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In this paper we present a novel approach for modelling the lubrication flow of a Bingham fluid in a chan-
nel whose amplitude is non uniform. The novelty consists in deriving the rigid plug equation using an
integral approach based on Newton’s second law, where the unyielded part is treated as an evolving
non material volume. Such an approach leads to an integro-differential equation for the pressure that
can be solved with an iterative procedure. We prove that a true unyielded plug exists even when the
maximum width variation is not ‘‘small’’ and we find constraints on the amplitude of the channel that
prevent the plug from ‘‘breaking’’. We also extend our model to the case of a pressure-dependent
viscosity.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

A Bingham plastic is a non-Newtonian fluid that behaves like a
rigid body when a certain invariant of the stress is below a critical
threshold and like a viscous fluid when the invariant is above (see
[3,5], or the original papers by Bingham [1,2]). The typical way of
proceeding when deriving the equation of motion for this kind of
fluid is to write the balance of linear momentum1

.�
Dv�

Dt�
¼ �r�P� þ r� � S�; ð1Þ

where .� is density, v� is velocity, P� is pressure and S� is the devi-
atoric part of the stress. Eq. (1) is written for the whole domain
(rigid and liquid) and it is assumed that the velocity and the stress
are continuous across the fluid/rigid interface. In the fluid region the
constitutive equation is the one of a linear viscous fluid, while in the
rigid part the stress is undetermined and we only know that
the strain rate vanishes, i.e. D� ¼ 0 (this can be proved treating
the unyielded part as a viscous fluid and letting the viscosity tend
to infinite, see [8]).

In this paper we present a novel approach for modelling the
flow of a Bingham fluid in a channel when the driving force is an
applied pressure gradient (Poiseuille flow). We assume that the
channel width is much smaller than the channel length, so that
the lubrication approximation is suitable. When dealing with a
lubrication flow Eq. (1) can be drastically simplified introducing
the aspect ratio e� 1 and rescaling the problem with quantities
that contain e. With this procedure we look for a solution that
can be expressed as power series of e and we study the problem
at the leading order, i.e. neglecting all the terms containing e. In
doing this we are tacitly assuming that the rescaled variables
and their derivatives are Oð1Þ in both the liquid and solid domain.
In particular the stress components S�ij are rescaled with the char-
acteristic viscous stress and it is assumed that the
non-dimensional components Sij are everywhere Oð1Þ. The latter
hypothesis can be checked ‘‘a posteriori’’ only in the liquid part,
where the stress is determined, but not in the rigid domain, where
the stress is not even defined. In other words we cannot verify if
the order zero approximation of (1) is justified also in the
unyielded part.

This point is of crucial importance, since we know that assum-
ing Sij ¼ Oð1Þ and using (1) to derive the motion in the rigid part
leads to the well known ‘‘lubrication paradox’’, which consists in
a plug velocity that depends on the longitudinal coordinate,2 see
[6].

Motivated by this observation we have decided not to use Eq.
(1) in the unyielded part and we have written the balance of linear
momentum using an integral global approach similar to the one
presented in [17] and in [12]. In practice we have considered the
.
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Fig. 1. Sketch of the domain of the problem.
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unyielded domain as an evolving non material volume X�t� , whose
dynamics is governed by Newton second law3 (see, e.g., [4,18])

d
dt�

Z
X�t�

.�v�ð ÞdV� ¼
Z
@X�t�

ðT�nÞdS� �
Z
@X�t�

.�v� v� �w�ð Þ � n½ �dS�;

ð2Þ

where T� ¼ �P�Iþ S�, is the Cauchy stress tensor and w� the veloc-
ity of the boundary @X�t� .

4 Exploiting the Reynolds transport theorem
for arbitrary domains (see [4,18]) Eq. (2) can be rewritten asZ

X�t�

@

@t�
.�v�ð ÞdV� þ

Z
@X�t�

.�v� v� � nð ÞdS� ¼
Z
@X�t�

ðT�nÞdS�: ð3Þ

The idea is to use Eq. (3) to deduce the rigid plug equation.
Following this approach the knowledge of the stress tensor inside
the rigid part is no longer needed and no guess has to be made on
the order of magnitude of the stress components. We just need to
know the stress acting on the exterior boundary of X�t , namely
T�j@X�t , that is the external forces responsible for the motion of the

rigid core. These are: (i) the forces acting on the yield surface r�
(see Fig. 1) and (ii) the forces acting on the inlet and outlet of the
channel. On the yield surface r� we have simply the viscous stress
(which is known once we solve the problem in the viscous domain),
while on the channel inlet and outlet the applied pressure (which is
a given datum of the problem) is acting.

At the leading order and in the case of non uniform channel
width, Eq. (3) reduces to an integro-differential equation for the
pressure P�, whose solution allows to determine explicitly the
velocity field v� and the yield surface r� (which is a free boundary
since it is unknown). In particular, in the rigid domain the longitu-
dinal velocity v�1 is spatially uniform and the transversal velocity
v�2 vanishes. Therefore the constraint of the rigid motion is fulfilled
in the unyielded region and no ‘‘lubrication paradox’’ arises. These
results are also extended to the case of fluids with constant density
and pressure dependent viscosity (see [11] and the reference
therein for an overview of these kind of fluids).

Our work confirms (with a completely different approach,
based on (3)) the results presented in [6,10], where it is proved that
3 In (3) we are neglecting body forces.
4 Notice that when the volume Xt� is material w ¼ v and the second term in the

r.h.s. of (2) vanishes. 5 We neglect body forces.
the central unyielded core persists for a sufficiently small pertur-
bation (whose order of magnitude is e) of the uniform walls, in
contrast to the lubrication paradox (see point (1) in Section 2.1
of [10]). Actually we extend such a result since we prove that a true
plug persist even if the perturbation is Oð1Þ.

2. Derivation of the model

We consider the flow of an incompressible Bingham fluid in a
channel of length L� and amplitude 2h� x�ð Þ, as the one depicted
in Fig. 1. Because of symmetry, we confine our analysis to the
upper part of the layer, namely ½0;h�ðx�Þ�. We assume that the
velocity field is given by

v� ¼ v�1ðx�; y�; t�Þiþ v�2ðx�; y�; t�Þj;

where x�; y� are the longitudinal and transversal coordinate
respectively.

The Cauchy stress is T� ¼ �P�Iþ S�, where P� ¼ 1=3trT�, and S�

is the so-called extra-stress. The Bingham constitutive equation
can be written as

S� ¼ 2g�c þ
s�o

IID�

� �
D�; ð4Þ

or in the implicit form [14,15]

D� ¼ IID�

2g�c IID� þ s�o

� �
S�; ð5Þ

where D� ¼ 1
2 rv� þ rv�T
� �

;g�c is the viscosity, s�o is the yield stress

and where

IIS� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

trS�2
r

; IID� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

trD�2
r

:

Eq. (5) admits the solution D� ¼ 0, corresponding to rigid body
motion. On the other hand, if D� – 0, we can express S� in terms
of D� and find IIS� ¼ 2g�c IID� þ s�o, with IIS� P s�o. Therefore, whenever
D� ¼ 0, we have IIS� 6 s�o. In other words, the stress is not deter-
mined as long as IIS� is below the yield stress. We assume that
the region where IIS� P s�o (i.e. the viscous region) and the region
where IIS� 6 s�o (i.e. the rigid region) are separated by a sharp inter-
face y� ¼ �r�ðx�; t�Þ (see Fig. 1).

The mechanical incompressibility yields

trD� ¼ @v
�
1

@x�
þ @v

�
2

@y�
¼ 0: ð6Þ
2.1. The viscous domain

The governing equations in the viscous region are the incom-
pressibility condition (6) and5

.�
@v�1
@t�
þ v�1

@v�1
@x�
þ v�2

@v�1
@y�

� �
¼ � @P�

@x�
þ @S�11

@x�
þ @S�12

@y�
; ð7Þ

.�
@v�2
@t�
þ v�1

@v�2
@x�
þ v�2

@v�2
@y�

� �
¼ � @P�

@y�
þ @S�12

@x�
þ @S�22

@y�
; ð8Þ

where S�ij are the components of S�, given by (4).

2.2. The rigid domain

The inner rigid core X�t� at some time t� > 0 is given by

X�t� ¼ ðx�; y�Þ : x� 2 ½0; L��; y� 2 ½�r�;r��f g:



Fig. 2. Sketch of the inner rigid core.
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The integral momentum balance for the whole domain X�t� , in
the absence of body forces, is given by (3), which we rewrite for
the sake of clarityZ

X�t�

@

@t�
.�v�ð ÞdV� þ

Z
@X�t�

.�v� v� � nð ÞdS� ¼
Z
@X�t�

ðT�nÞdS�; ð9Þ

where n is the outward unit normal to @X�t� . We divide the bound-
ary in four parts as depicted in Fig. 2 so that

@X�t� ¼ C�1;t� [ C�2;t� [ C�3;t� [ C�4;t� ;

with6

n1 ¼
ð�r�x� ;1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r�2
x�

q ; n2 ¼ ð1;0Þ; n3 ¼
ð�r�x� ;�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r�2
x�

q ; n4 ¼ ð�1;0Þ:

In the rigid part the velocity is given by

v�1 ¼ k�1ðt�Þ;
v�2 ¼ k�2ðt�Þ ¼ 0 ðby symmetryÞ;

(
ð10Þ

so that the momentum balance (9) becomes

2
@

@t�
.�v�ð Þ

Z L�

0
r�ðx�; t�Þdx� þ 2.�v�k�1ðr�in � r�outÞ ¼

Z
@X�t�

T�n dS�;

where r�in ¼ r�ð0; t�Þ; r�out ¼ r�ðL�; t�Þ. Now we have to evaluate
external forces acting on the boundary @X�t� expressed by the sur-
face integral on the r.h.s. of (9). We have

T�n1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr�2
x�

q �r�xT�11þT�12

�r�xT�12þT�22

� �����
r�

T�n2 ¼
�P�out 0

0 �P�out

0
B@

1
CA 1

0

� �
;

T�n3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr�2
x�

q �r�xT�11�T�12

�r�xT�12�T�22

� �����
�r�

T�n4 ¼
�P�in 0

0 �P�in

0
B@

1
CA �1

0

� �
;

where P�in; P
�
out are the pressures acting on the inlet and outlet of the

channel, respectively. In particular, P�in and P�out are prescribed (pres-
sure driven flow). We observe that, because of symmetry, the sec-
ond component of T�n1 evaluated on r� must be the opposite of
the second component of T�n3 evaluated on �r�, i.e.

ð�r�x�T
�
12 þ T�22Þr� ¼ �ð�r�x�T

�
12 � T�22Þ�r� ;

while the first component of T�n1 evaluated on r� must be equal to
the first component of T�n3 evaluated on �r�, namely

ð�r�x�T
�
11 þ T�12Þr� ¼ ð�r

�T�11 � T�12Þ�r� :

In conclusion we have found thatZ
@X�t

ðT�nÞdS� ¼ 2
Z L�

0

ð�r�x�T
�
11þ T�12Þr�
0

� 	
dx� þ2

Z r�out

0

�P�out

0

� �
dy�

þ2
Z r�

in

0

P�in
0

� �
dy�:

The dynamics of the whole rigid region is expressed by the fol-
lowing equation7
6 r�x� ¼ @r�
@x� .

7 We remark that

�r�xT�11 þ T�12

� 
r�þ ¼ lim

y�!r�þ
�r�xT�11 þ T�12


 �
;

i.e. the limit is evaluated form the viscous domain. Indeed �r�xT�11 þ T�12

� 
r�þ repre-

sents the force exerted by the viscous region on the lateral side of the inner rigid

core.
@

@t�
.�k�1

 � Z L�

0
r� dx� þ .�k�

2

1 ðr�in � r�outÞ

¼
Z L�

0
�r�x�T

�
11 þ T�12

� 
r�þ dx� þ P�inr

�
in � P�outr

�
out : ð11Þ

Next we assume P�in ¼ P�in t�ð Þ, and P�out constant in time.8 Hence
the prescribed pressure difference driving the flow is

DP� t�ð Þ ¼ P�in t�ð Þ � P�out: ð12Þ

We set P�c ¼ supt�P0 DP� t�ð Þ, which, essentially, corresponds to the
pressure difference order of magnitude.

Concerning the boundary conditions we impose

v�ðx�;h�; t�Þ ¼ 0; i:e: no-slip; ð13Þ

while, following [7], we write9

sv� � tty�¼r� ¼ 0; sv� � nty�¼r� ¼ 0; ð14Þ
sT�n � tty�¼r� ¼ 0; sT�n � nty�¼r� ¼ 0; ð15Þ

which express the continuity of the velocity and of the stress across
the yield surface y� ¼ r� (in the expressions above t and n represent
the tangent and normal unit vector to y� ¼ r� respectively).

Remark 1. In Section 5 we extend our approach, considering also
the case in which the viscosity depends on pressure, namely

g� ¼ g�cg P�ð Þ; with g P�ð Þ 2 0;1ð Þ: ð16Þ
2.3. Non dimensional formulation

As stated in the introduction, we assume that the characteristic
length of the channel L�, is by far greater than its characteristic
height 2H�, where

H� ¼ sup
x�2½0;L��

h�ðx�Þ;

so that we may introduce the parameter

e ¼ H�

L�
� 1;

which is crucial for applying the classical thin film approach (or
lubrication approximation). We rescale the problem using the fol-
lowing non dimensional variables10
8 Minor changes allow to treat also the case P�out ¼ P�out t�ð Þ.
9 The symbol s . . . t denotes the jump across the interface y� ¼ r� . We are also

assuming s.�ty�¼r� ¼ 0.
10 Recall that P�out is constant in time.



11 Essentially we are assuming @h
@x ¼ O 1ð Þ.

12 Again, to keep notation light f x; f xx denote @f
@x ;

@2 f
@x2 , respectively.
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x¼ x�

L�
; y¼ y�

eL�
; r¼ r�

eL�
; h¼ h�

eL�
; t¼ t�

ðL�=U�Þ ;

v1¼
v�1
U�
; v2¼

v�2
eU�

; P¼ P� �P�out

P�c
; DP¼DP� t�ð Þ

P�c
¼
ð12Þ

P�in t�ð Þ�P�out

P�c
; ð17Þ

S¼ S�

ðg�cU�=H�Þ ; D¼ D�

ðU�=H�Þ ; IID ¼
IID�

ðU�=H�Þ ; IIS¼
IIS�

ðg�cU�=H�Þ ;

where

U� ¼ H�
2

g�c
P�c
L�
; ð18Þ

comes from Poiseuille formula. After some algebra we find

D ¼ 1
2

2e @v1
@x

@v1
@y þ e2 @v2

@x

@v1
@y þ e2 @v2

@x 2e @v2
@y

2
64

3
75; S ¼ 2þ Bi

IID

� �
D;

where

Bi ¼ s�oH�

g�cU�
¼
ð18Þ

1
e

s�o
P�c
;

is the so-called Bingham number. Moreover

IID ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 @v1

@x

� �2

þ 1
4

@v1

@y
þ e2 @v2

@x

� �2
s

:

Eqs. (6)–(8) become

@v1

@x
þ @v2

@y
¼ 0; ð19Þ

eRe
@v1

@t
þ v1

@v1

@x
þ v2

@v1

@y

� �
¼ � @P

@x
þ e

@S11

@x
þ @S12

@y
; ð20Þ

e3Re
@v2

@t
þ v1

@v2

@x
þ v2

@v2

@y

� �
¼ � @P

@y
þ e2 @S12

@x
þ e

@S22

@y
; ð21Þ

where Re ¼ .�U�H�

g�c

� �
is the Reynolds number. The inner core Eq. (11)

becomes

eRe
@k1

@t

Z 1

0
rdxþ k2

1ðrin � routÞ
� 	

¼
Z 1

0
Prx � erxS11 þ S12½ �rþ dxþ DPrin; ð22Þ

since Pjx¼0 ¼ DP, and Pjx¼1 ¼ 0. The boundary conditions (13)–(15)
become

vðx; h; tÞ ¼ 0; ð23Þ
sv1ty¼r ¼ sv2ty¼r ¼ 0; ð24Þ

sPt 1þ e2 @r
@x


 �2
h i

y¼r
þ e3S11

@r
@x


 �2 � 2e2S12
@r
@x


 �
þ eS22

h i
y¼r
¼ 0;

sS12ty¼r þ e @r
@x


 �
S22 � S11 � eS12

@r
@x

� 
y¼r ¼ 0:

8<
:

ð25Þ

In the rigid domain the non dimensional velocity field is

v1 ¼ k1ðtÞ;
v2 ¼ 0;

�
ð26Þ

with k1 ¼ k�1=U�.

3. Asymptotic expansion

Following again [7], we look for a solution in which the main
variables of the problem can be expressed as power series of e,
namely
v ¼ vð0Þ þ evð1Þ þ e2vð2Þ þ � � �
P ¼ Pð0Þ þ ePð1Þ þ e2Pð2Þ þ � � �
r ¼ rð0Þ þ erð1Þ þ e2rð2Þ þ � � �
k1 ¼ kð0Þ1 þ ekð1Þ1 þ e2kð2Þ1 þ � � �
S ¼ Sð0Þ þ eSð1Þ þ e2Sð2Þ þ � � �

We further assume that hðxÞ is sufficiently smooth11 and limit
our analysis to the leading order, considering Bi ¼ O 1ð Þ and
Re KO 1ð Þ. We do not consider any converging issues.

3.1. The leading order approximation

In this section we determine the velocity field and the yield sur-
face in terms of the pressure. The latter is governed by an
integro-differential equation of elliptic type (see (39)). We begin
by observing that

Sð0Þ12 ¼ 1þ Bi

jv ð0Þ1y j

" #
v ð0Þ1y ;

and, since we are looking for a solution with v ð0Þ1y < 0 in the upper
part of the channel, we get

Sð0Þ12 ¼ v ð0Þ1y � Bi:

Thus Eqs. (19)–(21) reduces to

@vð0Þ1
@x þ

@vð0Þ2
@y ¼ 0;

� @Pð0Þ

@x þ
@2vð0Þ1
@y2 ¼ 0;

� @Pð0Þ

@y ¼ 0;

8>>>><
>>>>:

ð27Þ

with boundary conditions

@vð0Þ1
@y

����
y¼rð0Þ

¼ 0;

v ð0Þ1 ðx; h; tÞ ¼ 0:

8><
>: ð28Þ

The first comes from the condition IID ¼ 0 on y ¼ r, while the
second is simply no-slip. From (27)3 we get Pð0Þ ¼ Pð0Þðx; tÞ, while
(27)1,2 yields12

v ð0Þ1 ¼ �Pð0Þx
ðh� yÞðy� 2rð0Þ þ hÞ

2
: ð29Þ

Exploiting the continuity equation we find v2 x; y; tð Þ ¼
R h

y v1x dy,
namely

v ð0Þ2 ¼ �
@

@x
Pð0Þx
ðy� hÞ2ðy� 3rð0Þ þ 2hÞ

6

" #
: ð30Þ

Next, evaluating v ð0Þ1 ;v ð0Þ2 on rð0Þ and recalling conditions (24) and
(26), we obtain

v ð0Þ1

���
y¼rð0Þ

¼ kð0Þ1 ðtÞ ¼ �Pð0Þx
ðh� rð0ÞÞ2

2
;

v ð0Þ2

���
y¼rð0Þ

¼ @

@x
�Pð0Þx

ðh� rð0ÞÞ3

3

" #
� rð0Þx Pð0Þx

ðh� rð0ÞÞ2

2
¼ 0; ð31Þ

which entails

�Pð0Þx
ðh� rð0ÞÞ2

2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kð0Þ
1

� @
@x

2
3
ðh� rð0ÞÞ

� 	
¼ �rð0Þx �Pð0Þx

ðh� rð0ÞÞ2

2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

kð0Þ
1

:
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Hence, supposing kð0Þ1 – 0, we get @
@x

2
3 ðh� rð0ÞÞ þ r 0ð Þ� 

¼ 0. In
conclusion

rð0Þ x; tð Þ ¼ �2h xð Þ � C tð Þ; ð32Þ

where C is unknown at this stage.
Let us now consider the rigid core Eq. (22) at the zero orderZ 1

0
Pð0Þrð0Þx dx� Biþ DPrð0Þin ¼ 0;

which, after an integration by parts, reduces to

�
Z 1

0
Pð0Þx rð0Þdx ¼ Bi: ð33Þ

Substituting (32) into (33), we obtain

C tð Þ ¼
2
Z 1

0
Pð0Þx hdx� Bi

DP tð Þ ;

with DP tð Þ defined in (17). We thus have

rð0Þ x; tð Þ ¼ �2h xð Þ þ
Bi� 2

Z 1

0
Pð0Þx hdx

DP tð Þ ; ð34Þ

or equivalently

rð0Þ x; tð Þ ¼ 2ðhin � h xð ÞÞ þ Bi
DP tð Þ þ

2
DP tð Þ

Z 1

0
Pð0Þhx dx; ð35Þ

where hin ¼ hjx¼0. Defining the viscous region width as

‘ 0ð Þ x; tð Þ ¼ h xð Þ � rð0Þ x; tð Þ; ð36Þ

formula (34) entails

‘ 0ð Þ x; tð Þ ¼ 3h xð Þ þ
2
Z 1

0
Pð0Þx hdx� Bi

DP tð Þ : ð37Þ

In particular, recalling (31) and (36), we have

kð0Þ1 ¼ �Pð0Þx
‘ 0ð Þ2

2
: ð38Þ

Now, differentiating (38) with respect to13 x, we obtain

P 0ð Þ
xx ‘

0ð Þ2 þ 2‘ 0ð Þ‘ 0ð Þ
x P 0ð Þ

x ¼ 0; )
ð37Þ

P 0ð Þ
xx þ 6

hx

‘ 0ð Þ P 0ð Þ
x ¼ 0;

i.e. such a integro-differential equation

P 0ð Þ
xx þ

6hx

3hþ
2

Z 1

0
Pð0Þx hdx�Bi

DP tð Þ

2
664

3
775

P 0ð Þ
x ¼ 0; ð39Þ

whose boundary conditions are P 0ð Þ
���
x¼0
¼ DP tð Þ, and P 0ð Þ

���
x¼1
¼ 0. The

solution P 0ð Þðx; tÞ of (39) is then used to evaluate the v 0ð Þ
1 via (29),

v 0ð Þ
2 via (30) and the yield surface rð0Þ via (35).

Remark 2. From (34) we see that rð0Þx ¼ �2hx, i.e. the core
amplitude widens as the channel narrows, whereas it shrinks as
the channel becomes wider. Such counterintuitive behavior has
been already observed in Section 3.1 of [10], where we can read:
‘‘An interesting feature of this solution is that the unyielded plug
13 Recall that kð0Þ1x ¼ 0.
(i.e. the inner core) is wider in the narrower part of the channel.
This is counterintuitive from the perspective of the stress, as we
expect larger shear stresses in the narrower channel’’.
3.2. Flow condition

It is interesting to investigate the so-called ‘‘flow condition’’: i.e.
the condition on DP that prevent the system from coming to a stop.
In case14 h xð Þ � hin we observe by (35) that:

	 DP > Bi
hin
; ) rð0Þ < hin, i.e. the fluid is flowing.

	 DP < Bi
hin
; ) rð0Þ > hin, i.e. the rigid core occupies the whole

channel and there is no flow.

When hðxÞ is not uniform we have to ensure that r 0ð Þ < h xð Þ, in
order to prevent the flow from stopping (see (43)). Recalling (35),
we have

r 0ð Þ ¼ 2ðhin � h xð ÞÞ þ Bi
DP
þ 2

DP

Z 1

0
Pð0Þhx dx < h xð Þ;

or, recalling (36),

‘ 0ð Þ x; tð Þ ¼ 3h xð Þ � 2hin �
Bi
DP
� 2

DP

Z 1

0
Pð0Þhx dx > 0:

Now, since

‘ 0ð Þ x; tð ÞP 3min
x2½0;1�

h� 2hin �
Bi
DP
� 2

DP

Z 1

0
Pð0Þhx dx; ð40Þ

we have to estimate
R 1

0 Pð0Þhx dx. To this end we remark that P 0ð Þ ful-
fills Eq. (39), i.e. an equation of elliptic type. Maximum principle

entails 0 6 P 0ð Þ
6 DP; 8x 2 0;1½ �. So, rewriting

R 1
0 Pð0Þhx dx asZ 1

0
Pð0Þhx dx ¼

Z
hx60f g

Pð0Þhx dx|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
60

þ
Z

hxP0f g
Pð0Þhx dx|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

P0

;

we have15

DP min hx; 0f g 6
Z

hx60f g
Pð0Þhx dx 6

Z 1

0
Pð0Þhx dx 6

Z
hxP0f g

Pð0Þhx dx

6; 6 DP max hx; 0
n o

;

where

hx ¼ min
x2½0;1�

hxðxÞ; and hx ¼ min
x2½0;1�

hxðxÞ:

In conclusion

2 min hx; 0f g 6 2
DP

Z 1

0
Pð0Þhx dx 6 2 max hx; 0

n o
: ð41Þ

Therefore, recalling (40), we have

‘ 0ð Þ x; tð ÞP 3hmin � 2hin �
Bi
DP
� 2

DP

Z 1

0
Pð0Þhx dx

P 3hmin � 2 max hx; 0
n o

� 2hin �
Bi
DP

; ð42Þ

where hmin ¼minx2½0;1� h. So, if we assume

3hmin � 2 max hx; 0
n o

� 2hin

� �
> 0, and require that
14 hin is the inlet channel semi-amplitude, i.e. hin ¼ hjx¼0.
15 Recall that max a; bf g ¼ a, if a P b, otherwise max a; bf g ¼ b. Something similar

for min a; bf g.
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3hmin � 2 max hx; 0
n o

� 2hin �
Bi
DP

> 0;

which implies

DP >
Bi

3hmin � 2 max hx; 0
n o

� 2hin

; ð43Þ

we are sure that the flow never comes to a stop.

Example 1. In case we consider ‘‘flat’’ channel with hx � 0, (43)
reduces to

Bi
DP

< hin; () DP >
Bi
hin

;

that is the flow condition for a channel with parallel walls.
Example 2. If we consider a linear wall profile

h xð Þ ¼ hin þ hout � hinð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Dh

x;

where hout > 0, there are two possibilities:

	 Dh > 0;) hmin ¼ hin, and max hx; 0
n o

¼ Dh. Condition (43)

yields
Bi
DP

< hin � 2Dh|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2hout�3hin

; () DP >
Bi

2hout � 3hin
;

where, of course, we assume 2hout � 3hin > 0, namely hout
hin
> 3

2.

	 Dh < 0;) hmin ¼ hout , and max hx; 0
n o

¼ 0. Inequality (43)

entails
16
Bi
DP

< 2Dhþ hout|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
3hout�2hin

; () DP >
Bi

3hout � 2hin
;

where now we require hout
hin

> 2
3.
Remark 3. Actually condition (43) can be improved, estimatingR 1
0 Pð0Þhx dx by means of the Cauchy–Schwarz inequality. Indeed,

considering that

�
Z 1

0
Pð0Þhx dx

����
���� 6

Z 1

0
Pð0Þhx dx 6

Z 1

0
Pð0Þhx dx

����
����:

Cauchy–Schwarz inequality yields16

�2 hxk kL2 6
2
DP

Z 1

0
Pð0Þhx dx 6 2 hxk kL2 ; ð44Þ

since Pð0Þ 2 ½0;DP�. Hence (42) can be rewritten as

‘ 0ð Þ x; tð ÞP 3hmin � 2 hxk kL2 � 2hin �
Bi
DP

:

So, introducing

h¼max 3hmin�2max hx;0
n o

�2hin

� �
; 3hmin�2 hxk kL2 �2hin

 �n o

;

and assuming h > 0, the flow condition can be rewritten as

DP >
Bi
h
:

fk kL2 ¼
R 1

0 f 2 xð Þdx
h i1=2

.

The latter is more general than (43), since it does not require

3hmin � 2 max hx; 0
n o

� 2hin

� �
> 0:

Indeed we assume that at least one among

3hmin � 2 max hx; 0
n o

� 2hin

� �
and ð3hmin � 2 hxk kL2 � 2hinÞ, is

positive.
3.3. Inner core appearance or disappearance

A non uniform channel profile may cause the appearance/
disappearance of the rigid plug. These phenomena (highlighted
also in [6,10] and therein referred to as ‘‘breaking of the plug’’)
are not possible when the channel profile is uniform, namely when
h xð Þ � hin. Recalling (35), we set

r 0ð Þ x; tð Þ ¼max 0; 2ðhin � h xð ÞÞ þ Bi
DP
þ 2

DP

Z 1

0
Pð0Þhx dx

� �
;

in order to avoid physical inconsistencies. Hence, r 0ð Þ x; tð Þ vanishes
when

h xð ÞP hin þ
Bi

2DP
þ 1

DP

Z 1

0
Pð0Þhx dx: ð45Þ

The r.h.s. of (45) is a critical value, that we denote as hcrt , such
that, whenever h xð ÞP hcrt the core disappears.

Example 3. Let us consider the channel profile

hðxÞ ¼
arctan 5 1

2� x

 �� 

4 arctan 5
2


 � þ 3
4
; ð46Þ

depicted with the dashed line in Fig. 7. We now estimate hcrt

exploiting (45), when DP ¼ 10, and Bi ¼ 5,

h xð ÞP 1þ Bi
2DP

� 1
DP

Z 1

0
Pð0Þ hxj jdx

P 1þ Bi
2DP

� hxk kL2 J 1þ Bi
2DP

� 0:58 
 0:67:

The ‘‘core free’’ region is thus obtained solving h xð ÞP hcrt ,
which we approximate with h xð ÞP 0:67, whose solution is the
interval 1 6 x 6 0:58. Looking at Fig. 7 the actual ‘‘core free’’ region
is 1 6 x K 0:55, which substantially agrees with the above
estimate.
3.4. Solution for an almost flat channel

When h xð Þ � hin (i.e. uniform channel) Eq. (35) gives

rð0Þ tð Þ ¼ Bi
DP tð Þ : ð47Þ

Eq. (39) reduces to

P 0ð Þ
xx ¼ 0; 0 < x < 1;

P 0ð Þ
���

x¼0
¼ DP tð Þ; and P 0ð Þ

���
x¼1
¼ 0;

8<
:
implying

P 0ð Þ x; tð Þ ¼ 1� xð ÞDP tð Þ:

The velocity field becomes17

v ð0Þ1 ¼ �DPðtÞ ðy�rð0ÞÞ2

2 � ð1�rð0ÞÞ
2

2

h i
;

v ð0Þ2 ¼ 0;

8<
: ð48Þ
17 We set, for the sake of simplicity, hin ¼ 1.
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and we also find kð0Þ1 ðtÞ ¼
DP tð Þ

2 ð1� rð0ÞÞ2. Let us now consider a
non-uniform channel profile h xð Þ, assuming that amplitude width
variation is small. We thus set

h xð Þ ¼ hh i þ / xð Þ; ð49Þ

where hh i denotes the spatial average along the channel, i.e.

hh i ¼
Z 1

0
h xð Þdx;

and assume max / xð Þj j ‘‘small’’ (in other words we consider an

almost ‘‘flat’’ channel). We notice that
R 1

0 /ðxÞdx ¼ 0. We look for

P 0ð Þ in the form

P 0ð Þ x; tð Þ ¼ 1� xð ÞDP tð Þ þP x; tð Þ; ð50Þ

where18 Pjx¼0 ¼ Pjx¼1 ¼ 0, and where we expect that both
max Pj j;max Pxj j are ‘‘small’’. Inserting (49) and (50) into (34) we
obtain

r 0ð Þ x; tð Þ ¼ Bi
DP
� 2/ xð Þ � 2

DP

Z 1

0
Px/dx 
 Bi

DP tð Þ � 2/ xð Þ: ð51Þ

Notice that r 0ð Þ� �
¼ Bi

DP, i.e. the average width of the rigid core is

the one corresponding to the flat channel. Concerning ‘ 0ð Þ, form
(36) we have

‘ 0ð Þ x; tð Þ 
 hh i � Bi
DP tð Þ þ 3/ xð Þ: ð52Þ

Exploiting then (39) we compute the pressure field solving

Pxx þ
6/x

‘ 0ð Þ �DP þPxð Þ ¼ 0:

Neglecting /xPx, and considering (52), we have

Pxx � 2DP /x
/þA

h i
¼ 0; where A ¼ hhi3 � Bi

3DP ;

Pjx¼0 ¼ Pjx¼1 ¼ 0;

(

so that

Px ¼ const:ð Þ þ 2DP ln 1þ / xð Þ
A

� 	

 const:ð Þ þ 2DP

/ xð Þ
A :

In conclusion

P x; tð Þ ¼ 2DP tð Þ
A

Z x

0
/ðx0Þdx0;

which yields

P 0ð Þ x; tð Þ ¼ DP tð Þ 1� xð Þ þ 6DP2

hh iDP � Bi

Z x

0
/ x0ð Þdx0: ð53Þ
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Example 4. Let us consider h xð Þ ¼ 1þmx, with m ‘‘small’’, that we
write also as

h xð Þ ¼ 1þm
2|fflfflffl{zfflfflffl}

hh i

þm x� 1
2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

/ xð Þ

:

Eqs. (51) and (53) yield

r 0ð Þ ¼ Bi
DP
�2m x�1

2

� �
; P 0ð Þ x;tð Þ¼DP tð Þ 1�xð Þþ 3mDP2

hh iDP�Bi
x x�1ð Þ;

respectively. We see that rð0Þx ¼ �2m, i.e. the core amplitude widens
for m < 0, whereas it shrinks for m > 0.
18 Recall that Pjx¼0 ¼ DP; Pjx¼1 ¼ 0.
Example 5. We consider a wavy channel as the one of [6]

hðxÞ ¼ 1� h cos 2pd x� 1
2

� �� 	
; ð54Þ

where d > 0, and h� 1. We thus write

h xð Þ ¼ 1� h
pd

sin pdð Þ
� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hh i

þ h
sin pdð Þ

pd
� cos 2pd x� 1

2

� �� �� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

/ xð Þ

;

with max /j j ¼ O hð Þ � 1. Exploiting (51) we obtain

r 0ð Þ 
 Bi
DP
� 2h

sin pdð Þ
pd

� cos 2pd x� 1
2

� �� �� 	
: ð55Þ

The behavior for h ¼ 0:1, and d ¼ 1=5 is shown in Figs. 3 and 4. In
particular in Fig. 4 a close-up showing the difference between the
approximated solution (55) and the computed one (see next
section) is displayed.
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

length

Fig. 4. Close up for the difference between rð0Þ given by (55) and rð0Þ given by (34).
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4. Numerical simulations

We note that, setting F ¼ P 0ð Þ
x , the elliptic problem (39)

P 0ð Þ
xx þ 6 hx

‘ 0ð Þ P
0ð Þ

x ¼ 0;

P 0ð Þ
���

x¼0
¼ DP tð Þ; and P 0ð Þ

���
x¼1
¼ 0;

8<
:
can be transformed in the following integral equation

F ¼ �DP
exp �

Z x

0

6hx0
‘F

dx0
� �

Z 1

0
exp �

Z x

0

6hx0
‘F

dx0
� �

dx
; ð56Þ

where, recalling (37),

‘F ¼min h xð Þ;3h xð Þ þ
2
Z 1

0
Fhdx� Bi

DP

8>><
>>:

9>>=
>>;:

Now, if the conditions ensuring that ‘ 0ð Þ is strictly positive
(Section 3.2) are fulfilled, we can solve (56) through the following
iterative procedure:

Step j ¼ 0. We set F0 ¼ �DP, and ‘F;0 ¼min h xð Þ;3h xð Þ�f
Bi
DP � 2

R 1
0 hdxg.

Step j ¼ 1. F1 ¼ �DP
exp �

R x

0

6hx0
‘F;0

dx0
n o

R 1

0
exp �

R x

0

6hx0
‘F;0

dx0
n o

dx
.

� � �

Step j > 1. Fj ¼ �DP
exp �

R x

0

6hx0
‘F;j�1

dx0
n o

R 1

0
exp �

R x

0

6hx0
‘F;j�1

dx0
n o

dx
, with

‘F; j�1 ¼min h xð Þ;3h xð Þ þ
2
Z 1

0
Fj�1hdx� Bi

DP

8>><
>>:

9>>=
>>;:

Iterating the procedure until the desired tolerance is reached,
we determine the solution F ¼ Pð0Þx . Integration then provides the
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Fig. 5. Plot of x-component of the velocity, h given by (54), d ¼ 0:1; h ¼ 0:02, and
Bi ¼ 5, DP ¼ 10:5.
pressure field Pð0Þ. We can show that, under suitable hypotheses,
the solution of (56) exists and is unique (this will be the subject
of a forthcoming paper).

In Figs. 3 and 4 we have plotted hðxÞ and rð0ÞðxÞ for the wavy
channel profile given by (54). Comparing Fig. 3 with the numer-
ical simulation of [6], we notice a good qualitative agreement,
even if the problem studied in [6] is substantially different.
Indeed, in [6] the problem is solved in a ‘‘periodic’’ portion of
the channel imposing a constant discharge, differently from our
case where the inlet/outlet pressure difference is prescribed. In

Figs. 5 and 6 we have reported the contour plots of v ð0Þ1 , and

v ð0Þ2 , when hðxÞ is given by (54), with d ¼ 0:1; h ¼ 0:02, and
Bi ¼ 5.

The solid colored regions of Figs. 5 and 6 denote the core,
with vanishing transversal velocity and uniform longitudinal
velocity. Notice also the symmetry of the transversal velocity
shown in Fig. 6. In Figs. 7–9 we have considered the profile

(46). The yield surface rð0Þ and the velocities v 0ð Þ
1 ;v 0ð Þ

2 are
reported respectively.
Bi ¼ 5, DP ¼ 10:5.
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Fig. 7. Plot of rð0Þ and h, when h is given by (46). Bi ¼ 5;DP ¼ 10:5.



 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 8. Plot of x-component of the velocity, h given by (46). Bi ¼ 5;DP ¼ 10:5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.15

−0.1

−0.05

0

0.05

Fig. 9. Plot of y-component of the velocity, h given by (46). Bi ¼ 5;DP ¼ 10:5.

74 L. Fusi et al. / Journal of Non-Newtonian Fluid Mechanics 221 (2015) 66–75
5. Model with pressure dependent viscosity

Differently from the classical constitutive model here we
assume that viscosity depends monotonically on pressure (see,
e.g. [13,16]). Hence (5) rewrites in this way

D� ¼ IID�

2g� P�ð ÞIID� þ s�o
S�:

In particular, recalling (16), the viscosity is expanded considering

gðPÞ ¼ gðPð0Þ þ ePð1Þ þ e2Pð2Þ þ � � �Þ;

so that, around e ¼ 0 we get g ¼ gð0Þ þ egð1Þ þ e2gð2Þ þ � � �, where

gð0Þ ¼ gðPð0ÞÞ; gð1Þ ¼ dg
dP
ðPð0ÞÞ Pð1Þ: ð57Þ

Following the same procedure described in Section 3.1, problem
(27) can be rewritten as

@vð0Þ1
@x þ

@vð0Þ2
@y ¼ 0;

� @Pð0Þ

@x þ @
@y gð0Þ P 0ð Þ

� �
@vð0Þ1
@y

� �
¼ 0;

� @Pð0Þ

@y ¼ 0;

8>>>>><
>>>>>:
whose boundary conditions are still given by (28). Similarly to what
we found in Section 3.1, we have

v ð0Þ1 ¼
Pð0Þx

gð0Þ P 0ð Þð Þ
ðy�hð0ÞÞðy�2rð0Þþhð0ÞÞ

6 ;

v ð0Þ2 ¼ @
@x

Pð0Þx

gð0Þ P 0ð Þð Þ
ðy�hð0ÞÞ

2
ðy�3rð0Þþ2hð0ÞÞ

6

� 	
;

8>><
>>:
and

kð0Þ1 ðtÞ ¼ �
Pð0Þx

gðPð0ÞÞ
ðhð0Þ � rð0ÞÞ

2

2
:

The interface r 0ð Þ is still given by (34), while Eq. (39) modifies in
this way

Pð0Þx

gðPð0ÞÞ

 !
x

þ 6
hx

‘ 0ð Þ
Pð0Þx

gðPð0ÞÞ
¼ 0; ð58Þ

where ‘ 0ð Þ is given by (37).

5.1. Almost flat channel and exponential viscosity

In case g Pð Þ ¼ ecP , and h � 1, we get (see [9])

v ð0Þ1 ¼
½e�cPin�e�cPout �

c
ðy�rð0ÞÞ2

2 � ð1�rð0ÞÞ
2

2

h i
;

v ð0Þ2 ¼ 0;

rð0Þ ¼ Bi
DP ;

PðxÞ ¼ Pin � 1
c ln 1þ ecDP � 1


 �
x

� 
:

8>>>>>>><
>>>>>>>:

ð59Þ

We now consider h 0ð Þ ¼ 1þmf xð Þ, with m ‘‘small’’ perturbation.
We look for a solution of (58) of the form

Pð0Þ x; tð Þ ¼ Pin �
1
c

ln 1þ ecDP � 1

 �

x
� 

þmP; x; tð Þ; ð60Þ

with P x ¼ 0; tð Þ ¼ P x ¼ 1; tð Þ ¼ 0. After replacing (60) into (58) and
neglecting the m2, we find

Pðx; tÞ ¼ �6
c

ecDP � 1

 �

1þ ecDP � 1ð Þx x
Z 1

0
f ðnÞdn�

Z x

0
f ðnÞdn

� 	
;
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and

rð0Þ ¼ Bi
DP
�m 2f ðxÞ � 2

cDP

Z 1

0

f ðnÞ ecDP � 1

 �

1þ ecDP � 1ð Þn dn

� 	
:

6. Conclusion

In this paper we studied the pressure driven flow of a Bingham
fluid in a channel whose walls are not flat. We used a lubrication
approximation assuming that the channel length is much larger
than its width. The novelty of our approach lies in the motion
equation of the inner rigid core which was derived applying the
momentum conservation (essentially Newton’s second law) to
the whole core. The latter is a body of variable mass whose bound-
ary is not material. The idea, though traces its roots back to the
paper by Safronchik [17] and Rubistein [12], has never been
applied to this kind of problem.

By developing the model at the leading order, we were able to
express both components of the velocity and the core surface r
in terms of the pressure, which is governed by a boundary value
problem of elliptic type. We actually ended up with a
integro-differential equation, whose numerical solution can be
obtained by an iterative method. We also provided an approxi-
mated explicit solution in case of small amplitude width variation.

The main results are the following:

	 The method that we developed provides the classical Bingham
solution when the channel walls are parallel.
	 We predict that the rigid core expands where the channel nar-

rows and vice versa (as observed in [10]).
	 We proved that our approach does not lead to any ‘‘paradox’’,

even if the channel width variation is not ‘‘small’’.
	 We predicted the possibility of a vanishing core (the so-called

‘‘breaking of the plug’’). We indeed showed an example in
which a ‘‘core free’’ region is located at the channel inlet. This
phenomenon, as already remarked in [10,6], is peculiar to these
kind of flows: it cannot occur when the flow runs through two
parallel planes.
	 We provided estimates on the pressure difference ensuring that

the flow does not stop (i.e. that the core is detached from the
channel’s walls).

In the last part of the article we generalized the model also to
the case of viscosity depending on the pressure. The equation for
the pressure is still a integro-differential equation of elliptic type
(rather similar to the one with constant viscosity).
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