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In the present paper we give a description of the free algebra over an arbitrary set of generators in the variety
of nilpotent minimum algebras. Such description is given in terms of a weak Boolean product of directly inde-
composable algebras over the Boolean space corresponding to the Boolean subalgebra of the free NM-algebra.
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1 Introduction

The monoidal t-norm based logic (MT L) is introduced in [11] to formalize logics in which the conjunction
is interpreted by a left continuous t-norm and the implication by its corresponding adjoint. The nilpotent mini-
mum logic (NML) is the extension of MT L that corresponds to an specific t-norm called the nilpotent mini-
mum t-norm, which was introduced by Fodor in [12] as an example of a left continuous t-norm which is not
continuous. The logicNML is algebraizable in the sense of Blok and Pigozzi, and the algebraic semantics of this
logic is the variety of nilpotent minimum algebras (NM-algebras, for short). NM-algebras are bounded residuated
lattices that satisfy three extra axioms: prelinearity, involution and the nilpotent minimum axiom, which roughly
states that the conjunction of two elements is either their minimum or the bottom element in the lattice. Many
researches about NM-algebras have already been done (see for instance [11, 13, 17]).

Since the propositions under equivalence form a free NM-algebra, the description of the free NM-algebra is
quite important from the logical point of view. The description of truth functions of NML given in [19] can
be interpreted as a characterization of finitely generated free NM-algebras. In the present paper, we shall give a
more structural description of free NM-algebras that also covers the case of an infinite set of generators. Since
the variety of NM-algebras is a subvariety of bounded residuated lattices, it is arithmetical. Then (see [1]) any
NM-algebra can be represented as a weak Boolean product of directly indecomposable NM-algebras over the
spectrum of its Boolean skeleton. It turns out that directly indecomposable objects in the variety of NM-algebras
are Girard monoids. This monoids are deeply studied in [15], where the author gives a method, called rotation,
for constructing the monoids from a substructure of semigroup. Then we can give a description of the free
NM-algebra as a weak Boolean product of NM-algebras which are rotations of free objects in a bigger variety of
algebras. More precisely, they are connected and disconnected rotations of generalized Gödel algebras.

The key to obtain this description is the characterization of the Boolean skeleton of an NM-algebra. Such char-
acterization relies on the fact that the variety of MV-algebras generated by the three elements Łukasiewicz chain
is a proper subvariety of the variety of NM-algebras. Therefore, one can consider the MV-skeleton of an NM-al-
gebra A: that is the biggest subalgebra MV3(A) of A which is an MV-algebra. We prove that there is a retraction
term from the NM-algebra onto its MV-skeleton. As a consequence we have that the Boolean skeleton of A co-
incides with the Boolean skeleton of MV3(A). Then we are reducing the problem of finding a subalgebra of
Boolean elements of an NM-algebra to finding a Boolean skeleton of an MV-algebra in a subvariety generated by
a finite chain. This last problem has already been solved in [4], giving us the desired characterization.
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220 M. Busaniche: Free nilpotent minimum algebras

The paper is organized as follows: in the first section we give the preliminaries about NM-algebras and the
representation of an NM-algebra as a weak Boolean product of directly indecomposable algebras. Secondly, we
define the term function ϕ that allows us to obtain MV3(A): the greatest subalgebra of A that belongs to the
subvariety of MV-algebras generated by the three elements Łukasiewicz chain. We prove that the subalgebra of
Boolean elements of A coincides with the subalgebra of Boolean elements of MV3(A). In the third section,
we give a characterization of directly indecomposable algebras as connected or disconnected rotations of the
kernel of the term function ϕ defined in the previous section. We also prove that the kernel of ϕ is a generalized
Gödel algebra. The fourth section is divided into two parts. The first one is advocated to the study of the Bool-
ean subalgebra of the free NM-algebra and the characterization of its ultrafilters. In second one, we prove that the
directly indecomposable quotients of the free algebra are connected or disconnected rotations of free generalized
Gödel algebras. Lastly we show how to extend the methods developed previously to describe free objects in any
subvariety of NM-algebras.

2 Preliminaries

We shall always denote algebras by bold capital letters A,B,C,D, . . . and their corresponding universes
by A,B,C,D, . . . . Unless otherwise specified, all the notions related with universal algebra used in the paper
can be found in [3].

2.1 Basic definitions

An integral residuated lattice is an algebra A = (A,∧,∨, ∗,→,�) of type (2, 2, 2, 2, 0) such that:
1. (A, ∗,�) is a commutative monoid.

2. (A,∧,∨,�) is a lattice with greatest element �.

3. For any x, y, z ∈ A, the following residuation equation holds:

x ∗ y ≤ z iff x ≤ y → z,

where ≤ is the order given by the lattice structure.
A bounded residuated lattice is an integral residuated lattice A with an extra constant ⊥ such that ⊥ ≤ x for
all x ∈ A. In any bounded residuated lattice an additional operation of negation can be defined by:

¬x = x→ ⊥.

Bounded residuated lattices satisfying the involutive equation ¬¬x = x are called involutive residuated lattices.
In any involutive residuated lattice the operations ∗ and → are related as follows:

(1) x ∗ y = ¬(x→ ¬y) and x→ y = ¬(x ∗ ¬y).

Also the De Morgan laws, x ∧ y = ¬(¬x ∨ ¬y) and x ∨ y = ¬(¬x ∧ ¬y), are satisfied. An integral residuated
lattice that satisfies the prelinearity equation

(2) (x→ y) ∨ (y → x) = �

is called a generalized MTL-algebra (GMTL-algebra, for short). A generalized Gödel algebra (also known in the
literature as generalized linear Heyting algebra or as relative Stone algebra (see [10])) is a GMTL-algebra that
satisfies the equation

(3) (x ∧ y) → (y ∗ x) = �.

Bounded GMTL-algebras are MTL-algebras, the algebras corresponding to the monoidal t-norm based logic de-
fined on [11]. Involutive MTL-algebras (IMTL-algebras) are MTL-algebras whose underlying residuated lattice
is involutive. A nilpotent minimum algebra A = (A,∧,∨, ∗,→,⊥,�) is an IMTL-algebra that satisfies the
equation

(4) (x ∗ y → ⊥) ∨ (x ∧ y → x ∗ y) = �.
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The class of NM-algebras forms a proper subvariety of the variety of MTL-algebras. We shall refer to this
variety as NM. The variety MV3 of MV-algebras generated by the three element Łukasiewicz chain is a proper
subvariety of NM characterized by the equation

(5) (x ∧ y) → (x ∗ (x→ y)) = �.

Since the variety of Boolean algebras is a proper subvariety of MV3, it is also a proper subvariety of NM.
An NM-algebra A is called trivial provided that A = {�}.

Some elements of an NM-algebra can be characterized by the order relationship with their own negation. As
in [13], we defined the set of positive elements of A as the set

A+ = {x ∈ A : x > ¬x}.

Similarly

A− = {x ∈ A : x < ¬x}

is called the set of negative elements of A. In [14], it is proved that an NM-algebra can have at most one element x
such that x = ¬x. Such point is usually called negation fixpoint (or simply fixpoint) of the NM-algebra. If p is
the negation fixpoint of an NM-algebra A, the set {⊥, p,�} constitutes the universe of a subalgebra of A.

If the lattice order of an NM-algebra A is total we shall call the algebra NM-chain. Clearly, for every
NM-chain A with a fixpoint p, we have A = A+ ∪A− ∪ {p}. If A has no fixpoint, then A = A+ ∪A−.

NM-chains play a key role in the study of subvarieties of NM because of the following subdirect representa-
tion theorem that can be derived from [11, Proposition 3]:

Theorem 2.1 Every NM-algebra is a subdirect product of NM-chains.

The most important example of NM-chain is the nilpotent minimum t-norm. Its universe is the real inter-
val [0, 1] with the usual order. The operations are given by: ¬x = 1 − x, x→ y = � if x ≤ y, x→ y = ¬x ∨ y
otherwise. The behaviour of ∗ is given by equation (1). The NM-algebra [0, 1] = ([0, 1],∧,∨, ∗ →,¬, 0, 1) is
known as the standard NM-algebra. The point x = 1

2 is the fixpoint of the algebra. Generalizing the behaviour
on [0, 1] (see [13]), it can be proved that in any NM-chain the operations ∗ and → are related to ∧,∨,¬,�,⊥ in
the following way:

(6) x ∗ y =

{
⊥ if y ≤ ¬x,
x ∧ y otherwise,

(7) x→ y =

{
� if x ≤ y,

¬x ∨ y otherwise.

Therefore, up to isomorphism, for each finite n ∈ N, there is only one nilpotent minimum chain An with ex-
actly n elements. The algebra A3 is the Łukasiewicz finite chain with three elements and the algebra A2 is the
two elements Boolean chain. We shall refer to the universe of A3 as the set {⊥, p,�}, where p denotes the only
element of A3 which is not a constant (i. e. the fixpoint). We conclude this section with the following lemma:

Lemma 2.2 Let A be an NM-algebra, and let x ∈ A+ and z ∈ A−. Then x > z. If p is the negation fixpoint,
then x > p > z.

P r o o f. Let A be an NM-chain. If we assume conversely that x ≤ z, we have

¬x < x ≤ z < ¬z.

Since the negation operator inverts the order we obtain

x = ¬¬x > ¬x ≥ ¬z > ¬¬z = z

leading to an absurdum. If A is an arbitrary NM-algebra, since A is a subdirect product of NM-chains the rela-
tion holds coordinatewise and the result follows. In an analogous way one can prove that if A has a fixpoint p,
then x > p for each x ∈ A+ and p > z for each z ∈ A−.
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2.2 Implicative filters and congruences

Definition 2.3 An implicative filter of an NM-algebra A is a subsetF ⊆ A satisfying the following conditions:

1. � ∈ F ;

2. for all x, y ∈ A, if x ∈ F and x ≤ y, then y ∈ F ;

3. if x, y ∈ F , then x ∗ y ∈ F .

Alternatively, a filter F of an NM-algebra A can be defined as a subset F ⊆ A such that � ∈ F and if x ∈ F
and x → y ∈ F , then y ∈ F . Therefore filters of NM-algebras are closed under ∗, ∨ and →. Moreover, since in
any residuated lattice the equation x ∗ y ≤ x ∧ y holds (see [16]), then if F is a filter, F = (F,∧,∨, ∗,→,�) is
a residuated lattice that satisfies (2), i. e. F is a GMTL-algebra.

An implicative filter is called proper provided that F �= A. If W is a subset of an NM-algebra A, the implica-
tive filter generated by W will be denoted by 〈W 〉.

Implicative filters characterize congruences in NM-algebras. Indeed, there is a bijection between the congru-
ences of an NM-algebra A and its implicative filters (see [16, Proposition 1.3]). We shall denote by A/F the
quotient of A by the congruence corresponding to F .

As usual, if ψ : A −→ A′ is a homomorphism from the NM-algebra A onto the NM-algebra A′, then

Fψ = ψ−1({�}) = {x ∈ A : ψ(x) = �}

is an implicative filter of A.

2.3 Representation of NM-algebras as weak Boolean product of directly
indecomposable algebras

Letting A be an NM-algebra, one can always consider the set B(A) given by

B(A) = {x ∈ A : x ∨ ¬x = � and x ∧ ¬x = ⊥}.

This set is the universe of a subalgebra B(A) of A which is a Boolean algebra and it is usually known as the
Boolean skeleton of A. Moreover, if C is a subalgebra of A which is a Boolean algebra, then C is a subalgebra
of B(A). Notice that if A is an NM-chain, then B(A) ∼= A2. If U is a filter of the Boolean algebra B(A), then
the implicative filter 〈U〉 is called a Stone filter of A.

An NM-algebra A is directly indecomposable if it can not be decomposed into the direct product of two
non-trivial NM-algebras. The following result can be derived from [16].

Lemma 2.4 An NM-algebra A is directly indecomposable iff B(A) ∼= A2.

As usual, given a Boolean algebra B one can provide the set of its ultrafilters with the Stone topology to obtain
the corresponding Boolean space Sp(B) (see [3]). A weak Boolean product of a family (Ay, y ∈ Y ) of algebras
over a Boolean space Y is a subdirect product A of the given family such that the following conditions hold:

1. If a, b ∈ A, then [a = b] = {y ∈ Y : ay = by} is open.

2. If a, b ∈ A and Z is a clopen in Y , then a|Z ∪ b|Y \Z ∈ A.

An algebra A is representable as a weak Boolean product when there exists a family of algebras (Ay, y ∈ Y )
over a Boolean space Y such that A is isomorphic to a weak Boolean product of the given family. Since the
variety of bounded residuated lattices is arithmetical (see [16]), it has the Boolean factor congruence property.
By [1], each non-trivial NM-algebra can be represented as a weak Boolean product of directly indecomposable
NM-algebras. The explicit representation of each NM-algebra as a weak Boolean product of directly indecom-
posable NM-algebras is the following:

Lemma 2.5 Let A be an NM-algebra and let SpB(A) be the Boolean space of ultrafilters of the Boolean
algebra B(A). Then A is representable as a weak Boolean product of the family

((A/〈U〉) : U ∈ SpB(A))

over the Boolean space SpB(A).
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The purpose of the present paper is to use this representation to obtain a concrete description of the free algebra
in NM as a weak Boolean product of directly indecomposable NM-algebras. To achieve such aim, we will
study the structure of the Boolean skeleton of an NM-algebra and also the structure of directly indecomposable
NM-algebras.

3 Boolean skeleton of NM-algebras

Let x2 be an abbreviation for x ∗ x. We define over any NM-algebra A the following terms:

∇(x) = ¬(¬x2)2 and ∆(x) = (¬(¬x)2)2.

These operators provide a tool to verify whether an NM-chain does or does not have a fixpoint. Precisely, the
following result can be found in [13, Theorem 2].

Lemma 3.1 An NM-chain A does not have a fixpoint iff

∇(x) = ∆(x)

for all x ∈ A.

If A = [0, 1] is the standard NM-algebra we have

∇(x) =

{
1 if x > 1

2 ,

0 if x ≤ 1
2 ,

and

∆(x) =

{
1 if x ≥ 1

2 ,

0 if x < 1
2 .

Recalling from (6) and (7) the behaviour of ∗ and → in NM-chains, the following result can be verified:

Lemma 3.2 Let A be an NM-chain. Then we have

(8) ∇(x) =

{
� if x > ¬x,
⊥ if x ≤ ¬x,

and

(9) ∆(x) =

{
� if x ≥ ¬x,
⊥ if x < ¬x.

From Theorem 2.1 and Lemma 3.2 we can assert that the images of both operators ∇ and ∆ are included in
the Boolean skeleton of the domain. If A is an NM-algebra satisfying the equation ∆(x) = ∇(x), the operator ∇
is a retract from A onto B(A) (see [9]). Therefore one can always describe the Boolean skeleton of an NM-al-
gebra satisfying ∆(x) = ∇(x) as the image of ∇. This is no longer the case for an arbitrary NM-algebra. That is
the reason why we have to develop some alternative methods to describe the Boolean skeleton of an arbitrary
NM-algebra. We shall do that studying the biggest subalgebra of A that belongs to MV3.

To achieve such aim, let the term ϕ be defined over any NM-algebra by:

(10) ϕ(x) = ∆(x) ∧ (∇(x ∨ ¬x) ∨ x).

Over the standard NM-algebra [0, 1], ϕ has the following behaviour:

ϕ(x) =

⎧⎪⎨
⎪⎩

1 if x > 1
2 ,

1
2 if x = 1

2 ,

0 if x < 1
2 .
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Theorem 3.3 Let A be an NM-algebra. The map ϕ : A −→ A is a homomorphism.

P r o o f. To prove that ϕ is a homomorphism, from Theorem 2.1, it is enough to check that in any NM-chain A
the following equations are satisfied:

(e1) ϕ(�) = � and ϕ(⊥) = ⊥,

(e2) ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y),
(e3) ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y),
(e4) ϕ(¬x) = ¬ϕ(x),
(e5) ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y),
(e6) ϕ(x→ y) = ϕ(x) → ϕ(y).

Equations (e1) are easy to check. In order to prove the remaining equations, we consider the following three
possible situations for an element x in an NM-chain A:

C a s e 1: x ∈ A+. Considering equations (8) and (9), we get ∆(x) = � and ∇(x∨¬x) = �, thus ϕ(x) = �.
C a s e 2: x ∈ A−. In this case ∆(x) = ⊥ implies ϕ(x) = ⊥.
C a s e 3: x = ¬x. Hence ∆(x) = �, ∇(x ∨ ¬x) = ⊥, and ϕ(x) = x.
Summing up

(11) ϕ(x) =

⎧⎪⎨
⎪⎩
� if x > ¬x,
x if x = ¬x,
⊥ if x < ¬x.

Checking equations (e2), (e3) and (e4) is left to the reader. To check equation (e5) we consider the following
possibilities:

1. x ∈ A+ and y ∈ A+. In such case, ϕ(x) = ϕ(y) = �, hence ϕ(x) ∗ ϕ(y) = �. Since either y ≥ x > ¬x
or x ≥ y > ¬y, from (6) we know that x ∗ y = x ∧ y. From (e2) we obtain

ϕ(x ∗ y) = ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y) = �

as desired.

2. x ∈ A− and y ∈ A−. This being the case, ϕ(x) = ϕ(y) = ⊥, thus ϕ(x) ∗ ϕ(y) = ⊥. Now x ∗ y = ⊥, and

ϕ(x ∗ y) = ϕ(⊥) = ⊥.

3. x ∈ A− and y ∈ A+. Hence ϕ(x) = ⊥, ϕ(y) = �, and ϕ(x) ∗ϕ(y) = ⊥. From the total order of A one of
the following situations must happen: either x ≤ ¬y or ¬x < y. In the first case x ∗ y = ⊥. In the second one,
from Lemma 2.2, x ∗ y = x ∧ y = x. In both cases ϕ(x ∗ y) = ⊥ as desired.

4. x = ¬x and y = ¬y. Since in each NM-algebra there is at most one fixpoint, we have x = y. Thus

ϕ(x) ∗ ϕ(y) = x ∗ y = x ∗ x = ⊥ = ϕ(⊥) = ϕ(x ∗ x) = ϕ(x ∗ y).

5. x ∈ A+ and y = ¬y. Then ϕ(x) = � and ϕ(y) = y, so ϕ(x)∗ϕ(y) = y. Lemma 2.2 implies x > y. Using
again (6) we have x ∗ y = x ∧ y = y, thus ϕ(x ∗ y) = ϕ(y) = y.

6. x ∈ A− and y = ¬y. We have ϕ(x) = ⊥ and ϕ(y) = y, hence ϕ(x) ∗ ϕ(y) = ⊥. In this case x ∗ y = ⊥,
thus ϕ(x ∗ y) = ϕ(⊥) = ⊥.

Since the operation ∗ is commutative, each of the remaining cases is analogous to one of the previous.
Lastly, according to equation (1) the operator → can be defined in terms of ∗ and ¬, thus (e6) is a consequence

of (e4) and (e5).

From equation (11) on the chain A3 ∈ MV3, the equation ϕ(x) = x holds. Then we can conclude:

Lemma 3.4 If A ∈ MV3, then ϕ(x) = x for each x ∈ A, i. e. ϕ is the identity function over A.

For each NM-algebra A we define the set MV3(A) = {ϕ(a) : a ∈ A}.
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Theorem 3.5 Let A be an NM-algebra. Then

MV3(A) = (MV3(A),∧,∨, ∗,→,¬,⊥,�)

is a subalgebra of A which is in MV3. Moreover, if C ∈ MV3 is a subalgebra of A, then C is a subalgebra
of MV3(A).

P r o o f. Since ϕ is a homomorphism, we know that MV3(A) is closed under the operations of NM-algebras,
thus MV3(A) is a subalgebra of A. If A is an NM-chain, from equation (11) we know that MV3(A) is a sub-
algebra of A3, so MV3(A) ∈ MV3. The general result follows from Theorem 2.1 and the fact that ϕ is given
by a term.

Finally assume that C is a subalgebra of A which is in MV3. Let x ∈ C. By Lemma 3.4, x = ϕ(x), which
means x ∈ MV3(A). Therefore C is a subalgebra of MV3(A).

Given an NM-algebra A, the algebra MV3(A) shall be called the MV-skeleton of A. From Lemma 3.4 and
Theorem 3.5 we obtain that for each x ∈ A,

ϕ(ϕ(x)) = ϕ(x).

Therefore we conclude:

Corollary 3.6 The homomorphism ϕ is a retract from an NM-algebra A onto MV3(A).

Remark 3.7 Let L3 denote the three-valued Łukasiewicz propositional logic. As an important consequence
of the previous results we obtain a Glivenko like theorem for the nilpotent minimum logic (see [8]), stating that
a formula α is deducible in L3 iff ϕ(α) is deducible in the logic NML. There is a similar result in [18] stating
that a formula α is deducible in L3 iff there is a term depending on α that is deducible in the logic corresponding
to a certain subvariety of MTL-algebras that includes the variety NM. It is worth to notice that, although the
terms are not the same, they are equivalent over NM-algebras.

Theorem 3.8 For any NM-algebra A, we have B(A) = B(MV3(A)).

P r o o f. The inclusionB(A) ⊇ B(MV3(A)) is trivial. For the other inclusion, since A is a subdirect product
of NM-chains, if x ∈ B(A), the coordinates xi of x in the subdirect product are only ⊥ and �. This being the
case, ϕ(x) = x, hence x ∈ B(MV3(A)).

Given an NM-algebra A, Theorem 3.8 suggests that instead of searching for Boolean elements on the whole
universe A we shall seek for them in MV3(A). Therefore the knowledge of the MV-skeleton provides us of
valuable information about the Boolean skeleton.

4 Directly indecomposable NM-algebras

As a consequence of Lemma 2.4 we know that in order to check that an NM-algebra A is directly indecomposable
we have to check that its only Boolean elements are ⊥ and �. Due to Theorem 3.8 we can give an alternative
way of checking that an NM-algebra is directly indecomposable that depends on the MV-skeleton.

Theorem 4.1 An NM-algebra A is directly indecomposable iff MV3(A) ∼= A2 or MV3(A) ∼= A3. More-
over, if A has no fixpoint, then A is directly indecomposable iff MV3(A) ∼= A2.

P r o o f. Lemma 2.4 together with Theorem 3.8 implies that A is directly indecomposable iff

B(MV3(A)) ∼= A2.

But B(MV3(A)) ∼= A2 iff MV3(A) is directly indecomposable. From [7, Chapter 6] an algebra C ∈ MV3

is directly indecomposable iff C ∼= A2 or C ∼= A3, hence we have proved the first statement of the theorem.
To complete the proof, it is enough to observe that since MV3(A) is a subalgebra of A the existence of a fixpoint
in MV3(A) implies the existence of a fixpoint in A and vice versa.
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We shall give a method for constructing directly indecomposable algebras from generalized Gödel algebras.
For short, we shall refer to these last as GG-algebras.

Definition 4.2 Let D = (D,∧,∨, ∗,→, 1) be a GG-algebra. We define the disconnected rotation

DR(D) = (D × {1} ∪D × {0},�,�,⊗,⇒,¬,⊥,�)

as an algebra of type (2, 2, 2, 2, 1, 0, 0) with the operations given by the following prescriptions:

(x, i) � (y, j) = (y, j) � (x, i) =

⎧⎪⎨
⎪⎩

(x ∧ y, 1) if i = j = 1,
(x ∨ y, 0) if i = j = 0,
(x, 0) if i < j,

(x, i) � (y, j) = (y, j) � (x, i) =

⎧⎪⎨
⎪⎩

(x ∨ y, 1) if i = j = 1,
(x ∧ y, 0) if i = j = 0,
(y, 1) if i < j,

(x, i) ⊗ (y, j) = (y, j) ⊗ (x, i) =

⎧⎪⎨
⎪⎩

(x ∗ y, 1) if i = j = 1,
(1, 0) if i = j = 0,
(y → x, 0) if i < j,

(x, i) ⇒ (y, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x→ y, 1) if i = j = 1,
(y → x, 1) if i = j = 0,
(x ∗ y, 0) if i > j,

(1, 1) if i < j,

¬(x, i) =

{
(x, 1) if i = 0,
(x, 0) if i = 1,

� = (1, 1), ⊥ = (1, 0).

Theorem 4.3 Let D be a GG-algebra. The disconnected rotation DR(D) of D is a directly indecomposable
NM-algebra without fixpoint.

P r o o f. In [15], it is proved that DR(D) is an involutive residuated lattice. Clearly, there is no negation fix-
point in this algebra. Then we only need to check that DR(D) satisfies the prelinearity equation (2), the nilpotent
minimum equation (4) and that the NM-algebra is directly indecomposable. Since the prelinearity equation is
satisfied in D we have

((x, i) ⇒ (y, j)) � ((y, j) ⇒ (x, i)) =

⎧⎪⎨
⎪⎩

(x→ y ∨ y → x, 1) = � if i = j = 1,
(1, 1) = � if i �= j,

(y → x ∨ x→ y, 1) = � if i = j = 0.

Hence DR(D) also satisfies (2). To prove that the equation

(12) (((x, i) ⊗ (y, j)) ⇒ (1, 0)) � (((x, i) � (y, j)) ⇒ ((x, i) ⊗ (y, j))) = (1, 1)

holds we refer to [9, Lemma 5.6]. Finally it is not hard to see that B(DR(D)) ∼= A2, since

(x, i) � ¬(x, i) = ⊥

and

(x, i) � ¬(x, i) = �

only if x = 1.
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Definition 4.4 Let D = (D,∧,∨, ∗,→, 1) be a GG-algebra. The connected rotation1)

CR(D) = (D × {1} ∪ ({ 1
2} × { 1

2}) ∪D × {0},�,�,⊗,⇒,¬,⊥,�)

is an algebra of type (2, 2, 2, 2, 1, 0, 0) with the operations �,�,⊗,⇒,¬ given as in Definition 4.2 over

D × {1} ∪D × {0},

and extended by:

(x, i) � (1
2 ,

1
2 ) = (1

2 ,
1
2 ) � (x, i) =

{
(1
2 ,

1
2 ) if i = 1,

(x, i) otherwise,

(x, i) � (1
2 ,

1
2 ) = (1

2 ,
1
2 ) � (x, i) =

{
(x, i) if i = 1,
(1
2 ,

1
2 ) otherwise,

(x, i) ⊗ (1
2 ,

1
2 ) = (1

2 ,
1
2 ) ⊗ (x, i) =

{
(1
2 ,

1
2 ) if i = 1,

(1, 0) otherwise,

(x, i) ⇒ (1
2 ,

1
2 ) =

{
(1
2 ,

1
2 ) if i = 1,

(1, 1) otherwise,

(1
2 ,

1
2 ) ⇒ (x, i) =

{
(1
2 ,

1
2 ) if i = 0,

(1, 1) otherwise,

¬(1
2 ,

1
2 ) = (1

2 ,
1
2 ), � = (1, 1), ⊥ = (1, 0).

Theorem 4.5 Given a GG-algebra D the connected rotation CR(D) of D is a directly indecomposable
NM-algebra with a negation fixpoint.

P r o o f. The proof that CR(D) is an involutive residuated lattice with a fixpoint can be found in [15]. It is
a routine exercise checking that CR(D) satisfies the prelinearity equation and the nilpotent minimum equation.
To complete the proof, notice that B(CR(D)) = B(DR(D)) ∼= A2, thus the NM-algebra CR(D) is directly
indecomposable.

Theorems 4.3 and 4.5 imply that connected and disconnected rotations of generalized Gödel algebras give us
examples of directly indecomposable NM-algebras. The question that arises naturally is: Is every directly inde-
composable NM-algebra a connected or disconnected rotation of a generalized Gödel algebra? The next part of
the present section is advocated to answer this question.

Definition 4.6 If ϕ : A −→ MV3(A) is the homomorphism given by (10), let P (A) be the GMTL-algebra
whose universe is ϕ−1({�}).

Theorem 4.7 If A is an NM-algebra, then P (A) is a GG-algebra.

To obtain a proof of Theorem 4.7 we will prove first the following result:

Lemma 4.8 Let A be a non-trivial NM-algebra and let x ∈ A. If ϕ(x) = �, then x > ¬x.

P r o o f. By equation (11), the quasiequation

ϕ(x) = � ⇒ ¬x→ x = �

holds in any NM-chain. Hence Theorem 2.1 implies that if ϕ(x) = �, then ¬x ≤ x. Now assume that x = ¬x.
Then � = ϕ(x) = ϕ(¬x) = ⊥, contradicting the non-triviality of A.

1) Our definition of connected rotation is analogous but not exactly the same as the one given in [15]. The algebra CR(D) that we
define is, according to [15], the connected rotation of the semigroup obtained by adding a lower bound to the GG-algebra D.
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P r o o f o f T h e o r e m 4.7. Consider x, y ∈ P (A) ⊆ A. Since every NM-algebra satisfies equation (4), we
have

(13) (x ∗ y → ⊥) ∨ (x ∧ y → x ∗ y) = �.

From the hypothesis x, y ∈ P (A) we conclude that ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y) = �. Thus Lemma 4.8 implies

¬(x ∗ y) < x ∗ y.

Since x∗y ≤ (x∧y) → (x∗y) the left-hand side of (13) becomes x∧y → x∗y. Hence P (A) is a GMTL-algebra
that satisfies equation (3), i. e. P (A) is a GG-algebra.

Therefore, given an NM-algebra A, both the connected and the disconnected rotations of P (A) are well
defined.

Theorem 4.9 Let A be an NM-algebra without negation fixpoint. We define α : DR(P (A)) −→ A by

α(x, i) =

{
x if i = 1,
¬x if i = 0.

Then α is an injective homomorphism from DR(P (A)) into A. Moreover, α is onto iff A is directly indecom-
posable.

P r o o f. To check that α is a homomorphism notice that if x, y ∈ P (A), by Lemma 4.8, we have x > ¬x
and y > ¬y. Then Lemma 2.2 yields

(14) x > ¬y.

Obviously α(�, 1) = �, α(�, 0) = ¬� = ⊥. That α((x, i)∧ (y, j)) = α(x, i)∧α(y, j) follows easily if at least
one of i or j equals 1, and follows from the De Morgan laws if i = j = 0. In a similar way one can prove
that α((x, i) ∨ (y, j)) = α(x, i) ∨ α(y, j). It is trivial that α(¬(x, i)) = ¬α(x, i). From (1) we can define → in
terms of ∗ and ¬, therefore it only remains to check that α((x, i) ∗ (y, j)) = α(x, i) ∗ α(y, j). Since

α((x, i) ∗ (y, j)) =

⎧⎪⎨
⎪⎩
x ∗ y if i = j = 1,
¬(y → x) if i < j,

⊥ if i = j = 0,

and

α(x, i) ∗ α(y, j) =

⎧⎪⎨
⎪⎩
x ∗ y if i = j = 1,
¬x ∗ y if i < j,

¬x ∗ ¬y if i = j = 0,

we only need to check that ¬x ∗ y = ¬(y → x) and that ¬x ∗ ¬y = ⊥ if ϕ(x) = ϕ(y) = �. The first equality
follows from equation (1). For the second one, notice that equation (6) implies that the quasiequation

¬y → x = � ⇒ ¬x ∗ ¬y = ⊥

holds in any NM-chain. Then, it holds in any NM-algebra and because of (14) the result follows.
To check injectivity, let α(x, i) = α(y, j), for some x, y ∈ P (A) and i, j ∈ {0, 1}. If i = j, then x = y.

Otherwise, without loss of generality we may assume that i < j. Then α(x, i) = α(y, j) implies that ¬x = y.
Since y, x ∈ P (A), ϕ(x) = ϕ(y) = �. But � = ϕ(y) = ϕ(¬x) = ¬ϕ(x) = ⊥. The absurdum indicates that
the case α(x, i) = α(y, j) with i �= j cannot occur.

Since DR(P (A)) is directly indecomposable, if α is onto, then A is directly indecomposable. Conversely,
assume that A is directly indecomposable. From Theorem 4.1 we know that MV3(A) ∼= A2. Then

A = ϕ−1({�}) ∪ ϕ−1({⊥}) = ϕ−1({�}) ∪ ϕ−1({¬�}).
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Let ¬ϕ−1({�}) = {¬y ∈ A : ϕ(y) = �}. Hence ϕ−1({¬�}) = ¬ϕ−1({�}), and

A = P (A) ∪ ¬P (A) = α(DR(P (A))).

Therefore α is onto.

Theorem 4.10 Let A be an NM-algebra with a negation fixpoint p. We define

β : CR(P (A)) → A

by β(1
2 ,

1
2 ) = p and if x ∈ P (A), let

β(x, i) =

{
x if i = 1,
¬x if i = 0.

Then β is an injective homomorphism from CR(P (A)) into A. Moreover, β is onto iff A is directly indecom-
posable.

P r o o f. Note that ϕ(x) = p iff x = p. Indeed, we know that ϕ(p) = ϕ(¬p) = ¬ϕ(p). On the other hand,
if A is a chain and ϕ(x) = p, we know from (11) that x = p. If A is a subdirect product of chains, and ϕ(x) = p,
then each coordinate ϕ(x)i on the product is a fixpoint. Since ϕ is given by a term, we know that ϕ(x)i = ϕ(xi).
Thus xi is the fixpoint of the corresponding chain and x is the fixpoint p. Taking this into account, one can prove
that β is a injective homomorphism as in Theorem 4.9.

Obviously β onto implies that A is directly indecomposable. To prove the other implication, assume that A
is directly indecomposable. By Theorem 4.1 we have MV3(A) ∼= A3. Thus

A = ϕ−1({�}) ∪ ϕ−1({⊥}) ∪ ϕ−1({p}) = ϕ−1({�}) ∪ ¬ϕ−1({�}) ∪ {p}.

Then

A = P (A) ∪ ¬P (A) ∪ {p} = α(CR(P (A)))

implies β is onto.

Theorem 4.9 and Theorem 4.10 answer our original question. As an immediate consequence of these two
theorems and of the definitions of connected and disconnected rotations we have:

Corollary 4.11 If A is a directly indecomposable NM-algebra without a fixpoint, then A = A+ ∪A−.
If A is a directly indecomposable NM-algebra with a fixpoint p, then A = A+ ∪ {p} ∪A−. Moreover, in both
cases A+ = P (A) and A− = ¬P (A).

In the terminology of [17] and [18], the previous corollary is asserting that directly indecomposable NM-al-
gebras without a fixpoint are perfect IMTL-algebras and directly indecomposable NM-algebras with fixpoint are
perfect IMTL-algebras plus fixpoint.

If A is directly indecomposable, another useful consequence of Theorems 4.9 and 4.10, because of the defini-
tions of the operations ∗ and ¬ in the connected and disconnected rotations, is the next lemma:

Lemma 4.12 Let A be a directly indecomposable NM-algebra. Then the operators ∇,∆ and ϕ have the
following behaviour:

(15) ∇(x) =

{
� if x > ¬x,
⊥ if x ≤ ¬x,

(16) ∆(x) =

{
� if x ≥ ¬x,
⊥ if x < ¬x,

(17) ϕ(x) =

⎧⎪⎨
⎪⎩
� if x > ¬x
x if x = ¬x,
⊥ if x < ¬x.
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As an immediate consequence of this result, if C be a GG-algebra, we have

P (CR(C)) = P (DR(C)) = {(x, 1) : x ∈ C}.

Therefore we obtain:

Theorem 4.13 If C is a GG-algebra, the applications δ : P (CR(C)) −→ C and γ : P (DR(C)) −→ C
defined by

δ((x, 1)) = x and γ((x, 1)) = x

are isomorphisms from their respective domains onto C.

4.1 Generators of the GG-algebra P (A)

In the present section we shall see how to obtain a set of generators for the GG-algebra P (A) from a set of
generators of the whole NM-algebra A.

Theorem 4.14 Let A be a directly indecomposable NM-algebra and let X be a set of generators of A. If A
has no fixpoint, then the set

H = {x ∈ X : ϕ(x) = �} ∪ {¬x : x ∈ X and ϕ(x) = ⊥}

also generates A. If A has a fixpoint p, the set H ′ = H ∪ {p} generates the algebra.

P r o o f. Assume that A has no fixpoint. Call 〈H〉 the subalgebra of A generated byH . It is enough to check
that X ⊆ 〈H〉. Let x ∈ X . If ϕ(x) = �, then x ∈ H . Otherwise, ¬x ∈ H . Hence ¬¬x = x ∈ 〈H〉 as required.

Now suppose that p is the fixpoint of the directly indecomposable A = CR(P (A)). Then

A \ {p} = DR(P (A)),

and clearly 〈H〉 = DR(P (A)). Thus 〈H ′〉 = DR(P (A)) ∪ {p} = A.

Theorem 4.15 Let A and H be as in Theorem 4.14. Then H generates P (A) as a GG-algebra.

P r o o f. Let G(H) be the GG-algebra generated by H . Since H ⊆ P (A), we have G(H) ⊆ P (A). Assume
that G(H) ⊂ P (A). By construction DR(G(H)) ⊂ A = DR(P (A)). But H ⊆ DR(G(H)) and H gene-
rates A. Then we conclude that H generates P (A) as a GG-algebra.

5 Free NM-algebras

Recall that an algebra A in a variety K is said to be free over a set Y iff for every algebra C in K and every
function f : Y −→ C, f can be uniquely extended to a homomorphism of A into C. Given a variety K of alge-
bras, we denote by FreeK(X) the free algebra in K over X . As a consequence of Lemma 2.5 we have:

Theorem 5.1 The free NM-algebra FreeNM(X) can be represented as a weak Boolean product of the family

((FreeNM(X)/〈U〉) : U ∈ SpB(FreeNM(X)))

over the Boolean space SpB(FreeNM(X)).
In the present section we shall give an explicit description of the Boolean skeleton B(FreeNM(X)) and of

the directly indecomposable NM-algebras FreeNM(X)/〈U〉 for each U ∈ SpB(FreeNM(X)).

5.1 Boolean skeletons of free algebras

Theorem 5.2 Let X be a set of free generators of the free NM-algebra FreeNM(X) and let

Z = {ϕ(x) : x ∈ X}.

Then

MV3(FreeNM(X)) = FreeMV3(Z).
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P r o o f. Let C ∈ MV3 and f : Z −→ C. We define f ′ : X −→ C by

f ′(x) = f(ϕ(x)).

Since C ∈ NM, f ′ can be extended to a homomorphism h : FreeNM(X) −→ C such that

h(x) = f ′(x) = f(ϕ(x)).

Let h′ be the restriction of h to the subalgebra MV3(FreeNM(X)). From its definition, MV3(FreeNM(X)) is
the subalgebra of FreeNM(X) generated by Z . Since ϕ(x) is a term, we have

h′(ϕ(x)) = h(ϕ(x)) = ϕ(h(x)) = ϕ(f ′(x)) = ϕ(f(ϕ(x)).

Since f((ϕ(x)) is an element of an algebra C ∈ MV3, from Lemma 3.4 we obtain

ϕ(f(ϕ(x)) = f(ϕ(x)).

Then h′(ϕ(x)) = f(ϕ(x)) and the result follows.

In [4] a characterization of the Boolean skeleton of a free MV-algebra in the subvariety MV3 is given in terms
of the Moisil operators σ1, σ2 defined on each algebra in MV3. Information about these Moisil operators can
be obtained in [2, 5, 6]. One can check that the operator σ1 used in [4] coincides with ∇ and σ2 with ∆ on the
chain A3. Since A3 generates the variety MV3 and all these operators are given by terms, we have

σ1(x) = ∇(x) and σ2(x) = ∆(x)

for all x in an algebra A ∈ MV3. Replacing ∇ and ∆ for σ1 and σ2, the result in [4, Theorem 3.12] asserts:

Theorem 5.3 B(FreeMV3(Z)) is the free Boolean algebra over the poset Z ′ = {∇(z),∆(z) : z ∈ Z}.

Because of equation (11) and Theorem 2.1, for any element x in an NM-algebra A, ∇(ϕ(x)) = ∇(x)
and ∆(ϕ(x)) = ∆(x). Then applying Theorems 3.8, 5.2 and 5.3 we conclude:

Theorem 5.4 B(FreeNM(X)) is the free Boolean algebra over the poset Z = {∇(x),∆(x) : x ∈ X}.

We know that the ultrafilters of a Boolean algebra are in bijective correspondence with the homomorphisms
from the algebra into the two elements Boolean algebra, A2. Since every upward closed subset of the poset

Z = {∇(x),∆(x) : x ∈ X}

is in correspondence with an increasing function from Z onto A2, and every increasing function from Z can
be extended to a homomorphism from B(FreeNM(X)) onto A2, the ultrafilters of B(FreeNM(X)) are in
correspondence with the upward closed subsets of Z . This is summarized in the following lemma:

Lemma 5.5 Consider the poset Z = {∇(x),∆(x) : x ∈ X}. For each upward closed subset S ⊆ Z consi-
der the set GS given by the joint of the following four sets:

{∇(x) : ∇(x) ∈ S}, {¬∇(x) : ∇(x) /∈ S}, {∆(x) : ∆(x) ∈ S}, {¬∆(x) : ∆(x) /∈ S}.

Then the correspondence that assigns to each upward closed subset S ⊆ Z the Boolean filterUS generated byGS
defines a bijection from the set of upward closed subsets of Z onto the ultrafilters of B(FreeNM(X)).

Taking this fact into account, we shall refer to each ultrafilter of the Boolean skeleton B(FreeNM(X)) by US
making explicit reference to the upward closed subset S that corresponds to it.

5.2 Directly indecomposable quotients of free algebras

Theorem 5.6 The directly indecomposable NM-algebra FreeNM(X)/〈US〉 has a fixpoint iff there is x ∈ X
such that ∇(x) /∈ S and ∆(x) ∈ S.

P r o o f. Recall from Lemma 4.12 that the directly indecomposable algebra FreeNM(X)/〈US〉 has a fixpoint
iff there is y ∈ FreeNM(X)/〈US〉 such that ∇(y) �= ∆(y). Assume that there is x ∈ X such that ∇(x) /∈ S
and ∆(x) ∈ S. Then ∇(x/〈US〉) �= � and ∆(x/〈US〉) = �, meaning that FreeNM(X)/〈US〉 has a fixpoint.
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For the converse implication, notice that since the equation ∇(x) → ∆(x) = � holds in any NM-chain (see
Lemma 3.2), we have that the inequality ∇(x) ≤ ∆(x) holds in any NM-algebra. This means that if ∇(x) ∈ S,
then ∆(x) ∈ S, because S is upward closed. Assume that for every x ∈ X ,

∇(x) ∈ S iff ∆(x) ∈ S.

If ∇(x) ∈ S, then ∇(x/〈US〉) = ∆(x/〈US〉) = � and if ∆(x) /∈ S, then ¬∇(x/〈US〉) = ¬∆(x/〈US〉) = �.
Since FreeNM(X)/〈US〉 is generated by XS = {x/〈US〉 : x ∈ X} and ∇ and ∆ are given by terms, we con-
clude that ∇(y) = ∆(y) for all y ∈ FreeNM(X)/〈US〉. Then FreeNM(X)/〈US〉 has no fixpoint.

Applying the results of Theorem 4.9 and Theorem 4.10 we conclude:

Theorem 5.7 Let X be a set of generators of the NM-algebra FreeNM(X). Let S be an increasing subset
of the poset Z = {∇(x),∆(x) : x ∈ X} and let US be the ultrafilter of B(FreeNM(X)) corresponding to S
according to Lemma 5.5.

1. If for all x ∈ X , ∇(x) ∈ S iff ∆(x) ∈ S, then

FreeNM(X)/〈US〉 ∼= DR(P (FreeNM(X)/〈US〉)).

2. Otherwise

FreeNM(X)/〈US〉 ∼= CR(P (FreeNM(X)/〈US〉)).

To obtain a precise description of the directly indecomposable NM-algebras FreeNM(X)/〈US〉 we shall
study the structure of the GG-algebras P (FreeNM(X)/〈US〉).

Theorem 5.8 Under the notation of Theorem 5.7, let the set XS ⊆ X/〈US〉 be given by

XS = {x/〈US〉 : ϕ(x/〈US〉) = �} ∪ {¬x/〈US〉 : ϕ(x/〈US〉) = ⊥}.

Then P (FreeNM(X)/〈US〉) is the free GG-algebra generated by XS .

P r o o f. Let C be a GG-algebra and consider an arbitrary function f : XS −→ C. We define

f ′ : X −→ CR(C)

by:

f ′(x) =

⎧⎪⎨
⎪⎩

(f(x/〈US〉), 1) if ϕ(x/〈US〉) = �,
(1
2 ,

1
2 ) if ϕ(x/〈US〉) = p,

(f(¬x/〈US〉), 0) if ϕ(x/〈US〉) = ⊥,

where p denotes the fixpoint of A3. By the definition of free algebra, there exists a homomorphism

g′ : FreeNM(X) −→ CR(C)

such that g′(x) = f ′(x) for all x ∈ X .
We claim that g′(〈US〉) ⊆ {�}. To prove this, we shall see that g′(y) = � for each y in the set GS given in

Lemma 5.5. By Lemma 4.12, ∇(x/〈US〉) = � iff ϕ(x/〈US〉) = � and ∆(x/〈US〉) = � iff ϕ(x/〈US〉) �= ⊥.
If ∇(x) ∈ S, then ∇(x/〈US〉) = �, thus ϕ(x/〈US〉) = �. Then

g′(∇(x)) = ∇(g′(x)) = ∇(f ′(x)) = ∇((f(x/〈US〉), 1)) = �,

where the last equality follows also from Lemma 4.12.
If ∆(x) ∈ S, then ∆(x/〈US〉) = �. Hence ϕ(x/〈US〉) �= ⊥. Therefore

g′(∆(x)) = ∆(g′(x)) = ∆(f ′(x))

and either f ′(x) = (1
2 ,

1
2 ) or f ′(x) = (f(x/〈US〉), 1). In both cases ∆(f ′(x)) = �, as desired.
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If ∇(x) /∈ S, then ¬∇(x/〈US〉) = �. Since ∇(x/〈US〉) = ⊥ implies ϕ(x/〈US〉) �= �, we have

g′(¬∇(x)) = ¬∇(g′(x)) = ¬∇(f ′(x))

and either f ′(x) = (1
2 ,

1
2 ) or f ′(x) = (f(¬x/〈US〉), 0). Hence ¬∇(f ′(x)) = �.

Finally if ∆(x) /∈ S, then ¬∆(x/〈US〉) = �. This means ∆(x/〈US〉) = ⊥ and ϕ(x/〈US〉) = ⊥. In this case

g′(¬∆(x)) = ¬∆(g′(x)) = ¬∆(f ′(x)) = ¬∆(f(¬x/〈US〉), 0) = �.

Therefore there exists a unique homomorphism

g : FreeNM(X)/〈US〉 −→ CR(C)

such that g(y/〈US〉) = g′(y) for all y ∈ FreeNM(X)/〈US〉.
Let h be the restriction of g to the GG-subalgebra of FreeNM(X)/〈US〉 generated by XS . By Theorem 4.15

this algebra is P (FreeNM(X)/〈US〉). Clearly the image of h is contained in P (CR(C)) ∼= C. Consider the
composition of h with the function γ given in Theorem 4.13, that is, γ ◦ h : P (FreeNM(X)/〈US〉) −→ C.
If x/〈US〉 ∈ XS , then ϕ(x/〈US〉) = �, thus

γ ◦ h(x/〈US〉) = γ(g′(x)) = γ(f ′(x)) = γ((f(x/〈US〉), 1)) = f(x/〈US〉).

If ¬(x/〈US〉) ∈ XS , then ϕ(x/〈US〉) = ⊥. Hence

γ ◦ h(¬(x/〈US〉)) = γ(g′(¬(x)))
= γ(¬(g′(x)))
= γ(¬(f ′(x)))
= γ(¬(f(¬x/〈US〉), 0))
= f(¬x/〈US〉).

Then for an arbitrary GG-algebra C we have found a homomorphism γ ◦h from P (FreeNM(X)/〈US〉) into C
that extends the map f : XS −→ C. This implies the desired result.

These results imply that the directly indecomposable algebras in the representation of FreeNM(X) are either
connected or disconnected rotations of free generalized Gödel algebras. More precisely, if we denote by GG the
variety of generalized Gödel algebras we have proved:

Theorem 5.9 Let X be a set of free generators of the free NM-algebra FreeNM(X). Let

Z = {∇(x),∆(x) : x ∈ X}

and consider an increasing subset S of Z . Finally, consider the ultrafilter US related to S by Lemma 5.5 and
let XS = {x/〈US〉 : ϕ(x/〈US〉) = �} ∪ {¬(x/〈US〉) : ϕ(x/〈US〉) = ⊥}.

1. If for all x ∈ X , ∇(x) ∈ S iff ∆(x) ∈ S, then

FreeNM(X)/〈US〉 ∼= DR(FreeGG(XS)).

2. Otherwise

FreeNM(X)/〈US〉 ∼= CR(FreeGG(XS)).

Since finitely generated free generalized Gödel algebras were completely described in [10], we can have an
explicit description of FreeNM(X) when X is a finite set.

6 Free algebras in subvarieties of NM
In this last section we shall characterize free algebras in subvarieties of NM-algebras. Some of these free algebras
are very well known, as it is the case of the free Boolean algebra and the free algebra in the variety of three va-
lued Łukasiewicz algebras (see [7]). Also the free algebra in any subvariety of NM-algebras satisfying the
equation ∇(x) = ∆(x) is described in [9].
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Given any subvariety V of NM and following Lemma 2.5, we can give a description of the free alge-
bra FreeV(X) as a weak Boolean product of directly indecomposable algebras of the form

FreeV(X)/〈U〉

for each U ∈ SpB(FreeV(X)). Therefore, as done for the free NM-algebra, one must first describe the Bool-
ean algebra B(FreeV(X)) and then the directly indecomposable algebras in the product. The following result is
easy to verify.

Lemma 6.1 Let V be a subvariety of NM and let V ′ be the subvariety of V characterized by equation (5).
Then

V ′ = {B ∈ MV3 : B = MV3(A) for some A ∈ V}.

The only non-trivial subvarieties of MV3 are the whole variety MV3 and the variety of Boolean algebras B.

Lemma 6.2 V ′ = B iff no member of V has a fixpoint.

P r o o f. Assume that an algebra A ∈ V has a fixpoint p. Then the set {⊥, p,�} is the universe of a subalgebra
of A which is isomorphic to A3. This implies A3 ∈ V ′, hence V ′ = MV3. For the other implication, assume no
member of V ′ has a fixpoint. Then A3 /∈ V ′, thus V ′ = B.

The variety V ′ plays a role in the description of FreeV(X) analogous to that of MV3 in the description
of FreeNM(X). In a similar way of that of Theorem 5.2 it can be proved that

FreeV′(Y ) = MV3(FreeV(X)),

where Y = {ϕ(x) : x ∈ X}. Notice also that if V ′ = B, then the equation ϕ(y) = ∇(y) = ∆(y) holds in V .
Then the characterization of the Boolean subalgebras follows from Theorem 3.8. Precisely we have:

Theorem 6.3 Let V be a subvariety of NM and let V ′ be defined as in Lemma 6.1.
(a) If V ′ = B, then B(FreeV(X)) = FreeB(Z), with Z = {∇(x) : x ∈ X}.

(b) If V ′ = MV3, then B(FreeV(X)) is the free Boolean algebra over the posetZ = {∇(x),∆(x) : x ∈ X}.

For the first case in the previous theorem, for each subset S ⊆ Z = {∇(x) : x ∈ X} there is an ultrafil-
ter US ∈ SpB(FreeV(X) generated by the sets {∆(x) : ∆(x) ∈ S} and {¬∆(x) : ∆(x) /∈ S}. These being
the case, the directly indecomposable algebras are disconnected rotations, i. e.

FreeV(X)/〈US〉 = DR(P (FreeV(X)/〈US〉)).

For the second case, for each increasing subset

S ⊆ Z = {∇(x),∆(x) : x ∈ X},

the ultrafilter US ∈ SpB(FreeV(X) that corresponds to S is the one generated by the set GS defined in Lem-
ma 5.5. Then we have

1. If for every x ∈ X , ∇(x) ∈ S iff ∆(x) ∈ S, then

FreeV(X)/〈US〉 ∼= DR(P (FreeV(X)/〈US〉)).

2. Otherwise

FreeV(X)/〈US〉 ∼= CR(P (FreeV(X)/〈US〉)).

There only remains to describe P (FreeV(X)/〈US〉) for each of these cases. To achieve such aim, we define

VG = {C ∈ GG : C = P (A) for some A ∈ V}.

As in [9, Theorem 3.9] we have:

Lemma 6.4 For each variety V ⊆ NM, VG is a variety of GG-algebras.
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For each US ∈ SpB(FreeV(X)), let XS ⊆ X/〈US〉 be given by

(18) XS = {x/〈US〉 : ϕ(x/〈US〉) = �} ∪ {¬x/〈US〉 : ϕ(x/〈US〉) = ⊥}.

Let C ∈ VG and let f : XS −→ C be an arbitrary map. If V has no algebra with fixpoint, then we can de-
fine f ′ : X −→ DR(C) by

f ′(x) =

{
(f(x/〈US〉), 1) if ϕ(x/〈US〉) = �,
(f(¬x/〈US〉), 0) if ϕ(x/〈US〉) = ⊥.

If V has an algebra with fixpoint, we can define f ′ : X → CR(C) by

f ′(x) =

⎧⎪⎨
⎪⎩

(f(x/〈US〉), 1) if ϕ(x/〈US〉) = �,
(1
2 ,

1
2 ) if ϕ(x/〈US〉) = p,

(f(¬x/〈US〉), 0) if ϕ(x/〈US〉) = ⊥,

where p denotes the fixpoint of A3. From the definition of VG , in the first case, DR(C) ∈ V while in the second
one CR(C) ∈ V . In both cases, an argument analogous to the proof of Theorem 5.8 give us the following result:

Lemma 6.5 P (FreeV(X)/〈US〉) = FreeVG (XS).
As a summary of all the results in this section we have: let V be a subvariety of NM and let V ′ and VG be

given as in Lemma 6.1 and Lemma 6.4, respectively.
1. If V ′ = B, then FreeV(X) is a weak Boolean product of algebras of the form

DR(FreeVG (XS))

over the Boolean space SpFreeB(Z), where Z = {∇(x) : x ∈ X} and for each US ∈ SpFreeB(Z), XS is
given by (18).

2. If V ′ = MV3, then FreeV(X) is a weak Boolean product of algebras of the form

CR(FreeVG (XS)) or DR(FreeVG (XS))

over the Boolean space corresponding to the free Boolean algebra over the poset Z = {∇(x),∆(x) : x ∈ X}
and XS is given by (18).

As we mentioned before, free NM-algebras in subvarieties satisfying the equation ∆(x) = ∇(x) were de-
scribed in [9]. These subvarieties only contain algebras without fixpoint. Our description coincides with the
one obtained in that paper. Notice also that if V = MV3, then the only algebra of VG is the trivial algebra,
thus FreeVG (X) = {�}. So we have DR(FreeVG (X)) ∼= A2 and CR(FreeVG (X)) ∼= A3. Therefore our de-
scription of the free algebra in MV3 coincides with the one given in [7].
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