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Abstract In this note we combine the dyadic families introduced by M. Christ in
(Colloq. Math. 60/61(2):601–628, 1990) and the discrete partitions introduced by
J.M. Wu in (Proc. Am. Math. Soc. 126(5):1453–1459, 1998) to get approximation
of a compact space of homogeneous type by a uniform sequence of finite spaces
of homogeneous type. The convergence holds in the sense of a metric built on the
Hausdorff distance between compact sets and on the Kantorovich-Rubinshtein metric
between measures.
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1 Introduction

In this note we aim to build uniform discrete approximations of compact spaces of
homogeneous type.
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The problem leading us to this construction has its starting point in a basic tech-
nique for the study of weak type (1,1) of maximal operators (see [9] and [6]). In [5]
one of the authors gives an extension of that technique to some spaces of homoge-
neous type. Moreover, the weak type (1,1) of such a maximal operator follows from
the uniform weak type (1,1) of its restriction to discrete approximations of the space.

The main result of this paper is contained in Theorem 4.1. We shall introduce the
problem considered here with two classical and elementary examples.

If for each positive integer n we define on the Borel sets of the real numbers the
normalized counting measure supported on Sn = {i/n : i = 0,1,2, . . . , n}, given by
μn(A) = 1

n+1 card({i : 0 ≤ i ≤ n and i/n ∈ A}), we have that

Sn
dH−→[0,1] and μn

w∗−→m,

where the dH -convergence is the Hausdorff convergence of compact sets, the w∗-
convergence is the weak star convergence of measures, and m is the Lebesgue mea-
sure on the closed interval [0,1]. In other words, perhaps the most elementary prob-
ability space of homogeneous type ([0,1], | · |,m), where | · | denotes the usual dis-
tance on R, can be approximated in the Hausdorff-Kantorovich sense by a sequence
of finite spaces. Moreover, the spaces (Sn, | · |,μn) are themselves spaces of homo-
geneous type with doubling constants bounded above by a fixed number indepen-
dent of n. In fact given n, x ∈ Sn and 0 < r ≤ 1, choosing an integer j such that
j/n < r ≤ (j + 1)/n we have

(n + 1)μn(B(x,2r)) ≤ 2(2j + 1) + 1

< 4(j + 1)

≤ 4(n + 1)μn(B(x, r)),

where B(x, r) = {y : |x − y| < r}.
More interesting is the case of the classical Cantor set C. Let F be the Cantor

function extended to R as a continuous function by defining F(x) = 1 for x ≥ 1
and F(x) = 0 for x ≤ 0. Let μ the unique probability Borel measure on R such that
μF ((a, b]) = F(b)−F(a) for every a < b. It is well known (see [12], [16] and [19]),
realizing the Cantor set as the attractor of an iterated function system, that (C, | · |,μ)

is a space of homogeneous type and even normal in the sense of [14]. To get a discrete
approximation of this space, let us write

C =
∞⋂

n=1

Cn, Cn =
2n⋃

j=1

I
j
n , I

j
n = [aj

n, b
j
n],

where Cn is the union of disjoint intervals in the n-th step in the construction of
the Cantor set. For each positive integer n, set Ln = {aj

n : j = 1,2, . . . ,2n}, in other
words, Ln is the collection of all the left points of each interval in Cn. Notice that for

each n we have that dH (Ln,C) ≤ 2/3n. Then Ln
dH−→C when n → ∞. Let μn be the

discrete measure defined on Ln by μn({x}) = 2−n for each x ∈ Ln. Then μn
w∗−→μ.
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In fact, for ϕ ∈ C([0,1]) we have

∫

[0,1]
ϕ(x)dμn(x) = 1

2n

2n∑

j=1

ϕ(a
j
n).

On the other hand, for fixed n, the partition of [0,1] given by

Pn = {x� = �/3n : � = 0,1,2, . . . ,3n}
contains Ln. From the construction of F as a limit of the continuous and piecewise
linear functions Fk , one easily see that Fk(x�) = Fn(x�) for every � = 0,1, . . . ,3n

and every k ≥ n. Then F(x�) = Fn(x�) for every � = 0,1, . . . ,3n, so that

3n−1∑

�=0

ϕ(x�)[F(x�+1) − F(x�)] =
3n−1∑

�=0

ϕ(x�)[Fn(x�+1) − Fn(x�)]

= 1

2n

2n∑

j=1

ϕ(a
j
n).

The last expression follows from the fact that Fn(x�+1) − Fn(x�) = 2−n if x� ∈ Ln

and it vanishes if x� /∈ Ln. Hence

∫

[0,1]
ϕ(x)dμn(x) =

3n−1∑

�=0

ϕ(x�)[F(x�+1) − F(x�)] −→
n→∞

∫

[0,1]
ϕ(x)dF (x),

so that μn
w∗−→μ.

Let us next prove that there exists A ≥ 1 such that (Ln, | · |,μn) is a space of
homogeneous type with doubling constant bounded by A, for every n. Notice that
Ln can be obtained by dividing by 3n all the non-negative integers whose expansion
in basis 3 do not contain the digit 1 and having at most n digits. So that each point
x ∈ Ln can be identified with an n-tuple (x1, x2, . . . , xn) where each xi is zero or two.
With this notation, following [2], define dn : Ln × Ln → R

+ ∪ {0} by

dn(x, y) =
{

0, if x = y,
3−j , if xi = yi for every i < j and xj 	= yj .

It is easy to see that dn is a distance on Ln. Let us first show that (Ln, dn,μn) is
a uniform family of spaces of homogeneous type, in the sense that there exists a
constant A such that the inequalities

0 < μn(Bdn(x,2r)) ≤ Aμn(Bdn(x, r)) < ∞ (1)

hold for each x ∈ Ln, r > 0 and every positive integer n, where Bdn(x, r) = {y ∈ Ln :
dn(x, y) < r}. Notice that for x ∈ Ln and j a positive integer, we have

Bdn(x,3−j ) = {y ∈ Ln : yi = xi, i = 1,2, . . . , j},
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hence

card(Bdn(x,3−j )) =
{

2n−j , j ≤ n,
1, j ≥ n.

So that

μn(Bdn(x,3−j )) =
{

2−j , j ≤ n,
2−n, j ≥ n.

From this estimate, for a given 0 < r < 1, choosing j such that 3−j < r ≤ 31−j we
have (1) with A = 4. Observe that given a positive integer n and x, y ∈ Ln, x 	= y,
with dn(x, y) = 3−j , we necessarily have that

x − y =
n∑

i=j

3−i (xi − yi),

from which we obtain the inequalities

dn(x, y) ≤ |x − y| ≤ 3dn(x, y),

for every n and every x, y ∈ Ln. Hence also (Ln, | · |,μn) is a uniform sequence of
spaces of homogeneous type. In fact, for a given n, x ∈ Ln and r > 0 we have

μn(B(x,2r)) ≤ μn(Bdn(x,2r))

≤ 43μn(Bdn(x, r/3))

≤ 43μn(B(x, r)).

Hence the Cantor set (C, | · |,μ) can be approximated in the Hausdorff-Kantoro-
vich distance by the uniform sequence of discrete spaces (Ln, | · |,μn).

The aim of this paper is to show that the situation of the above examples is typical.
More precisely, we shall prove that each probability compact space of homogeneous
type can be approximated in the Hausdorff-Kantorovich sense by a sequence of finite
spaces of homogeneous type with a uniform bound for the doubling constant.

To prove our result we use the techniques introduced by J.M. Wu in [18] to produce
partitions on the discrete approximation, and those introduced by M. Christ in [7] to
build dyadic type families on spaces of homogeneous type.

In Sect. 2 we introduce the Hausdorff-Kantorovich distance and in Sect. 3 we
prove a completeness type property for the families of spaces of homogeneous type
with bounded doubling constant. The main result, providing the discrete approxima-
tion of a given space of homogeneous type, is contained in Sect. 4.

2 The Hausdorff-Kantorovich Quasi-Metric

Let X be a given set. A function ρ : X × X → R
+ ∪ {0} is called a quasi-distance

if ρ is symmetric, ρ vanishes on the diagonal of X × X, ρ(x, y) = 0 implies x = y,
and there exists a constant � ≥ 1 such that the inequality ρ(x, y) ≤ �(ρ(x, z) +
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ρ(z, y)) holds for every x, y, z ∈ X. The family Nx of subsets E of X for which, for
some r > 0, Bρ(x, r) := {y ∈ X : ρ(x, y) < r} ⊆ E is a neighborhood system for a
topology τ on X. The sets B(x, r) are called the ρ-balls or simply the balls in X. The
basic result concerning quasi-metric spaces is a theorem due to Macías and Segovia
[15] which states that for each quasi-distance ρ on X there exist a distance d on X

and a number ξ ≥ 1 depending only on � such that ρ � dξ . In other words, there
exist constants c1 and c2 which depend only on � such that the inequalities

c1ρ(x, y) ≤ dξ (x, y) ≤ c2ρ(x, y), (2)

hold for every x, y ∈ X. In particular the topology τ introduced through the neigh-
borhood system Nx given by the ρ-balls, is the metric topology induced on X by d .
Hence each topological concept introduced further can be regarded as a metric one.

Throughout this paper (X,ρ) shall be a compact quasi-metric space. With d we
shall always denote a distance for which there exist ξ , c1 and c2 constants such that
(2) holds. For any closed subset Y of X, the quasi-metric space (Y,ρ) is a compact
subspace of (X,ρ).

To accomplish our aims we start by introducing a quasi-metric structure on the
closed probability subspaces (Y,ρ,μ) of (X,ρ). This topology involves the Haus-
dorff convergence of compact sets and the Kantorovich weak star convergence of
probabilities.

Let K = {K ⊆ X : K 	= ∅, K compact}. With [A]ε we shall denote the ε-
enlargement of the set A ⊂ X; i.e. [A]ε = ⋃

x∈A Bρ(x, ε) = {y ∈ X : ρ(y,A) < ε}.
Here ρ(x,A) = inf{ρ(x, y) : y ∈ A}. Given A and B two sets in K the Hausdorff
quasi-distance from A to B is given by

δH (A,B) = inf{ε > 0 : A ⊆ [B]ε and B ⊆ [A]ε}.
Of course δH is the usual Hausdorff distance when ρ itself is a metric. The next

result is a corollary of the completeness of the Hausdorff distance (see [11]) and of
the above mentioned theorem of Macías and Segovia.

Proposition 2.1 (K, δH ) is a complete quasi-metric space.

Proof Set dH to denote the usual Hausdorff distance on K associated to d . In other
words if [A]ε,d = {x ∈ X : d(x,A) < ε} denotes the ε-neighborhood of A with re-
spect to d , then dH (A,B) = inf{ε > 0 : A ⊆ [B]ε,d and B ⊆ [A]ε,d}, for A,B ∈ K.
Since for every ε > 0 we have that

[A](c1ε)
1/ξ , d ⊆ [A]ε ⊆ [A](c2ε)

1/ξ , d

then

δH (A,B) ≥ inf{ε > 0 : A ⊆ [B](c2ε)
1/ξ , d and B ⊆ [A](c2ε)

1/ξ , d}

= 1

c2
d

ξ
H (A,B),



6 H. Aimar et al.

for every A and B in K. With a similar argument we can show that δH (A,B) ≤
d

ξ
H (A,B)/c1. Hence δH � d

ξ
H , with the same constants c1 and c2 in (2). Since

(K, dH ) is a complete metric space, we have that δH is a quasi distance on K and
(K, δH ) is a complete quasi-metric space. �

Let us now introduce the Kantorovich-Rubinshtein distance (known also as the
Hutchinson distance, see [1, 13]) on the set of all Borel regular probability measures
on the quasi-metric space (X,ρ). Let

P (X) = {μ : μ is a positive Borel measure on X and μ(X) = 1},

and let C(X) be the space of continuous real valued functions on X. Since the Borel
σ -algebra induced by the quasi-distance ρ is the same as the one induced by d , we
have that every measure μ in P (X) is regular (see [4]). For c > 0, let us denote by
Lipc the space of all d-Lipschitz continuous functions defined on X with Lipschitz
constant at most c, i.e. f ∈ Lipc if and only if |f (x) − f (y)| ≤ cd(x, y) for every x

and y ∈ X.
Since (X,ρ) is compact, δK(μ, ν) = sup{| ∫ f dμ − ∫

f dν| : f ∈ Lip1} gives a
distance on P (X) such that the δK -convergence of a sequence is equivalent to its
weak star convergence to the same limit. Hence, in our situation, the metric space
(P (X), δK) becomes complete.

Even when the results stated in the above paragraph are well known, specially for
subsets of the Euclidean space, for the sake of completeness, we shall briefly sketch
their proofs.

Let us remind that μn
w∗−→μ if and only if

∫
ϕ dμn → ∫

ϕ dμ for every ϕ ∈ C(X).
Notice that weak star convergence depends only on the topology of X, not on the
specific metric or quasi-metric that generates it. Since X is compact, P (X) is se-
quentially compact by Prohorov’s Theorem (see for example [4]), that is, for every
sequence {μn} in P (X) there exist a subsequence {μni

} and a measure μ ∈ P (X)

such that μni

w∗−→μ. This fact implies that P (X) is complete with the weak star
topology.

Lemma 2.2 Let μ1,μ2 . . . and μ be measures in P (X). Then μn
w∗−→μ if and only

if δK(μn,μ) → 0 when n → ∞.

The proof follows the lines of Lemma 1.10 in [10], actually the fact that the weak
star convergence implies that δK(μn,μ) → 0 is valid with no changes.

For the converse suppose that δK(μn,μ) → 0. Notice that since X is compact,
then the class A = ⋃

c>0 Lipc is a subalgebra of C(X). Also A separate points; that is,
given two distinct points x and y in X, we can find an f in A such that f (x) 	= f (y).
In fact, given x, y ∈ X with x 	= y, it is enough to take f (z) = d(x, z), which belongs
to Lip1. Since A contains the constant functions, then from the Stone-Weierstrass
theorem for compact metric spaces (see [17]) we have that A is dense in C(X). Then
given ϕ ∈ C(X) and ε > 0, there exists f ∈ Lipc for some c > 0 such that |ϕ(x) −
f (x)| < ε/3 for all x ∈ X. Let n0 = n0(ε) be such that if n ≥ n0 then δK(μn,μ) <
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ε/(3c). Then if n ≥ n0 we have
∣∣∣∣
∫

ϕ dμn −
∫

ϕ dμ

∣∣∣∣ ≤
∫

|ϕ − f |dμn +
∣∣∣∣
∫

f dμn −
∫

f dμ

∣∣∣∣ +
∫

|ϕ − f |dμ

< 2ε/3 + cδK(μn,μ) < ε.

Hence μn
w∗−→μ.

We are now in position to describe the basic quasi-metric space whose structure
and convergence properties are of our interest. Let X be the set of all couples (Y,μ)

such that Y is a closed, and hence compact, subset of X, and μ is a regular Borel
probability measure on X. In other words, X = K × P . Given two elements (Yi,μi)

of X, i = 1,2, define

δ((Y1,μ1), (Y2,μ2)) = δH (Y1, Y2) + δK(μ1,μ2),

so that (X, δ) becomes a complete quasi-metric space. Let E be the set of all (Y,μ) ∈
X such that the support of μ is contained in Y , in other words

E = {(Y,μ) ∈ X : suppμ ⊆ Y }.
Here suppμ is the complementary of the largest open set G in X for which

∫
ϕ dμ =

0 for every ϕ ∈ C(X) with suppϕ ⊆ G, and suppϕ is the closure of the set {ϕ 	= 0}.

Theorem 2.3 The set E is closed in (X, δ). Hence (E , δ) is a complete quasi-metric
subspace of (X, δ).

Proof Let {(Yn,μn) : n ∈ N} be a sequence in E with (Yn,μn)
δ−→ (Y,μ). We only

have to prove that suppμ ⊆ Y . Let us show that
∫

ϕ dμ = 0 for every ϕ ∈ C(X) with
suppϕ ∩ Y = ∅. Take ε = ρ(suppϕ,Y ) > 0 and notice that suppϕ ∩ [Y ]ε = ∅. Since,

on the other hand, Yn
δH−→Y , for the same value of ε, there must exist N = N(ε) such

that Yn ⊆ [Y ]ε whenever n ≥ N . Hence suppϕ ∩ Yn = ∅ for every n ≥ N , so that
∫

ϕ dμ = lim
n→∞

∫
ϕ dμn = 0. �

3 Subspaces of E: the Doubling Property

Let (X,ρ) and d be as in Section 1. It is not difficult to construct a translation in-
variant quasi-distance ρ(x, y) on R generating the usual topology and equivalent to
|x − y| for which the ρ-balls are not even Lebesgue measurable sets. Hence for a
Borel measure μ on (X,ρ) it could happen that the expression μ(Bρ(x, r)) is not
well defined. To avoid this difficulty we shall keep assuming that every ρ-ball is a
Borel set.

Let A be a given real number with A ≥ 1. Let D(A) be the set of all couples (Y,μ)

in E such that the inequalities

0 < μ(Bρ(y,2r)) ≤ Aμ(Bρ(y, r)) (3)
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hold for every y ∈ Y and every r > 0. Such a couple (Y,μ) is usually called a space
of homogeneous type if we understand that the quasi-metric is the one inherited from
the environment X.

Theorem 3.1 Let {(Yn,μn)} be a sequence in E such that (Yn,μn)
δ−→ (Y,μ). If

there exists A ≥ 1 such that (Yn,μn) ∈ D(A) for every n, then there exists A′ de-
pending only on A and � such that (Y,μ) ∈ D(A′).

Proof Let ϕ be the continuous function defined on the non-negative real numbers as
ϕ ≡ 1 on [0,1], ϕ ≡ 0 on [2,∞) which is linear in the interval [1,2]. Take y ∈ Y and

r > 0. Since Yn
δH−→Y , let us take yn ∈ Yn such that d(yn, y) → 0 as n → ∞. Then,

since X[0,1] ≤ ϕ, the following inequality follows easily

μ(Bd(y,2r)) ≤
∫

ϕ

(
d(x, y)

2r

)
dμ(x).

Also, for y and r fixed, ϕ(
d(x,y)

2r
) is a continuous function of x ∈ X, and since

μn
w∗−→μ we have

μ(Bd(y,2r)) ≤ lim
n→∞

∫
ϕ

(
d(x, y)

2r

)
dμn(x).

Now, since yn → y and ϕ ≤ X[0,2] we have the inequalities

μ(Bd(y,2r)) ≤ lim inf
n→∞ μn(Bd(y,4r))

≤ lim inf
n→∞ μn(Bd(yn,5r))

≤ lim inf
n→∞ A4μn

(
Bd

(
yn,

5r

16

))

≤ A4 lim inf
n→∞ μn

(
Bd

(
y,

r

2

))

≤ A4 lim
n→∞

∫
ϕ

(
2d(x, y)

r

)
dμn(x)

= A4
∫

ϕ

(
2d(x, y)

r

)
dμ(x)

≤ A4μ(Bd(y, r)).

Since for every s > 0 we have Bρ(y,2s) ⊆ Bd(y, (2c2)
1/ξ s1/ξ ) and Bρ(y, s) ⊇

Bd(y, c
1/ξ

1 s1/ξ ), applying k times the above inequality, with 2k ≥ ( 2c2
c1

)1/ξ , we obtain
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μ(Bρ(y,2s)) ≤ μ(Bd(y, (2c2)
1/ξ s1/ξ ))

≤ A4kμ(Bd(y, c
1/ξ

1 s1/ξ ))

≤ A4kμ(Bρ(y, s)),

which is the desired inequality since k depends only on �. �

Notice that, since (E , δ) is complete, given a Cauchy sequence {(Yn,μn)} in D(A),
we have a limit couple (Y,μ) ∈ E for that sequence. The above theorem shows that
(Y,μ) ∈ D(A′), which is a kind of completeness of the doubling classes. Let us also
remark that the class

⋃
A≥1 D(A) ⊆ E is not complete. In fact, consider X = [0,1]

with ρ the usual distance. Take Yn = [0,1] for each n and μn the measure with density
fn(t) = n − 1 + 1/n on [0,1/n] and fn(t) = 1/n on (1/n,1]. It is easy to see that

μn
δK→ δ0, and that each (Yn,μn) ∈ D(An), with An = 2n(n − 1 + 1/n) as a possible

doubling constant. Since in any space of homogeneous type atoms are isolated (see
[15]), the limit space ([0,1], | · |, δ0) cannot be a space of homogeneous type. From
the above theorem we have in particular that supx,r

μn(x,2r)
μn(x,r)

is unbounded.
Finally, observe that the well known doubling property for the Hausdorff measure

of order log 2/ log 3 on the Cantor set is a consequence of the uniform estimates
obtained in the introduction and of Theorem 3.1.

4 Density of Finite Spaces in D(A)

Let us denote by F the family of all couples (Y,μ) in E for which Y is finite. In other
words

F = {(Y,μ) ∈ E : card(Y ) < ∞}.
Observe that each (Y,μ) ∈ F for which μ({y}) > 0 for every y ∈ Y , belongs to D(A)

for some A. The main result of this paper, which is contained in the next statement,
shows that every space (Y,μ) ∈ D(A) can be approximated in the metric δ by a
sequence in F with uniform doubling constant.

Theorem 4.1 Let (X,ρ) be a compact quasi-metric space with � ≥ 1 such that
ρ(x, z) ≤ �(ρ(x, y) + ρ(y, z)) for every x, y and z in X. Assume that each ρ-ball
in X is a Borel set. Given A ≥ 1 set D(A) to denote the family of all couples (Y,μ),
where Y is a compact subset of X and μ is a Borel probability measure supported
on Y , satisfying

0 < μ(Bρ(y,2r)) ≤ Aμ(Bρ(y, r))

for every y ∈ Y and every r > 0. Then there exists A′ ≥ 1 depending only on A and
on �, such that for every (Y,μ) ∈ D(A) there exists a sequence {(Yn,μn)} ⊆ D(A′)
with card(Yn) < ∞ for every n, satisfying

(Yn,μn)
δ−→ (Y,μ)

as n → ∞.



10 H. Aimar et al.

Before starting with the proof of the theorem we shall state some properties
of spaces of homogeneous type. The basic property that we shall need is actually
contained in the first systematic treatment of spaces of homogeneous type due to
R. Coiffman and G. Weiss [8], and reflects the fact that spaces of homogeneous type
have finite uniform metric (or Assouad [3]) dimension. In what follows a set E is
said to be r-disperse or r-separated provided that the distance between two different
points of E is larger than or equal to r .

Lemma 4.2 For each space of homogeneous type there exists a geometric constant
N such that every r-disperse subset E has at most Nm points in each ball of radius
2mr , with m a positive integer.

Notice that from (2) we only have to prove the theorem for the metric space (X,d).
Since (X,d) is compact, we can normalize the distance d in such a way that the

d-diameter of X is less that one.
Let A ≥ 1 be a given constant and take (Y,μ) ∈ E such that

0 < μ(Bd(y,2r)) ≤ Aμ(Bd(y, r))

holds for every y ∈ Y and every r > 0.
We shall combine the idea used by J.M. Wu in [18] and the construction of dyadic

sets given by M. Christ in [7] in order to define the approximating sets and the ap-
proximating measures.

For each non-negative integer n, let Sn = {xn,k : 1 ≤ k ≤ Kn} be a 10−n-net in Y

(this means that Sn is a maximal 10−n-disperse subset of Y ) with

S0 ⊆ S1 ⊆ · · · ⊆ Sn ⊆ Sn+1 ⊆ · · ·
Notice that since diam(Y ) < 1, the net S0 contains only one point x0,1, and that
Kn = card(Sn) < ∞ for every n.

Let us construct a finite partition {Tn,k : 1 ≤ k ≤ Kn} of Sn+1 given by

Tn,1 = Sn+1 ∩ Bd(xn,1,10−n) −
Kn⋃

k=2

Bd(xn,k,10−n/2),

Tn,� = Sn+1 ∩ Bd(xn,�,10−n) −
�−1⋃

h=1

Tn,h −
Kn⋃

k=�+1

Bd(xn,k,10−n/2),

for 2 ≤ � < Kn, and

Tn,Kn = Sn+1 ∩ Bd(xn,�,10−n) −
�−1⋃

h=1

Tn,h.

The following inclusions are easy to check and shall be used in the sequel

Sn+1 ∩ Bd(xn,k,10−n/2) ⊆ Tn,k ⊆ Sn+1 ∩ Bd(xn,k,10−n), (4)
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for each non-negative integer n and 1 ≤ k ≤ Kn.
The partitions introduced above give rise to a partial order � on the set

A = {(n, k) : n ∈ N ∪ {0}, 1 ≤ k ≤ Kn}.
The elements of A are related according to the following rules

(o.1) (n, k) � (n, k) for every (n, k) ∈ A, and (n, k) is not related to any other (n, i),
i = 1,2, . . . ,Kn, i 	= k;

(o.2) (n + 1, q) � (n, k) if and only if xn+1,q ∈ Tn,k ;
(o.3) extension by transitivity of (o.2): (�, i) � (n, k) if and only if � ≥ n + 1 and

there exist i1, i2, . . . , i�−n−1 such that (�, i) � (� − 1, i1) � (� − 2, i2) � · · · �
(n + 1, i�−n−1) � (n, k).

In the next lemma for a given non-negative integer n and � ≥ n+ 1, following [18,
page 1455] we shall write T �

n,k = {x�,i : (�, i) � (n, k)}. With this notation we readily
see that

T �
n,k ⊆ S� ∩ Bd(xn,k,10−n+1/9), (5)

and that the family {T �
n,k : k = 1, . . . ,Kn} is a disjoint partition of S�.

Lemma 4.3 Let (X,d), (Y,μ) and {Sn : n = 0,1,2, . . .} as before. Assume that for
each n a probability measure μn on the Borel subsets of Y , with support Sn is given.
If the sequence {(Sn,μn) : n = 0,1,2, . . .} satisfies

(1) μ�(T
�
n,k) = μn({xn,k}), for every non-negative integer n, 1 ≤ k ≤ Kn and � ≥

n + 1;
(2) there exists a constant C1 such that for xn,k ∈ Sn and xn+1,� with (n + 1, �) �

(n, k) we have μn({xn,k}) ≤ C1μn+1({xn+1,�});
(3) there exists a constant C2 such that if xn,k and xn,i are points in Sn satisfying

d(xn,k, xn,i) < 10−n+3, then μn({xn,k)} ≤ C2μn({xn,i}),
then there exists a constant Ã which depends only on C1, C2 and A, such that
(Sn,μn) ∈ D(Ã) for each non-negative integer n.

Proof Notice that for n = 0, S0 reduces to the only point x0,1. Hence, since
μ0 is supported on S0, we necessarily have μ0(Bd(x0,1,2r)) = μ0(Bd(x0,1, r)) =
μ0({x0,1}) = 1 for every r > 0. Then μ0 is trivially doubling with any Ã ≥ 1. For
n ≥ 1, any x ∈ Sn, x = xn,k for some k = 1,2, . . . ,Kn, and r > 0 we have to estimate
μn(Bd(x,2r)) in terms of μn(Bd(x, r)). Observe that since diamX < 1 we only have
to consider the case 0 < r < 1. We shall divide our analysis in three steps, according
to the relation between r and n:

i. 0 < r ≤ 10−n/2;
ii. 10−n/6 < r/3 ≤ 10−n+1;

iii. r/3 > 10−n+1.

Case i: 0 < r ≤ 10−n/2. Since Sn is 10−n-disperse, we have Bd(x,2r) ∩ Sn =
Bd(x, r) ∩ Sn = {x}, and any Ã ≥ 1 works.
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Case ii: 10−n/6 < r/3 ≤ 10−n+1. Let Q be the set defined as

Q = {q : xn−1,q ∈ Bd(x,22r)}.
Notice that if N = N(A) is the constant provided by Lemma 4.2, we have

card(Q) = card(Sn−1 ∩ Bd(x,22r))

≤ card(Sn−1 ∩ Bd(x,2710−n+1))

≤ N7. (6)

Next we prove that

Sn ∩ Bd(x,2r) ⊆
⋃

q∈Q
Tn−1,q . (7)

Take xn,i ∈ Bd(x,2r), and let q be the unique index in {1,2, . . . ,Kn} such that xn,i ∈
Tn−1,q . Let us prove that q ∈ Q. In fact, from (4)

d(xn−1,q , x) ≤ d(xn−1,q , xn,i) + d(xn,i , x)

< 10−n+1 + 2r

< 20r + 2r

= 22r,

which proves (7). Let p be such that x ∈ Tn−1,p . If q ∈ Q, then

d(xn−1,q , xn−1,p) ≤ d(xn−1,q , x) + d(x, xn−1,p)

< 22r + 10−n+1

< 66 10−n+1 + 10−n+1

< 10−n+3,

and we can apply (3) to get

μn−1({xn−1,q}) ≤ C2μn−1({xn−1,p}), for every q ∈ Q.

Hence using (7), (1), the inequality above, (6) and (2) in that order, we have the
desired inequality since

μn(Bd(x,2r)) ≤
∑

q∈Q
μn(Tn−1,q )

=
∑

q∈Q
μn−1({xn−1,q})

≤
∑

q∈Q
C2μn−1({xn−1,p})



Discrete Approximation of Spaces of Homogeneous Type 13

≤ N7C2μn−1({xn−1,p})
≤ N7C2C1μn({x})
≤ N7C2C1μn(Bd(x, r)).

Case iii: r/3 > 10−n+1. Since r < 1, this case is only possible if n ≥ 2. Let 0 <

� ≤ n − 1 such that 10−� < r/3 ≤ 10−�+1, and define the set J = {j : x�,j ∈ S� ∩
Bd(x,3r)}. Then

Sn ∩ Bd(x,2r) ⊆
⋃

j∈J
T n

�,j .

In fact, take xn,i ∈ Bd(x,2r) and x�,j such that xn,i ∈ T n
�,j . Then, from (5)

d(x�,j , x) ≤ d(x�,j , xn,i) + d(xn,i , x)

<
10−�+1

9
+ 2r

< 3r,

and thus j ∈ J . Hence, from (a) we have

μn(Bd(x,2r)) ≤
∑

j∈J
μn(T

n
�,j ) =

∑

j∈J
μ�({x�,j }) = μ�(Bd(x,3r)). (8)

On the other hand
⋃

x�,i∈Bd(x,r/2)

T n
�,i ⊆ Sn ∩ Bd(x, r).

In fact, if x�,i ∈ Bd(x, r/2) and xn,p ∈ T n
�,i , then applying (5) again

d(x, xn,p) ≤ d(x, x�,i) + d(x�,i , xn,p)

<
r

2
+ 10−�+1

9
< r.

From the above inclusion we obtain

μn(Bd(x, r)) ≥
∑

x�,i∈Bd(x,r/2)

μn(T
n
�,i)

=
∑

x�,i∈Bd(x,r/2)

μ�({x�,i})

= μ�(Bd(x, r/2)). (9)

Then, from (8) and (9) the desired result will with Ã = C1C2N
8 if we prove

μ�(Bd(x,3r)) ≤ C1C2N
8μ�(Bd(x, r/2)). (10)
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Notice that the current situation is similar to the one worked out in Case ii con-
sidered before, but here the center x of the ball does not necessarily belong to the
net S�. �

Proof of (10) If we define

Q = {q : x�,q ∈ Bd(x,7r)},
J = {j : x�−1,j ∈ Bd(x,7r)},

we have

card(Q) ≤ card(S� ∩ Bd(x,21.10−�+1))

≤ card(S� ∩ Bd(x,2810−�))

≤ N8.

Notice that

S� ∩ Bd(x,3r) ⊆
⋃

j∈J
T�−1,j .

In order to prove the above inclusion, take x�,i ∈ Bd(x,3r) and x�−1,j such that
x�,i ∈ T�−1,j . We have to check that j ∈ J , which is equivalent to show that x�−1,j ∈
Bd(x,7r). In fact

d(x�−1,j , x) ≤ d(x�−1,j , x�,i) + d(x�,i , x)

< 10−�+1 + 3r

< 7r.

On the other hand, since x = xn,k ∈ Sn, there exists only one p ∈ {1, . . . ,K�} such
that x ∈ T n

�,p . In order to use (c) to compare the μ� measure of the singletons {x�,p}
and {x�,q} for every q ∈ Q, we have to check that d(x�,p, x�,q) < 10−�+3. In fact, for
q ∈ Q we have

d(x�,p, x�,q) ≤ d(x�,p, x) + d(x, x�,q)

<
10−�+1

9
+ 7r

≤ 10−�+1

9
+ 21.10−�+1

< 10−�+3.

So that applying (3) we obtain

μ�({x�,q}) ≤ C2μ�({x�,p}), for every q ∈ Q.
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From the considerations above, (a) and (b), we have

μ�(Bd(x,3r)) ≤
∑

j∈J
μ�(T�−1,j )

=
∑

j∈J
μ�−1({x�−1,j })

≤ C1

∑

q∈Q
μ�({x�,q})

≤ C1C2

∑

q∈Q
μ�({x�,p})

= C1C2 card(Q)μ�({x�,p})
≤ C1C2N

8μ�({x�,p}).
Finally since

d(x�,p, x) <
10−�+1

9
<

10

27
r <

r

2

we have that μ�({x�,p}) ≤ μ�(Bd(x, r/2)), which finishes the proof of (10). �

Notice now that the partial order � defined on A satisfies the following tree prop-
erties:

(t.1) (n1, k1) � (n2, k2) implies n2 ≤ n1;
(t.2) for every (n1, k1) ∈ A and every n2 ≤ n1, there exists a unique 1 ≤ k2 ≤ Kn2

such that (n1, k1) � (n2, k2);
(t.3) if (n, k) � (n − 1, i), then d(xn,k, xn−1,i ) < 10−n+1;

(t.4) if d(xn,k, xn−1,i ) < 10−n+1

2 , then (n, k) � (n − 1, i).

Following M. Christ (see [7]), the sets

Qn
k =

⋃

(�,i)�(n,k)

Bd(x�,i ,10−�−1),

share with the classical dyadic cubes in R
n at least the properties contained in the

next lemma.

Lemma 4.4 (Christ [7], Theorem 11, p. 607)

(d.1) Qn
k is an open set for every (n, k) ∈ A;

(d.2) Bd(xn,k,10−n−1) ⊆ Qn
k for every (n, k) ∈ A;

(d.3) Qn
k ⊆ Bd(xn,k,10−n+1/9) for every (n, k) ∈ A;

(d.4) for each non-negative integer n, Qn
k ∩ Qn

i 	= ∅ implies k = i;
(d.5) for every (n, k) ∈ A and every � < n there exists a unique 1 ≤ i ≤ Kn such that

Qn
k ⊆ Q�

i ;



16 H. Aimar et al.

(d.6) if n ≥ �, for every 1 ≤ k ≤ Kn, 1 ≤ i ≤ K� we have that Qn
k ⊆ Q�

i or Qn
k ∩

Q�
i = ∅;

(d.7) μ(Y\⋃
1≤k≤Kn

Qn
k) = 0, for every non-negative integer n;

(d.8) μ(Qn
k) = ∑

i:(�,i)�(n,k) μ(Q�
i ), for every n, � ≥ n + 1 and 1 ≤ k ≤ Kn.

From now on Qn
k will denote the Christ’s sets defined by the order �. After an

adequate choice of μn supported on Yn = Sn, Theorem 4.1 shall be a consequence of
Lemma 4.3.

Proof of Theorem 4.1 Let us define the measure μn on Y supported on Sn by

μn({xn,k}) = μ(Qn
k),

for every non-negative integer n and 1 ≤ k ≤ Kn. Notice that from (d.7) we have

μn(Sn) = 1 for every n. To check that μn
w∗−→μ, take a continuous function ϕ on Y ,

and let ε > 0 be given. Since Y is compact, ϕ es uniformly continuous, hence there
exists η > 0 such that |ϕ(x) − ϕ(y)| < ε, for every x, y ∈ Y such that d(x, y) < η.
Observe that

∫

Y

ϕ dμn =
Kn∑

k=1

ϕ(xn,k)μ(Qn
k),

and on the other hand
∫

Y

ϕ dμ =
Kn∑

k=1

∫

Qn
k

ϕ dμ.

Thus, from (d.3),

∣∣∣∣
∫

Y

ϕ dμn −
∫

Y

ϕ dμ

∣∣∣∣ ≤
Kn∑

k=1

∫

Qn
k

|ϕ(xn,k) − ϕ(x)| dμ(x) < ε,

choosing n large enough to get 10−n+1/9 < η.

Since Sn is 10−n-disperse and Sn ⊆ Y , then δH (Sn,Y ) ≤ 10−n, so that Sn
δH−→Y .

Thus (Sn,μn)
δ−→ (Y,μ).

It only remains to prove that (Sn, d,μn) is a uniform family of spaces of homoge-
neous type. We only need to check that μn satisfies the conditions of Lemma 4.3. In
fact, from (d.8) we have

μ�(T
�
n,k) =

∑

i:x�,i∈T �
n,k

μ�({x�,i}) =
∑

i:(�,i)�(n,k)

μ(Q�
i ) = μn({xn,k}).

for every n, 1 ≤ k ≤ Kn and � ≥ n + 1, and then (1) holds.
In order to check (2), notice that for xn,k ∈ Sn and xn+1,� with (n + 1, �) � (n, k)

we have d(xn,k, xn+1,�) < 10−n. Then (d.3) implies Qn
k ⊆ Bd(xn+1,�,10−n+1/4). So
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that

μn({xn,k}) = μ(Qn
k)

≤ μ(Bd(xn+1,�,10−n+1/4))

≤ A8μ(Bd(xn+1,�,10−n−2))

≤ A8μ(Qn+1
� )

= A8μn+1({xn+1,�}),
and (2) holds with C1 = A8.

Finally, if xn,k and xn,i are points in Sn such that d(xn,k, xn,i) < 10−n+3, then
Qn

k ⊆ Bd(xn,i ,101.10−n+1), and so

μn({xn,k}) ≤ μ(Bd(xn,i ,101.10−n+1))

≤ A14μ(Bd(xn,i ,10−n−1))

≤ A14μ(Qn
i )

= A14μn({xn,i}),
and we get (3) taking C2 = A14. �
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