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Dengue virus is an expanding public health problem in tropical and subtropical regions of 
the world, mainly owing to failure in the maintenance of control programs for the mosquito 
vector Aedes aegypti and increasing and unplanned urbanization. It has been estimated 
that over 50 million dengue virus infections of varying severity occur globally each year, 
making this virus the most significant mosquito-borne human pathogen. However, there is 
no specific antiviral therapy or vaccine for treatment or prevention. This review focuses on 
recent data describing the putative molecules and mechanisms involved in the complex 
process of dengue virus binding and entry into mosquito and mammalian cells in primary 
infections. Furthermore, the perspectives of these early events in the virus life cycle as a 
target for antidengue therapeutic strategies are also considered.

Dengue virus (DENV) is a mosquito-borne
member of the genus Flavivirus, family Flavi-
viridae, which includes many important human
pathogenic viruses such as yellow fever virus,
tick-borne encephalitis virus and West Nile
virus. The virion is an enveloped particle con-
taining a single positive-stranded RNA genome
and three structural proteins (the capsid [C] pro-
tein, a small membrane [M] protein and the
envelope [E] glycoprotein). There are four anti-
genically related serotypes (DENV-1–4), which
cocirculate in tropical and subtropical regions
around the world between their vectors, the
mosquitoes Aedes aegypti and Aedes albopictus,
and the vertebrate hosts. 

DENV human infection results in a wide
clinical spectrum ranging from either an asymp-
tomatic infection or a benign self-limited febrile
illness called dengue fever (DF), to a severe dis-
ease such as dengue hemorrhagic fever (DHF)
or dengue shock syndrome (DSS) [1]. Primary
infection provides immunity against the infect-
ing serotype, but the secondary infection with
another serotype appears to enhance the risk of
developing DHF/DSS through an immuno-
pathological process termed antibody-depend-
ent enhancement (ADE), with formation of
immune complexes between virus and non-
neutralizing heterotypic antibodies that infect
Fc-receptor positive cells via the Fc portion of
the immunoglobulin [2,3].

The failure to maintain programs for con-
trolling the mosquito vector has caused the glo-
bal re-emergence of this infection, turning
DENV into a public health problem. Cur-
rently, it is estimated that the virus is endemic

in more than 100 countries, resulting in
approximately 50 million cases of DF per year
and 250,000–500,000 cases of life-threatening
DHF/DSS [4]. 

Despite the importance and increasing inci-
dence of DENV as a human pathogen, there are
no antiviral agents or vaccines available for treat-
ment or prevention, and little is known about
the cell biology or the life cycle of DENV in
mosquitos or mammalian cells. The develop-
ment of a successful chemotherapy for DENV
infection requires a better understanding of the
viral life cycle to elucidate potential targets and,
thus, to obtain key information for the rational
design of antiviral drugs. In this review we
present the recent data on the molecules and
mechanisms involved in DENV entry in pri-
mary infection. Furthermore, the perspectives of
this early process as a target for anti-DENV
strategies are considered.

DENV attachment: 
multiple cell receptors?
The events involved in virus entry comprise virion
binding to the cell surface followed by penetration
into the cytoplasm. The success of both sequential
steps is determined by host range and tissue tro-
pism, key factors for viral pathogenesis. For
DENV infection, this early interaction seems to
be particularly complex. Although the precise
mechanisms of DENV entry are not still totally
elucidated, a probable reason for this complexity
may be the great diversity in DENV cellular tro-
pism in vivo and in vitro and the putative possibil-
ity of a different receptor or entry pathway
dependent on the class of the infected host cell. 
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In primary infection, the E glycoprotein has
been identified as the DENV protein involved
in both attachment and internalization into the
cell, playing a central role in the control of infec-
tion and tropism. In contrast to the certain
involvement of the E glycoprotein as a viral
attachment protein, the identity of the cellular
receptor for DENV is, at present, controversial.
The ability of DENV to replicate in vitro in a
wide spectrum of primary and continuous cell
cultures derived from many mammalian and
arthropod tissues suggests the presence of either
a single ubiquitous receptor or divergent recep-
tors according to the type of host cell. In support
of this last hypothesis, several recent reports,
reviewed in Table 1, have implicated a long list of
receptor candidate molecules.

For mosquito cells, two glycoproteins of
40–45 kDa were reported as putative receptors
in C6/36 cells for binding of DENV-4 [5,6], two
proteins of 67–80 kDa and a 48 kDa tubulin-
like protein were described for binding of
DENV-2 [7,8], whereas a laminin-binding protein
was identified as a DENV-3 and -4 receptor in the
same cells [9]. For mammalian cells, different pro-
teins have been proposed in human, mouse and
monkey cells, including monocytes, macrophages,
dendritic cells, B and T leukocytes, endothelial
cells, and bone marrow-, hepatoma-, neuroblast-
oma- and kidney-derived cells. The putative pro-
tein DENV receptors include heat shock protein
(Hsp)70 and Hsp90 [10], GRP78 [11], laminin
receptor [12], mannose receptor [13], CD14-associ-
ated protein [14,15], DC-SIGN [16,17] and diverse,
not fully characterized, polypeptides [18–25].
Among the candidate protein receptors, the best
characterized molecule is DC-SIGN, which can
mediate infection with the four serotypes of
DENV. In contrast with the aforementioned
reports, involvement of heparan sulfate (HS) was
demonstrated for DENV attachment to cells of
human, monkey and hamster origin [26–29]. HS is
a very ubiquitous glycosaminoglycan present on
the cell surface and in the extracellular matrix,
and is used by many pathogens as an initial recep-
tor [30]. However, the DENV interaction with HS
is unique owing to its specificity for a highly sul-
fated form [26]. In addition to the identification of
diverse molecules for DENV binding to different
cells, the initial virus–cell interaction in the same
host cell was also shown to be serotype dependent
(Table 1) [12,31,32]. 

Collectively, these conflicting data lead to the
proposal of a multistep process consisting of the
sequential interaction of the E glycoprotein with

at least two target molecules on the cell mem-
brane. First, an abundant and low affinity
attachment receptor, which may be HS or
DC-SIGN according to the cell type, would
serve primarily to concentrate virus particles on
the cell surface, and then the interaction with a
high affinity or second receptor of protein
nature mediates virion internalization [23,33].
The serotype and cell dependence of these proc-
esses may be ascribed to variations in the corre-
sponding domains of the E glycoprotein among
serotypes and their interaction with the cell to
be infected.

DENV internalization
After binding to the cellular receptor(s), viruses
depend on their ability to penetrate and release
the viral genome into the cell cytoplasm. For
enveloped viruses, penetration involves mem-
brane fusion and this process may take place
either at the cell surface (pH-independent pene-
tration) or within intracellular vesicles
(pH-dependent penetration). The majority of
viruses need endocytic internalization for pro-
ductive infection, probably because endocytosis
offers the advantage of guiding the virion to an
adequate site for replication, bypassing many
cytoplasmatic barriers [34]. As a result, viruses
have evolved to hijack the multiple portals of
entry that are available in the cells (Figure 1)

[35–37]. There are four well-defined routes:

• Phagocytosis

• Macropinocytosis

• Clathrin-mediated endocytosis

• Caveolae-mediated endocytosis.

In addition, other nonclathrin- and noncaveo-
lar-mediated pathways are less characterized:

• Lipid raft-mediated endocytosis dependent on
dynamin;

• Lipid raft-mediated endocytosis independent
of dynamin;

• The nonclathrin, noncaveolar-mediated path-
way independent of lipid rafts, in which
dynamin participation has been proposed but
has not been determined.

Initial electron microscopy studies indicated
that DENV-2 penetrated directly into the cyto-
plasm of human monocytes, mosquito and BHK
cells by fusion of the virion envelope with the
plasma membrane at physiological pH [38,39].
However, at present it is generally accepted that
for productive infection DENV uptake occurs
through receptor-mediated endocytosis, which is
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dependant on exposure of the virus to low pH
for membrane fusion activity. Evidence for this
pH requirement is provided by diverse experi-
mental approaches, such as entry inhibition
using lysosomotropic agents in cells infected
with DENV-2 virions [40,41] or retroviral reporter
viruses pseudotyped with pre-membrane and
envelope  (prM/E) proteins of DENV-2 [42], low
pH-induced formation of syncytia in DENV-
infected cells [40,43] and silencing of the vacuolar
ATPase gene by siRNA [40]. Very recently, pH-
dependent penetration was also demonstrated
by single virus tracking [44]. The authors dem-
onstrated that the internalized particles have
different types of transport behavior, leading to
membrane fusion in endosomal compartments
located in distinct cellular localizations, either
at the periphery or at perinuclear regions of the
cell. As a counterpart to these functional
studies, structural analyses have shown that
under acidic conditions, as those encountered
in endosomes, the E glycoprotein undergoes
irreversible conformational changes to expose

hidden fusion domains that trigger the mem-
brane fusion process required to release viral
RNA into the cytoplasm [45–48]. 

Despite the general consensus regarding a pH
requirement for viral fusion, the information
available about the mode of DENV entry into
cells is scanty and controversial. Very recently the
use of dominant-negative mutants, including
Eps15, a cellular protein necessary for clathrin-
dependent endocytosis, underlined that the
functional entry pathway of DENV-2 in mos-
quito and HeLa cells is clathrin dependent [40,41].
In both cases the evidence also suggests that
DENV requires transport to early, but not late,
endosomes for viral infection. Even though it
was demonstrated that mosquito cell DENV
entry is independent of lipid raft integrity [41],
some reports indicate a strong dependence on
membrane cholesterol for DENV-2 infection in
human monocytes [10] and mouse neuroblast-
oma cells [49], suggesting that cholesterol-rich
membrane fractions are important for DENV
entry in these cell systems. These contrasting

Table 1. Putative dengue virus receptors.

DENV 
serotype

Cell type Receptor characteristics Ref.

Proteins

DENV-1 Human hepatoma (HepG2), monkey kidney (Vero) Protein [18]

Human hepatoma (HepG2) Laminin receptor [12]

DENV-2 Mosquito cell line (C6/36) Proteins (67, 80 kDa) [7]

Mosquito cell line (C6/36) Tubulin-like protein (48 kDa) [8]

Human hepatoma (HepG2) GRP78 [11]

Human endothelial (ECV304) Proteins (28, 34, 43 kDa) [25]

Human bone marrow (K562) Protein (100 kDa) [19]

Human and mouse neuroblastoma (SK-N-SH, N1E-115) Protein (65 kDa) [20]

Human monocytic (U937) and neuroblastoma (SK-SY-5Y) Hsp 90, Hsp 70 [10]

Human monocytes Protein (CD14-associated molecule) [14,15]

Human macrophages Proteins (27,45, 67, 87 kDa) [24]

DENV-2,-3 Human myelomonocytic (HL60) and B-cell line (BM13674) Proteins (40, 70 kDa) [21]

Human B- and T-leukocyte cell lines (Raji, Molt4, LK63) Proteins [22]

DENV-3,-4 Mosquito cell line (C6/36) Laminin receptor [9]

DENV-4 Mosquito cell line (C6/36) Glycoproteins (40, 45 kDa) [5,6]

Monkey kidney (Vero) Protein (74 kDa) [23]

DENV-1–4 Human macrophages Mannose receptor [13]

Human dendritic cells DC-SIGN [16,17]

Glycosaminoglycans

DENV-2 Monkey kidney (Vero), hamster ovary (CHO) HS [26,29]

Hamster kidney (BHK) HS [27]

Human hepatocytes (HuH-7) HS [28]

DENV: Dengue virus; HS: Heparan sulfate; Hsp: Heat shock protein.
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results suggest that DENV particles may be inter-
nalized into cells by different transport routes. In
this respect, unpublished data from our labora-
tory suggests that DENV-2 entry may occur
through a nonclathrin, noncaveolar pathway in
certain cell systems.

Further studies are required to elucidate if viral
particles are targeted to different transport routes
in different cell systems or, more intriguingly, if
different infectious pathways may be undertaken
within the same cell. Additionally, there are no
reports addressing the functional entry mech-
anism utilized by serotypes other than DENV-2.
The fact that distinct receptors are proposed for
different serotypes within a same host cell
(Table 1) raises the question whether alternative
entry routes are taken by different serotypes.

DENV entry as an antiviral target
The blockade of DENV entry into the host cell
is an interesting antiviral strategy because it rep-
resents a barrier to suppress the beginning of
infection [50]. The antiviral target is the viral
glycoprotein E in its interaction with compo-
nents of the cell membrane that allow virus
binding and internalization. The different types
of inhibitors reported to be active against DENV
entry are summarized in Table 2. 

Polyanionic substances
Since the initial finding of highly sulfated HS as
a putative primary receptor for DENV in certain
types of mammalian cells [26], the antiviral effi-
cacy of polyanionic compounds of diverse struc-
tures has been demonstrated in vitro. Heparin, a

Figure 1. Different mechanisms of endocytosis in the cells.

 

(A) Phagocytosis, (B) macropinocytosis, (C) clathrin-mediated endocytosis, (D) caveolae-mediated endocytosis, (E) lipid raft-mediated 
endocytosis devoid of caveolin and clathrin but dependent on dynamin, (F) lipid raft-mediated endocytosis devoid of caveolin, clathrin 
and dynamin and (G) nonclathrin noncaveolar pathway independent of lipid rafts.

Caveosome

Early endosome

? ?

?

Clathrin Dynamin Caveolin Cholesterol/sphingolipid-rich membrane
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close structural homolog of HS, has shown abil-
ity to inhibit DENV-2 binding to Vero [26,29,51],
LLC-MK2 [51] and BHK [27] cells, as well as
diverse types of human hepatic cells [31], in sup-
port of the hypotesis of HS as a DENV receptor.
In addition, it was determined that heparin oli-
gosaccharides smaller than a decasaccharide
failed to inhibit E glycoprotein binding [26]. A
structure–activity relationship study carried out
to examine the E glycoprotein-binding ability of
different heparin-like polyanions, including
suramin (a pharmaceutical polysulfonate), gly-
cosaminoglycans and hyaluronic acid oligosac-
charides, confirmed the need for a minimum
chain size equivalent to the heparin decasaccha-
ride as well as high levels of charge density and
structural flexibility for optimal interaction
between the polyanion and E glycoprotein [52].
Aside from the described compounds, other types
of polyanions, such as pentosan sulfate, the sul-
fated phosphomanno-oligosaccharide PI-88 [53],
sulfated DL-galactan hybrids extracted from sea-
weeds [32,54,55], sulfated derivatives of natural
α-D-glucans [56], and carrageenans of natural and
commercial origin [32,57–59], also demonstrated
anti-DENV-2 activity in mammalian cells, whereas
sulfated galactomannans exhibited anti-DENV-1
activity in mosquito cells [60]. 

All these polyanionic compounds acted as
HS-mimetic substances, interfering with the
interaction of E glycoprotein with the cellular
HS receptor. The mode of action of sulfated

polysaccharides on DENV-2 multiplication
indicated that the blockade of the interaction of
DENV-2 with HS not only affected binding
but also virus internalization into the host cell
[27,32,55,59], since both initial events of the
DENV infective cycle were equally inhibited
with high efficacy. The post-adsorption
inhibition of DENV infection obtained when
the polysulfate is added after virus binding sug-
gests that the interaction of the compound with
the virion bound to the cell surface would avoid
the normal transit of the viral genome into the
cytoplasm. The experimental approaches uti-
lized to analyze the mechanism of action of
polysulfates indicated that virions enter the cell
but the fusion event leading to uncoating of the
nucleocapsid and escape from the endosome is
blocked as a consequence of the association of
the polysaccharide with the DENV
E glycoprotein [59].

A differential susceptibility of DENV sero-
types to sulfated polysaccharides has also been
shown in Vero and BHK-21 cells and was in the
order DENV-2>DENV-3>DENV-4>DENV-1,
with DENV-2 being by far the most affected
serotype [31,32,59]. The variations observed in
anti-DENV activity of polysulfates in Vero
cells according to virus serotype may be
ascribed to the aforementioned differences in
virus–cell interactions leading to virus entry. In
fact, as shown in Table 1, HS was reported as the
receptor molecule for DENV-2 in Vero cells

Table 2. In vitro antiviral activity of dengue virus entry inhibitors.

Compound Virus serotype Ref.

Polyanionic substances

Heparin DENV-2 [26,27,29,31,51]

Suramin DENV-2 [26,53]

Pentosan sulfate DENV-2 [53]

PI-88 DENV-2 [53]

DL-galactan hybrids DENV-2 [32,54,55]

Sulfated α-D-glucans DENV-2 [56]

ι-, κ-, λ-, κ/ι/ν-carrageenans DENV-2 and -3 [32,57,58,59]

Sulfated galactomannans DENV-1 [60]

Polyoxotungstates DENV-2 [61]

Lectins

Concanavalin A DENV-2 [27]

Inhibitors of viral fusion

Amantadine hydrochloride, rimantadine hydrochloride DENV-1, -2, -3 and -4 [63,64]

Chlorpromazine DENV-2 [41]

Synthetic peptides DENV-2 [70]

Tetracycline derivatives DENV-2 [71]
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[26,29], whereas for DENV-1 and -4 a proteina-
ceous receptor was identified in the same cell
line [18,23].

Inorganic polyanionic substances such as
polyoxotungstates substituted with vanadium or
titanium were also reported to be inhibitors of
DENV-2 multiplication in Vero cells, probably
through interference with DENV binding to
host cells [61].

The limitations of the available animal models
of DENV infection have restricted the adequate
in vivo evaluation of those compounds with
proved in vitro antiviral activity. In addition, at
present there are very few reports of compounds
exhibiting effective antiviral action in vivo.
Among entry inhibitors, the oligosaccharide
PI-88 was assayed in a murine model of type I
and II interferon receptor-deficient mice inocu-
lated with DENV-2 by intravenous route [53].
The therapeutic effect of PI-88 was very weak
since treatment ameliorated disease in infected
animals without eliciting a significant increase in
survival rate. Several attempts to establish small
animal models for DENV infection by peripheral
routes with a simple management for antiviral
testing are in progress [62].

Lectins
Another group of molecule that inhibit virus
entry are lectins – sugar-binding proteins that
block specific residues in E glycoprotein
involved in the interaction with cellular recep-
tors. Concanavalin A, a lectin that binds to
α-linked terminal mannose residues, blocked
DENV-2 binding and penetration into BHK
cells [27], and the soluble domain of the lectin
DC-SIGN also inhibited virus infection [16].

Inhibitors of viral fusion
This class of early inhibitors of the DENV
multiplication cycle includes amantadine
hydrochloride and rimantadine hydrochloride,
known blockers of influenza virus uncoating.
However, both compounds showed very weak
in vitro anti-DENV activity [63,64]. More
recent studies demonstrated that chlorpro-
mazine, a pharmacologic drug, which inhibits
clathrin-dependent endocytosis, affected the
entry of another flavivirus, Japanese encephali-
tis virus, into Vero cells without decreasing
cell viability [65]. This drug also inhibited
DENV-2 multiplication in mosquito C6/36
cells [41].

Executive summary

Introduction

• Dengue virus (DENV) is the most significant mosquito-borne human pathogen, responsible for over 
50 million infections of variable severity each year.

• There is no specific antiviral therapy or vaccine for treatment or prevention.

DENV attachment: multiple cell receptors?

• The envelope (E) glycoprotein is involved in DENV attachment and internalization, but the nature of 
the cellular receptor is, at present, controversial.

• A multistep process was proposed consisting of the initial interaction of the E protein with a low 
affinity attachment receptor (heparan sulfate or DC-SIGN, according to the cell type) to concentrate 
virus particles on the cell surface – a high affinity receptor of protein nature then triggers 
virus internalization.

DENV internalization

• DENV internalization occurs by receptor-mediated endocytosis, which is dependent on low pH, 
required for conformational rearrangement of the E glycoprotein and membrane fusion.

• Clathrin-mediated endocytosis was addressed for DENV-2 internalization, but alternative transport 
pathways may be undertaken by this and other serotypes in certain cells. 

DENV entry as an antiviral target

• Selective inhibition of in vitro DENV-2 multiplication was achieved with diverse entry inhibitors such as 
polysulfates, polyoxotungstates, lectins, peptides and tetracycline derivatives.

Future perspective

• The elucidation of the complex aspects related to DENV cell entry is starting to be obtained through 
different experimental approaches, and it will guide the development of rational strategies to establish a 
successful therapy for DENV infections in the near future. 
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Recent progress in the structural characteris-
tics of DENV E glycoprotein [45,66–69] has ena-
bled the use of physico–chemical algorithms for
the rational design of peptide inhibitors of
DENV entry that could interfere with the
virus–cell membrane fusion process. These syn-
thetic peptides function through a sequence-spe-
cific mechanism to inhibit DENV-2 infectivity in
LLC-MK2 cells and thus could serve as lead com-
pounds for the development of optimized peptide
drugs [70]. Another design-oriented approach
used virtual screening based on the recent finding
of a hydrophobic detergent-binding pocket in the
E glycoprotein of DENV-2 involved in the pH-
induced conformational rearrangement that is
essential for virus entry [67]. In this study, two
novel tetracycline derivatives that target this
pocket displayed significant inhibitory effects on
DENV-2 propagation in cell culture [71]. 

Future perspective
Currently, there are several experimental
approaches in progress aiming to elucidate the
molecules and mechanisms involved in DENV
entry into a wide spectrum of host cells. This
knowledge will be essential for the discovery of

DENV inhibitors targeted to the initial steps of
the virus multiplication cycle. The studies
reviewed here show that many aspects of DENV
entry, such as the involvement of different recep-
tors dependent on the virus serotype and the
class of host cell, the route and mechanism of
virus internalization to the cytoplasm and the
understanding of conformational changes in
E glycoprotein during viral fusion, can guide the
development of new strategies to establish an
effective anti-DENV therapy with potential
medical application in the near future.
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