is arcwise connected, we can deduce the existence of γ0 ∈ E′

such that |β(ϕ)(γ0)| = 1.

Let D ⊂ T such that T \ D is dense in T. Then, β(ϕ)(γ0) is an accu-

mulation point of T \D and by Lemma 2.4 we get that the linear span of
⋃

λ∈T\D ker(T − λ) is dense in HbA(E). By Theorem 2.3, it follows that T

is strongly mixing in the gaussian sense, as we wanted to prove. �
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3. Exponential growth conditions for frequently hypercyclic

entire functions

In this section we show that for every convolution operator there ex-

ists a frequently hypercyclic entire function satisfying a certain exponential

growth condition. First, we define and study a family of Fréchet subspaces

of HbA(E) consisting of functions of exponential type; and then we show

that every convolution operator on HbA(E) defines a frequently hypercyclic

operator on these spaces.

Definition 3.1. A function f ∈ HbA(E) is said to be of M -exponential type

if there exist some constant C > 0 such that |f(x)| ≤ CeM‖x‖, for all x ∈ E.

We say that f is of exponential type if it is of M -exponential type for some

M > 0.

Now we define the subspaces of HbA(E) consisting of functions of expo-

nential type.

Definition 3.2. For p > 0, let us define the space

Expp
A
(E) =

{

f ∈ HbA(E) : lim sup
k→∞

‖dkf(0)‖
1/k
Ak

≤ p

}

,

endowed with the family of seminorms defined by

qr(f) =

∞∑

k=0

rk‖dkf(0)‖Ak
for 0 < r < 1/p.

Below we collect some basic properties of the spaces Expp
A
(E). Their

proof is standard.

Proposition 3.3. Let p be a positive number and A = {Ak}k a holomorphy

type.

(a) A function f ∈ H(E) belongs to Expp
A
(E) if and only if dkf(0) ∈ Ak

for all k ∈ N and qr(f) < ∞, for all 0 < r < 1/p.

(b) The space (Expp
A
(E), {qr}r<1/p) is a Fréchet space that is continu-

ously and densely embedded in HbA(E).

(c) If E′ is separable and finite type polynomials are dense in Ak(E) for

every k, then Expp
A
(E) is separable.

(d) Every function f ∈ Expp
A
(E) satisfies the following growth condition:

for each ε > 0, there exists Cε > 0 such that

|f(x)| ≤ Cεe
(p+ε)‖x‖, x ∈ E,

that is, f is of exponential type p.
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In order to prove frequent hypercyclicity of convolution operators on

Expp
A
(E), we need to introduce some structure on the sequence of poly-

nomial ideals.

Definition 3.4. Let A = {Ak}k a holomorphy type and let E be a Banach

space. We say that A is weakly differentiable at E if there exist constants

ck,l > 0 such that, for 0 ≤ l ≤ k, P ∈ Ak(E) and ϕ ∈ Ak−l(E)′, the mapping

x 7→ ϕ(Pxl) belongs to Al(E) and
∥
∥
∥x 7→ ϕ

(
Pxl

)
∥
∥
∥
Al(E)

≤ ck,l‖ϕ‖Ak−l(E)′‖P‖Ak(E).

Remark 3.5. In the following, we will assume that

(2) ck,l ≤
(k + l)k+l

(k + l)!

k!

kk
l!

ll
for every k, l.

Stirling’s Formula states that e−1nn+1/2 ≤ en−1n! ≤ nn+1/2 for every n ≥ 1,

so given ε > 0, there exists a positive constant cε, such that

ck,l ≤ e2
( kl

k + l

)1/2
≤ cε(1 + ε)k,

for every 0 ≤ l ≤ k.

Remark 3.6. Weak differentiability is a condition that is stronger than

being a holomorphy type and was defined in [11]. All the spaces of entire

functions appearing in Example 1.4 are constructed with weakly differen-

tiable holomorphy types satisfying (2), see [11, 25]. The concept of weak

differentiability is closely related to that of α-β-γ-holomorphy types in [14]

and that of π1-π2-holomorphy types in [18, 5].

Proposition 3.7. Let p be a positive number, A = {Ak}k a holomorphy

type and let E be a Banach. Suppose that A is weakly differentiable with

constants ck,l satisfying (2). Then every convolution operator on HbA(E),

restricts to a convolution operator on Expp
A
(E).

Proof. Let T : HbA(E) → HbA(E) be a convolution operator and ϕ ∈

HbA(E)′ such that Tf = ϕ ∗ f . Suppose that f =
∑

k∈N0
Pk is in Expp

A
(E).

We need to prove that for r < 1/p

qr(ϕ ∗ f) =
∞∑

l=0

rl‖dl(ϕ ∗ f)(0)‖Al
< ∞.

Note that

ϕ ∗ f(x) = ϕ(τxf) = ϕ

(
∞∑

k=0

k∑

l=0

(
k

l

)

(Pk)xl

)

=
∞∑

l=0

∞∑

k=l

(
k

l

)

ϕ ((Pk)xl) .
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This implies that

dl(ϕ ∗ f)(0)(x) = l!
∞∑

k=l

(
k

l

)

ϕ((Pk)xl).

Since ϕ is a continuous linear functional, there are positive constants c and

M such that ‖ϕ‖A′

k−l
≤ cMk−l. Thus, given ε > 0 such that r(1 + ε) < 1/p,

by the above remark,

qr(ϕ ∗ f) =
∞∑

l=0

rl‖dl(ϕ ∗ f)(0)‖Al
≤

∞∑

l=0

rll!

∞∑

k=l

(
k

l

)

‖x 7→ ϕ((Pk)xl)‖Ak

≤
∞∑

l=0

rll!
∞∑

k=l

(
k

l

)

ck, l‖ϕ‖A′

k−l
‖Pk‖Ak

≤ c

∞∑

k=0

‖dkf(0)‖Ak

k!

k∑

l=0

(
k

l

)

ck, l r
l l!Mk−l

≤ c

∞∑

k=0

‖dkf(0)‖Ak
rkcε(1 + ε)k

k∑

l=0

(
M
r

)k−l

(k − l)!

≤ c cε e
(M/r)

∞∑

k=0

‖dkf(0)‖Ak
(r(1 + ε))k

= c cε e
(M/r) qr(1+ε)(f) < ∞.

�

Remark 3.8. For γ ∈ E′, we have dk(eγ)(0) = γk, and then, since ‖γk‖Ak
=

‖γ‖k,

lim sup
k→∞

‖dkeγ(0)‖
1/k
Ak

= ‖γ‖E′ .

This implies that eγ ∈ Expp
A
(E) if and only if ‖γ‖ ≤ p. Thus, for ϕ ∈

Expp
A
(E)′, we can define the Borel transform β(ϕ)(γ) = ϕ(eγ), for all γ ∈ E′

with ‖γ‖ ≤ p. Moreover, the function β(ϕ) is holomorphic on the set pBE ′ .

The next proposition is the analogue of Proposition 1.5 for the Borel

transform restricted to Expp
A
(E).

Proposition 3.9. Let A = {Ak}k be a holomorphy type and E a Banach

space such that finite type polynomials are dense in Ak(E) for every k. Then

the Borel transform β : Expp
A
(E)′ → H(pBE′) is an injective linear trans-

formation.

Now, we can restate Lemma 2.4, for the space Expp
A
(E). Its proof is

similar.
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Lemma 3.10. Let p be a positive number, let E be a Banach space with sep-

arable dual and let A be a holomorphy type such that finite type polynomials

are dense in Ak(E) for every k. Let φ ∈ H(pBE′) not constant and B ⊂ C.

Suppose that there exist γ0 ∈ pBE′ such that φ(γ0) is an accumulation point

of B. Then span{eγ : ‖γ‖ < p, φ(γ) ∈ B} is dense in Expp
A
(E).

Now we are able to prove that for non-trivial convolution operators on

HbA(E) there exist frequently hypercyclic entire function satisfying certain

exponential growth conditions.

Given a non-trivial convolution operator T defined on HbA(E), let us

define

αT = inf{‖γ‖, γ ∈ E′ such that |T (eγ)(0)| = 1}.

Theorem 3.11. Let A = {Ak}k be a holomorphy type and let E be a Ba-

nach space with separable dual such that finite type polynomials are dense

in Ak(E) for every k. Suppose that A is weakly differentiable with constants

ck,l satisfying (2). Let T : HbA(E) → HbA(E) be a non-trivial convolution

operator. Then, for any ε > 0, T admits a frequent hypercyclic function

f ∈ ExpαT+ε
A

(E).

Proof. Fix γ0 ∈ E′ such that αT ≤ ‖γ0‖ < αT + ε and |T (eγ0)(0)| = 1.

Consider p = αT + ε. It is enough to prove that T is frequently hypercyclic

on Expp
A
(E).

Proposition 3.7 allows us to restrict the operator T to the space Expp
A
(E).

Since eγ is an eigenvector of T with eigenvalue T (eγ)(0), it is enough to show,

by Theorem 2.3, that for every Borel set D ⊂ T, such that T \D is dense in

T, the linear span of {eγ : ‖γ‖ < p, T (eγ)(0) ∈ T \D} is dense in Expp
A
(E).

We see as in Proposition 1.7 that there exists ϕ ∈ Expp
A
(E)′ such that

Tf = ϕ ∗ f for every f ∈ Expp
A
(E). Then β(ϕ) ∈ H(pBE′) is not constant.

Since T \D is dense in T, T (eγ0)(0) = β(ϕ)(γ0) is an accumulation point of

T \D. Thus, an application of Lemma 3.10 proves that the linear span of

{eγ : ‖γ‖ < p, β(ϕ)(γ) ∈ T \D} is dense in Expp
A
(E). �

4. Frequently hypercyclic subspaces and Examples

Finally, we study the existence of frequently hypercyclic subspaces for

a given non-trivial convolution operator, that is, the existence of closed

infinite-dimensional subspaces in which every non-zero vector is frequently

hypercyclic. We prove that there exists a frequently hypercyclic subspace

for each non-trivial convolution operator on HbA(E), if the dimension of E

is bigger than 1.

Lastly, we study exponential growth conditions for special cases of con-

volution operators such as translation and partially differentiation ones.
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4.1. Frequently hypercyclic subspaces. Given a frequently hypercyclic

operator T on a Fréchet space X with frequently hypercyclic vector x ∈ X,

we can consider the linear subspace K[T ]x, whose elements are the eval-

uations at x of every polynomial on T . It turns out that K[T ]x \ {0} is

contained on FHC(T ), the set of all frequently hypercyclic vectors of T ,

but in general K[T ]x is not closed in X. Then, it is natural to ask if there

exists a closed subspace M ⊂ X such that M \{0} ⊂ FHC(T ). Bonilla and

Grosse-Erdmann, in [8], gave sufficient conditions for this situation to hold.

First we state the Frequent Hypercyclicity Criterion.

Theorem 4.1 (Frequent Hypercyclicity Criterion). Let T be an operator

on a separable F-space X. Suppose that there exists a dense subset X0 of X

and a map S : X0 → X0 such that, for all x ∈ X0,

(1)
∑∞

n=1 T
nx converges unconditionally,

(2)
∑∞

n=1 S
nx converges unconditionally,

(3) TSx = x.

Then T is frequently hypercyclic.

The Bonilla and Grosse-Erdmann theorem for the existence of a frequently

hypercyclic subspace states that if an operator T satisfies the Frequent Hy-

percyclicity Criterion and admits an infinite number of linearly independent

eigenvectors, associated to an eigenvalue of modulus less than one then,

there exists a frequently hypercyclic subspace for T . Since we cannot assure

that non-trivial convolution operators satisfy the Frequent Hypercyclicity

Criterion, Theorem 4.1, we need the following modified version which may

be found in [23, Remark 9.10].

Proposition 4.2. Let T be an operator on a separable F-space X. Suppose

that there exists a dense subset X0 of X and for any x ∈ X0 there is a

sequence (un(x))n≥0 ⊂ X such that,

(1)
∑∞

n=1 T
nx converges unconditionally,

(2)
∑∞

n=1 un(x) converges unconditionally,

(3) T jun(x) = un−j(x), for j ≤ n.

Then T is frequently hypercyclic.

Now, we can state the modified version of the Bonilla and Grosse-Erdmann

theorem which will be used for the proof of Theorem 4.4.

Theorem 4.3. Let X be a separable F-space with a continuous norm and

T an operator on X that satisfies the hypotheses of Proposition 4.2. If

dimKer(T −λ) = ∞ for some scalar λ with |λ| < 1 then T has a frequently

hypercyclic subspace.
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The proof of the previous theorem follows the same lines as the proof of

[8, Theorem 3], but replacing Snyj by un(yj), for each yj ∈ X0, in their key

Lemma 1. Next, we prove the existence of frequent hypercyclic subspaces for

every non-trivial convolution operator, if dim(E) > 1. The corresponding

problem for dim(E) = 1 is open, up to our knowledge.

Theorem 4.4. Let A = {Ak}k be a holomorphy type and E a Banach space

with dim(E) > 1 and separable dual such that the finite type polynomials

are dense in Ak(E) for every k. If T : HbA(E) → HbA(E) is a non-trivial

convolution operator, then T has a frequently hypercyclic subspace.

Proof. Let us see that both hypotheses of Theorem 4.3 are fulfilled by every

non-trivial convolution operator on HbA(E). Recall that if T : HbA(E) →

HbA(E) is a non-trivial convolution operator then β(ϕ)(γ) = T (eγ)(0) is

holomorphic as a function of γ ∈ E′, and that T (eγ) = [T (eγ)(0)]eγ . We

have that {eγ : γ ∈ E′} is a linearly independent set in HbA(E), see [2,

Lemma 2.3]. We will prove that there exists some scalar λ with |λ| < 1 such

that dimKer(T −λ) = ∞. We follow the ideas of the proof of [28, Theorem

5]. If the set of zeros of β(ϕ), denoted by Z(β(ϕ)) = {γ ∈ E′ : β(ϕ)(γ) = 0},

is infinite then we take λ = 0, because Ker(T ) ⊃ {eγ : γ ∈ Z(β(ϕ))}. If

Z(β(ϕ)) is not infinite, then it is empty since dim(E) > 1. Now, fix γ ∈ E′

and consider fγ(w) = β(ϕ)(wγ) for w ∈ C. From the continuity of T and of

δ0, we get that there exist positive constants M and s such that

|fγ(w)| = |T (ewγ)(0)| ≤ Mps(e
wγ) = M

∑

k≥0

sk

k!
‖dk(ewγ)(0)‖Ak

= M
∑

k≥0

sk

k!
‖wγ‖k = Mes‖γ‖|w|.

Thus, fγ : C → C is a holomorphic function of exponential type without

zeros. Then there exist complex constants C(γ) and p(γ) such that fγ(w) =

C(γ)ep(γ)w.

Note that C = C(γ) is independent of γ because

C(γ) = fγ(0) = β(ϕ)(0) = T (1)(0).

We also have that f ′
γ(0) = Cp(γ) = T (γ)(0). Thus we get that p(γ) =

1
CT (γ)(0) is a linear continuous functional. Finally, we get that β(ϕ)(γ) =

Cep(γ) with p ∈ E′′ and C 6= 0. This implies that Z(β(ϕ)− λ) is infinite for

every λ 6= 0, as we wanted to prove.

To prove that T satisfies the hypotheses of Proposition 4.2 we follow the

ideas of the second proof of [7, Theorem 1.3]. Parameterizing the eigenvec-

tors eγ it is possible to construct a family of C2-functions Ck : T → HbA(E)

such that T (Ck(λ)) = λCk(λ) and such that, for every Borel set of full
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Lebesgue measure, B ⊂ T, the linear span of {Ck(λ) : λ ∈ B, k ∈ N} is

dense in HbA(E). For j ∈ Z and k ∈ N set

xk,j =

∫

T

λjCk(λ)dλ,

where the integral is in the sense of Riemann and X0 = span{xk,j; j ∈

Z, k ∈ N}. It follows from the proof of [3, Théorème 2.2.] that X0 is dense

in HbA(E) and that for n ≥ 0, j ∈ Z, k ∈ N we get

T nxk,j =

∫

T

λj+nCk(λ)dλ.

For every y ∈ X0, there exists a linear combination y =
∑my

l=1 alxkl,jl. So,

we define

un(y) =

my∑

l=1

alxkl,jl−n.

Finally, we have that u0(y) = y and that T iun(y) = un−i(y) if i ≤ n, for

every y ∈ X0. Since each Ck is a C2-function, by [23, Lemma 9.23 (b)], we

obtain that the series
∑∞

n=1 T
nxk,j,

∑∞
n=1 un(xk,j) converge unconditionally

for all j ∈ Z, k ∈ N. As we claimed, T satisfies the hypotheses of Proposition

4.2, and so there exists a frequently hypercyclic subspace. �

4.2. Translation Operators. Suppose that τz0 : HbA(E) → HbA(E) is the

translation operator defined by τz0(f)(z) = f(z + z0). Next proposition

is similar to [23, Theorem 9.26], but in this case for translation operators

in HbA(E), which gives sharp exponential growth conditions for frequently

hypercyclic functions.

Proposition 4.5. Let A = {Ak}k be a holomorphy type and let E be a

Banach space with separable dual such that finite type polynomials are dense

in Ak(E) for every k. Suppose that A is weakly differentiable with constants

ck,l satisfying (2). Let τz0 : HbA(E) → HbA(E) be the translation operator

by a non-zero vector z0 ∈ E. Then,

(a) Given ε > 0, then there exists C > 0 and an entire function f ∈

HbA(E) which is frequently hypercyclic for τz0 and satisfies

|f(z)| ≤ Ceε‖z‖.

(b) Let ε : R+ → R+ be a function such that lim inf
r→∞

ε(r) = 0 and C

any positive number. Then there is no frequently hypercyclic entire

function f ∈ HbA(E) for τz0, satisfying

|f(z)| ≤ Ceε(‖z‖)‖z‖, for all z.
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Proof. (a) Note that τz0(e
γ) = eγ(z0)eγ , thus

inf{‖γ‖, γ ∈ E′ such that |τz0(e
γ)(0)| = 1} = 0.

It follows from Theorem 3.11 that for any ε > 0, there exist a frequently

hypercyclic function f ∈ HbA(E) such that

|f(z)| ≤ Ceε‖z‖,

for some positive constant C.

(b) Suppose that there exist a frequently hypercyclic function f for τz0
such that |f(z)| ≤ Ceε(‖z‖)‖z‖. Consider the complex line L = {λz0, λ ∈ C}

and the restriction map given by

HbA(E) −→ H(C)

g 7→ g|L(λ) = g(λz0).

Consider the following diagram

HbA(E)
τz0

//

��

HbA(E)

��

H(C)
τ1

// H(C)

Note that is a commutative diagram, for g ∈ HbA(E)

(τz0g)|L(λ) = τz0g(λz0) = g((λ + 1)z0) = (g|L)(λ+ 1) = τ1(g|L)(λ).

Also the restriction map has dense range: take γ ∈ E′ such that γ(z0) = 1,

then γk|L(λ) = γk(λz0) = λk. Thus, all polynomials belong to the range of

the restriction map.

Applying the hypercyclic comparison principle we get that τ1 is frequent

hypercyclic and that f |L ∈ H(C) is a frequently hypercyclic function that

satisfies

|f |L(z)| = |f(λz0)| ≤ Ceε(‖λz0‖)‖λz0‖.

But this bound contradicts [23, Theorem 9.26], which states that there is no

such a function in H(C). �

Remark 4.6. As we mentioned in the proof of the last proposition, in [6, 23]

it is proved that, given ε such that lim inf
λ→∞

ε(|λ|) = 0, there are not frequently

hypercyclic functions for the translation operator in H(C) satisfying that

|f(λ)| ≤ Ceε(|λ|)|λ|. In contrast, there are hypercyclic functions of arbitrary

slow growth (see [16]). The corresponding result in the Banach space setting

has not been studied, up to our knowledge.
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4.3. Differentiation Operators. For the differentiation operator onHbA(E),

Da : HbA(E) → HbA(E), Da(f) = d1f(·)(a), we can estimate the ex-

ponential type for the frequent hypercyclic functions. Since Da(e
γ)(0) =

d1(eγ)(0)(a) = γ(a), we get that

inf{‖γ‖, γ ∈ E′ such that |Da(e
γ)(0)| = 1} = ‖a‖.

Thus given ε > 0 there exist a frequently hypercyclic function f such that

|f(x)| ≤ Ce(‖a‖+ε)‖x‖,

for some C > 0. It is not difficult to see that the best exponential type of a

hypercyclic function for Da is ‖a‖. To prove this fact it suffices to conjugate

Da by the one dimensional differentiation operator (as we did in the proof

of Proposition 4.5) and apply [23, Theorem 4.22] (see also [22] and [29]).
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Appl., 319(2):764–782, 2006.

[29] Stanislav A. Shkarin. On the growth of D-universal functions. Vestnik Moskov. Univ.

Ser. I Mat. Mekh., (6):80–83 (1994), 1993.
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