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Abstract

For the family of truncations of the Gaussian Riesz transforms and Poisson integral
we study their rate of convergence through the oscillation and variation operators.
More precisely, we search for their Lp(dγ)-boundedness properties, being dγ the Gauss
measure. We achieve our results by looking at the oscillation and variation operators
from a vector valued point of view.

1 Introduction

Given a family of operators T = {Tε}ε>0 for which it is known that there exists limε→0 Tεf(x)
almost everywhere for a certain class of functions f , it is classical to measure the speed of
convergence of the family by means of quadratic expresions involving differences of the type
|Tεf(x)− Tε′f(x)|, see [1].

Along this line, in [3] the authors study the oscillation operator

O(T f)(x) = (
∞∑
i=1

sup
ti+1≤εi+1<εi≤ti

|Tεi
f(x)− Tεi+1

f(x)|2)1/2,
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04013-C02-02 and European Comission contract HPRN-CT-2001-00273.
First and second authors were partially supported by grants from CONICET and Universidad Nacional del
Litoral, Argentina.
First author was partially supported by sabbatical grant SAB2001-0053 from Ministerio de Educación Cul-
tura y Deporte (Spain).
2000 Mathematical Subject Classification:42B15, 42B20, 42B25, 42C10.
Keywords: Ornstein-Uhlenbeck semigroup, singular integrals, vector valued operators.

1



where (ti) is a fixed sequence which decreases to zero and the family T = {Tε} is composed
by truncations of the Hilbert transform H = {Hε} given by

Hεf(x) =
∫
|x−y|>ε

f(y)

x− y
dy.

They proved that the oscillation operator O(Hf)(x) satisfies ‖O(Hf)‖Lp(R) ≤ cp‖f‖Lp(R) for
1 < p < ∞ and |{x : |O(Hf)(x)| > λ}| ≤ (c/λ)‖f‖L1(R), see [3, Theorem 1.1].
As an important tool in the proof of the above result they get the same result for the
oscillation of the family Π = {pε}, pε being the Poisson integral on Rd, see [3, Corollary 2.6].
In the same paper they also consider the ρ−variation operator

Vρ(T f)(x) = sup
(εi)→0

(
∞∑
i=1

|Tεi
f(x)− Tεi+1

f(x)|ρ)1/ρ,(1.1)

where ρ > 2 and the sup is taken over all sequences (εi) decreasing to zero.
As in the case of the oscillation, they obtain strong (p, p) boundedness in the range 1 < p < ∞
and weak type (1, 1) boundedness of the ρ−variation for the families associated to both
operators, the Hilbert transform and the Poisson integral, see [3, Theorem 1.2, Corollary
2.6].
Recently, in the paper [4], the same authors have proved the (p, p) boundedness (with con-
stant depending on the dimension), for p in the range 1 < p < ∞, and also the weak type
(1, 1) boundedness for the oscillation and the ρ−variation (ρ > 2) of the truncated Riesz
transforms {Kα,ε} ¿in Rd, where

Kα,εf(x) = cd

∫
{y∈Rd: |x−y|>ε}

xα − yα

|x− y|d+1
f(y)dy, x ∈ Rd, α = 1, . . . , d.

Other previous related results can be found in [11], where a probability approach is used
with ideas that go back to Bourgain ([2]).
Finally, by using transference arguments, some weighted strong (p, p) boundedness, for p in
the range 1 < p < ∞, have been proved in [7] for the oscillation and the ρ−variation (ρ > 2)
of the truncated Riesz transforms. Moreover in this case the ¿constants do not depend on
the dimension d.

The purpose of this paper is to prove similar results for the oscillation and ρ−variation for
operators related to the Ornstein-Ulhenbeck semigroup. In order to state the theorems that
we shall prove we need to fix some notation.

Let {St} be a symmetric diffusion semigroup of operators acting on measurable functions
on Rd, with a second order differential operator −L as its infinitesimal generator. In this
context, as an important tool for studying the solutions of the heat and Laplace equations,
the following operators are considered, see [21],
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(1) Maximal operator of the subordinated Poisson semigroup: P ∗f(x) = supt>0 |Ptf(x)|,
where Pt is defined by the following subordination formula

Ptf(x) =
1√
2π

∫ ∞

0
te−t2/4sSsf(x)s−3/2ds,(1.2)

(2) Riesz transforms: For 1 ≤ α ≤ d,

Rαf(x) =
∂

∂xα

L−1/2f(x).

An expression for L−1/2 can be derived from the identity s−β = 1
Γ(β)

∫∞
0 tβ−1e−tsdt.

In the classical Euclidean case where L = −∆ and St is the Gauss-Weierstrass semigroup, all
of these operators are well known. We refer to [22] for their Lp(dx)-boundedness properties,
where dx is the Lebesgue measure in Rd. However, since the technique we shall use involves
comparison with the Ornstein-Uhlenbeck semigroup given below, we will rather deal with
the semigroup Wt whose infinitesimal generator is −1

2
∆, that is

Wtf(x) = (2πt)−d/2
∫

Rd
e−

|x−y|2
2t f(y)dy.(1.3)

Anyway we notice that the operators (1) and (2) defined above are modified only in a
constant after this change in the infinitesimal generator.

In this case the Riesz transforms can be viewed as principal values of the integrals against
the kernels Kα(x − y) = cd(xα − yα)|x − y|−d−1, which appear as the corresponding par-
tial derivatives of the kernel associated to the (−1

2
∆)−1/2 operator. Moreover the maximal

operators

K∗
αf(x) = sup

ε>0
|Kα,εf(x)| = sup

ε>0
|
∫

Rd
Kα,ε(x− y)f(y)dy|, 1 ≤ α ≤ d,

where Kα,ε(x − y) = Kα(x − y)χ{|x−y|>ε}(x, y), are bounded on Lp(dx), 1 < p < ∞, and
of weak type (1, 1). This implies both the almost everywhere convergence of Kα,εf for
f ∈ Lp(dx), 1 ≤ p < ∞ and the convergence in Lp(dx), 1 < p < ∞, or the weak-L1(dx)
convergence, see [22].

In the case where L = −1
2
∆ + x · ∇, St is the Ornstein-Uhlenbeck semigroup Ot given by

Otf(x) = (π(1− e−2t))−d/2
∫

Rd
e
− |e−tx−y|2

1−e−2t f(y)dy,

(see for example [20]). In this setting the natural measure is the Gauss measure dγ(x) =
e−|x|

2
dx. The above operators have been intensively studied in the last twenty years by several
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authors. For the Lp(dγ)-boundedness of the maximal operator O∗ we refer to [21] and [20],
for the Riesz transforms, Rα, see [15], [8], [14], [18], [5], [9], [23] and [6].
As in the classical case, the Riesz transforms can be viewed as principal values of integrals,
this time against the kernels

Rα(x, y) = cd

∫ ∞

0
t−1/2e−t e−txα − yα

(1− e−2t)d/2+1
exp(−|e

−tx− y|2

1− e−2t
)dt,(1.4)

which appear as the corresponding derivatives of the kernel associated to the (−1
2
∆+x·∇)−1/2

operator. Namely, for functions f which are good enough, we have

Rαf(x) = lim
ε→0

Rα,εf(x), a. e. x,

where Rα,ε(x, y) = Rα(x, y)χ{|x−y|>ε}(x, y).
Regarding the speed of convergence of the families Rα = {Rα,ε}, 1 ≤ α ≤ d, we shall prove
the following result:

Theorem 1.1 Let 2 < ρ < ∞. Given p in the range 1 < p < ∞, then

‖O(Rαf)‖Lp(Rd,dγ) ≤ C‖f‖Lp(Rd,dγ), α = 1, . . . , d,

and
‖Vρ(Rαf)‖Lp(Rd,dγ) ≤ C‖f‖Lp(Rd,dγ), α = 1, . . . , d.

Moreover we have

γ({x : |O(Rαf)(x)| > λ}) ≤ C

λ

∫
Rd
|f(x)|dγ(x), α = 1, . . . , d,

and

γ({x : |Vρ(Rαf)(x)| > λ}) ≤ C

λ

∫
Rd
|f(x)|dγ(x), α = 1, . . . , d.

We remark that the Lp(dγ) boundedness of the operator O∗ mentioned above, implies the
corresponding property for the maximal operator of the Poisson integral. In turn this implies
the almost everywhere convergence of the family P = {Pt} when acting over functions in
Lp(dγ), 1 ≤ p < ∞.

Concerning the speed of convergence of the family P we have the following result:

Theorem 1.2 Let 2 < ρ < ∞. Given p in the range 1 < p < ∞, then

‖O(Pf)‖Lp(Rd,dγ) ≤ C‖f‖Lp(Rd,dγ),

and
‖Vρ(Pf)‖Lp(Rd,dγ) ≤ C‖f‖Lp(Rd,dγ).
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Moreover

γ({x : |O(Pf)(x)| > λ}) ≤ C

λ

∫
Rd
|f(x)|dγ(x),

and

γ({x : |Vρ(Pf)(x)| > λ}) ≤ C

λ

∫
Rd
|f(x)|dγ(x).

The organization of this paper is the following. In section 2 we present some known facts
from the Gaussian analysis that we need for our purposes. Also, following [7], we present
the oscillation and ρ-variation of a family of operators, see (2.8) and (2.10), from a vector
valued point of view. This setting allows us to apply the general machinery for Gaussian
operators just described. In section 3 we prove the results concerning the Riesz transforms,
while section 4 is devoted to the Poisson integral.

2 Preliminaries

In proving the Theorems, following the technique initiated in [15], we will use systematically
a partition of the operators into their local and global parts, according to some particular
region, where Lebesgue and Gauss measure are equivalent, and its complement. In the
literature, depending on the operator under consideration, two kinds of regions have been
used, either

Nt = {(x, y) : |x− y| < t

1 + |x|+ |y|
}, for some fixed t > 0

or

Nt = {(x, y) : |x− y| < min(t,
t

|x|
)}, for some fixed t > 0.

See [20], [5], [17] and [6].

For the global part of the operators we want to make use of estimates given by different
authors for the kernels in the complement of regions likeNt, while for the local part sometimes
it will be convenient to work with the Nt-regions. However, from the relationship:

Nt ⊂ Nt ⊂ Nt(t+3),(2.1)

it follows that we may use one region or the other when estimating positive functions. On
the sequel we shall denote by N the region Nt for t = d(d + 3) and by Ñ that corresponding
to N2d(d+3), when working on Rd.
Now we remark that the operators we will handle, the oscillation and variation, are not
linear; however, as we shall see, they can be viewed as linear operators taking values on

5



appropriate Banach spaces. For this reason we shall consider a class of operators like those
given in [6], but this time in a vector valued setting.

Given B1, B2 Banach spaces, let dµ denote either the Lebesgue or the Gauss measure on Rd.
Let T be a linear operator defined in L∞

0,B1
, the space of B1-valued, compactly supported and

essentially bounded functions on Rd, into the space of B2-valued and strongly measurable
functions on Rd, satisfying :

(a) T extends to a bounded operator either from Lq
B1

(dµ) into Lq
B2

(dµ) for some q, 1 <
q < ∞, or from L1

B1
(dµ) into weak-L1

B2
(dµ).

(b) There exists a L(B1, B2)-valued measurable function K, defined on the complement of
the diagonal in Rd × Rd, such that for every function f in L∞

0,B1

Tf(x) =
∫

K(x, y) f(y)dy,(2.2)

for all x outside the support of f .

(c) The function K satisfies the estimate

|K(x, y)| ≤ C

|x− y|d
,

for all (x, y) in the local region N, x 6= y.

As in [6] we introduce the following definitions.
For an operator T as above, given ϕ a smooth function on Rd × Rd such that ϕ(x, y) = 1 if
(x, y) ∈ N , ϕ(x, y) = 0 for (x, y) /∈ Ñ = N2d(d+3) and

|∂xϕ(x, y)|+ |∂yϕ(x, y)| ≤ C |x− y|−1 if x 6= y.(2.3)

We define the global and the local parts of the operator T by

Tglobf(x) =
∫

K(x, y)(1− ϕ(x, y))f(y)dy,

Tlocf(x) = Tf(x)− Tglobf(x),(2.4)

and accordingly we shall call Kglob and Kloc their kernels.

We shall use the following results, see Proposition 3.4 and Lemma 3.6 in [6]. Even though
the authors give the proof in the scalar case, the same arguments work in the vector valued
setting.

Proposition 2.1 If T is an operator satisfying conditions (a),(b) and (c), then Tloc inherits
from T either the Lq− boundedness or the weak type (1, 1) as the case might be. Besides the
corresponding boundedness holds for both Lebesgue and Gauss measure.
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We shall say that an operator T defined on L∞
0,B1

into the space of B2-valued strongly

measurable functions is local if its associated kernel in the sense of (b) is supported in Ñ .

Proposition 2.2 If S is a local operator, then strong type (p, p), 1 ≤ p < ∞ for Lebesgue
and Gauss measures are equivalent. The same holds for weak type (p, p).

In order to apply the above results and following [7] we shall give vector valued versions of
the Oscillation and Variation of a family of operators. To simplify the description of the
Oscillation we introduce the equivalent operator

O′(T f)(x) =

( ∞∑
i=1

sup
ti+1<δi≤ti

|Tti+1
f(x)− Tδi

f(x)|2
)1/2

,

that clearly satisfies
O′(T f)(x) ∼ O(T f)(x), a.e.x.(2.5)

Consequently it will be enough to prove Theorem 1.1 and Theorem 1.2 for the operator O′

instead of O.
Let us denote by E the mixed normed Banach space of two variable functions h defined on
R× N such that

‖h‖E ≡
(∑

i

(sup
s
|h(s, i)|)2

)1/2

< ∞.(2.6)

Let T = {Tt}t>0 be a family of operators defined on Lp(Rd, dµ), for some p in the range
1 ≤ p < ∞. Given a fixed decreasing sequence ti ↘ 0, let Ji = (ti+1, ti] and define the
operator U(T ) : f −→ U(T )f, where U(T )f is the E-valued function given by

U(T )f(x) =
{
Tti+1

f(x)− Tsf(x)
}

s∈Ji, i∈N
.(2.7)

Here the expression
{
Tti+1

f(x)− Tsf(x)
}

s∈Ji, i∈N
is a convenient abbreviation for the element

of E given by
(s, i) −→ (Tti+1

f(x)− Tsf(x))χJi
(s).

Then

O′(T f)(x) =
∥∥∥∥{Tti+1

f(x)− Tsf(x)
}

s∈Ji,i∈N

∥∥∥∥
E

= ‖U(T )f(x)‖E.(2.8)

Let Θ = {ε : ε = {εi}, εi ∈ R, εi ↘ 0}. We consider the set N × Θ and denote by
Fρ, 1 ≤ ρ < ∞, the mixed normed space of two variable functions g(i, ε) such that

‖g‖Fρ ≡ sup
ε

(∑
i

|g(i, ε)|ρ
)1/ρ

< ∞.
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For a family T as above, we also consider the operator V (T ) : f −→ V (T )f, acting on
functions f belonging to Lp(Rd, dµ), and V (T )f being the Fρ-valued function given by

V (T )f(x) = {Tεi+1
f(x)− Tεi

f(x)}ε∈Θ .(2.9)

Here the expression {Tεi+1
f(x)− Tεi

f(x)}ε∈Θ is an abbreviation for the element of Fρ given
by

(i, ε) = (i, {εk}) −→ Tεi+1
f(x)− Tεi

f(x).

As in the case of the oscillation operator it is clear that

Vρ(T f) = ‖V (T )f‖Fρ .(2.10)

Proposition 2.3 The identities (2.8) and (2.10) imply that each of the inequalities

‖O′(T f)‖Lp(Rd,dµ) ≤ C‖f‖Lp(Rd,dµ)

and

µ({x : O′(T f)(x) > λ}) ≤ C

λ
‖f‖L1(Rd,dµ)

is equivalent to the corresponding inequality

‖U(T )f‖Lp
E(Rd,dµ) ≤ C‖f‖Lp(Rd,dµ)

and

µ({x : ‖U(T )f(x)‖E > λ}) ≤ C

λ
‖f‖L1(Rd,dµ).

A similar result holds for Vρ(T f) and ‖V (T )f‖Fρ .

Remark 2.1 In the case that the family T = {Tt} is such that each operator Tt has an
associated kernel Mt , the operator U(T ) has also an associated kernel U , where U(x, y) is
the element of E given by

(s, i) → U(x, y)(s, i) = (Mti+1
(x, y)−Ms(x, y))χJi

(s),

in other words

U(T )f(x) =
∫
U(x, y)f(y)dy =

∫
{(Mti+1

(x, y)−Ms(x, y))χJi
(s)}f(y)dy.(2.11)

Analogous formulas can be given for the variation.

For a family T = {Tt} as in the above remark, we define its global and local parts by

Tglob = {Tt,glob}, Tloc = {Tt,loc}.
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Lemma 2.1 Given the family T = {Tt}, such that each operator Tt has an associated kernel
Mt, we have

U(T )locf(x) = U(Tloc)f(x)(2.12)

and

U(T )globf(x) = U(Tglob)f(x).(2.13)

Parallel properties can be shown for the operator V associated to the variation.

Proof By using (2.11) we have

U(T )f(x) =
{
Tti+1

f(x)− Tsf(x)
}

s∈Ji,i∈N

=
{∫

Rd
(Mti+1

(x, y)−Ms(x, y))f(y)dy
}

s∈Ji,i∈N

=
∫

Rd
U(x, y)f(y)dy.

Therefore

U(T )globf(x) =
∫

Rd
U(x, y)(1− ϕ(x, y))f(y)dy

= {
∫

Rd
(Mti+1

(x, y)−Ms(x, y))(1− ϕ(x, y))f(y)dy}s∈Ji,i∈N

=
{
Tti+1,globf(x)− Ts,globf(x)

}
s∈Ji,i∈N

= U(Tglob)f(x).

Hence, as U is linear, the lemma is proved.

3 Riesz Transforms

In this section we shall deal with the family Rα = {Rα,ε}ε>0, 1 ≤ α ≤ d, proving the results
stated in Theorem 1.1. We start by recalling a known result for the global part of the Riesz
transforms.

Lemma 3.1 The global part of the Riesz transforms kernels satisfies

|Rα,ε,glob(x, y)| ≤ |Rα,glob(x, y)| ≤ Q(x, y) α = 1, . . . , d,

for some nonnegative kernel Q(x, y), independent of ε, supported in N c and such that its
associated integral operator is of weak type (1, 1) and strong type (p, p), 1 < p < ∞, with
respect to the Gauss measure.

9



For a proof see [5] and [17].

Remark 3.1 These results imply in particular that the integrals
∫

Rα,ε,glob(x, y)f(y)dy and∫
Rα,glob(x, y)f(y)dy are finite almost everywhere, for every f ∈ L1(dγ).

The next lemma shows that the local part of the oscillation and variation operators for the
Gaussian Riesz transforms are, up to a good operator, the same as the corresponding local
oscillation and variation of the families Kα associated to the Euclidean Riesz transforms.

Lemma 3.2 For any α = 1, . . . , d, we have

‖U(Rα)locf(x)− U(Kα)locf(x)‖E ≤
∫

Rd
L(x, y)|f(y)|dy

and
‖V (Rα)locf(x)− V (Kα)locf(x)‖Fρ ≤

∫
Rd

L(x, y)|f(y)|dy,

where L is a nonnegative kernel supported on Ñ and satisfying

sup
x

∫
Rd

L(x, y)dy < ∞ and sup
y

∫
Rd

L(x, y)dx < ∞.(3.14)

Consequently the integral operator associated to L is of strong type (p, p), 1 ≤ p < ∞, with
respect to either Lebesgue or Gauss measure.

In order to prove the result above we need the following technical lemma, see [10] Lemma
3.4.

Lemma 3.3 For (x, y) ∈ Ñ we have the following estimates:

Dα(x, y) =
∫ ∞

0
| ∂

∂xα

(Ot(x, y)−Wt(x, y))| dt

t1/2
≤ C

1 + |x|
|x− y|d−1

,

In particular the above kernels when truncated by χÑ(x, y) satisfy conditions like 3.14.

Proof of Lemma 3.2 We shall give the proof only for the operator U associated to the
oscillation. The result for the variation follows exactly in the same way.
The kernel for Rα,ε,loc −Kα,ε,loc is given by

cχ{|x−y|>ε}(x, y)ϕ(x, y)
∫ ∞

0

∂

∂xα

(Ot −Wt)(x, y)
dt

t1/2
.
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By using Lemma 2.1 we have

‖U(Rα)locf(x)− U(Kα)locf(x)‖E = ‖U(Rα,loc)f(x)− U(Kα,loc)f(x)‖E

= ||{
∫

Rd
( Rα,loc(x, y)−Kα,loc(x, y) ) χ{ti+1<|x−y|≤s}(x, y) f(y) dy }s∈Ji,i∈N||E

≤ c
∫

Rd
Dα(x, y)ϕ(x, y) ‖{χ{ti+1<|x−y|≤s}(x, y)}s∈Ji,i∈N‖E |f(y)| dy

≤ c
∫

Rd
Dα(x, y)ϕ(x, y) |f(y)| dy.

Then Lemma 3.2 follows from the estimates given in Lemma 3.3.

Proof of Theorem 1.1 Again we give the proof for the oscillation, since the estimates and
results we will use remain valid for the variation with the obvious changes.
By using formula (2.8) it is enough to prove that

‖U(Rα)f‖Lp
E(Rd,dγ) ≤ C‖f‖Lp(Rd,dγ), α = 1, . . . , d,(3.15)

and

γ({x : ‖U(Rα)f(x)‖E > λ}) ≤ C

λ

∫
Rd
|f(x)|dγ(x), α = 1, . . . , d.(3.16)

Moreover, as U(Rα)f = U(Rα)globf + U(Rα)locf it suffices to prove the above inequalities
for U(Rα)globf and U(Rα)locf.
By using Lemma 2.1, we have

‖U(Rα)globf(x)‖E =

∥∥∥∥∥
{∫

Rd
Rα,glob(x, y)χ{ti+1<|x−y|≤s}(x, y)f(y)dy

}
s∈Ji,i∈N

∥∥∥∥∥
E

≤
∫

Rd
Q(x, y)χNc(x, y)

∥∥∥∥{χ{ti+1<|x−y|≤s}(x, y)
}

s∈Ji,i∈N

∥∥∥∥
E
|f(y)| dy

≤
∫

Rd
Q(x, y)χNc(x, y)|f(y)| dy,

where we have also used Lemma 3.1. Moreover the same Lemma 3.1 guarantees that in-
equalities (3.15) and (3.16) hold for the global part.

Now, for the local part we have

‖U(Rα)locf(x)‖E ≤ ‖U(Rα)locf(x)− U(Kα)locf(x)‖E + ‖U(Kα)locf(x)‖E.

By Lemma 3.2 we know that the first term satisfies inequalities (3.15) and (3.16).
Now we study the second one. It was shown in [4], see also [7], that

‖O(Kαf)‖Lp(Rd,dx) ≤ cp‖f‖Lp(Rd,dx), α = 1, . . . , d,

and

| {x : |O(Kαf)(x)| > λ} | ≤ C

λ

∫
Rd
|f(x)|dx, α = 1, . . . , d.
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That is, by using (2.8),

‖U(Kα)f‖Lp
E(Rd,dx) ≤ cp‖f‖Lp(Rd,dx), α = 1, . . . , d,

and

| {x : ‖U(Kα)f(x)‖E > λ} | ≤ C

λ

∫
Rd
|f(x)|dx, α = 1, . . . , d.

The kernel of the operator U(Kα) is given by

U(x, y) = {(Kα,ti+1
(x, y)−Kα,s(x, y))χJi

(s)} = {cα
xα − yα

|x− y|d+1
χ{ti+1<|x−y|≤s}(x, y)χJi

(s)},

then

‖U(x, y)‖E ≤
1

|x− y|
‖{χ{ti+1<|x−y|≤s}(x, y)χJi

(s)}‖E ≤ Cα
1

|x− y|d
.

Therefore the operator U(Kα) satisfies the hypothesis of Proposition 2.1, which together
with Proposition 2.2 give

‖U(Kα)locf‖Lp
E(Rd,dγ) ≤ C‖f‖Lp(Rd,dγ)

and

γ({x : ‖U(Kα)locf(x)‖E > λ}) ≤ Cα

λ

∫
Rd
|f(x)|dγ(x).

Then the result follows for p = 1. Finally, for 1 < p < ∞, it is known that in any dimension
(see [4] and [7])

‖U(Kα)f‖Lp
E(Rd,dx) ≤ cp‖f‖Lp(Rd,dx), α = 1, . . . , d.

Proceeding as in the one dimensional case we arrive to the desired estimate for
‖U(Kα,loc)f(x)‖E.

4 Poisson integral

In this section we want to study the oscillation and variation of the Poisson semigroup
subordinated to the Ornstein-Uhlenbeck semigroup Ot, as in (1.2), this is

Ptf(x) =
1√
2π

∫ ∞

0
te−t2/4sOsf(x)s−3/2ds.(4.17)

We shall also need some properties of the classical Euclidean Poisson semigroup, that is

ptf(x) =
1√
2π

∫ ∞

0
te−t2/4sWsf(x)s−3/2ds = cd

∫
Rd

t

(t2 + |x− y|2) d+1
2

f(y)dy.(4.18)

For the families P = {Pt}, Π = {pt} we consider the corresponding vector valued operators

U(P), V (P), U(Π ) and V (Π ),

associated to the oscillation and variation, as given in (2.7) and (2.9).
In the next lemma we compare the local parts of these operators associated to P and Π .
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Lemma 4.1

‖U(P)locf(x)− U(Π )locf(x)‖E ≤
∫

Rd
LP (x, y)f(y)dy + 2(P ∗

locf(x) + p∗locf(x))

and

‖V (P)locf(x)− V (Π )locf(x)‖Fρ ≤
∫

Rd
LP (x, y)f(y)dy + 2(P ∗

locf(x) + p∗locf(x))

where LP is a nonnegative kernel supported on Ñ and satisfying

sup
x

∫
Rd

LP (x, y)dy < ∞ and sup
y

∫
Rd

LP (x, y)dx < ∞.(4.19)

Consequently the integral operator associated to LP is of strong type (p, p), 1 ≤ p < ∞,
with respect to either Lebesgue or Gauss measure.

In order to prove the result above we need the following technical lemma, see [10] Lemma
3.4.

Lemma 4.2 For (x, y) ∈ Ñ we have the following estimate

D(x, y) =
∫ ∞

0
|Os(x, y)− χ(1,∞)(s)

e−|y|
2

πd/2
−Ws(x, y)|ds

s
≤ C(

1 + |x| 12
|x− y|d− 1

2

+ log
1

|x− y|
).

In particular the above kernel when truncated by χÑ(x, y) satisfies conditions (4.19).

Proof of Lemma 4.1 By using Lemma 2.1 we have

‖U(P)locf(x)− U(Π )locf(x)‖E = ‖U(Ploc)f(x)− U(Πloc)f(x)‖E

= ||{Ploc,ti+1
f(x)− Ploc,sf(x)− (ploc,ti+1

f(x)− ploc,sf(x))}s∈Ji,i∈N‖E

≤ ||{Ploc,ti+1
f(x)− Ploc,sf(x)− (ploc,ti+1

f(x)− ploc,sf(x))}s∈Ji,i∈N,ti≤1‖E

+||{Ploc,ti+1
f(x)− Ploc,sf(x)− (ploc,ti+1

f(x)− ploc,sf(x))}s∈Ji,i∈N,ti+1≥1‖E

+ ||{Ploc,ti+1
f(x)− Ploc,sf(x)− (ploc,ti+1

f(x)− ploc,sf(x))}s∈Ji0
,i0=min{i:ti>1}‖E

≤ ||{Ploc,ti+1
f(x)− Ploc,sf(x)− (ploc,ti+1

f(x)− ploc,sf(x))}s∈Ji,i∈N,ti≤1‖E

+||{Ploc,ti+1
f(x)− Ploc,sf(x)− (ploc,ti+1

f(x)− ploc,sf(x))}s∈Ji,i∈N,ti+1≥1‖E

+2(P ∗
locf(x) + p∗locf(x))

= Λ1 + Λ2 + 2(P ∗
locf(x) + p∗locf(x)).

We observe that ∫ ∞

0
(1− u2

2r
)e−u2/4rr−3/2dr = 0.(4.20)
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Now we shall analyze Λ1. By using (1.2) , (4.18) and (4.20) we have
√

2πΛ1

=

∥∥∥∥∥∥
{∫

Rd
(
∫ ∞

0
(ti+1e

−
t2
i+1
4r − se−

s2

4r )(Or(x, y)−Wr(x, y)) r−3/2 dr)ϕ(x, y)f(y)dy

}
s∈Ji,i∈N,ti≤1

∥∥∥∥∥∥
E

=

∥∥∥∥∥∥
{ ∫

Rd
(
∫ ∞

0
(
∫ s

ti+1

e−
u2

4r (1− u2

2r
)du)(Or(x, y)−Wr(x, y)) r−3/2 dr)ϕ(x, y)f(y)dy

}
s∈Ji,i∈N,ti≤1

∥∥∥∥∥∥
E

=

∥∥∥∥∥∥
{ ∫

Rd
(
∫ s

ti+1

(
∫ ∞

0
e−

u2

4r (1− u2

2r
)r−

3
2 (Or(x, y)− e−|y|

2

π
d
2

−Wr(x, y))dr)du)ϕ(x, y)f(y)dy

}
s∈Ji,i∈N,ti≤1

∥∥∥∥∥∥
E

≤

∥∥∥∥∥∥
{ ∫

Rd
(
∫ 1

0
(
∫ s

ti+1

e−
u2

4r (1− u2

2r
)du) r−3/2 dr)

e−|y|
2

π
d
2

ϕ(x, y)f(y)dy

}
s∈Ji,i∈N,ti≤1

∥∥∥∥∥∥
E

+

∥∥∥∥∥
{ ∫

Rd
(
∫ ∞

0
(
∫ s

ti+1

e−
u2

4r (1− u2

2r
)du)(Or(x, y)− χ(1,∞)(r)

e−|y|
2

π
d
2

−Wr(x, y))r−3/2dr)ϕ(x, y)f(y)dy
}

s∈Ji,i∈N,ti≤1

∥∥∥∥
E

= Λ11 + Λ12.

To estimate Λ11 we observe that, for r in the range 1 ≤ r < ∞, we have∥∥∥∥∥∥
{∫ s

ti+1

e−
u2

4r (1− u2

2r
)du

}
s∈Ji,i∈N,ti≤1

∥∥∥∥∥∥
E

≤ C.(4.21)

In fact ∥∥∥∥∥∥
{∫ s

ti+1

e−
u2

4r (1− u2

2r
)du

}
s∈Ji,i∈N,ti≤1

∥∥∥∥∥∥
E

≤

∥∥∥∥∥∥
{∫ s

ti+1

e−
u2

4r du

}
s∈Ji,i∈N,ti≤1

∥∥∥∥∥∥
E

≤

 ∑
i∈N,ti≤1

(
∫ ti

ti+1

e−
u2

4r du)2

1/2

≤
∑

i∈N,ti≤1

∫ ti

ti+1

e−
u2

4r du

≤
∫ 1

0
e−

u2

4r du = C
√

r
∫ 1/

√
r

0
e−t2dt ≤ C,

as claimed.
Therefore by using again (4.20) and (4.21) we have

Λ11 =

∥∥∥∥∥∥
{ ∫

Rd
(
∫ ∞

1
(
∫ s

ti+1

e−
u2

4r (1− u2

2r
)du) r−3/2 dr)

e−|y|
2

π
d
2

ϕ(x, y)f(y)dy

}
s∈Ji,i∈N,ti≤1

∥∥∥∥∥∥
E

≤ C
∫

Rd
(
∫ ∞

1

∥∥∥∥∥∥
{∫ s

ti+1

e−
u2

4r (1− u2

2r
)du

}
s∈Ji,i∈N,ti≤1

∥∥∥∥∥∥
E

r−3/2 dr)e−|y|
2

ϕ(x, y)|f(y)|dy
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≤ C
∫

Rd
(
∫ ∞

1
r−3/2 dr)e−|y|

2

ϕ(x, y)|f(y)|dy

≤ C
∫

Rd
e−|y|

2

ϕ(x, y)|f(y)|dy.

This proves the result for Λ11.
In order to prove the result for Λ12 we observe that, for any r in the range 0 < r < ∞, we
have ∥∥∥∥∥∥

{∫ s

ti+1

e−
u2

4r (1− u2

2r
)du

}
s∈Ji,i∈N

∥∥∥∥∥∥
E

≤ Cr1/2.(4.22)

In fact, ∥∥∥∥∥∥
{∫ s

ti+1

e−
u2

4r (1− u2

2r
)du

}
s∈Ji,i∈N

∥∥∥∥∥∥
E

≤
(∑

i∈N
(
∫ ti

ti+1

e−
u2

4r |1− u2

2r
|du)2

)1/2

≤
∑
i∈N

∫ ti

ti+1

e−
u2

4r |1− u2

2r
|du ≤

∫ ∞

0
e−

u2

4r |1− u2

2r
|du ≤ Cr1/2.

Now by using (4.22) and Lemma 4.2 we have

Λ12 ≤
∫

Rd
C(

1 + |x| 12
|x− y|d− 1

2

+ log
1

|x− y|
)χÑ(x, y)|f(y)|dy.

This gives the result for Λ12.
In order to analyze Λ2, we proceed exactly as for the case Λ1 and we get Λ2 = Λ21 + Λ22.
Even more Λ22 is estimated exactly as Λ12. Therefore we only need to estimate Λ21. By using
that for any δ > 0, there exists C such that te−t ≤ Ct−δ and choosing δ > 1/2, we have

Λ21 ≤ C

∥∥∥∥∥∥
{ ∫

Rd
(
∫ 1

0
(
∫ s

ti+1

e−
u2

4r |1− u2

2r
|du) r−3/2 dr)e−|y|

2

χÑ(x, y)|f(y)| dy

}
s∈Ji,i∈N,ti+1≥1

∥∥∥∥∥∥
E

≤ C

∥∥∥∥∥∥
{ ∫

Rd
(
∫ 1

0
(
∫ s

ti+1

(
r

u2
)δdu) r−3/2 dr)e−|y|

2

χÑ(x, y)|f(y)| dy

}
s∈Ji,i∈N,ti+1≥1

∥∥∥∥∥∥
E

≤ C
∫

Rd
(
∫ 1

0

∥∥∥∥∥∥
{

(
∫ s

ti+1

u−2δdu)

}
s∈Ji,i∈N,ti+1≥1

∥∥∥∥∥∥
E

r−3/2+δ dr)e−|y|
2

χÑ(x, y)|f(y)| dy

≤ C
∫

Rd
(
∫ 1

0
(

∑
i∈N,ti+1≥1

∫ ti

ti+1

u−2δdu) r−3/2+δ dr)e−|y|
2

χÑ(x, y)|f(y)| dy

≤ C
∫

Rd
(
∫ 1

0
(
∫ ∞

1
u−2δdu) r−3/2+δ dr)e−|y|

2

χÑ(x, y)|f(y)| dy

≤ C
∫

Rd
e−|y|

2

χÑ(x, y)|f(y)|dy.
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This gives the result for Λ2, ending the proof for the oscillation. As for the variation we
remark that, as is easy to check, all the E-norm estimates remain true for the Fρ-norm.

Proof of Theorem 1.2 By using formula (2.8) it is enough to prove that

‖U(P)f‖Lp
E(Rd,dγ) ≤ C‖f‖Lp(Rd,dγ)(4.23)

and

γ({x : ‖U(P)f(x)‖E > λ}) ≤ C

λ

∫
Rd
|f(x)|dγ(x).(4.24)

Moreover, as U(P)f = U(P)globf + U(P)locf it suffices to prove the above inequalities for
U(P)globf and U(P)locf.
By using Lemma 2.1 and (1.2), we have

‖U(P)globf(x)‖E = ‖
{
Pti+1,globf(x)− Ps,globf(x)

}
s∈Ji,i∈N

‖E

=

∥∥∥∥∥∥
{∫ s

ti+1

∂

∂t
Pt,glob(f)(x)dt

}
s∈Ji,i∈N

∥∥∥∥∥∥
E

=
1√
2π

∥∥∥∥∥∥
{∫ s

ti+1

(
∫ ∞

0
(1− t2

2r
)e−

t2

4r r−3/2Or,glob(f)(x) dr) dt

}
s∈Ji,i∈N

∥∥∥∥∥∥
E

(4.25)

=
1√
2π

∥∥∥∥∥∥
{∫ s

ti+1

(
∫ ∞

0

∫ r

0
(1− t2

2u
)e−

t2

4u u−3/2du
d

dr
Or,glob(f)(x) dr) dt

}
s∈Ji,i∈N

∥∥∥∥∥∥
E

≤ 1√
2π

∫ ∞

0

∥∥∥∥∥∥
{∫ s

ti+1

|
∫ r

0
(1− t2

2u
)e−

t2

4u u−3/2du|dt

}
s∈Ji,i∈N

∥∥∥∥∥∥
E

| d

dr
Or,glob(f)(x)| dr.

Making the change of variables v = t
2
√

u
, we have

∫ s

ti+1

|
∫ r

0
(1− t2

2u
)e−

t2

4u u−3/2du|dt = 4
∫ s

ti+1

|
∫ ∞

t
2
√

r

(1− 2v2)e−v2

dv|dt

t
.

Moreover

‖{
∫ s

ti+1

|
∫ ∞

t
2
√

r

(1− 2v2)e−v2

dv|dt

t
}s∈Ji,i∈N‖E = ‖{

∫ s

ti+1

| [ve−v2

]∞t/2
√

r |
dt

t
}s∈Ji,i∈N‖E

= ‖{
∫ s

ti+1

t

2
√

r
e−

t2

4r
dt

t
}s∈Ji,i∈N‖E ≤ (

∑
i

(
∫ ti

ti+1

1

2
√

r
e−

t2

4r dt)2 )1/2

≤
∑

i

∫ ti

ti+1

1

2
√

r
e−

t2

4r dt ≤
∫ ∞

0

1

2
√

r
e−

t2

4r dt

=
∫ ∞

0
e−z2

dz.
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Hence we have

‖U(P)globf(x)‖E ≤ 1√
2π

∫ ∞

0
‖{
∫ s

ti+1

|
∫ r

0
(1− t2

2u
)e−

t2

4u u−3/2du|dt}s∈Ji,i∈N‖E |
d

dr
Or,globf(x)| dr

≤ C
∫ ∞

0
| d

dr
Or,globf(x)| dr.

Now we make the change of parameter e−r = z and then we get∫ ∞

0
| d

dr
Or,globf(x)| dr =

∫ 1

0
| d

dz
Tz,globf(x)| dz,

where Tz is the operator whose kernel is given by

Mz(x, y) = (π(1− z2))−d/2 exp

(
−|zx− y|2

1− z2

)
.

We observe that the derivative of this kernel with respect to z is the multiplication of a
positive function times a polynomial of degree 3 in z. Then as a function of z, it changes
sign at most three times (for a similar argument see the proof of Lemma 2.1 in [6]). So there
exists a constant C such that∫ 1

0
| d

dz
Tz,globf(x)|dz =

∫ 1

0
| d

dz

∫
Rd
Mz(x, y)(1− ϕ(x, y))f(y)dy|dz

=
∫ 1

0
|
∫

Rd

d

dz
Mz(x, y)(1− ϕ(x, y))f(y)dy|dz

≤
∫ 1

0

∫
Rd
| d

dz
Mz(x, y)|(1− ϕ(x, y))|f(y)|dydz

=
∫

Rd

∫ 1

0
| d

dz
Mz(x, y)|dz(1− ϕ(x, y))|f(y)|dy

≤ C
∫

Rd
sup

r
|Or(x, y)|(χNc(x, y))|f(y)|dy.

This operator is known to be of weak type (1, 1) see [20]. It is also of strong type (p, p), in
the range 1 < p < ∞. Although the latter result is not explicitly given in the literature it can
be obtained following the steps of the proof of Theorem 4.2 in [16] and using the estimate
for the global part of the kernel given in [13].

For the local part, by Lemma (4.1) we have

‖U(P)locf(x)‖E ≤ ‖U(P)locf(x)− U(Π)locf(x)‖E + ‖U(Π)locf(x)‖E

≤
∫

Rd
LP (x, y)f(y)dy + 2P ∗

locf(x) + 2p∗locf(x) + ‖U(Π)locf(x)‖E.

The first term of this summation, according to Lemma 4.1, is bounded in Lp(Rd, dγ) for
every p in the range 1 ≤ p < ∞. The second term is bounded by a multiple of P ∗ which
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is known to satisfy the desired estimates. To handle the third term we first observe that
p∗locf(x) is pointwise bounded by p∗f(x) that has the corresponding boundedness properties
with respect to the Lebesgue measure; therefore as p∗loc is a local operator we may apply
Proposition 2.2 to get the right estimate with respect to the Gaussian measure. As for the
fourth term it is known, see [3], that

‖O′(Πf)‖Lp(Rd,dx) ≤ C‖f‖Lp(Rd,dx)

and

|{x : |O′(Πf)(x)| > λ}| ≤ C

λ

∫
Rd
|f(x)|dx.

That is, by using (2.8),
‖U(Πf)‖Lp

E(Rd,dx) ≤ C‖f‖Lp(Rd,dx)

and

|{x : ‖U(Π)f(x)‖E > λ}| ≤ C

λ

∫
Rd
|f(x)|dx.

In order to apply Proposition 2.1 to the operator U(Π ), we observe that its kernel is given
by

U(x, y) = {(pti+1
(x, y)− ps(x, y))χJi(s)}.

By using (4.18), and following the ideas developed in (4.25) we have

U(x, y) = {
∫ s

ti+1

∂

∂t
pt(x, y)dt}s∈Ji,i∈N = {

∫ s

ti+1

∫ ∞

0
(1− t2

2r
)e−

t2

4r r−3/2Wr(x, y) dr dt}s∈Ji,i∈N

= {
∫ s

ti+1

∫ ∞

0
(
∫ r

0
(1− t2

2u
)e−

t2

4u u−3/2du)
d

dr
Wr(x, y) dr dt}s∈Ji,i∈N.

Therefore,

‖U(x, y)‖E = ‖{
∫ s

ti+1

∫ ∞

0
(
∫ r

0
(1− t2

2u
)e−

t2

4u u−3/2du)
d

dr
Wr(x, y) dr dt}s∈Ji,i∈N‖E

≤
∫ ∞

0
‖{
∫ s

ti+1

|
∫ r

0
(1− t2

2u
)e−

t2

4u u−3/2du|dt}s∈Ji,i∈N‖E |
d

dr
Wr(x, y)| dr.

≤
∫ ∞

0
‖{
∫ s

ti+1

|
∫ r

0
(1− t2

2u
)e−

t2

4u u−3/2du|dt}s∈Ji,i∈N‖E |
d

dr
Wr(x, y)| dr

≤ C
∫ ∞

0
| d

dr
Wr(x, y)| dr = C

∫ ∞

0
| d

dr

1

rd/2
e−

|x−y|2
r | dr

≤ C

|x− y|d
.

Hence we are in the hypothesis of Proposition 2.1 and consequently we have

‖U(Πlocf)‖Lp
E(Rd,dx) ≤ C‖f‖Lp(Rd,dx)
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and

|{x : ‖U(Π)locf(x)‖E > λ}| ≤ C

λ

∫
Rd
|f(x)|dx.

Since we are dealing with a local operator Proposition 2.2 applies giving the desired estimates
for the oscillation. As before, we observe that the estimates and results used in the above
proof are also true for the variation operator as long as 2 < ρ < ∞.
This ends the proof of Theorem 1.2.

Note added in review: We thank the referee for bringing our attention to the article [12]
where results related to those in Section 4 are proved and for pointing out some missprints.
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[13] T. Menárguez, S. Pérez and F. Soria, The Mehler maximal funtion: a geometric proof
of the weak type 1, J. London Math. Soc. 61 (2000), 846-856.

[14] P.A. Meyer, Transformations de Riesz pour le lois Gaussienes, Lecture Notes in Math.
1059 (1984), 179-193. Springer-Verlag. New York.

[15] B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer.
Math. Soc. 139 (1969), 231-242.
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