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a b s t r a c t

A Helly circular-arc model M = (C, A) is a circle C together with a Helly family A of arcs
of C . If no arc is contained in any other, thenM is a proper Helly circular-arcmodel, if every
arc has the same length, then M is a unit Helly circular-arc model, and if there are no two
arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper
Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of
a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we
study these subclasses of Helly circular-arc graphs. We show natural generalizations of
several properties of (proper) interval graphs that hold for some of these Helly circular-
arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc
graphs, including forbidden induced subgraphs characterizations. These characterizations
lead to efficient algorithms for recognizing graphs within these classes. Finally, we show
how these classes of graphs relate with straight and round digraphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A graph is an interval graph if its vertices can be arranged into a one-to-one mapping with a family of intervals of the real
line in such a way that two vertices of the graph are adjacent if and only if their corresponding intervals have nonempty
intersection. The family of intervals is a called an interval model or interval representation of the graph. Similarly, a graph is a
circular-arc graph if its vertices can be arranged into a one-to-onemapping with a family of arcs of some circle in such a way
that two vertices of the graph are adjacent if and only if their corresponding arcs have nonempty intersection. The circle
together with the family of arcs is a called a circular-arc model or circular-arc representation of the graph.

Circular-arc graphs are a natural generalization of interval graphs; the intersection of segments of a line (i.e. intervals) is
replaced with the intersection of segments of a circle (i.e. arcs). Despite the replacement of a line with a circle does not seem
to be a significant modification, circular-arc graphs have a much more complex structure than interval graphs. One of the
main reasons behind this complexity is that the circle introduces new ways for arcs to intersect. In an interval model, each
family I of pairwise intersecting intervals is associatedwith a unique nonempty segment (s, t) of the real line such that (s, t)
is contained in every interval of I, and (s, t) is inclusion-maximal. The situation for circular-arc models is quite different,
since for some families of pairwise intersecting arcs there could be zero or more than one such segments. As a result of this
generality, many properties that hold for interval graphs cannot be naturally generalized to circular-arc graphs. Let C be
the class of circular-arc models such that every family A of pairwise intersecting arcs is associated with a unique nonempty
segment (s, t) of the circle such that (s, t) is contained in every arc of A, and (s, t) is inclusion-maximal. It is not hard to see
that a circular-arc model M belongs to C if and only if M has no two or three arcs that together cover its circle.
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The circular-arc models in C are related with two important subclasses of circular-arc models, namely normal and Helly
circular-arc models. A circular-arc model is normalwhen no two arcs cover the circle, while it isHellywhen the arcs of every
family of pairwise intersecting arcs share a common point of the circle. It is well known that if a circular-arc model is not
Helly, then it contains two or three arcs that together cover the circle. Furthermore, if a normal circular-arc model has three
arcs that cover the circle, then the model is not Helly. Consequently, C is precisely the class of circular-arc models that are
simultaneously normal and Helly. We define the normal Helly circular-arc graphs as those circular-arc graphs that admit a
model in C.

The purpose of this paper is to study the class of normal Helly circular-arc graphs, as well as its subclasses. Section 2
contains the basic definitions used throughout thepaper, aswell as the definitions of themany families of circular-arcmodels
and graphs. Several reasons for studying these subclasses of circular-arc graphs are given in Section 3,wheremanyproperties
that hold for interval and normal Helly circular-arc graphs, but do not hold for the general classes of normal circular-arc and
Helly circular-arc graphs, are compiled. Of course, there is also a completely theoreticalmotivation for studying normal Helly
circular-arc graphs, namely to study all the circular-arc subclasses that are obtained by the intersection of the most well
known subclasses of circular-arc models. The forbidden induced subgraph characterizations of the normal Helly subclasses
are described in Section 4, while the corresponding recognition problems are treated in Section 5. Finally, Section 6 provides
some additional results on normal Helly circular-arc graphs that further relate this class of graphs with the class of interval
graphs, and Section 7 discusses some possibilities for future research.

2. Preliminaries

For a graph G, we use V (G) and E(G) to denote the sets of vertices and edges of G, respectively, while we use n and m
to denote |V (G)| and |E(G)|, respectively. We will write uv to represent the edge of G between the pair of adjacent vertices
u and v. For v ∈ V (G), denote by NG(v) the set of vertices adjacent to v, and NG[v] = NG(v) ∪ {v}. The degree of v is
dG(v) = |NG(v)|, and v is universal if NG[v] = V (G). Two vertices v and w are twins in G if NG[v] = NG[w]. We omit the
subscript from N and d when there is no ambiguity about the referred graph.

The subgraph of G induced by V ⊆ V (G), denoted by G[V ], is the graph that has V as vertex set and two vertices of G[V ]

are adjacent if and only if they are adjacent in G. A complete set is a subset of pairwise adjacent vertices, while a clique is a
maximal complete set. A hole is a chordless cycle with at least four vertices. A bipartite graph is a graph whose vertex set
can be partitioned into two sets of pairwise non-adjacent vertices, where one of the partitions may be empty. A co-bipartite
graph is the complement of a bipartite graph.

Similarly as for graphs, we use V (D) and E(D) to refer to the sets of vertices and edges of a digraph D, respectively, while
we use n and m to denote |V (D)| and |E(D)|, respectively. We write v −→ w to indicate that there is a directed edge from
v to w in D, and v w to indicate that there is no such directed edge. The underlying graph of D is the graph G(D) with
vertex set V (D) such that v and w are adjacent in G if and only if v and w are adjacent in D. When v −→ w, we say that v
is an in-neighbor of w and that w is an out-neighbor of v. The inset of v is the set N−

D (v) of all the in-neighbors of v, and the
outset of v is the set N+

D (v) of all the out-neighbors of v. The closed inset is N−

D [v] = N−

D (v) ∪ {v}, and the closed outset is
N+

D [v] = N+

D (v)∪{v}. The cardinality of N−

D (v), denoted by d−

D (v), is the indegree of v and the cardinality of N+

D (v), denoted
by d+

D (v), is the outdegree of v. As for graphs, we omit the subscripts inN and dwhen there is no ambiguity about the referred
digraph.

The subdigraph of D induced by V ⊆ V (D), denoted by D[V ], is the digraph that has V as vertex set and v −→ w in D[V ]

if and only if v −→ w in D. A digraph D is an oriented graph when either v w or w v, for every v, w ∈ V (D). In
other words, D is an oriented graph if it can be obtained from a graph G by choosing an orientation for each edge vw of G.
In such case, we call D an orientation of G, i.e., D is an orientation of G if D is an oriented graph whose underlying graph is
isomorphic to G.

In this paper we mainly deal with collections that are of a circular (cyclic) nature, such as circles (viewed as a collection
of points), circular orderings, etc. Usually, the objects of a collection are labeled with some kind of index that identifies the
position of the object inside the collection. Unless otherwise stated, we assume that all the operations on these indices are
taken modulo the length of the collection. Furthermore, we may refer to negative indices and to indices greater than the
length of the collection. In these cases, indices should also be understood modulo the length of the collection.

2.1. Circular-arc models

A circular-arc model M is a pair (C(M), A(M)) where C(M) is a circle and A(M) is a finite family of open arcs of C(M).
The arcs in A(M) are said to be arcs of M, and C(M) is said to be the circle of M. Unless explicitly stated, we always choose
the clockwise direction for traversing C(M). For s, t ∈ C(M), write (s, t) tomean the open arc of C(M) defined by traversing
the circle from s to t . Call s, t the extremes of (s, t), while s is the beginning point and t is the ending point of the arc. For each
A ∈ A(M), represent by s(A) the beginning point of A and by t(A) the ending point of A. The extremes of M are those of all
the arcs A ∈ A(M).

Throughout this paper, we assume that no pair of extremes of a circular-arcmodel coincide and that no single arc entirely
covers the circle of the model (see [15]). A segment of M is an arc of C(M) formed by two consecutive extremes of M. Say
that ϵ > 0 is small enough if ϵ < ℓ, where ℓ is the minimum among the lengths of all the segments of M. Duplicating the
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Table 1
Subclasses of circular-arc models. The five columns on the right show the
properties that each class of model satisfies.

Name of the model Acronym I U P H N

Circular-arc CA 0 0 0 0 0
Normal circular-arc NCA 0 0 0 0 1
Helly circular-arc HCA 0 0 0 1 0
Normal Helly circular-arc NHCA 0 0 0 1 1
Proper circular-arc PCA 0 0 1 0 0
Normal proper circular-arc PNCA 0 0 1 0 1
Proper Helly circular-arc PHCA 0 0 1 1 0
Normal proper Helly circular-arc NPHCA 0 0 1 1 1
Unit circular-arc UCA 0 1 1 0 0
Normal unit circular-arc NUCA 0 1 1 0 1
Unit Helly circular-arc UHCA 0 1 1 1 0
Normal unit Helly circular-arc NUHCA 0 1 1 1 1
Interval IG 1 0 0 1 1
Proper interval PIG 1 0 1 1 1
Unit interval UIG 1 1 1 1 1

arc A means inserting the arc (s(A) + ϵ, t(A) + ϵ) into M, for some small enough ϵ. An s-sequence is a maximal sequence
of consecutive beginning points. Similarly, a t-sequence is a maximal sequence of consecutive ending points. In general, an
extreme sequencemeans either an s-sequence or a t-sequence. The complement of A ∈ A(M) is the arc A = (t(A), s(A)), and
the complement of M is the circular-arc model M = (C(M), {A | A ∈ A(M)}).

There are five elementary classes of circular-arc models that are of special interest [35]. Let M be a circular-arc model. If
the arcs of every family of pairwise intersecting arcs share a common point, then M is a Helly circular-arc (HCA) model. If
M has no pair of arcs that together cover the circle, then M is a normal circular-arc (NCA) model. When no arc is contained
in any other arc, we say that M is a proper circular-arc (PCA) model. If, in addition, all the arcs have the same length, then
M is a unit circular-arc (UCA) model. Finally, M is an interval circular-arc (ICA) model when some point of C(M) is covered
by no arcs.

An intervalmodel is a finite familyI of open intervals on the real line. It is easy to see that every interval circular-arcmodel
M is in a one-to-one correspondence with an interval model I. For this reason we will use interval models in replacement
of ICA models, and every definition on circular-arc models is translated to interval models with such correspondence.

The five elementary classes of circular-arc models can be combined so as to generate a total of 32 classes of circular-arc
models, as follows. Let X ⊆ {N, P, U, H, I}. Say that M is an X CA model if M is an xCA model, for every x ∈ X . For instance,
M is an {N,H}CAmodel if M is both an NCA and an HCAmodel. Clearly, if M is an XCAmodel, then M is also a YCA for every
Y ⊆ X . Not all the 32 classes of circular-arc models are different, because some of the properties are implied by others. For
example, every UCA model is proper, thus every UCA model is a {U, P}CA model as well. Similarly, every interval model is
Helly and normal. This leaves us with 15 different classes of circular-arc models that are listed in Table 1. To avoid the set
notation to name a class of circular-arc models, we choose a better acronym for each class of circular-arc models.

2.2. Circular-arc graphs

A graph G is a circular-arc graph if there is a one-to-one correspondence between the vertices of G and a family A of
arcs of a circle C such that two vertices are adjacent if and only if their corresponding arcs have nonempty intersection. The
circular-arc model (C, A) is called a model or representation of G, and G is said to admit the model (C, A). In other words,
G is a circular-arc graph if it is isomorphic to the intersection graph of A. Say that two circular-arc models are equivalent
when their intersection graphs are isomorphic.

By restricting the attention to a subclass of circular-arc models, we obtain a special class of circular-arc graphs, formed
by those graphs that admit a model of the subclass. For X ⊆ {N, P, U, H, I}, say that G is an X CA graph when G admits an
XCAmodel. As before, these 32 classes of circular-arc graphs are not all different. Not even the fifteen classes defined by the
special models in Table 1 are all different, because graphs may admit many circular-arc models.

Theorem 1 ([44], See Theorem 8). Every PIG model is equivalent to a UIG model.

Theorem 2 ([48], See Theorem 4). Every PCA model is equivalent to an NPCA model.

In total, ten different subclasses of circular-arc graphs are obtained by combining the normal, proper, unit, Helly, and
interval properties of a circular-arc model. These classes are enumerated in Table 2. As before, we avoid the set notation by
defining appropriate acronyms for each subclass. For historic reasons, proper interval graphs are also called unit interval
graphs and the acronym UIG is also used for PIG graphs.

In this paper wewill show characterizations, bymeans of forbidden induced subgraphs, for the three subclasses of NHCA
graphs. For PHCA and UHCA graphs we are able to describe the family of forbidden induced subgraphs, while for NHCA
graphs we only show those circular-arc graphs that are not NHCA. The characterizations for the three NHCA subclasses yield
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Table 2
Subclasses of circular-arc graphs, according to the class of models that
they admit.

Name of the class Acronyms Admitted models

Circular-arc CA CA
Normal circular-arc NCA NCA
Helly circular-arc HCA HCA
Normal Helly circular-arc NHCA NHCA
Proper circular-arc PCA PCA and NPCA
Proper Helly circular-arc PHCA PHCA and NPHCA
Unit circular-arc UCA UCA and NUCA
Unit Helly circular-arc UHCA UHCA and NUHCA
Interval IG Interval
Proper interval (unit interval) PIG (UIG) UIG and PIG

Fig. 1. The circular-arc model CI(3, 1) and its intersection graph.

O(n+m) time algorithms for the related recognition problems. Such characterizations and algorithms are known for almost
all the classes of circular-arc graphs listed in Table 2. For the classes of interval, PIG, UCA, and PCA graphs the families of
forbidden induced subgraphs are known (see [29] for interval graphs, [44] for PIG graphs, and [48] for UCA and PCA graphs),
while, for HCA graphs, only the list of forbidden circular-arc graphs is known [24]. With respect to the recognition problem,
there are O(n + m) time recognition algorithms for the classes of CA, PCA, UCA, HCA, interval, and PIG graphs (see, e.g.,
[25,39] for CA, [7,26] for PCA, [26,36] for UCA, [24] for HCA, [3] for interval graphs, and [4,7] for PIG), but there is no known
polynomial time recognition algorithm for NCA graphs. There is, however, an O(n5m6 logm) time algorithm to recognize
co-bipartite NCA graphs [42,18].

Let ϵ be a small enough value for a circular-arc model M. If we replace an arc A ∈ A(M)with the arc (s(A)+ ϵ, t(A)+ ϵ),
we obtain a model M′ equivalent to M. This implies that any circular-arc graph admits an infinite number of equivalent
models. However, M and M′ are essentially the same model, since all we are interested is in how the arcs of M intersect.
Say that two circular-arc modelsM andM′ have equal extremes, or simply thatM andM′ are equal, if their extremes appear
in the same order. With this definition, every circular-arc graph admits a finite number of non-equal models. When we
informally say that a graph G admits k models, we mean that G admits k non-equal models.

We will use the same terminology employed for graphs and vertices when talking about circular-arc models and arcs.
For example, we say that an arc is universal to mean that its corresponding vertex is universal in the intersection graph.
Similarly, we call a model connected when its intersection graph is connected. For k ∈ N0, define Uk(M) to be the model
obtained from M by removing all but k of its universal arcs, if they exist. Clearly, M = Uk(M) if and only if M has at most k
universal arcs.

In a circular-arc model, all the arcs that cover some point p of the circle form a complete set. If this complete set is also
a clique Q, then we call p a clique point and we say that Q is represented by p. Recall that, by definition, a circular-arc model
is Helly precisely when the arcs of every family of pairwise intersecting arcs share a common point. In other words, an HCA
model is a circular-arc model in which every clique is represented by a clique point.

Tucker [48] defined the class of CI(n, k) graphs so as to characterize those PCA graphs that are not UCA. For relative prime
values n and k such that n > 2k, define CI(n, k) as the circular-arc model that is built as follows (see also Fig. 1). Let C be
a circle of length 4n. Draw n arcs A0, . . . , An−1 of length 4k + 1 such that each Ai begins at 4ki and ends at 4k(i + 1) + 1.
Afterwards, draw n arcs B0, . . . , Bn−1 of length 4k − 1 such that each Bi begins at 4ki + 2k + 1 and ends at 4k(i + 1) + 2k.
The intersection graph of the model CI(n, k) is called the CI(n, k) graph. Note that every CI(n, k) model is an NPCAmodel by
definition.

Theorem 3 ([48]). Let G be a PCA graph. Then G is a UCA graph if and only if it contains no CI(n, k) as an induced subgraph, with
n and k relative primes and n > 2k.

As we alreadymentioned, Tucker [48] proved that every PCA graph admits an NPCAmodel (see also [15]). A simple proof
was recently obtained by Kaplan and Nussbaum [26] using the following lemma.

Lemma 1 ([26]). Let M be a PCA model of a graph G. If A1, A2 are two arcs of M that together cover the circle, then both A1 and
A2 are universal.
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(a) 3-sun. (b) Umbrella. (c) Wheels. (d) Rising suns.

Fig. 2. HCA graphs that are not NHCA. Wheels have at least 5 vertices and rising suns have at least 7 vertices.

Tucker’s theorem is obtained as a corollary.

Theorem 4 ([26,48]). Every PCA model M is equivalent to an NPCA model. Furthermore, if M has k universal arcs, then an NPCA
model equivalent to M can be obtained by duplicating k − 1 times the universal arc of U1(M), if it exists.

The furthermore part of Theorem 4 yields an O(n) time algorithm for transforming a PCA model M of a graph G into
an NPCA model of G, in O(n) time. First compute U1(M) and then duplicate the universal arc k − 1 times. To remove the
universal arcs of M so as to obtain U1(M), the following corollary of Lemma 1 is used.

Lemma 2 ([26]). An arc A of a PCA model M is universal if and only if A contains at least n − 1 extremes of M.

3. Why study subclasses of NHCA graphs?

One of the most important algorithmic properties about interval models is that the arcs of every family of pairwise
intersecting intervals share a common point. The first linear-time recognition algorithm for interval graphs is based on
this fact [3], as are as well some of the newer recognition algorithms (e.g. [16]). When interval models are generalized to
circular-arc models, the Helly property is lost. The class of Helly circular-arc graphs lies between the CA and IG classes and,
for this reason, HCA graphs preservemany nice properties of interval graphs that are lost even for UCA graphs. Usually, these
properties involve the cliques of the graphs. Just to give one of the many examples, consider the two theorems below.

Theorem 5 ([14,11]). Let G be a graph. Then G is an interval graph if and only if there is an ordering of the cliques of G such that,
for every vertex v, the cliques containing v form a linear range of the ordering.

Theorem 6 ([13]). Let G be a graph. Then G is an HCA graph if and only if there is an ordering of the cliques of G such that, for
every vertex v, the cliques containing v form a range of the ordering.

It is not hard to find a counterexample to Theorem 6 when HCA graphs are replaced by circular-arc graphs. Of course,
there are also some properties that hold for interval graphs but do not hold for HCA graphs, because in an HCA model there
could be two arcs covering the circle. In a similar way, we can expect the gap from UIG graphs to UCA graphs to be as big as
the gap from interval graphs to circular-arc graphs, as well as that from UIG graphs to PCA graphs.

In this section we motivate the study of the NHCA subclasses by showing some of the properties that are lost because
of these gaps. That is, we show several properties that hold in the NHCA subclasses and are not easy to extend to the more
general classes of circular-arc graphs. These properties are generalizations or slight modifications of properties that hold for
the interval graph subclasses, in the same sense as Theorems 5 and 6.

The first property that we describe is what we call the ‘‘local interval’’ property. Clearly, in an interval model I, the
submodel of I induced by the closed neighborhood of an interval I is an interval model, for every I ∈ I. This property is
not true for general HCA models and for general NCA models. Even more, there are some graphs, such as the 4-wheel (see
Fig. 2), for which no circular-arc model satisfies the local interval property. On the other hand, if we restrict our attention
to an NHCA model M, we can see that the submodel of M induced by the closed neighborhood of an arc A is an interval
model, for every A ∈ A(M). Hence, NHCAmodels will retain many properties of interval models that deal with the interval
nature of the neighborhood of an arc. The local interval property of NHCA models follows from Theorem 7 below which is
observed by McKee in [40]. For the sake of simplicity, we take Theorem 7 as an alternative definition of NHCA, PHCA, and
UHCA graphs. Hence, sometimes we omit the reference to this theorem.

Theorem 7 ([40]). An x CA model is x HCA if and only if no two or three arcs cover its circle, for x ∈ {N, P,U}.

Corollary 1 (Local Interval Property for Models). A circular-arc model M is an NHCA model if and only if, for every A ∈ A(M),
the submodel of M induced by N[A] is an interval model.

The local interval property of NHCA graphs implies that many simple algorithms that work for interval graphs also work
for NHCA graphs. Consider, for example, the problem of finding every clique of an interval graph. A clique segment in an
interval model M is a segment (s, t) where s is a beginning point and t is an ending point. In M, every clique point belongs
to a clique segment, and all the points in a clique segment are clique points. Thus, the set of intervals that contain a given
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clique segment induce a clique and each clique is represented by exactly one clique segment. It is trivial to find every clique
of an interval graph by computing the clique segments in one of its interval models. For HCA graphs the situation is quite
different. First, not every segment of the form (s, t) is formed by clique points (with s and t being two consecutive beginning
and ending points, respectively). Second, not every clique of the model is represented by exactly one clique segment, i.e.,
there are several clique segments whose containing arcs induce the same clique. Thus, the O(n) time algorithm to find every
clique point is not so trivial (see [30,47]). However, NHCA graphs share the same property as interval graphs: every segment
(s, t) represents a clique, and every clique is represented by exactly one of such clique segments. Thus, the samealgorithm for
interval graphs works as well for NHCA graphs. Another example in where the local interval property has some advantages
is in the dynamic recognition problem. It is somewhat easy to insert a new edge in O(1) time into a PHCA graph, but it is not
so easy for PCA graphs (see [47]). Section 6.3 further develops these interval concepts for NHCA and PHCA graphs.

Another similarity between interval and NHCA graphs has to do with the forbidden induced subgraph structure. For
proper interval graphs the structure is described by the following theorem by Roberts. Here K1,3 is the graph with four
vertices, where one of these vertices is universal and the other three vertices are pairwise non-adjacent.

Theorem 8 ([44]). Let G be an interval graph. Then the following are equivalent:

(i) G does not contain K1,3 as an induced subgraph.
(ii) G is a proper interval graph.
(iii) G is a unit interval graph.

For NHCA graphs we obtain a similar result.

Theorem 9. Let G be an NHCA graph. Then G is a PHCA graph if and only if G contains no K1,3 as an induced subgraph.

Proof. Clearly, the K1,3 graph is not PCA, so it is not PHCA. For the converse, suppose that G is an NHCA graph with an NHCA
modelM. Sort every extreme sequence ofM in such away that no arcwith an extreme in the sequence is properly contained
in another arc with an extreme in the sequence (such sorting is always possible, see e.g. [43] or Algorithm 4). This sorting
does not change the intersections between the arcs of M, thus the sorted model M′ is also an NHCA model of G. Now, if
some arc A1 ∈ A(M′) is contained in some other arc A2 ∈ A(M′), it is because there is some ending point between s(A1)
and s(A2), and there is some beginning point between t(A2) and t(A1). In other words, there are two arcs L and R of M′ such
that s(A1), t(L), s(A2), t(A2), s(R) and t(A1) appear in this order in M′. Since M′ is NHCA then L ≠ R and L ∩ R = ∅, i.e., the
intersection graph of A1, L, A2, R is isomorphic to K1,3. �

Implication (ii) H⇒ (iii) of Theorem 8 is lost, because the graph CI(n, k) is PHCA but not UHCA for every n > 3k. Indeed,
by definition, every CI(n, k) graph admits a PCA model in which no family with at most ⌈n/k⌉ > 3 arcs cover the circle. To
retain the ‘‘proper=unit’’ property with a similar definition as the one in Theorem 7, we should ask that no set of arcs cover
the circle. This is because the unit length property of UIG graphs is global, and it does not depend only on the neighborhood
of each vertex.

Next, we consider clique graphs of HCA graphs and NHCA graphs. The clique graph K(G) of a graph G is the intersection
graph of the cliques of G, and for a class C of graphs we denote K(C) = {K(G) | G ∈ C}. Clique graphs of interval graphs
were studied by Hedman [17], who proved that the PIG and K (IG) classes are equal. On the other hand, clique graphs of HCA
graphs were first studied by Durán and Lin [9], who proved that clique graphs of HCA graphs are both PCA and HCA. The
question that motivated us to study PHCA graphs first, and NHCA graphs later, was whether or not the class of PHCA graphs
is equal to the K (HCA) class. The answer is no, but almost, as it is shown in the next theorem.

Theorem 10 ([31]). Let H be a graph and U the set of universal vertices of H. Then H is the clique graph of some HCA graph G if
and only if:

(i) H is a PHCA graph or
(ii) H \ U is a co-bipartite PHCA graph and |U| ≥ 2.

However, the analog of Hedman’s result can be obtained for NHCA graphs [31]. That is, the K (NHCA) and the PHCA classes
of graphs are equal. Hedman [17] proved also that for every PIG graph G there is a PIG graph H such that K(H) is isomorphic
to G. That is, the PIG and the K (PIG) classes are also equal. The same result holds for PHCA graphs, i.e., for every PHCA graph
G there is a PHCA graph H such that K(H) and G are isomorphic [31].

McKee [40] found many other similarities between the K (NHCA) and K (IG) classes that cannot be easily generalized to
K (HCA). A clique path of a graph G is a spanning path P of K(G) such that, for every v ∈ V (G), the cliques containing v are
consecutive in P . Similarly, a clique cycle of G is a spanning cycle C of K(G) such that, for v ∈ V (G), the cliques containing
v are consecutive in C . A vertex is simplicial when it belongs to a unique clique. By Theorem 5, every connected interval
graph admits a clique path, while by Theorem 6 every non-interval HCA graph admits a clique cycle. A major difference
between interval graphs and HCA graphs is that the former admit a unique clique path when at most two simplicial vertices
are allowed, while the latter may admit many clique cycles even when they have no simplicial vertices. Part of the reason
why HCA graphs with no simplicial vertices admit many clique cycles is due to the fact that some cliques can be represented
by many clique segments. This is not the case with NHCA graphs (cf. above) and, moreover, non-interval NHCA graphs with
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no simplicial vertices admit a unique clique cycle as proved by McKee [40]. Clique paths have other properties that can be
generalized to clique trees but that do not generalize well to clique cycles; McKee shows that some of these properties are
satisfied by clique cycles of non-interval NHCA graphs.

Now we consider a property of PIG graphs that can be preserved by restricting the attention to PHCA graphs. A classic
characterization of interval graphs is that interval graphs are those graphs whose clique matrix has the consecutive-ones
property for columns [14]. Similarly, a graph is HCA if and only if its clique matrix has the circular-ones property for
columns [13]. The definitions of cliquematrix, consecutive and circular-ones properties are given in Section 6. We can think
that the consecutive and circular-ones properties for columns are due to the Helly property of the interval and HCA graphs,
respectively. On the other hand, it is well known that a graph is a proper interval graph if and only if its cliquematrix has the
consecutive-ones property for both its rows and its columns (see e.g. [8,10,12]). The analogous theorem for the circular-ones
property can be proved for PHCA graphs (see Section 6). That is, the cliquematrix of a graph has the circular-ones properties
for both rows and columns if and only if the graph is a PHCA graph.

Finally, the boxicity of NHCA graphs was studied by Bhowmick and Chandran [2]. Given two graphs G1 and G2 with the
same vertex set V , define the intersection of G1 and G2 as the graph G1 ∩ G2 with vertex set V such that vw is an edge of
G1 ∩ G2 if and only if vw is an edge of both G1 and G2. The boxicity of a graph G is the minimum number of interval graphs
whose intersection is isomorphic to G. Clearly, interval graphs are precisely the graphs with boxicity 1. On the other hand,
the boxicity of a general circular-arc graph can be as large as n/2 [45]. Bhowmick and Chandran proved that NHCA graphs
have boxicity at most 3. If, furthermore, no four arcs of a circular-arc model cover the circle, then the boxicity is at most 2.

4. The structure of the NHCA subclasses

In this section we present characterizations by forbidden induced subgraphs for the classes of NHCA, PHCA, and UHCA
graphs. These characterizations follow the same spirit as Theorem 9, in the sense that they show when a graph of some
of these classes belongs to a subclass of it. The characterizations shown in this section immediately yield O(n + m) time
recognition algorithms for all the classes. In the next section we further discuss the algorithmic implications of these
characterizations.

The following proposition is used several times throughout this section.

Proposition 1. Let M be a circular-arc model and B1, . . . , Bk be a hole in M. If A ∈ A(M) is an arc which is not contained in
any other arc, then either:

(i) A and Bi cover the circle for some 1 ≤ i ≤ k,
(ii) A, Bi, and Bi+1 cover the circle for some 1 ≤ i ≤ k,
(iii) A ⊂ (Bi ∪ Bi+1) \ (Bi+2 ∪ · · · ∪ Bi−1) for some 1 ≤ i ≤ k, or
(iv) A, Bi, . . . , Bj is an induced hole of M, for some 1 ≤ i, j ≤ k.

Proof. If A = Bi for some 1 ≤ i ≤ n, then (iv) follows. Suppose then that A is not an arc of the hole. Traverse C(M) from
t(A) and let Bi be the arc whose beginning point appears first. If s(Bi) ∈ A then A and Bi−1 must cover the circle. Otherwise,
if t(Bi) ∈ A then A, Bi−1, and Bi cover the circle. Finally, suppose that neither s(Bi) nor t(Bi) are points of A, and let Bj be the
arc whose ending point appears first in a counterclockwise traversal of C(M) from s(A). If i− 1 = j+ 1, then it follows that
A ⊂ Bi−1, which is a contradiction to the fact that A is not properly contained in any other arc. Otherwise, A, Bi−1, . . . , Bj+1
induce a hole whenever i − 1 ≠ j + 2 or A ⊂ (Bi−2 ∪ Bi−1) \ (Bi ∪ · · · ∪ Bi−3) whenever i − 1 = j + 2. �

4.1. Normal Helly circular-arc graphs

We begin with the problem of determining when an HCA graph admits an NHCAmodel. Wheels, 3-suns, rising suns, and
umbrellas are the forbidden subgraphs involved in the characterization. The 3-sun and the umbrella are the graphs depicted
in Fig. 2(a) and (b), respectively. The n-wheel, for n ≥ 4, is the graph obtained by inserting one universal vertex into a hole
of length n (see Fig. 2(c)). Finally, the n-rising sun, for n ≥ 4, is the graph that is obtained from a path v2, . . . , vn−1 by first
adding two universal vertices v1 and vn, and then inserting three vertices w1, wn−1, wn such that wi is adjacent only to vi
and to vi+1, for i ∈ {1, n − 1, n} (see Fig. 2(d)). The 3-sun graph is denoted by S3, the umbrella is denoted by U , the n-wheel
is denoted byWn, and the n-rising sun is denoted by Rn.

Interval graphs were characterized by families of forbidden induced subgraphs by Lekkerkerker and Boland [29]. When
restricted to HCA graphs, the characterization reads as follows.

Theorem 11 ([29]). An HCA graph is an interval graph if and only if it does not contain holes, 3-suns, rising suns, or umbrellas as
induced subgraphs.

McKee [40] provides a characterization of NHCA graphs in terms of its cycles, in which he observes that wheels are not
NHCA graphs. In turns out the characterization by Lekkerkerker and Boland can be generalized to NHCA graphs by replacing
the forbidden holes by wheels. In order to prove the generalization, we analyze first how do HCA models of NHCA graphs
look.
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(a) 3-sun. (b) Umbrella. (c) Wheels. (d) Rising suns.

Fig. 3. HCA models of the graphs in Fig. 2. Points in the circles are used to mark the clique points.

Theorem 12. Let M be an HCA model of a graph G. Then, M is equivalent to an NHCA model if and only if M contains no
wheels, 3-suns, rising suns, or umbrellas as induced submodels.

Proof. Let M′ be any HCA model of a wheelWk, for k ≥ 4. Such a model exists as it is depicted in Fig. 3(c). Model M′ has at
least one clique point for each clique of Wk; the universal arc covers all of these clique points, while each of the other arcs
of the submodel covers exactly two of them. Consequently, there are two arcs covering C(M′), i.e., M′ is not normal. Thus,
whenever M is equivalent to an NHCAmodel, M does not contain an induced submodel ofWk. The proofs for the 3-sun, the
umbrella and the rising suns follow analogously.

For the converse, suppose that M contains none of the forbidden submodels and yet M has two arcs A1 and A2 that cover
the circle which, w.l.o.g., are not contained in other arcs of M. Suppose also, to obtain a contradiction, that M has k arcs
B1, . . . , Bk that induce a hole in that order. If A1 = Bi for some 1 ≤ i ≤ k, then A2 is adjacent to all the arcs of the hole, i.e.,
A2, B1, . . . , Bk induce a wheel. Otherwise, we need to consider four cases by Proposition 1:

1. A1 and Bi cover the circle for some 1 ≤ i ≤ k. In this case, A1 intersects all the arcs of the hole, i.e., A1, B1, . . . , Bk induce
a wheel. Therefore, this case cannot happen.

2. A1, Bi, and Bi+1 cover the circle for some 1 ≤ i ≤ k. Then 1. holds because M is Helly.
3. A1 is contained in Bi ∪ Bi+1 for some 1 ≤ i ≤ k. In this case, A2 intersects all the arcs of B1, . . . , Bk, thus A2, B1, . . . , Bk

induce a wheel. This case is also impossible.
4. A1, Bi, . . . , Bj is a hole of M for some 1 ≤ i, j ≤ k. As in Case 2, A2 intersects all the arcs of this new hole. Thus,

A2, A1, Bi, . . . , Bj induce a wheel, again a contradiction.

Since none of the above cases can occur, it follows that M has no induced holes. Thus, G is hole-free and it contains no
rising suns, 3-suns, or umbrellas, which implies that G is an interval graph by Theorem 11. Consequently, M is equivalent
to some interval model of G. �

The characterization by minimal forbidden induced subgraphs then follows easily.

Corollary 2. An HCA graph is NHCA if and only if it contains no wheels, 3-suns, rising suns, or umbrellas as induced subgraphs.

There is also a strong consequence for circular-arc models that can be used for negative certification and which is also
useful for the characterization of NHCA graphs in terms of NCA graphs.

Corollary 3. Every circular-arc model of a non-interval NHCA graph is NHCA.

Proof. Let M be any circular-arc model of a non-interval NHCA graph G. Since G is NHCA then we can apply the algorithm
in [37] with input M, to obtain an HCA model M′ of G. By definition, M′ is equivalent to some NHCA model, because G is
NHCA. If M′ has two arcs that cover the circle, then we can use the same arguments as in Theorem 12 to prove that G is an
interval graph, a contradiction. Otherwise, M′ is NHCA, i.e., there are not two or three arcs that cover C(M′).

The algorithm in [37] works in such a way that every arc of M is included in some arc of M′. Thus, in M there could not
be two or three arcs covering the circle, i.e., M is NHCA. �

Now we proceed with the characterization of NHCA graphs in terms of NCA graphs. In this case, the forbidden induced
subgraphs are the wheels, the 3-sun, the rising suns, the umbrella, and the tent graph S3 (see Fig. 4). Again, we require the
characterization of interval graphs by Lekkerkerker and Boland which reads as follows when restricted to NCA graphs.

Theorem 13 ([29]). An NCA graph is an interval graph if and only if it does not contain holes, 3-suns, rising suns, umbrellas, or
tents as induced subgraphs.

The partial characterization of NHCA graphs in terms of NCA graphs follows the same scheme as before, first we analyze
the NCA models of NHCA graphs and then the characterization is obtained as a corollary.

Theorem 14. Let M be an NCA model of a graph G. Then, M is equivalent to an NHCA model if and only if M contains no
wheels, 3-suns, rising suns, umbrellas, or tents, as induced submodels.
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Fig. 4. The tent graph and one of its NCA models.

Fig. 5. Claim 2 of Theorem 14, A1, Bi+1, A2, A3, Bi induce a wheel.

Proof. Wheels, 3-suns, rising suns, umbrellas, and tents admit circular-arc models that are not NHCA (see Figs. 3 and 4).
Hence they are not NHCA, by Corollary 3.

The converse is somewhat similar to the converse of Theorem 12, but it needs a few tweaks. Suppose that M contains
none of the forbidden submodels and, yet, M has three arcs A1, A2 and A3 that cover the circle. We may assume that none
of these three arcs is contained in any other arc because M has no two arcs that cover the circle. To obtain a contradiction,
suppose that M has k arcs B1, . . . , Bk that induce a hole H in this order.

Claim 1: Aj, Bi, Bi+1 do not cover the circle, for 1 ≤ i ≤ k and 1 ≤ j ≤ 3. Otherwise, Aj intersects all the arcs of H , i.e.,
H ∪ {Aj} induces a wheel.

Claim 2: There is a hole H ′
⊂ H ∪ {A1, A2} that contains at least one of A1 and A2. Suppose, to obtain a contradiction, that

this is not the case. Then, by Proposition 1 and Claim 1, it follows that A1 ⊂ (Bi ∪ Bi+1) \ (Bi+2, . . . , Bi−1) and that
A2 ⊂ (Bj ∪ Bj+1) \ (Bj+2, . . . , Bj−1), for 1 ≤ i, j ≤ n. By Claim 1, A3 does not cover the circle with Bi and Bi+1, thus
i ≠ j. So, either t(A1) ∈ Bi+1 ∩ A2 and j = i + 1 or t(A2) ∈ Bi ∩ A1 and i = j + 1. Assume the former w.l.o.g., thus
A2 ⊂ (Bi+1 ∪Bi+2)\ (Bi+2, . . . , Bi) (see Fig. 5). Now, consider the position of arc A3. Since A1, A2, A3 cover the circle,
then A3 crosses both t(Bi+2) and s(Bi). By Claim 1, A3 crosses neither s(Bi+1) nor t(Bi+1), thus A1, Bi+1, A2, A3, Bi
induce a wheel where A1 is the universal arc.

By Claim 2, there is a hole H ′
⊂ H ∪ {A1, A2} that contains at least one of A1, A2, say A1. If we exchange H with H ′ and

A1 with A3 in Claim 2, we obtain that there is a hole H ′′
⊂ H ′

∪ {A2, A3} that, w.l.o.g., contains A2 as well. If A1 is not an arc
of H ′′, it is because A1 is covered by two arcs of the hole, one of which is A2. In this case, call B to the arc of H ′′ that together
with A2 covers A1. Otherwise, call B = A1. Summing up, H ′′

= B, A2, Bi, . . . , Bj, for some pair 1 ≤ i, j ≤ k. Since A1, A2, A3
cover the circle, then B, A2, A3 cover the circle, thus A3 must intersect all the arcs of H ′′, a contradiction. This contradiction
appears because we assume that there is a hole in M. Therefore, G contains no holes, 3-suns, umbrellas, rising suns, or tents
as induced subgraphs. This implies that G admits an interval model equivalent to M by Theorem 13. �

Corollary 4. An NCA graph is NHCA if and only if it contains no wheels, 3-suns, rising suns, umbrellas, or tents as induced
subgraphs.

The proofs of Theorems 12 and 14 can be combined so as to obtain a characterization of when a circular-arc graph admits
an NHCA model. We are not going to prove the theorem to avoid repetitions, instead we just give a sketch of the proof.

Theorem 15. A circular-arc graph is NHCA if and only if it contains no wheels, 3-suns, rising suns, umbrellas, or tents as induced
subgraphs.

Proof. Wheels, 3-suns, rising suns, umbrellas and tents are not NHCA by Theorem 14.
For the converse, suppose that there are two arcs A1, A2 that cover a circular-arc model M, and that M has an induced

hole B1, . . . , Bk. Then, by Proposition 1, we can either find a wheel in M as in Theorem 12 or A1, Bi, Bi+1 cover the circle for
some 1 ≤ i ≤ k. In this last case, A1 is universal to all the arcs of the hole which also implies that M contains an induced
wheel. Then, as before, M is NCA and the result follows from Theorem 14. �
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a b c

Fig. 6. Proof of Theorem 16. If A1 is completely covered, then G is not a PHCA graph.

4.2. Proper Helly circular-arc graphs

Up to this point we have characterized which circular-arc (resp. HCA, NCA) graphs admit an NHCA model and which
NHCA graphs admit a PHCA model. In this section we characterize which PCA graphs are also PHCA. For the proof we may
use the same arguments of Theorem 12 to show that every PCAmodel of a non-interval PHCA graph is in fact a PHCAmodel.
This would yield an elegant short proof. But instead, we prefer to do a constructive proof that shows how a PCAmodel of an
interval graph can be transformed into a proper interval model. As we will see in Section 5.2, this proof yields an O(n) time
algorithm to transform a PCA model into a PHCA model. We remark that this proof is the same that appeared in [32], with
some minor corrections.

Theorem 16. Let M be a PCA model of a graph G. Then the following are equivalent:

(i) M is equivalent to a PHCA model.
(ii) M contains no induced submodel of W4 or S3.
(iii) U1(M) is HCA or U0(M) is a PIG model.

Proof. (i) H⇒ (ii): neitherW4 nor S3 are NHCA graphs by Theorem 12, thus M cannot have induced submodels of them.
(ii) H⇒ (iii): let M be a PCA model, containing no induced submodels of W4 and S3. By Lemma 1, M1 = U1(M) is an

NPCAmodel. IfM1 is not an HCAmodel, thenM1 contains three arcs A1, A2, A3 covering C(M1) (see [24]). No two arcs cover
C(M1), thus we may assume that s(A1), t(A3), s(A2), t(A1), s(A3), t(A2) appear in this order in a traversal of C(M1). First,
we prove that one of the above three arcs must be universal. Suppose the contrary. Then, there exist arcs B1, B2 and B3 such
that Bi does not intersect Ai, for i ∈ {1, 2, 3}. However, since M1 is a proper model, it follows that Bi intersects Aj, Ak for
{j, k} = {1, 2, 3} \ {i}. The latter leads to a contradiction because the intersection graph of {Ai, Bi}i∈{1,2,3} is isomorphic to
S3, when B1, B2, B3 are pairwise disjoint, or it contains an induced W4. Consequently, one of A1, A2, A3, say A1, is the unique
universal arc of M1.

Next, we examine the arc A1 in M1. We will prove that there is no pair of arcs L, R such that t(L) ∈ A1, s(R) ∈ A1, and s(R)
precedes t(L) in a traversal of C(M) from s(A1). To obtain a contradiction for this fact, assume the contrary and discuss the
following alternatives.

1. L = A3. In this situation, R, A2, A3 are three arcs covering C . Because A1 is the unique universal arc of M1, we know that
R, A2, A3 are not universal. Consequently, as above, M1 contains a submodel ofW4 or S3, a contradiction (Fig. 6(a)).

2. R = A2. Similar to alternative 1.
3. L ≠ A3 and R ≠ A2. By Cases 1 and 2, above, it suffices to examine the situationwhere s(R), t(L) ∈ (t(A3), s(A2)). Suppose

L ∩ A2 = R ∩ A3 = ∅. In this case, the arcs A1, A2, A3, L, R form a forbidden W4, impossible (Fig. 6(b)). Alternatively, let
L ∩ A2 ≠ ∅. Then the arcs A2, L, R cover the circle and none of them is the universal arc A1, an impossibility (Fig. 6(c)).
The situation R ∩ A3 ≠ ∅ is similar.

By the above cases, we conclude that all the ending points must precede the beginning points in (s(A1), t(A1)). Let t and
s be the last ending point and the first beginning point inside (s(A1), t(A1)), respectively. Taking into account that A1 is the
only universal arc, we conclude that no point of the segment (t, s) ⊂ A1 of C(M) can be contained in any arc of M except
A1. Hence M0 = M1 \ {A1} is a PIG model.

(iii) H⇒ (i): suppose first that M1 = U1(M) is an HCA model. Duplicating the universal arc as many times as required,
we can include in the model all the universal arcs that have been possibly removed from it, obtaining a model equivalent to
M. Clearly, the obtained model is both PCA and HCA.

Next, suppose that M0 = U0(M) is a PIG model and M1 is not an HCAmodel, thus M0 ≠ M1. Since M0 ≠ M1, it follows
that M1 has some universal arc A. We prove that M′

:= M0 ∪ {A} is a PIG model equivalent to M1. By Lemma 1, M1 is an
NPCA model, thus there is exactly one extreme of each non-universal arc inside A. Hence, A contains exactly one extreme
of each non-universal arc. This means that A is a universal arc of M′, and that M′ is an NPCA model equivalent to M1. On
the other hand, since M0 is an interval model, it follows that there is some point p ∈ A which is crossed only by A in M1.
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Therefore, p is not crossed by any arc of M′, which implies that M′ is an interval model as well. Summing up, M′ is a PIG
model equivalent to M1. Duplicating the universal arc of M′ we can include all the universal arcs that were removed from
M1, to obtain a PIG model of G. �

The characterization in terms of the forbidden subgraphs is depicted in the corollary below.

Corollary 5. A PCA graph is PHCA if and only if it contains no induced W4 and no induced S3.

In implication (ii) H⇒ (iii), the non-Helly PCA model M1 = U1(M) has a universal arc A whose removal yields the
interval model U0(M). This arc A can be replaced by A, and then all the arcs of M \ M1 can be inserted once again into M0

by duplicating A as in (iii) H⇒ (i). The model so obtained is a PIG model equivalent to M. Thus, if some PHCA graph admits
a non-Helly PCA model, then the graph is in fact a PIG graph. The following corollary, which is the analog of Corollary 3,
reflects this fact.

Corollary 6. Every PCA model of a non-interval PHCA graph is PHCA.

Proof. By Corollary 3, every PCAmodel of a non-interval PHCA graph is also NHCA. Thus, themodel is both PCA andHCA. �

4.3. Unit Helly circular-arc graphs

Theorem 16 describes when a PCA model can be transformed into an equivalent PHCA model. An almost verbatim
copy of its proof can be used to characterize those UCA models which are equivalent to some UHCA model. However, this
characterization can be done easily once Corollary 6 is known.

Theorem 17. A graph is UHCA if and only if it is PHCA and UCA. Moreover, every UCA model of a non-interval UHCA graph is
UHCA.

Proof. Clearly, every UHCAmodel is both PHCA and UCA. For the converse, let G be a PHCA and UCA graph and observe that
G contains no induced K1,3. If G is also an interval graph, then it is a UIG graph by Theorem 8. If G is not an interval graph
then, by Corollary 6, every UCA model of G is also HCA. �

The partial forbidden induced subgraph characterizations of UHCA graphs are shown below.

Corollary 7. A UCA graph is UHCA if and only if it contains no induced W4.

Proof. It follows from Theorems 17 and 3, Corollary 5, and the fact that S3 = CI(3, 1). �

Corollary 8. A PHCA graph is UHCA if and only if it contains no induced CI(n, k) graph with n > 3k.

Proof. By Theorem 3, UHCA graphs contain no induced CI(n, k) for n > 3k. For the converse, let G be a PHCA graph having
no induced CI(n, k) with n > 3k. By definition, every CI(n, k) model with 2 < n < 3k has three arcs that together cover
the circle. Then, since CI(n, k) graphs are not interval graphs, it follows by Corollary 6 that CI(n, k) graphs with 2 < n < 3k
are not PHCA. So, in G there is no induced CI(n, k) for n > 2k. Thus, Theorem 3 and Corollary 7 imply that G is a UHCA
graph. �

The whole picture of the CA class hierarchy is depicted in Fig. 7. Each box of the picture represents a subclass of circular-
arc graphs. An upright edge from the box corresponding to the class C1 to the box corresponding to the class C2 means that
C1 is properly contained inC2. Graphs that belong toC2 but not toC1 appear beside the edge corresponding to the inclusion
of C1 in C2, except for the edge between the CA and the NCA classes since this family is unknown. Finally, the label O beside
the edge between the CA and HCA classes represents the family of obstacles that were defined in [37].

5. The algorithms

The characterizations described in the last section lead directly to O(n + m) time algorithms for recognizing graphs in
each of the NHCA subclasses. This complexity is linear when the input is the graph represented by the adjacency lists. So,
the recognition problem for NHCA, PHCA, and UHCA graphs is well solved. As for the model construction, first we refer to
the more general class of circular-arc graphs. Considering that the corresponding models of this class can be represented
just by O(n) elements, there is a motivation for trying to find O(n) time algorithms that solve the recognition and model
construction problems for each of the subclasses. In this case, the input is a general circular-arc model of a graph G and the
question is deciding whether G belongs to a restricted class of circular-arc graphs and, whenever affirmative, constructing
the corresponding restricted circular-arc model. For example, given an arbitrary circular-arc model of a graph G, algorithms
running in O(n) time have been recently described to construct, whenever possible, a proper circular-arc model of G [43], a
unit circular-arc model of G [36], or a Helly circular-arc model of G [24].

In the present section we consider the representation problems for the classes of NHCA, PHCA, and UHCA graphs. We
propose new algorithms along the above lines and we discuss the related certification and authentication problems.
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Fig. 7. The class hierarchy of circular-arc graphs.

5.1. Recognition of NHCA graphs

In this section we develop an algorithm to test whether a circular-arc graph is NHCA, when the input is a circular-arc
model. The algorithm follows directly from Corollary 3 and its time complexity is O(n + m), improving over the previous
O(nm) time algorithm by McKee [40].

Let M be a circular-arc model of a graph G. If there are no two or three arcs covering C(M), then G is an NHCA graph and
M is an NHCA model of G, so there is nothing to be done for this case. Otherwise, it is enough to check if M is equivalent
to an interval model since, by Corollary 3, those NHCA graphs that admit a non-NHCA model are interval graphs. If M is
equivalent to an interval model, then G is an NHCA graph and any interval model of G is an NHCA model of G.

We use Algorithm 1 to test whether there are two or three arcs covering the circle. There, NEXT (A) represents the arc
crossing t(A) whose ending point reaches farthest, whereas NEXT 2(A) represents NEXT (NEXT (A)). In the second traversal
of the first loop, N is the arc reaching farthest among those crossing e, when e is reached. Thus, NEXT is correctly computed
in the first loop. Now, observe that if A1 and A2 cover C(M), then A1 and NEXT (A1) also cover C(M). Similarly, if A1, A2, A3
cover C(M), then A1,NEXT (A1) and NEXT 2(A1) also cover C(M). Thus, M is an NHCA model if and only if neither NEXT (A)
nor NEXT 2(A) crosses s(A), for every A ∈ M. Therefore, Algorithm 1 is correct.

With respect to the time complexity, all the operations of both loops take O(1) time, thus the total time complexity of
Algorithm 1 is O(n).

To test if M is equivalent to an interval model when M is not NHCA, we compute the intersection graph G of M and we
invoke the O(n+m) time certified algorithm in [28]. Unfortunately, wewere unable to find an O(n) time algorithm to obtain
an interval model from M.
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Algorithm 1 Authentication of an NHCA model.
Input: A circular-arc model M.
Output: If M is not NHCA, then two or three arcs that cover M. Otherwise, there is no output.

1. Let A1 be any arc of M and set N := A1.
2. Traverse C(M) twice from s(A1) and apply the following operation when an extreme e of an arc A is reached.
3. If e = s(A) and t(A) reaches farther than t(N), then set N := A.
4. If e = t(A), then set NEXT (A) := N .
5. Traverse C(M) once again from s(A1) and apply the following evaluation when s(A) is reached.
6. If NEXT (A) crosses s(A), then output A,NEXT (A).
7. If NEXT 2(A) crosses s(A), then output A,NEXT (A) and NEXT 2(A).

We now discuss the certification and the authentication procedures. When M is an NHCA model, the positive certificate
is just M. If M is not an NHCA model, but it is equivalent to an interval model, the certificate is provided by the certified
interval graph recognition algorithm in O(n + m) time [28]. If M is neither NHCA nor equivalent to an interval model, then
the negative certificate is obtained by combining the certificate of the interval graph recognition algorithm with the two or
three arcs that cover the circle. This certificate is enough by Corollary 3. The negative certificate can be authenticated inO(n)
time as in [28]. To authenticate the positive certificates it is enough to test that the outputmodelM′ is NHCA and equivalent
to M. For the NHCA authentication use Algorithm 1, and for the isomorphism authentication use the O(n) time algorithm
of [6]. The complete certified procedure is summarized in Algorithm 2.

Algorithm 2 Recognition of NHCA graphs.
Input: A circular-arc model M.
Output: Either an NHCA model equivalent to M or a subset of arcs whose intersection graph is not NHCA.

1. Execute Algorithm 1 to authenticate if M is an NHCA model. If so, output M.
2. Otherwise, execute the algorithm in [28] to the intersection graph G of M. If G is an interval graph, then output the

interval model obtained by the algorithm. Otherwise, output the two or three arcs covering C(M) together with the
negative certificate obtained by the interval graph recognition algorithm.

5.2. Recognition of PHCA graphs

In this section we show two algorithms that can be used to recognize PHCA graphs. The first one transforms an NHCA
model into a PHCA model in O(n) time, if possible. The second one transforms a PCA model into a PHCA model in O(n)
time, if possible. The algorithm to transform a PCA model into a PHCA model that we present is based on the work by the
authors [32], while the algorithm for transforming an NHCAmodel into a PHCAmodel uses some interesting arc operations.
We observe that these algorithms have been superseded by the algorithm of Nussbaum [43] that transforms a CA model
into an equivalent PCAmodel. Such an algorithm outputs a PIGmodel whenever possible. Thus, by Theorem 19, it is enough
to check that the output PCA model is NHCA with Algorithm 2. Nevertheless, given the restricted nature of their input, the
algorithms described in this section use simpler techniques for some of the tasks in [43] which are worth describing.

To transform an NHCA model into a PHCA model we need only to sort the extreme sequences as in Theorem 9. If the
model so obtained is not PHCA, then we can search for an induced K1,3. We begin by describing how to sort all the extreme
sequences in O(n) time.

Let M be an NHCA model. For arcs Ai, Aj ∈ A(M) with nonempty intersection, say that s(Ai) appears before s(Aj) if s(Ai)
appears before s(Aj) in a traversal of C(M) from some point p ∈ C(M)\ (Ai ∪Aj). Observe that the point pmust always exist
because Ai and Aj do not cover C(M). Similarly, say that t(Ai) appears before t(Aj) if t(Ai) appears before t(Aj) in a traversal
of C(M) from the same point p. The sorting of the extremes sequences in Theorem 9 can be rephrased as follows. First, sort
each t-sequence T so that, for t(Ai), t(Aj) ∈ T , if s(Ai) appears before s(Aj), then t(Ai) appears before t(Aj). Next, sort each
s-sequence S so that, for s(Ai), s(Aj) ∈ S, if t(Ai) appears before t(Aj), then s(Ai) appears before s(Aj). The algorithms to sort
the t-sequences and s-sequences are symmetric, so we only describe how to sort the t-sequences.

Let T1, . . . , Tk be the t-sequences of M and T be the set of all the ending points corresponding to arcs that cross some
fixed beginning point s. Consider the t-sequence T ′

i that results from sorting the t-sequence Ti, for some 1 ≤ i ≤ k. In T ′

i ,
all the ending points of Ti ∩ T appear before all the ending points of Ti \ T . Thus, we can sort all the t-sequences with four
traversals of C(M) as in Algorithm 3. In the first traversal of C(M), Algorithm 3 marks all those arcs that cross the fixed
beginning point s(A1). Thus, the ending points of T are precisely those ending points corresponding to the marked arcs. The
second traversal is used to find all the t-sequences T1, . . . , Tk of M. The third traversal computes and sorts the sequences
Ti,1 = Ti ∩ T and Ti,2 = Ti \ T , for every 1 ≤ i ≤ k. Note that, in Step 9, t(A) is stored at the end of either Ti,1 or Ti,2, and
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all the ending points corresponding to arcs whose beginning point appears before s(A) were already stored. Finally, the last
traversal of C(M) replaces each t-sequence with the sorted t-sequence. Thus, the algorithm is correct.

Algorithm 3 Sorting of the t-sequences of an NHCA model.
Input: An NHCA model M.
Output: An NHCA model M′ equivalent to M in which every t-sequence is sorted. That is, if t(Ai), t(Aj) are extremes of the
t-sequence T of M′ and s(Ai) appears before s(Aj) then t(Ai) appears before t(Aj).

1. Let A1 be any arc of M.
//Find the arcs that cross s(A1).

2. Traverse M from s(A1) and apply the following operation when an extreme e of an arc A is reached:
3. If e = s(A), then mark A.
4. If e = t(A), then clear the mark of A.

//Sort the extremes
5. Traverse M to compute the family T1, . . . , Tk of t-sequences of M.
6. For each i := 1, . . . , k, define Ti,1 and Ti,2 as empty sequences.
7. Traverse M from s(A1) and apply the following operations each time a beginning point s(A) is reached:
8. Find the t-sequence Ti that contains t(A).
9. If A is marked, insert t(A) at the end of Ti,1; otherwise, insert t(A) at the end of Ti,2.

10. Replace Ti by Ti,1, Ti,2 in M for every 1 ≤ i ≤ k.
11. Output M.

With respect to the time complexity, all the operations of both loops take O(1) time, while the computation of the
t-sequences can be easily done in O(n) time. Therefore, the total time complexity of the sorting algorithm is O(n).

After sorting the extremes, wemust check whether its output model M′ is PHCA or not. Algorithm 3 does not modify the
elements that compose each t-sequence, thus M′ is NHCA. So, it is enough to check whether M′ is PCA. That is, we ought
to check if the beginning points of the arcs appear in the same order as the ending points. If affirmative, then M′ is a PHCA
model equivalent to the input model M. Otherwise, there are two arcs Ai and Aj such that s(Ai), s(Aj), t(Aj) and t(Ai) appear
in this order in a traversal C(M′). Let L be the arc whose ending point appears immediately after s(Ai) and R be the arc
whose beginning point appears immediately before t(Ai). Arcs Ai, Aj, L, and R are taken as the negative certificate since, as
in the proof of Theorem 9, they induce a circular-arc model of K1,3. As for the authentication, the negative certificate can be
tested to be an induced submodel of K1,3 in M in O(1) time, if it is implemented as a set of four pointers. To authenticate
the positive certificate we need to verify that the output model M′ is normal, proper, Helly and equivalent to M. The NHCA
properties can be checked with Algorithm 1, while the test of whether M′ is PCA or not is done as in the PHCA recognition
algorithm (Steps 3–5 of Algorithm 4). Finally, if M′ is PCA, then the equivalence of M and M′ can be tested by running the
PCA isomorphism algorithm of [33]. Algorithm 4 summarizes the complete procedure.

Algorithm 4 Recognition of PHCA graphs from NHCA models.
Input: An NHCA model M.
Output: Either a PHCA model equivalent to M or an induced submodel of K1,3.

1. Apply Algorithm 3 to sort the t-sequences, and the symmetric algorithm to sort the s-sequences.
2. Let A1 := (s1, t1) be any arc of M.
3. For i := 1, . . . , n do:
4. Find the arc Ai+1 = (si+1, ti+1) whose beginning point is the first after si.
5. If Ai ⊃ Ai+1, then output Ai, Ai+1, the arc whose ending point appears first from si, and the arc whose beginning

point appears first from ti in a counterclockwise traversal of C(M).
6. Output M.

We now proceed to describe the algorithm that transforms a PCA model M into a PHCA model M′, when possible. The
algorithm is a direct consequence of Theorem 16. That is, it verifies if either U1(M) is an HCA model or U0(M) is an interval
model. If affirmative, then M is equivalent to a PHCA model, and one such PHCA model can be obtained as in Theorem 16.
Otherwise, the algorithm finds an induced submodel ofW4 or S3.

The PHCA recognition algorithm is obtained by gluing together several parts of the algorithms developed so far. The first
step is to compute U1(M) using Lemma 2 as in [26]. The second step is to verify whether U1(M) is HCA. For this, it is enough
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to invoke Algorithm 1 so as to verify if U1(M) is NHCA, because U1(M) is NCA by Lemma 1. However, we can simplify
the computation of NEXT so that it takes only one traversal of C(M). Let t(A1), . . . , t(Ak) be a t-sequence of M. Since M
is PCA, then NEXT (Ai) is the arc of M whose beginning point is closest to t(Ai) in the counterclockwise direction. Hence
NEXT (Ai) = NEXT (A1), for every 1 ≤ i ≤ k. Therefore, with only one traversal we can find NEXT (A) for every A ∈ A(M).
The last step is to test whether U0(M) is a PIG model or not, whenever U1(M) has a universal arc A. Instead of doing this,
we can check that no beginning point appears before an ending point inside A, as it is done in Theorem 16. All these steps
can be implemented so as to run in O(n) time with techniques similar to those discussed so far.

The algorithm described above can be modified so as to produce certificates in O(n) time. When U1(M) is a PHCAmodel,
we can obtain a PHCAmodel equivalent toM by duplicating the universal so as to insert the arcs thatwere possibly removed
by Lemma 2. To obtain the positive certificate when U0(M) is a PIGmodel, we refer to the proof of Theorem 16, in particular,
the implication (iii) H⇒ (i). In this situation, U1(M) contains a universal arc A. To obtain the required model, we include in
M0 the arcA, and thenwe can include the possible remaining universal arcs as before. The authentication of these certificates
can be done in O(n) time, as discussed for Algorithm 4.

The algorithm fails to transform the input PCA model into a PHCA model when U1(M) is not HCA and U0(M) is not PIG.
According to Theorem 16, an induced submodel of M whose intersection graph is either isomorphic to W4 or to S3 can be
obtained as follows. Let A1, A2, and A3 be the three arcs that together cover the circle of U1(M). If none of these arcs is
universal, then, as in Theorem 16, we know that there are three arcs B1, B2, B3, such that Bi intersects Aj and not Ai, for all
1 ≤ i, j ≤ 3, i ≠ j. In this case, the arcs A1, A2, A3, B1, B2, and B3 either induce a model of S3 or contain a model of W4. On
the other hand, if one among A1, A2, A3, say A1, is a universal arc then there are arcs L, R, such that s(R) precedes t(L) in A1.
In this situation, a negative certificate can be obtained as above by replacing A1 with either R or L when R = A2 or L = A3.
Finally, when R ≠ A2 and L ≠ A3, the arcs A1, A2, A3, L and R induce the model of a forbidden W4. The authentication takes
O(1) time if the forbidden submodel is stored as a set of five or six pointers to the corresponding arcs of the model. We
summarize the above discussion in Algorithm 5.

Algorithm 5 Recognition of PHCA graphs from PCA models.
Input: A PCA model M.
Output: Either a PHCA model equivalent to M or an induced submodel ofW4 or S3.

1. Compute U1(M) as in Lemma 2.
2. Execute Algorithm 1 (simplified for PCA graphs), to verify whether U1(M) contains three arcs that cover the circle. If

not, output the model obtained by duplicating the universal arc of U1(M) so as to include the arcs removed in Step 1.
3. Let A1, A2 and A3 be the three arcs of U1(M) that were obtained in the previous step.
4. If A1, A2 and A3 are not universal, then:
5. Let Bi be the arc whose beginning point is the first from t(Ai), for i ∈ {1, 2, 3}.
6. If B1, B2 and B3 are pairwise disjoint, then output {Ai, Bi}1≤i≤3; otherwise, output A1, A2, A3 and two intersecting

arcs of B1, B2 and B3.
7. Sort A1, A2 and A3 so that A1 is the universal arc and s(A2) ∈ A1.
8. TraverseM from s(A1) to t(A1) to find if there are two arcs L and R such that s(R) appears before t(L). If L and R are found

then:
9. If R = A2, then set A1 := R and goto Step 5. If L = A3, then set A1 := L and goto Step 5. Output A1, A2, A3, L and R.

10. Let M′
:= (M \ {A1}) ∪ {A1}.

11. Duplicate A1 in M′ as many times as arcs were removed in Step 1, and return the model so obtained.

5.3. Recognition of UHCA graphs

In this section we briefly discuss how to transform either a UCA or a PHCA model M into a UHCA model, when possible.
We begin with the case in which M is PHCA. In this case, apply the algorithm in [36] to transform M into a UCA model M′,
if possible. Since this algorithm preserves the order of the extremes of M then M′ is both UCA and PHCA, i.e., M′ is UHCA.
This algorithm takes O(n) time and the model M′ so generated can be authenticated to be UCA in O(n) time. If M is not
equivalent to a UHCA model, then apply the algorithm in [26] to generate a negative certificate in O(n) time. This negative
certificate can also be authenticated in O(n) time.

Finally, consider the case in which M is a UCA model. If M has two arcs that cover the circle, then the intersection graph
of M is a complete graph and an equivalent UIG model is easily obtained in O(n) time. Suppose, then, that M is an NCA
model, and consider the model U1(M). If U1(M) is HCA then it is also UHCA and a UHCA model equivalent to M can be
easily obtained in O(n) time by duplicating the universal arc of U1(M), if it exists. If U1(M) is not HCA but U0(M) is an
interval model then a PIG model equivalent to M can be obtained by applying Algorithm 5. A UIG model equivalent to M
can be constructed in O(n) time as in [4,34,41]. In the last case, if U1(M) is not an HCA model and U0(M) is not an interval
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Table 3
Time complexities of the transformation algorithms. All algorithms proposed
in this section are certified.

From To Time complexity References

CA NCA open
co-bipartite CA NCA O(n5m6 logm) [42,18]
CA HCA O(n) [24]
CA PCA O(n) [43]
PCA UCA O(n) [36]
CA (HCA, NCA) NHCA O(n + m) [28] and Section 5.1
NHCA PHCA O(n) [43] and Section 5.2
PCA PHCA O(n) [32,43] and Section 5.2
UCA UHCA O(n) Sections 5.2 and 5.3
PHCA UHCA O(n) [36] and Section 5.2
NHCA IG O(n)a Theorem 7
PHCA PIG O(n)a Theorem 7
IG PIG O(n) [38] (also Algorithm 3)
PIG UIG O(n) [4,34,41]
a The transformation phase is trivial because any NHCA model of an interval

graph is an interval model by Theorem 7. However, it takes O(n) time to
authenticate that the input model has some point not contained in any arc.

model then, by Theorem 16, M is not equivalent to a UHCA model and a negative certificate is obtained as in Algorithm 5.
All the certificate authentications take O(n) time as before.

5.4. Summary of the transformation algorithms

In Table 3 we summarize the complexities of the transformation algorithms between models for circular-arc subclasses.
The main open problems are how to transform a circular-arc model into an NCA model in polynomial time, and how
to transform a circular-arc model into an NHCA model in O(n) time. We recall that this last problem can be reduced to
transforming an HCA model into an interval model in O(n) time.

6. Some additional properties of the NHCA subclasses

In this section we prove some properties about the NHCA subclasses that might be useful from an algorithmic point of
view. Some of these were presented in Section 3 as natural generalizations of properties about interval graphs.

6.1. Counting NPHCA models of PHCA graphs

The first problem is to count howmany NPHCAmodels a PHCA graph admits. This question of howmany representations
of a graph there are has been solved for both PIG graphs and co-connected PCA graphs; Roberts [44] proved that the PIG
model of a connected PIG graph is unique up to full reversal, while Huang [22] proved that the PCA model of a connected
and co-connected PCA graph is unique up to full reversal.

Theorem 18 ([44]). Every connected PIG graph admits at most two PIG models, one the reverse of the other.

Theorem 19 ([22]). Every connected PCA graph whose complement is either connected or non-bipartite admits at most two PCA
models, one the reverse of the other.

Besides the theoretical interest behind these questions, it turns out that the uniqueness of PIG models is strongly used
to solve the recognition problem. In fact, PIG graphs can be recognized in O(1) time per edge insertion due to this property
(see [7,20]). Because of the strong relationship between PIG and PHCA graphs, it should come at no surprise that there is a
unique NPHCAmodel of every PHCA graph, up to full reversal. Even more, this property can be exploited so as to generalize
the PIG recognition algorithms to the PHCA case, with not as much effort as for PCA graphs (see [47]).

Theorem 20. Every connected PHCA graph admits at most two NPHCA models, one the reverse of the other.

Proof. If G is connected or non-bipartite then the result follows from Theorem 19. Then, it is enough to deal with the case
in which G has k > 1 components H1, . . . ,Hk, all of which are bipartite. We denote by Hi the subgraph of G induced by the
vertices of Hi, for 1 ≤ i ≤ k, and we assume |Hi| ≥ |Hj| for every 1 ≤ i < j ≤ k. Analyze the following two cases:

Case 1: |H2| > 1. In this case, H has a hole formed by two non-adjacent vertices of H1 and two non-adjacent vertices of
H2. Hence, since G isW4-free by Corollary 5, it follows that k = 2. Similarly, if H1 contains an induced path of four
vertices v1, v2, v3, v4 then v1, v2, v3 togetherwith a pair of non-adjacent vertices ofH2 induce aW4 inG, which also
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Fig. 8. From left to right, the clique matrices of K1,3 , W4 ,W5 , and S3 are shown.

contradicts Corollary 5. Then, sinceH1 is bipartite andH1 contains no paths of four vertices, it follows thatH1 is the
co-bipartite graph formed by two disjoint cliques. A similar analysis holds for H2. Consequently, G is isomorphic
to a graph that can be obtained from C4 by inserting twin vertices in an iterative manner. It is not hard to see that
G admits a unique PCA model that is obtained from the unique PCA model of C4 by duplicating arcs.

Case 2: |H2| = 1. In this case G contains no hole, or otherwise the hole and the vertex of H2 would induce a wheel. Let M
be an NPHCAmodel of G. Since G contains no hole, it follows that some point of C(M) is not covered by the arcs of
M. In other words, every NPHCA model of G is a PIG model. Hence, by Theorem 18, G admits two NPHCA models,
one the reverse of the other. �

6.2. Circular-ones properties of the clique matrix

For the second part of this section, we study the relationship between PHCA graphs and the circular-ones properties
of the clique matrix. A (0, 1)-matrix M has the consecutive-ones property for rows if its columns can be ordered so that, in
every row, the ones are consecutive. MatrixM has the circular-ones property for rows if the columns can be ordered so that, in
every row, either the zeros or the ones are consecutive. The consecutive and circular-ones properties for columns are defined
analogously. That is,M has the consecutive-ones property for columns ifMT has the consecutive-ones property for rows, while
M has the circular-ones property for columns if MT has the circular-ones property for rows. Here MT is the transpose matrix
ofM .

Let C1, . . . , Ck be the cliques of a graph G and v1, . . . , vn be its vertices. The clique-vertex incidence matrix of G, or simply
the clique matrix of G, is the (0, 1)-matrix Q (G) of order k × nwhere Q (G)i,j = 1 if and only if vertex vj belongs to clique Ci,
for every 1 ≤ i ≤ k, 1 ≤ j ≤ n.

Wementioned in Section 3 that Q (G) has the consecutive-ones (resp. circular-ones) property for columns if and only if G
is an interval graph (resp. HCA graph). The stronger condition of Q (G) having also the consecutive-ones property for rows is
equivalent to the condition of G being a proper interval graph. We prove the analogous result for the circular-ones property,
i.e., Q (G) has the circular-ones property for both rows and columns if and only if G is a PHCA graph.

Theorem 21. A graph G is a PHCA graph if and only if Q (G) has the circular-ones property for both rows and columns.

Proof. Let M be a PHCAmodel of G and let A1, . . . , An be the arcs of M in order of appearance of its beginning points. Since
M is HCA, it follows that each clique is represented by some clique point. Let p1, . . . , pk be the clique points in circular
order. Define Q as the (0, 1)-matrix of order k×nwhere Qi,j = 1 if Aj crosses pi, and 0 otherwise. By definition, Q is a clique
matrix of G. Since we used the same construction as in [13], it follows that Q has the circular-ones property for columns.
We now show that Q has also the circular-ones property for rows. Let r be some row of Q and represent by ri the i-th
column of r . Suppose that the ones in r are not all consecutive. Then, there exist a, b, c such that ra = rc = 1, rb = 0 and
1 ≤ a < b < c ≤ n. In other words, the clique point pi is crossed by Aa and Ac , but not by Ab. Since s(Aa), s(Ab), s(Ac) appear
in this order inM andM is proper, then s(Aa), pi, t(Ac), s(Ab), t(Ab) appear in this order inM. Evenmore, sinceM is proper,
it follows that Ad crosses pi for every d such that 1 ≤ d ≤ a or c ≤ d ≤ n. Thus, every zero in r is consecutive, and so Q has
the circular-ones property for rows.

For the converse, we show that if G is not a PHCA graph, then Q (G) does not have the circular-ones property for either
the rows or the columns. If G is not an HCA graph, then Q (G) does not have the circular-ones property for columns [13].
Suppose then that G is HCA and it is not PHCA. Then, by Corollary 2 and Theorem 9, G contains a K1,3, a W4, a W5, or an S3
as an induced subgraph. Clique matrices for these graphs are depicted in Fig. 8. By inspection, none of these matrices has
the circular-ones property for rows. Thus, as Q (G) contains at least one (permutation) of these matrices as a submatrix, it
follows that Q (G) does not have the circular-ones property for rows. �

6.3. The local interval property for graphs

Recall that, by the local interval property, M is an NHCA model if and only if N[A] is an interval model, for every arc
A ∈ A(M). As a consequence, we obtain that if G is an NHCA graph, then N[v] is an interval graph for every v ∈ V (G). The
converse does not hold; the umbrella is not an NHCA graph, but the closed neighborhood of each of its vertices is an interval
graph. Nevertheless, it is possible to give a necessary and sufficient condition that reflects the fact that NHCA graphs are
local interval, independent of how their models look like. This local interval property about graphs is based on straight and
round oriented graphs. Unlike the previous properties described in this paper, these characterizations can be generalized to
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Fig. 9. An interval graph and one of its corresponding out-straight orientations. The ordering v1, . . . , v6 is an out-straight enumeration of the orientation.

a b c

Fig. 10. Examples of round oriented graphs. An out-round orientation of the 4-wheel graph is depicted in (a). Fig. (b) shows an orientation of a non-interval
graph together with a locally out-straight enumeration φ = v1, . . . , v7 . The scope of v6 in φ appears at (c).

NCA and PCA graphs and, for this reason, they fill a gap by showing exactly what is lost in the jump from interval graph to
NCA graphs and from PIG graphs to PCA graphs (Bang-Jensen and Gutin [1] present many classes of graphs defined as those
graphs that can be oriented with some particularity). We begin by introducing some useful notation and terminology.

For an ordering X = x1, . . . , xn, we say that xi is to the left of xj and xj is to the right of xi, for every 1 ≤ i < j ≤ n.
The elements x1 and xn are respectively called the leftmost and rightmost of X . For xi, xj ∈ X , the circular range Cir [xi, xj] is
defined as the ordering xi, xi+1, . . . , xj where, as usual, all the operations are takenmodulo n. Similarly, the range Cir [xi, xj)
is obtained by removing the rightmost element from Cir [xi, xj], the range Cir (xi, xj] is obtained by removing the leftmost
element from Cir [xi, xj], and Cir (xi, xj) is obtained by removing both the leftmost and rightmost elements from Cir [xi, xj].
For 1 ≤ i ≤ j ≤ n, define the linear range Lin [xi, xj] as [xi, xj], while for i > j define Lin [xi, xj] as the empty ordering. The
linear ranges Lin [xi, xj), Lin (xi, xj] and Lin (xi, xj) are defined analogously.

An oriented graph D is out-straight if there is an ordering v1, . . . , vn of V (D) such that, for every vertex vi, N+
[vi] =

Lin [vi, vi+r ], where r = d+(vi). The ordering v1, . . . , vn is referred to as an out-straight enumeration of D. It is not hard to
see that a graph G is an interval graph if and only if it admits an out-straight orientation D. Indeed, {(si, ti) | vi ∈ V (G)} is an
interval model of a graph G such that s1 < · · · < sn if and only if v1, . . . , vn is an out-straight enumeration of the digraph
with vertex set {v1, . . . , vn} and edge set {vi −→ vj | i < j and ti > sj}. In Fig. 9, an interval graph, together with one of its
out-straight orientations, is depicted.

Themost commonway to generalize the definition of out-straight enumerations is to exchange the linear range Lin [•, •]

with a circular rangeCir [•, •]. That is, an oriented graphD is out-round if there is an ordering v1, . . . , vn ofV (D) such that, for
every vertex vi,N+

[vi] = Cir [vi, vi+r ], where r = d+(vi). The ordering v1, . . . , vn is referred to as an out-round enumeration
of D. Fig. 10 shows three examples of out-round oriented graphs.

Although out-round oriented graphs are a natural generalization of out-straight oriented graphs, there is a key property
about the scopes (cf. below) of the vertices that is completely lost. Let φ = v1, . . . , vn be an ordering of V (D) for an oriented
graph D. For vi ∈ V (D), define the leftmost neighbor of vi in φ as the vertex vl ∈ N−

[v] that appears last when traversing
φ from vi in reverse order. Similarly, define the rightmost neighbor of vi in φ as the vertex vr ∈ N+

[v] that appears last
when traversing φ from vi in forward order. The scope of vi in φ is the range Cir [vl, vr ] where vl and vr are the leftmost and
rightmost neighbors of vi in φ (see Fig. 10(c)). The scope of vi can be thought as the unique range S = Cir [vl, vr ] such that
N[vi] ⊆ S, vl ∈ N−

[vi] and vr ∈ N+
[vi] (the inconvenience is that such a range S is not well defined when vi ∉ Cir [vl, vr ]).

It is easy to see that if φ = v1, . . . , vn is an out-straight enumeration of an oriented graph D, then the scope S of the
vertex vi is an out-straight enumeration of D[S], for every vi ∈ V (D). This property does not hold for out-round oriented
graphs. The oriented 4-wheel graph D in Fig. 10(a) is out-round, but the scope S of its universal vertex contains an induced
hole and, therefore, D[S] is not out-straight. We define the locally out-straight oriented graphs specifically to restore this
property back. That is, an oriented graph D is locally out-straight if there is an out-round enumeration φ = v1, . . . , vn of
D such that S is an out-straight enumeration of D[S], for every vi ∈ V (D) with scope S in φ. As before, the enumeration φ
is referred to as a locally out-straight enumeration of D. The graph depicted in Fig. 10(b) is locally out-straight and it is not
out-straight.

The next two theorems relate the out-round and the locally out-straight oriented graphs with the NCA and NHCA graphs,
respectively.

Theorem 22. A graph is an NCA graph if and only if it admits an out-round orientation.
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a b c

Fig. 11. The n-rising sun graph and the orientations corresponding to ρ and γ .

Proof. Let M be an NCA model of a graph G with arcs A1, . . . , An, where s(A1), . . . , s(An) appear in this order in a traversal
of C(M). For 1 ≤ i ≤ n, call vi to the vertex of G that corresponds to Ai. Define D as the digraph with vertex set V (G),
where vi −→ vj if and only if Ai crosses s(Aj), for every 1 ≤ i, j ≤ n. We claim that D is an out-round orientation of G with
φ = v1, . . . , vn as an out-round enumeration. Fix i and j such that 1 ≤ i, j ≤ n. First, notice that s(Ai) ∈ Aj only if s(Aj) ∉ Ai
because M is NCA. Thus, vi −→ vj if and only if vi is adjacent to vj and vj vi, i.e., D is an orientation of G. Second, if
vi −→ vj then, since s(Aj) ∈ Ai, it follows that vi −→ vk for every vk ∈ Cir (vi, vj]. Hence N+

[vi] = Cir [vi, vi+r ], where
r = d+(vi), implying that φ is an out-round enumeration of D.

For the converse, let φ = v1, . . . , vn be an out-round enumeration of some orientationD of G. Pick n points s(1), . . . , s(n)
of a circle C in such a way that s(1), . . . , s(n) appear in this order in a traversal of C . For each vertex vi ∈ V (D), define Ai as
the arc of C whose beginning point is s(i) and whose ending point lies in (s(i + ri), s(i + ri + 1)), where ri = d+(vi). We
claim that M = (C, {Ai}1≤i≤n) is an NCA model of G. Fix i and j such that 1 ≤ i, j ≤ n. By definition, vi −→ vj if and only if
i < j ≤ i + ri, thus Ai crosses s(j) = s(Aj) if and only if vi −→ vj, i.e., M is a circular-arc model of G. On the other hand, if
vi −→ vj, then vj vi, hence if Ai crosses s(Aj), then Aj does not cross s(Ai). That is, M is an NCA model of G. �

Theorem 23. A graph is an NHCA graph if and only if it admits a locally out-straight orientation.

Proof. LetM be anNHCAmodel of a graphGwith arcsA1, . . . , An, where s(A1), . . . , s(An) appear in this order in a traversal of
C(M). Define the set {vi}1≤i≤n, the orientation D of G, and the out-round enumeration φ of D as in the proof of Theorem 22.
We claim that D is actually a locally out-straight orientation of G with φ as a locally out-straight enumeration. Fix i such
that 1 ≤ i ≤ n, and take a small enough ϵ. Let Al be the arc crossing si + ϵ whose beginning point is farthest from si
in a counterclockwise traversal of C(M). Similarly, let Ar be the arc crossing ti − ϵ whose beginning point is nearest to ti
in a counterclockwise traversal of C(M). By the way φ is defined, it follows that vl and vr are the leftmost and rightmost
neighbors of vi in φ. Hence, S = Cir [vl, vr ] is the scope of vertex vi in φ.

Since s(A1), . . . , s(An) appear in this order in M, it follows that vj ∈ S if and only if s(Aj) ∈ (sl − ϵ, ti + ϵ). Thus, Aj cannot
cross sl, or otherwise Aj together with Al and Ai would cover the circle. Therefore, the submodel M′ of M induced by the arcs
Al, . . . , Ar is an interval model of G[S]. This implies that S is a locally out-straight enumeration of D[S]. Consequently, φ is a
locally out-straight enumeration of D as claimed.

For the converse, let G be a graph that admits a locally out-straight orientation. By Theorem 22, G must be an NCA
graph. So, it is enough to prove that G contains no wheels, 3-suns, umbrellas, rising suns, or tents as induced subgraphs,
by Corollary 4. It is not hard to see that the class of graphs that admit a locally out-straight orientation is hereditary, hence
we need only prove that wheels, 3-suns, umbrellas, rising suns, and tents admit no locally out-straight orientations. We
shall do this for the proof.

For the first case, let D be an out-round orientation of a wheel and take φ as an out-round enumeration of D. Clearly, if v
is the universal vertex of the wheel and S is its scope, then N[v] = V (D) ⊆ S. Consequently, D[S] is not out-straight because
it contains a hole, implying that φ is not a locally out-straight enumeration. Therefore, D is not locally out-straight.

For the second case, let D be an out-round orientation of the n-rising sun graph, for n ≥ 4. Recall that the n-rising sun
is the graph obtained by inserting two universal vertices v1 and vn into a path P = v2, . . . , vn−1, and then inserting three
vertices w1, wn−1, wn such that wi is adjacent only to vi and vi+1, for i ∈ {1, n − 1, n} (see Fig. 11(a)). Suppose, to obtain
a contradiction, that D admits a locally out-straight enumeration φ. It is not hard to see that the induced path w1, P, wn−1
admits only the following out-round enumerations, all of which are out-straight:

ρ = w1, v2, . . . , vn−1, wn−1,

γ = v2, w1, v3, . . . , vn−1, wn−1,

ρ ′
= wn−1, vn−1, . . . , v2, w1, and

γ ′
= vn−1, wn−1, vn−2, . . . , v2, w1.

Each of these enumerations corresponds to one of the four possible out-straight orientations of a path (see Fig. 11
(b) and (c)). So, one of these enumerations must appear in this order inside φ; call it φ′. Furthermore, a vertex z1 in φ′

has a directed edge to another vertex z2 in φ′ only if z1 is to the left of z2 in φ′. Enumerations ρ and ρ ′ are symmetric, in the
sense that the former is obtained from the latter by exchanging the labels of the vertices. This is also true for enumerations
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a b c

Fig. 12. Examples of straight (a), locally straight (b), and round (c) oriented graphs.

γ and γ ′, so we need to consider only two cases, either φ′
= ρ or φ′

= γ . For the sake of simplicity, define u1 = w1 and
u2 = v2 in ρ, and u1 = v2 and u2 = w1 in γ . Thus, φ′

= u1, u2, v3, . . . , vn−1, wn−1. Denote by l(v) and r(v) the leftmost
and rightmost neighbors of v in φ for every v ∈ V (D). The following claims analyze the positions of wn and vn in φ.

Claim 1: wn ∉ Cir [u1, wn−1] in φ. Otherwise, there would be two adjacent vertices z1 and z2 such that z1, z2 appear in this
order in φ′ and z1, wn, z2 appear in this order in φ. But this is impossible, because z1 −→ z2 and z1 wn.

Claim 2: vn ∈ Cir [w1, wn−1] in φ. Again, suppose otherwise, and observe that vn ∉ Cir [w1, v3] in φ. Vertices v3 and vn
are adjacent, so either vn −→ v3 or v3 −→ vn. The former is impossible because it implies that w1 ∈ [vn, r(vn)],
contradicting the fact that vn is not adjacent tow1. In the latter case, v2 vn becausewn−1 ∉ [v2, r(v2)]. But this
is also impossible since v3 ∈ [ℓ(vn), vn], v2 ∈ [vn, r(vn)], and v2 −→ v3, contradicting the fact that [ℓ(vn), r(vn)]
is out-straight.

By Claims 1 and 2, w1, vn, wn−1, wn must appear in this order in a traversal of φ. So, vn −→ wn in D because w1 ∉

[wn, r(wn)] or, otherwise, φ would not be out-round. Hence, v1, wn−1, wn cannot appear in this order in the range
[ℓ(vn), r(vn)], because v1 is adjacent town and not town−1. Consequently, vn, wn−1, v1 appear in this order in [ℓ(vn), r(vn)].
Analogously, v2, wn−1, v1 cannot appear in this order in [ℓ(vn), r(vn)], so vn, wn−1, v2 must appear in this order in
[ℓ(vn), r(vn)]. Recall that v2 −→ v3 in D, thus vn, wn−1, v2, v3 must appear in this order in [vn, r(vn)] and, therefore,
vn −→ v3. But since φ′ is either ρ or γ , it follows that vn, wn−1, u1, u2, v3 appear in this order in φ. This is a contradiction
to the fact that φ is out-round, because vn −→ v3 but vn w1 ∈ {u1, u2}.

Finally, by using backtracking arguments, it can be proved that there are no locally out-straight orientations of the 3-sun,
the tent, and the umbrella. �

PIG, PCA, and PHCA graphs can also be described in terms of orientations and enumerations. The analog of an out-straight
oriented graph, for PIG graphs, is called a straight oriented graph. An oriented graph D is straight if there is an ordering
v1, . . . , vn of V (D) such that, for every vertex vi, N−

[vi] = Lin [vi−ℓ, vi] and N+
[vi] = Lin [vi, vi+r ], where ℓ = d−(vi)

and r = d+(vi) (see Fig. 12(a)). As before, the ordering v1, . . . , vn is called a straight enumeration of D. Deng et al. [7] (see
also [23]) proved that G is a PIG graph if and only if it admits a straight orientation.

As out-straight oriented graphs, straight oriented graphs can be generalized either as locally straight oriented graphs
or as round oriented graphs. An oriented graph D is round if there is an ordering v1, . . . , vn of V (D) such that N−

[vi] =

Cir [vi−ℓ, vi] andN+
[vi] = Cir [vi, vi+r ], for every vertex vi with ℓ = d−(vi) and r = d+(vi).When the scope S of each vertex

is a straight enumeration ofD[S], thenD is also a locally straight oriented graph. As usual, the circular orderings corresponding
to the round and locally straight oriented graphs are called round enumerations and locally straight enumerations, respectively.
Examples of straight, locally straight and round oriented graphs are depicted in Fig. 12. Hell and Huang [19] (see also [46])
proved that the class of PCA graphs is exactly the class of graphs that admit a round orientation. As with NCA graphs, we can
restore the Helly condition of PIG graphs by restricting the attention to locally straight graphs.

Theorem 24. A graph is a PHCA graph if and only if it admits a locally straight orientation.

Proof. LetM be anNPHCAmodel of a graphG anddefineD andφ = v1, . . . , vn as in the proof of Theorem23. By Theorem23,
the scope S of each vertex vi in φ is an out-straight enumeration of D[S], for every 1 ≤ i ≤ n. Also, as in the proof of
Theorem 23, the submodel M′ of M induced by the vertices of S is an interval model of G[S]. Since M′ is also PCA then M′

is a PIG model and so S is in fact a straight enumeration of D[S]. Therefore, D is locally straight.
For the converse, let G be a locally straight orientable graph. Since locally straight oriented graphs are locally out-straight,

then G is an NHCA graph by Theorem 23. Thus, it is enough to see that G contains no induced K1,3 by Theorem 9. But, since
the class of locally straight orientable graphs is hereditary, it suffices to prove that no orientation of K1,3 is locally straight.
This is clearly true because the K1,3 graph admits no round orientations at all. �

In Fig. 13, we depict the class hierarchy of NCA graphs. This hierarchy uses the same notation as the hierarchy depicted
in Fig. 7. This time, however, the label beside the edge between C1 and C2 indicates the additional condition that a round
enumeration of an orientation of a graph G ∈ C1 has to satisfy in order to also prove that G ∈ C2.
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Fig. 13. The NCA class hierarchy, depicted in terms of round enumerations.

7. Conclusions

In this paper we studied the NHCA, PHCA, and UHCA classes of graphs. In Section 3 we showed that these classes arise
naturallywhen some properties are generalized from a family of intervals on the real line to a family of arcs of a circle. NHCA,
PHCA, and UHCA also appearwhen studying some problems on circular-arc graphs that are not sowell solved for the general
case but easy for interval graphs. Given the close relationship between interval and NHCA graphs, we could expect to find
good results for such problems, restricted to NHCA or PHCA graphs. The coloring problem on circular-arc graphs is perhaps
the most well known example in which NHCA and PHCA play a major role. Let χ and ω be the chromatic number and clique
number of a circular-arc graph G, and r be the maximum number of arcs that share a common point of a circular-arc model
M of G. Tucker [49] proved that χ ≤ 3/2ω when G is NHCA, while χ ≤ 3/2r ≤ 3/2ω when M is a PHCA model. Given the
close relationship between interval and NHCA graphs, we expect that many properties and algorithms on (proper) interval
graphs can be easily generalized for (PHCA) NHCA graphs.

In Section 4 we described characterizations for the classes of NHCA, PHCA, and UHCA graphs. These characterizations
imply a complete family of forbidden induced subgraphs for the PHCA and UHCA classes. That is, adding W4 and the 3-sun
to Tucker’s forbidden subgraphs for PCA graphs, we obtain the complete list of forbidden subgraphs for PHCA graphs, while
addingW4 to Tucker’s forbidden family for UCA graphs, we obtain all the subgraphs forbidden for UHCA graphs. On the other
hand, the characterization for NHCA graphs is partial; we know which circular-arc graphs are not NHCA, but the complete
family of forbidden subgraphs for NHCA is still unknown.

On the algorithmic side, Nussbaum [43] showed how to transform a circular-arc model into an equivalent PCA model
in O(n) time. Combining this result with those in Section 5, we obtain O(n) time algorithms for transforming a circular-
arc model into an equivalent PHCA or UHCA model. For NHCA graphs we did not find such an algorithm. Furthermore, the
O(n+m) time algorithm for the recognition of NHCA graphs is not based in transformations on the input circular-arcmodel.
The problem is that we did not find how to transform an HCA model into an interval model in O(n) time.

The recognition problem for NHCA, PHCA, and UHCA graphs is well solved when the input is given by the adjacency
lists of the graph. However, the algorithm for the recognition of NHCA graphs given in Section 5 is hard, because it requires
the construction of a circular-arc model of the input graph. Therefore, it would be nice to find a direct algorithm for the
recognition of NHCA graphs. The local interval property could play an important part in such an algorithm. In fact, many
ideas that were successful for other recognition algorithms can perhaps be used for the recognition of NHCA graphs. For
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instance, we could test whether G is an interval graph. If so, output the interval model of G. Otherwise, try to split G into
several interval graphs, resembling the process done by Deng et al. [7]. Then, recognize each part as an interval graph and
‘‘rebuild’’ the model. Another possibility is to find the cliques of each part so as to build a PC-tree later (see [21]), as Booth
and Lueker [3] do. Themajor drawback of this approach is that finding the cliques of an NHCA graph directly seems difficult.
The third possibility is to extend the incremental data structure used by Korte and Mohring [27] in their interval graph
recognition algorithm. Since the insertion of a vertex depends only on its neighborhood, then it is perhaps possible to exploit
the local interval property. Also, it could be interesting to generalize the incremental algorithmbyCrespelle [5], so as to insert
each vertex in O(n) time.
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