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both antiviral and immunomodulatory properties which 
affect TLR signaling pathways might be a useful strategy to 
control the progress of virus-induced disease.
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Introduction

Viral and host components may contribute to the pathogen-
esis of different viral infections. Many of these viruses are 
of public health significance because they cause damage 
through triggering an immunopathology. Most of the cur-
rent antiviral drugs target viral proteins but are ineffective 
to act on the inflammatory component of the disease. To 
ameliorate the symptoms of disease, the use of antiinflam-
matory compounds is recommended, in combination with 
antiviral drugs to treat many virus-induced diseases, such 
as herpetic infections [1–3]. The symptoms of the herpetic 
disease can be alleviated by immunosuppressive reagents 
such as systemic corticosteroids and cyclosporine A, and 
treatments also include acyclovir (ACV) to mitigate viral 
reactivation due to the immunosuppression caused by these 
drugs [4]. Nevertheless, the use of commercial antivirals 
against herpesviruses, particularly during viral recurrences 
and in immunosuppressed individuals, entails the occur-
rence of viral mutant populations resistant to such drugs. 
In consequence, and taking into account the adverse side 
effects described for corticosteroids, there is an urgent need 
for new drugs effective against these immunopathologies of 
viral origin [2].

Thus, the finding of novel compounds that inhibit both 
viral multiplication and the immunopathology triggered by 
the virus is an approach that should be considered.
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Medicinal plants have been used to treat viral infections 
for decades. The chemical diversity and broad spectrum of 
antiviral activity of natural products make them ideal candi-
dates for new therapeutics [5]. In fact, we have reported that 
meliacine (MA), an antiviral principle present in partially 
purified leaf extracts of Melia azedarach L., reduces the 
viral load and abolishes the ocular inflammatory reaction and 
neovascularization along the development of herpetic stro-
mal keratitis (HSK) in mice [6]. Bioassay-guided purifica-
tion of MA has led to the isolation of the tetranortriterpenoid 
1-cinnamoyl-3,11-dihydroxymeliacarpin (CDM), which hin-
ders herpes simplex virus type 1 (HSV-1) multiplication and 
exhibits immunomodulatory properties in vitro and antian-
giogenic activities both in vitro and in vivo [7–10].

A great number of plant-derived substances, such as di- 
and triterpenes with antiviral and/or immunomodulatory 
properties, have been described [5]. Two diterpenes iso-
lated from Rosmarinus officinalis L. and Salvia officinalis 
L., carnosic acid and carnosol and their derivatives, show 
antiviral and antiinflammatory activities [11, 12]. Likewise, 
diterpenes isolated from Tripterygium wilfordii L., and the 
diterpene compound taxol extracted from Taxus brevifolia 
L., which is commercially used as an antitumoral drug, also 
display antiviral and immunomodulatory effects [13, 14].

Jatropha species (Euphorbiaceae) contain compounds 
with remarkable biological activity [15]. Jatropha isabelli 
Muell Arg possesses a gastroprotective effect ascribed to its 
diterpene constituents, which have been identified as jatro-
phone and jatropholones A and B [16, 17].

The aim of the present study was to examine the anti-
herpetic activity of natural and semisynthetic jatropholones 
and carnosic acid derivatives and their ability to modu-
late the production of different cytokines and signaling 
pathways in macrophages stimulated by HSV-1 and TLR 
ligands.

Materials and methods

Cells and viruses

The murine macrophage cell line J774A.1 was kindly pro-
vided by Dr. Osvaldo Zabal (INTA—Buenos Aires, Argen-
tina) and grown in RPMI 1640 medium supplemented with 
10 % inactivated fetal bovine serum (FBS) and maintained 
in RPMI supplemented with 2 % inactivated FBS.

Vero cells were grown in Eagle’s minimal essential 
medium (MEM) supplemented with 10 % inactivated FBS 
and maintained in MEM supplemented with 1.5 % inacti-
vated FBS.

HSV-1 KOS, thymidine kinase-deficient (TK−) B2006 
and Field strains of HSV-1 were used and propagated at 
low multiplicity of infection (m.o.i.).

Reagents

LPS (TLR4 ligand) from Escherichia coli serotype 
055:B5 was obtained from Sigma. Pam2CSK4 (TLR2 
ligand) and ODN2395 (TLR9 ligand) were purchased 
from InvivoGen. The rabbit polyclonal anti-IκBα antibod-
ies, anti-ERK1 and anti-p-ERK1/2, the mouse monoclo-
nal antibody anti-gD of HSV-1 and the peroxidase-con-
jugated goat anti-rabbit or anti-mouse antibodies were 
obtained from Santa Cruz Biotechnology. The anti-actin 
antibody was obtained from Calbiochem. Secondary 
goat anti-rabbit FluoroLinkTM CyTM2 and anti-mouse 
FluoroLinkTM CyTM3 antibodies were purchased from 
GE Healthcare Bio-Sciences.

Compounds

Jatropholones A and B were isolated from the rhizomes of 
Jatropha isabelii as described by Pertino et al. [16, 17]. The 
derivatives were synthesized according to the procedures of 
Pertino et al. [16] and Theoduloz et al. [18]. Carnosic acid 
was isolated from the leaves of R. officinalis L. and used 
to synthesize the different derivatives following the proce-
dures previously reported [19, 20]. The purity of all deriva-
tives was over 98 % as assessed by 1H NMR spectrometry.

Cytotoxicity assay

Cell viability was determined using the tetrazolium salt 
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide) (Sigma) according to the manufacturer’s 
instructions. J774A.1 and Vero cells were seeded at a con-
centration of 104 cells/well in 96-well plates and grown 
at 37  °C for 24  h. The culture medium was replaced by 
medium containing the compounds in triplicate, and cells 
were incubated for 24  h. The absorbance was measured 
on a Eurogenetics MPR-A 4i microplate reader using a 
test wavelength of 570 nm and a reference wavelength of 
630 nm. Results were expressed as a percentage of absorb-
ance of treated cell cultures with respect to untreated ones. 
The cytotoxic concentration 50 (CC50) was calculated as 
the concentration of compounds required to reduce cell via-
bility by 50 % relative to untreated cells.

Antiviral activity

Cytopathic effect assay

Cells grown in 96-well plates were infected or not with 
HSV-1 at a m.o.i. of 0.1 PFU/cell. After 1-h adsorption at 
37 °C, the inoculum was removed and medium containing 
or not the compounds was added, in triplicate. The plates 
were incubated at 37  °C until 24  h post-infection (p.i.), 
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when 100  % of cell death was observed in virus control. 
Then, cells were fixed with 10 % formaldehyde for 15 min 
at room temperature, washed once with distilled water and 
stained with 0.05  % crystal violet in 10  % ethanol over 
30 min. Afterward, cells were washed once and eluted with 
a solution of 50 % ethanol and 0.1 % acetic acid in water. 
The absorbance of each well was measured on an Euro-
genetics MPR-A 4i microplate reader using a test wave-
length of 590 nm. Results were analyzed as the percentage 
of absorbance of treated and infected cells compared with 
control (untreated/uninfected) cells. We considered the 
untreated/uninfected control cells as 100 % of cell survival.

Viral yield assay

Cells grown in 96-well plates were infected with HSV-1 
at a m.o.i. of 0.1 PFU/cell. After 1-h adsorption at 37 °C, 
the inoculum was removed and medium containing the 
compounds was added, in triplicate. The plates were 
incubated at 37 °C until 24 h p.i. After cell disruption by 
three cycles of freezing and thawing, supernatants were 
harvested and pooled. Virus yields were titrated by plaque 
assay in Vero cells, and the effective concentration 50 
(EC50) was calculated as the concentration of compounds 
required to reduce viral yields by 50  % relative to the 
untreated virus control.

Indirect immunofluorescence assay (IFI)

Subconfluent cells grown on glass coverslips in 24-well 
plates were fixed with methanol for 10  min at −20  °C. 
After three washes with PBS, coverslips were inverted on a 
drop of diluted primary antibody for 30 min at 37 °C, then 
returned to culture dishes and subjected to three additional 
washes with PBS. Afterward, cells were incubated with 
diluted secondary antibody for 30  min at 37  °C. Finally, 
coverslips were rinsed, mounted and photographed with an 
Olympus BX51 microscope with epifluorescence optics.

Virucidal effect

HSV-1 KOS (107 PFU) was diluted in culture medium con-
taining or not each compound and incubated for 30, 60 and 
120 min at 37 °C. Aliquots were diluted to a non-inhibitory 
drug concentration and titrated by plaque assay on Vero 
cells.

Adsorption and penetration assay

Subconfluent Vero cells grown in 24-well plates (2 × 105 
cells) were inoculated with 100 PFU of HSV-1 and 
adsorbed for 1 h at 4 °C with or without the compounds. To 
quantify adsorbed virus, cells were washed twice with cold 

PBS, overlaid with medium containing 0.7 % methylcellu-
lose and incubated at 37 °C for 3 days.

To determine internalized virus, cells were incubated at 
37 °C to maximize virus penetration after viral adsorption 
at 4 °C for 1 h, with or without the compounds. At 120 min, 
monolayers were washed twice with PBS and treated for 
1 min with citrate buffer (pH 3). To quantify internalized 
virus, cells were washed twice with cold PBS, overlaid 
with medium containing 0.7 % methylcellulose and incu-
bated at 37 °C for 3 days.

Time‑of‑compound‑addition studies

Compounds were added to confluent monolayers of Vero 
cells infected with HSV-1 at a m.o.i. of 1, together with 
viral inocula, or at 2, 6 and 12 h after infection. Cells were 
further incubated at 37  °C till 24  h p.i. and subjected to 
three cycles of freeze–thawing followed by centrifugation 
at low speed. Supernatants were titrated by plaque assay in 
Vero cells.

Western blot analysis

Whole extracts of cells grown in 24-well plates for 24 h were 
loaded on 10 % sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS-PAGE) and transferred onto polyvi-
nylidene fluoride membranes for 60  min at 75  mA. Mem-
branes were blocked in PBS containing 5  % unfitted milk 
overnight and then incubated with diluted primary antibodies 
overnight at 4 °C. After washing, membranes were incubated 
with diluted peroxidase-conjugated antibodies for 1.5  h at 
37 °C. The immunoreactive bands were visualized using an 
enhanced chemiluminescence system (ECL, PerkinElmer).

Cytokine determination

Cells were frozen and thawed, and then, supernatants 
were harvested, centrifuged at 1,000  rpm for 10 min, and 
cytokines were quantified by ELISA, in triplicate. Mouse 
TNF-α and IL-6 were quantified by commercial ELISA 
sets (BD OptEIATM, Becton–Dickinson) according to the 
manufacturer’s instructions.

Transfections

Transfection assays with Lipofectamine 2000 reagent (Inv-
itrogen) were performed according to the manufacturer’s 
instructions. The NF-κB-LUC reporter vector and RSV-β-
gal plasmid were kindly provided by Dr. Susana Silberstein 
(Universidad de Buenos Aires). RSV-β-gal, which codes 
for the bacterial β-galactosidase gene under the control of 
the viral RSV promoter, was used as second reporter con-
trol plasmid.
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Statistical analysis

Statistical analysis was done by one-way ANOVA followed 
by a Tukey’s multiple comparison test.

Results

Compound screening

One natural jatropholone (2A), four semisynthetic jatrop-
holones (1A, 3A, 4A and 5B) and five carnosic acid deriva-
tives (6C, 7C, 8C, 9C and 10C) were selected to analyze 
their antiviral activity (Figs. 1, 2). First, the cytotoxic effect 
of all compounds was evaluated. For that purpose, Vero 
cells were treated with the jatropholones and carnosic acid 
derivatives (1–300 μM) and, after incubation at 37 °C for 
24  h, a MTT assay was performed. No cytotoxicity was 
found at the concentrations tested, being the CC50 value 
higher than 300 μM (Table 1). This result was in accord-
ance with already reported findings which showed that 
most of these compounds were no cytotoxic for other cell 
lines [16–20].

Next, to screen the antiviral activity of the compounds, 
Vero cells grown in 96-well plates were infected with 
HSV-1 KOS and treated or not with 300, 150 and 75 μM of 
all compounds for 24 h. From ten compounds assayed, only 
compounds 2A, 5B and 9C prevented 100 % of the cyto-
pathic effect induced by HSV-1 at all concentrations tested. 
The other compounds did not protect the cytopathic effect 
even at 300 μM (Table 1).

Antiviral effect of three hit compounds

Identification of antiviral effect by indirect 
immunofluorescence assay (IFI)

First, we corroborated the antiviral effect observed by 
means of an IFI staining. For that purpose, Vero cells 
infected with HSV-1 KOS (m.o.i = 1) treated or not with 
75 μM of 2A, 5B and 9C for 24  h were analyzed by an 
IFI staining using a mouse monoclonal anti-glycoprotein 
D (gD) antibody. We found that the majority of infected 
control cells expressed gD protein, most of them clustered 
in characteristic HSV-1 foci (92 %). A limited appearance 
of fewer and scattered foci expressing gD was observed 
when infected cells were treated with any of the three com-
pounds. Thus, the number of fluorescent cells expressing 
gD was reduced to 29, 27 and 25 % in infected cells treated 
with 2A, 5B and 9C, respectively (p < 0.05) (Fig. 3a).

Virucidal assay

To establish whether these compounds produced a direct 
effect on the viral particle, we performed a virucidal assay.

After incubation with 75  μM of 2A, 5B and 9C, 
for 30  min, HSV-1 titers were 6  ×  106, 8  ×  106 and 
5  ×  106  PFU/ml, respectively, whereas an infectivity of 
7  ×  106  PFU/ml was obtained in untreated viral suspen-
sions. Regardless the time of incubation, no reduction in 
viral titers was observed after treatment with 2A, 5B and 
9C with respect to untreated control, suggesting that none 
of them exerted a virucidal activity.

Fig. 1   Structure of the jatrop-
holone derivatives
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Viral adsorption/penetration and time‑of‑addition 
experiments

Next, we analyzed whether compounds 2A, 5B and 9C 
interfere with virus adsorption and penetration. No signifi-
cant differences in the amount of adsorbed virus between 
untreated (7 × 107 PFU/ml) and infected cells treated with 
any of the compounds were observed (5–8 × 107 PFU/ml). 
In the case of the internalization assay, no differences in 
viral titers corresponding to untreated (2  ×  108 PFU/ml) 
and treated cells (1–3 × 108 PFU/ml) were detected.

To further characterize the inhibitory action of 2A, 5B 
and 9C, a time-of-addition experiment has been done. For 
that purpose, 75 μM of 2A, 5B and 9C were added to HSV-
1-infected Vero cells at different times after infection and, 
24 h p.i., infectivity was determined. A significant two-log 
inhibition of viral yield was observed when the compounds 
were added until 2  h after infection (p  <  0.05) (Fig.  3b). 
Only compound 9C reduced HSV-1 production when added 
up to 6–8 h after infection (p < 0.05). At later times, none 
of the compounds restrained virus infectivity (Fig. 3b).

Identification of antiviral effects by plaque reduction assay

To quantify the antiviral effect, the inhibition rates of the 
three compounds were determined. Thus, HSV-1-infected 
Vero cells were treated with different concentrations of 
compounds for 24  h. Virus replication was evaluated by 

plaque assay, and EC50 was calculated by a non linear 
regression. The inhibitory effects of all three compounds 
showed dose-dependent patterns. The corresponding EC50 
values calculated were 20, 15 and 7 μM for 2A, 5B and 9C, 
respectively (Fig. 3c).

When compounds 2A, 5B and 9C were also evaluated 
against ACV-resistant HSV-1 strains, we found that all of 
them restrained Field and B2006 viral multiplication, with 
EC50 values of 28, 21 and 15 μM against Field strain and 40, 
36 and 19 μM against B2006 strain, respectively (Fig. 3c).

Therefore, the three compounds exerted a potent antiviral 
activity against both HSV-1 TK+ and TK− strains in Vero 
cells by restraining an early event in HSV-1 multiplication.

Effect of 2A, 5B and 9C on cytokine production in HSV‑1 
infected J774A.1 cells

Since macrophages are involved in the inflammatory reac-
tion elicited by HSK and play a crucial role as one of the 
dominant cell infiltrates in infected tissues, we have evalu-
ated the effect of compounds 2A, 5B and 9C in J774A.1 
cells infected with HSV-1 [21, 22].

First, we found that none of the three compounds were 
cytotoxic in J774A.1 cells at the concentrations tested, 
being the CC50 value higher than 300 μM (data not shown). 
When J774A.1 cells were infected with HSV-1 KOS 
(m.o.i. = 0.1) and treated with 2A, 5B and 9C (1–300 μM) 
to evaluate their antiviral activity, we found that all com-
pounds inhibited HSV-1 multiplication with EC50 values of 
27, 24 and 12 μΜ, respectively.

It is well known that HSV-1 infection triggers the pro-
duction of proinflammatory cytokines in macrophages 
[8, 23]. Hence, we investigated whether 2A, 5B and 9C 
affected IL-6 and TNF-α secretion.

Fig. 2   Structure of the carnosic acid derivatives

Table 1   Screening of jatropholones and carnosic acid derivatives: 
cytopathic effect and cytotoxicity assays

a  Percentage of absorbance of infected cells treated with 300, 150 
and 75  μM of the compounds compared with untreated–uninfected 
cells, considered as 100 % of cell survival

Compound Percentage of inhibitiona Cytotoxicity (CC50, μM)

300 μM 150 μM 75 μM

1A 13 12 10 >300

2A 100 100 100 >300

3A 5 4 6 >300

4A 18 13 4 >300

5B 100 100 100 >300

6C 21 17 12 >300

7C 19 12 8 >300

8C 9 4 5 >300

9C 100 100 100 >300



	 Med Microbiol Immunol

1 3

J774A.1 cells infected or not with HSV-1 were treated or 
not with 75 μM of 2A, 5B and 9C for 24 h. Then, superna-
tants were harvested, and IL-6 and TNF-α were quantified 
by ELISA.

No significant differences between IL-6 and TNF-α 
release from non-treated and treated cells were detected 
in non-infected cells (Fig.  4). As previously reported, the 
production of IL-6 and TNF-α in infected cells was higher 
than that in non-infected cells (p < 0.01) [8]. Interestingly, 
we found that secretion of IL-6 and TNF-α was signifi-
cantly reduced when any of the compounds were added to 
HSV-1-infected cells (p < 0.05) (Fig. 4a).

NF‑κB and ERK activation induced by HSV‑1 in J774A.1 
cells

NF-κB is a major signaling pathway activated by HSV-1 
and TLRs. A series of phosphorylation/recruitment/acti-
vation events, such as the degradation of IκB, lead to 

NF-κB nuclear translocation and transcription of inflam-
matory cytokine genes [23, 24]. Thus, to study the role of 
2A, 5B and 9C in the NF-κB signaling cascade, we exam-
ined whether these compounds affected HSV-induced IκB 
degradation. For that purpose, macrophages infected with 
HSV-1 were treated with 75  μM of 2A, 5B and 9C for 
24 h. Then, cells were processed through Western blot by 
using a rabbit polyclonal anti-IκB antibody.

None of the compounds degraded IκB in non-infected 
cells (Fig.  5a). HSV-1 infection induced IκB degradation 
while compounds 2A, 5B and 9C did not impede IκB dis-
appearance after viral infection (Fig.  5a). However, we 
hypothesized that compounds 2A, 5B and 9C might inhibit 
any step downstream IκB degradation, such as NF-κB 
activation. Hence, we explored whether these compounds 
could affect NF-κB activation by using a NF-κB-LUC 
reporter plasmid.

J774A.1 cells were transfected with the NF-κB-LUC 
reporter vector and β-galactosidase control plasmid and, 

Fig. 3   Antiviral activity of 2A, 5B and 9C in Vero cells. a Effect of 
2A, 5B and 9C on gD expression in Vero infected cells. Vero cells 
were infected with HSV-1 KOS (m.o.i.  =  1) and treated with 2A, 
5B and 9C or not (CV). At 24 h p.i., gD was localized by IFI stain-
ing. Magnification: 400×. b Vero cells infected with HSV-1 KOS 
(m.o.i = 1) were treated or not (control) with 75 µM of 2A, 5B and 

9C at 0, 2, 4, 6, 8 or 12 h. After 24 h of incubation at 37 °C, virus 
yields were determined by plaque assay and plotted as the percent-
age of inhibition with respect to untreated–infected control. c HSV-1 
KOS, Field and B2006 infected cells were treated with different 
concentrations of 2A, 5B and 9C. After 24 h, supernatants were har-
vested and titrated by plaque assay
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24 h later, infected with HSV-1 and treated with 75 μM of 
2A, 5B and 9C. After 16 h, luciferase activity was meas-
ured in cell extracts and each value was normalized to 
β-galactosidase activity. Although HSV-1 induced a strong 
NF-κB activation (p < 0.01), none of the compounds ham-
pered its activation (Fig. 5a).

Considering that ERK pathway is also involved in the 
regulation of cytokine production, we examined whether 
2A, 5B and 9C could modulate ERK phosphorylation. 
Thus, J774A.1 cells infected with HSV-1 were treated or 
not with 2A, 5B and 9C for 24 h. Subsequently, cells were 
lysed and subjected to Western blot with an anti-pERK 
antibody.

We found that none of the three compounds induced 
ERK phosphorylation in non-infected cells. We verified 
that the levels of ERK phosphorylation were increased 

within 24  h after HSV-1 infection and that, interestingly, 
they were strongly inhibited by 2A, 5B and 9C (Fig. 6a).

We concluded that the three compounds blocked ERK 
phosphorylation but none of them inhibited NF-κB activa-
tion induced by HSV-1.

Effect of 2A, 5B and 9C on cytokine production induced 
by TLR ligands in J774A.1 cells

Toll-like receptors (TLRs) are innate immune sensors 
implicated in the control of infections through the recog-
nition of pathogen-associated molecular patterns. Sev-
eral TLRs, especially TLRs 2, 4 and 9, are involved in 
early recognition of HSV components [24–29]. Since the 
reduction of IL-6 and TNF-α production in 2A-, 5B- and 
9C-treated and HSV-1-infected J774A.1 cells could be due 

Fig. 4   Effect of 2A, 5B and 9C on cytokine production. J774A.1 
cells were infected with HSV-1 (m.o.i. =  1) for 24 h (a), or stimu-
lated with TLR2, TLR4 (100  ng/ml) and TLR9 (5  μg/ml) ligands 

for 8 h (b), and treated or not with 75 µM of 2A, 5B or 9C. TNF-α 
and IL-6 were determined by ELISA. Data are expressed as the 
mean ± SD of three separate experiments
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to the antiviral activity of these compounds, we used TLR 
ligands to evaluate solely their immunomodulatory effect.

Thus, to stimulate macrophages, we used TLR2, TLR9 
and TLR4 ligands which are involved in HSV-1-induced 
cytokine production and are associated with neuroinflam-
mation, herpetic encephalitis and HSK [24–29].

For that purpose, J774A.1 cells were stimulated or 
not with TLR2, TLR4 and TLR9 ligands and treated 
or not with 2A, 5B and 9C for 8  h. Then, supernatants 
were harvested, and IL-6 and TNF-α were quantified by 
ELISA.

The three ligands were able to induce IL-6 and TNF-α 
in J774A.1 cells (p < 0.01) (Fig. 4b). Interestingly, TNF-α 
production was significantly inhibited by 2A, 5B and 9C 
(p < 0.01) (Fig. 4b). In addition, the three compounds sig-
nificantly reduced IL-6 release after activation with TLR2 

Fig. 5   Effect of 2A, 5B and 9C on IκBα degradation and NF-κB 
activation. J774A.1 cells were infected with HSV-1 (m.o.i.  =  1) 
for 24 h (a), or stimulated with TLR2, TLR4 (100 ng/ml) or TLR9 
(5 μg/ml) for 60 min (b), and treated or not with 75 µM of 2A, 5B 
or 9C. Macrophages were lysed and subjected to SDS-PAGE, fol-
lowed by immunoblotting with antibodies against IκBα and actin. 
J774A.1 cells were transfected with 0.5 μg of NF-κB-LUC reporter 

vector and 0.5  μg of β-galactosidase control plasmid. After 24  h, 
J774A.1 cells were treated with 75 µM of 2A, 5B or 9C and infected 
with HSV-1 (m.o.i. = 1) for 16 h (a) or stimulated with TLR2, TLR4 
(100 ng/ml) and TLR9 (5 μg/ml) ligands for 8 h (b). Luciferase activ-
ity was measured in cell extracts, and each value was normalized to 
β-galactosidase activity in relative luciferase units (RLUs). Data are 
expressed as the mean ± SD of three separate experiments

Fig. 6   Effect of 2A, 5B and 9C on ERK activation. J774A.1 cells 
were infected with HSV-1 (m.o.i.  =  1) for 24  h (a), or stimulated 
with TLR2, TLR 4 or TLR 9 for 60 min (b), and treated or not with 
75 µM of 2A, 5B or 9C. Macrophages were lysed and subjected to 
SDS-PAGE, followed by immunoblotting with antibodies against 
pERK and ERK
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and TLR4 ligands (p  <  0.01), even though they did not 
modify IL-6 when induced with TLR9 ligand (Fig. 4b).

NF‑κB and ERK activation induced by TLR ligands 
in J774A.1 cells

Since 2A, 5B and 9C modulated TNF-α and IL-6 produc-
tion induced by TLRs ligands, we next determined whether 
the NF-κB and ERK pathways were affected by them in 
cells stimulated with TLR ligands. Stimulation with TLRs 
ligands completely degraded IκB and activated NF-κB 
(p < 0.01), whereas 2A, 5B and 9C prevented neither TLR-
induced IκB degradation nor NF-κB activation (Fig. 5b).

In contrast, the three compounds completely blocked 
ERK phosphorylation triggered in macrophages stimulated 
with TLR2, TLR 4 and TLR9 ligands (Fig. 6b).

Hence, 2A, 5B and 9C modulated TNF-α and IL-6 
secretion which, in turn, could be associated with the inhi-
bition of the ERK signaling pathway.

Discussion

The current standard of care for HSK includes topical 
antivirals to inactivate and prevent further viral replica-
tion and corticosteroids to combat the immunopathologi-
cal component of stromal disease [2]. The combination 
of antivirals and corticosteroids for other HSV-1-induced 
diseases such as herpetic encephalitis has been also exam-
ined [30, 31]. However, corticosteroids have adverse side 
effects, and there is concern that they prolong viral shed-
ding responsible for further virus-induced damage. Fur-
thermore, prolonged virus replication would be likely to 
increase the risk of antiviral resistance development [1–3, 
30, 31].

In the present study, we identified three diterpenes that 
hindered both HSV-1 multiplication and HSV-1- and TLR-
ligand-induced inflammatory response in vitro.

Likewise, compounds 2A, 5B and 9C were effective to 
restrain multiplication of TK− strains of HSV-1 resistant 
to ACV, which indicated that they would have a different 
mechanism of action from that of ACV.

It has been previously demonstrated that the modula-
tion of the Raf/MEK/ERK or NF-κB pathways impairs the 
multiplication of HSV-1 [32, 33]. Since 2A, 5B and 9C 
prevented ERK activation, they might exert their antiviral 
action by interfering host cell functions required for virus 
replication. Hence, we cannot discard that these compounds 
presented an antiviral action as a consequence of the inhibi-
tion of the ERK pathway. Moreover, the inhibitory effect of 
2A, 5B and 9C on cytokine production could be associated 
with the ERK signaling, while the NF-κB pathway was not 
hampered by any of these compounds (Figs. 4a, 5a, 6a).

Considering that several viruses interact with TLRs 
involved in eliciting the innate immune response, it has been 
proposed that the inhibition of TLR signaling could have great 
therapeutic potential in virus-induced diseases, as it occurs 
with herpetic, arenavirus and influenza infections [25, 34–36].

When J774.A1 macrophages were stimulated by TLRs 
ligands, 2A, 5B and 9C inhibited ERK activation as well 
as reduced TNF-α production (Figs.  4b, 6b). Compounds 
were able to hinder IL-6 secretion after activation with 
TLR2 or TLR4 ligands, but not with TLR9 ligand (Fig. 4b). 
Therefore, the inhibition of the ERK pathway may not be 
sufficient to prevent IL-6 secretion in TLR9-stimulated 
cells and, consequently, other signaling pathways such as 
NF-κB should be involved (Figs. 4b, 5b, 6b). In fact, it has 
been reported that NF-κB is a key regulator of IL-6 expres-
sion following TLR9-mediated activation [28].

In the case of HSV-1-infected macrophages, the inhibi-
tion of both TNF-α and IL-6 production could be ascribed 
to the block of the TLR2 and TLR4 signaling pathways 
which would probably counteract the lack of IL-6 inhibi-
tion due to TLR9 activation (Figs. 4, 6).

Thus, we hypothesize that the immunomodulatory effect 
of 2A, 5B and 9C in macrophages infected with HSV-1 
may be a consequence of the inhibition of the ERK path-
way activated by those TLRs involved in viral infection.

The discovery of compounds with antiviral and immu-
nomodulatory activities constitutes a relevant contribu-
tion to the treatment immunopathologies of viral origin. 
However, to our knowledge, scientific literature reveals 
that there are very few examples of this kind of bioactive 
diterpenes. Particularly, Krawczyk et al. [13] reported that 
three taxol derivatives possess biological activity since they 
inhibit HSV replication cycle and affect immune response 
by inhibiting PHA-induced T lymphocyte proliferation. 
Nevertheless, they were not assayed against ACV-resistant 
herpes virus.

Diterpenes of natural origin such as compounds 2A, 5B 
and 9C exhibited this dual property and, besides, are effec-
tive against ACV-resistant HSV populations. These com-
pounds affected TLR signaling pathways and, hence, might 
be a useful strategy to control the progress of HSV-induced 
disease. Further in vivo studies will be needed to determine 
the potential therapeutic effects of 2A, 5B and 9C to treat 
HSV-infection-associated diseases.
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