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Abstract. In this note we consider the maximal function for the generalized Ornstein-
Uhlenbeck semigroup in R associated with the generalized Hermite polynomials {Hµ

n}

and prove that it is weak type (1,1) with respect to dλµ(x) = |x|2µe−|x|2dx, for
µ > −1/2 as well as bounded on Lp(dλµ) for p > 1.
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1. Introduction and preliminaries. The generalized Hermite polynomials
were defined by G. Szëgo in [16] (see problem 25, page 380) as being orthogonal
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polynomials with respect to the measure dλ(x) = dλµ(x) = |x|2µe−|x|
2

dx, with µ >
−1/2. In his doctoral thesis T. S. Chihara [2] (see also [3]) studied them in detail.
In this paper we consider the definition of the generalized Hermite polynonials
given by M. Rosenblum in [11].
Let us denote by Hµ

n this generalized Hermite polynomial of degree n. Then for n
even

Hµ
2m(x) = (−1)m(2m)!

Γ(µ+ 1
2 )

Γ(m+ µ+ 1
2 )

L
µ− 1

2
m (x2) (1.1)

and for n odd

Hµ
2m+1(x) = (−1)m(2m+ 1)!

Γ(µ+ 3
2 )

Γ(m+ µ+ 3
2 )

xL
µ+ 1

2
m (x2), (1.2)

Lγ
m being the γ-Laguerre polynomial of degree m.

Thus, for every n ∈ N,

‖Hµ
n‖L2(dλ) =

(

2n(n!)2Γ(µ+ 1/2)

γµ(n)

)1/2

,

where γµ(n) is a generalized factorial defined for n even or odd by,

γµ(2m) =
22mm!Γ(m+ µ+ 1

2 )

Γ(µ+ 1
2 )

= (2m)!
Γ(m+ µ+ 1

2 )

Γ(µ+ 1
2 )

Γ( 1
2 )

Γ(m+ 1
2 )

,

γµ(2m+ 1) =
22m+1m!Γ(m+ µ+ 3

2 )

Γ(µ+ 1
2 )

= (2m)!
Γ(m+ µ+ 3

2 )

Γ(µ+ 1
2 )

Γ( 1
2 )

Γ(m+ 3
2 )

.

The generalized Hermite polynomials {Hµ
n} have a generating function (2.5.8) of

[11]) which involves the generalized exponential function eµ defined by

eµ(z) =
∞
∑

m=0

zm

γµ(m)
, z ∈ R. (1.3)

On the other hand each generalized Hermite polynomial Hµ
n satisfies the following

differential equation, see [3],

(Hµ
n )
′′(x) + 2(

µ

x
− x)(Hµ

n )
′(x) + 2(n− µ

θn
x2

)Hµ
n (x) = 0, (1.4)

with

θn =

{

1 if n is odd,
0 if n is even.

Therefore, by considering the (differential-diference) operator

Lµ =
1

2

d2

dx2
+ (

µ

x
− x)

d

dx
− µ

I − Ĩ

2x2
, (1.5)

where If(x) = f(x) and Ĩf(x) = f(−x), for every n ∈ N, Hµ
n turns out to be an

eigenfunction of Lµ with eigenvalue −n. This operator is one example of a Dunkl
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operator in one dimension. The theory of Dunkl operators originated in [4] and it
is nowdays a very robust theory, see for instance M. Rösler [12].

Now we let us define the associated Markov semigroup, see D. Bakry [1], as

Pt(x, dy) =

∞
∑

n=0

γµ(n)

2n(n!)2
Hµ

n (x)H
µ
n (y)e

−ntλ(dy). (1.6)

This semigroup is entirely characterized by the action on positive or bounded mea-
surable functions by

T t
µf(x) =

∫ ∞

−∞
f(y)Pt(x, dy).

Thus the family of operators {T t
µ}t≥0 is then a conservative semigroup of operators

with generator Lµ, that we will call the generalized Ornstein-Uhlenbeck semigroup
which also is called the associated heat-diffusion semigroup, since

∂T t
µf(x)

∂t
= LµT

t
µf(x).

For µ = 0, {T t
µ}t≥0 reduces to the Ornstein-Uhlenbeck semigroup whose behavior

on Lp was studied by B. Muckenhoupt in [8] for the one-dimensional case. By using
the generalized Mehler’s formula (2.6.8) of [11]: for x, y ∈ R and |z| < 1,

∞
∑

n=0

γµ(n)

2n(n!)2
Hµ

n (x)H
µ
n (y)z

n =
1

(1− z2)
µ+1/2

e
− z2(x2+y2)

1−z2 eµ

(

2xyz

1− z2

)

, (1.7)

we can obtain the following integral expression of this generalized Ornstein-Uhlenbeck
semigroup T t

µ, t > 0,

T t
µf(x) =

1

(1− e−2t)
µ+1/2

∫ ∞

−∞
e
− e−2t(x2+y2)

1−e−2t eµ

(

2xye−t

1− e−2t

)

f(y)|y|2µe−|y|2dy.

(1.8)

In the following section we will consider the maximal operator associated with
{T t

µ}t≥0, and prove this maximal operator is weak type (1, 1) with respect to the
measure λ, bounded in L∞ and therefore bounded in Lp with respect to λ, for
1 < p <∞. It is important to observe that since {T t

µ}t≥0 is not a convolution semi-
group, its associated maximal operator is not bounded by the Hardy-Littlewood
maximal operator. Therefore in order to prove the weak (1, 1) inequality with re-
spect to λ it is needed to develop new techniques. The case µ = 0, that as we
already said corresponds to the maximal operator of the Ornstein-Uhlenbeck semi-
group, was proved by B. Muckenhoupt [8] in one dimension and by P. Sjögren
in [13] in any dimension.
We will use repeatedly that

|x|ke−x2 ≤ Ce−x
2/2 x ∈ R. (1.9)

The constant C which will appear throughout this paper may be different on each
occurrence.
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2. The maximal function of the generalized Ornstein Uhlenbeck semi-
group. Let us define the generalized Ornstein-Uhlenbeck maximal function as

T ∗µf(x) = sup
t>0

|T t
µf(x)|, (2.1)

for each x ∈ R. Taking r = e−t, we can write

T ∗µf(x) = sup
0<r<1

∣

∣

∣

∣

∫ ∞

−∞
Kr(x, y)f(y) dλ(y)

∣

∣

∣

∣

,

with

Kr(x, y) =
1

(1− r2)µ+ 1
2

e
−(x2+y2) r2

1−r2 eµ(
2xyr

1− r2
), 0 < r < 1, x, y ∈ R.

The main result of this paper is summarized in

Theorem 2.1. For µ > −1/2,

i) T ∗µ is weak type (1, 1) with respect to λ, i.e. there exists a real constant C > 0
such that for every η > 0

λ{x ∈ R : T ∗µf(x) > η} ≤ C

η
‖f‖1,λ, (2.2)

where ‖f‖1,λ =

∫

R
|f(y)|dλ(y).

ii) T ∗µ is bounded in L∞, i. e. there exists a real constant C > 0 such that

||T ∗µf ||∞ ≤ C||f ||∞ (2.3)

where ‖f‖∞ represents the L∞ norm.

Corollary 2.2. For µ > −1/2 and p > 1,

‖T ∗µf‖p,λ ≤ C ‖f‖p,λ, (2.4)

where ‖f‖pp,λ =

∫

R
|f(y)|pdλ(y).

This corollary follows from Marcinkiewicz interpolation theorem between the weak
type (1, 1) and the boundedness in L∞ which will be proved in Theorem 2.1. In
order to prove Theorem 2.1 we will introduce well known bounds for the func-
tions eµ and prove two propositions. The first one, due to I.P. Natanson and B.
Muckenhoupt ([9] and [8]), can be seen a generalized Young’s inequality for Borel
measures. We will write it only for the particular case of the measure λ. The other
one has to do with the biggest function whose density distribution as a function of
η with respect to the measure λ is bounded by C/η.
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2.1. Properties of eµ. It can be proved, see (2.2.3) of [11], that the generalized
exponential function eµ can be written as,

eµ(x) = Γ(µ+ 1/2)(2/x)µ−1/2(Iµ−1/2(x) + Iµ+1/2(x)),

where Iν denotes the ν-th modified Bessel function. Then, according to [17, (2),
p. 77, and (2), p. 203], we have the following estimates that will be useful in the
sequel

|eµ(x)| ≤ eµ(|x|) ≤ C(1 + |x|)−µe|x|, x ∈ R. (2.5)

Also, eµ admits the following integral representations depending on the values of
µ [11],

1. if µ > 0 then

eµ(x) =
1

B( 1
2 , µ)

∫ 1

−1

ext(1− t)µ−1(1 + t)µ dt, (2.6)

2. if µ = 0 then
e0(x) = ex, (2.7)

3. if − 1
2 < µ < 0 then

eµ(x) = ex +
µ

µ+ 1/2

1

B(1/2, µ+ 1)

∫ 1

−1

(ext − ex)(1− t)µ−1(1 + t)µdt. (2.8)

According to (2.6) it is clear that eµ(x) ≥ 0, for µ ≥ 0, x ∈ R. However, this
one is not the case when −1/2 < µ < 0. Indeed, assume that −1/2 < µ < 0. Since
eu − 1 ≥ u, u > 0, we can write

e−xeµ(x) = 1 +
µ

µ+ 1/2

1

B(1/2, µ+ 1)

∫ 1

−1

(ex(t−1) − 1)(1− t)µ−1(1 + t)µdt

≤ 1− xµ

µ+ 1/2

1

B(1/2, µ+ 1)

∫ 1

−1

(1− t)µ(1 + t)µdt, x < 0.

Hence, there exists x0 > 0 such that eµ(x) < 0 for every x < −x0.
From the above we infer that the generalized Ornstein-Uhlenbeck semigroup

{

T t
µ

}

t>0
is positive when µ ≥ 0 but it is not when −1/2 < µ < 0.

Proposition 2.3. (Natanson) Let f and g be two L1(dλ) functions. Let us as-
sume that g(y) is nonnegative and there is an x ∈ R such that g(y) is monotonically
increasing for y ≤ x and monotonically decreasing for x ≤ y, then

∣

∣

∣

∣

∫

g(y)f(y) dλ(y)

∣

∣

∣

∣

≤ ‖g‖1,λMλf(x), (2.9)

where

Mλf(x) = sup
I⊃{x}

1

λ(I)

∫

I

|f(y)| dλ(y)
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is the Hardy-Littlewood maximal fuction of f with respect to λ. Moreover the
Hardy-Littlewood maximal fuction Mλf is weak type (1,1) and strong type (p,p)
for p > 1 with respect to the measure λ.

A proof of this proposition can be found in [8].

Proposition 2.4. For µ > −1/2, there is a real constant C > 0 such that the
distribution function with respect to λ of the function

h(x) = max

(

1

|x| , |x|
)

ex
2

|x|2µ

satisfies the inequality

λ{x ∈ R : h(x) > η} ≤ C

η
,

for any η > 0.

Proof. Since λ is a finite measure, it is enough to prove this result for η ≥ e.
Besides, due to the fact that h is even and λ is symmetric, then λ{x ∈ R : h(x) >
η} = 2λ{x > 0 : h(x) > η}. Now

λ{x > 0 : h(x) > η} ≤ λ

{

0 < x < 1 :
1

x2µ+1
> η/e

}

+λ

{

x > 1 :
ex

2

x2µ−1
> η

}

=

∫ (e/η)
1

2µ+1

0

x2µe−x
2

dx

+

∫ ∞

x0

x2µe−x
2

dx

= I + II,

with x0 > 1 and ex
2
0

x2µ−1
0

= η. Let us observe that

I ≤
∫ (e/η)1/(2µ+1)

0

x2µdx =
e

(1 + 2µ)η
,

and

II ≤ Cx2µ−1
0 e−x

2
0 =

C

η
.

For last inequality see [6]. From these two bounds the conclusion of this proposition
follows. 2
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Proof of Theorem 2.1. In order to prove this theorem it suffices to show that there
exists C > 0 such that

λ{x ∈ (0,∞) : T ∗µ,+f(x) > η} ≤ C

η
‖f‖1,λ, η > 0, (2.10)

and

‖T ∗µ,+f‖∞ ≤ C‖f‖∞, (2.11)

for every f ≥ 0. Here

T ∗µ,+f(x) = sup
t>0

|Tµ
t,+f(x)|,

and

T t
µ,+f(x) =

1

(1− e−2t)
µ+1/2

∫ ∞

0

e
− e−2t(x2+y2)

1−e−2t eµ

(

2xye−t

1− e−2t

)

f(y)|y|2µe−|y|2dy.

Indeed, let us write r = e−t, with t > 0. By (2.5), we have that

Kr(x, y) ≤ Kr(|x|, |y|), x, y ∈ R.

Then

|T t
µf(x)| ≤ T t

µ,+|f |(|x|) + T t
µ,+|f̃ |(|x|), x ∈ R,

being f̃(x) = f(−x), x ∈ R. Hence,

T ∗µf(x) ≤ T ∗µ,+|f |(|x|) + T ∗µ,+|f̃ |(|x|), x ∈ R,

and we can write, for every η > 0,

λ{x ∈ R : T ∗µf(x) > η} ≤ λ{x ∈ R : T ∗µ,+|f |(|x|) > η/2}
+λ{x ∈ R : T ∗µ,+|f̃ |(|x|) > η/2}

≤ 2(λ{x ∈ (0,∞) : T ∗µ,+|f |(x) > η/2}
+λ{x ∈ (0,∞) : T ∗µ,+|f̃ |(x) > η/2}).

Thus (2.2) follows from (2.10) and the fact that ‖f‖1,λ = ‖f̃‖1,λ. Moreover (2.3)

is deduced from (2.11) because ‖f‖∞ = ‖f̃‖∞.

From now on let us assume f ≥ 0 and x > 0. First let us prove the weak type
(1, 1) inequality.

(1) Case µ = 0. This case corresponds to the Ornstein-Uhlenbeck maximal opera-
tor which was proved to be weak type (1, 1) by B. Muckenhoupt in [8].
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(2) Case µ > −1/2. By using (2.5) we can write

T t
µ,+f(x)

≤ C

(1− r2)µ+1/2

∫ ∞

0

e
− (x2+y2)r2

1−r2
+ 2xyr

1−r2

(

1 +
2xyr

1− r2

)−µ
f(y) dλ(y)

=
Cex

2

(1− r2)µ+1/2

∫ ∞

0

e
− |x−ry|

2

1−r2

(

1 +
2xyr

1− r2

)−µ
f(y) dλ(y)

=
Cex

2

(1− r2)µ+1/2

(
∫ x/2r

0

+

∫ 4x/r

x/2r

+

∫ ∞

4x/r

)

e
− |x−ry|

2

1−r2

(

1 +
2xyr

1− r2

)−µ
f(y) dλ(y)

= C(K1,rf(x) +K2,rf(x) +K3,rf(x)).

Observe that if 0 < y < x/2r, then x− ry > x/2 and

1

(1− r2)µ+1/2

(

1 +
2rxy

1− r2

)−µ
≤ C

( 1

(1− r2)µ+1/2
+

x−2µ

(1− r2)1/2

)

.

Then

K1,rf(x) ≤ Cex
2

(

1

(1− r2)µ+1/2
+

x−2µ

(1− r2)1/2

)

e
− x2

4(1−r2) ‖f‖1,λ ≤ C
ex

2

x2µ+1
‖f‖1,λ,

where last inequality is obtained as an application of (1.9).
On the other hand, if y > 4x

r , then ry − x > x, and again by applying (1.9)
repeatedly in the sequel below

e
− |x−ry|

2

1−r2

(1− r2)µ+1/2

(

1 +
2rxy

1− r2

)−µ
=

e
− |x−ry|

2

1−r2

(1− r2)µ+1/2

(

1 +
2x(ry − x) + 2x2

1− r2

)−µ

≤ C e
− x2

2(1−r2)

(

1

(1− r2)µ+1/2
+

x−µ

(1− r2)
µ+1
2

+

x−2µ

(1− r2)1/2

)

≤ C

x2µ+1
,

and we obtain

K3,rf(x) ≤ C
ex

2

x2µ+1
‖f‖1,λ.

Finally for x
2r ≤ y ≤ 4x

r we have the following estimate

1

(1− r2)µ+1/2

(

1 +
2rxy

1− r2

)−µ
≤ C

( 1

x2µ+1
+

x−2µ

(1− r2)1/2

)

, (2.12)

which is immediate for µ ≥ 0 and for µ < 0 one can argue consideing 2rxy
1−r2 ≤ 1 and

2rxy
1−r2 ≥ 1, separately. Now by taking into account inequality (2.12) we are ready
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to estimate K2,rf(x). We analyze two diferent cases. If 0 < r ≤ 1/2 we have

K2,rf(x) ≤ C

(

1

x
+ 1

)

ex
2

x2µ
‖f‖1,λ,

and, if 1/2 < r < 1 then

K2,rf(x) ≤ C

(

ex
2

x2µ+1
‖f‖1,λ +

ex
2

(1− r2)1/2x2µ

∫ ∞

0

N(r, x, y)f(y)dλ(x)

)

,

with

N(r, x, y) =











1 if y ∈
[

x, xr
]

e
− |x−ry|

2

1−r2 if y ∈
[

x
2r ,

4x
r

]

\
[

x, xr
]

0 otherwise.

(2.13)

Since N(r, x, .) is a Natanson kernel (see (2.9)), we obtain

K2,rf(x) ≤ C

(

ex
2

x2µ+1
‖f‖1,λ +

ex
2

x2µ(1− r2)1/2
‖N(r, x, .)‖1,λMλf(x)

)

.

Let us prove that

‖N(r, x, .)‖1,λ ≤ Cx2µ(1− r2)1/2e−x
2

. (2.14)

Indeed,

∫

R
N(r, x, y) dλ(y) =

∫ x/r

x

e−y
2

y2µ dy +

∫ x

x/2r

e
− |x−ry|

2

1−r2 e−y
2

y2µ dy

+

∫ 4x/r

x/r

e
− |x−ry|

2

1−r2 e−y
2

y2µ dy

≤ Cx2µ

(

∫ x/r

x

e−y
2

dy + e−x
2

∫ x

x/2r

e
− |rx−y|

2

1−r2 dy

+ e−x
2

∫ 4x/r

x/r

e
− |rx−y|

2

1−r2 dy

)

≤ C x2µe−x
2

(

min

(

1

x
, (1− r)x

)

+

∫

R
e
− |rx−y|

2

1−r2 dy

)

≤ C x2µ(1− r2)1/2e−x
2

.

Now gathering together all the bounds obtained above, we get

T t
µ,+f(x) ≤ C(h(x)‖f‖1,λ +Mλf(x)),

for all x, t > 0, where h is the function defined in Proposition 2.4. Thus the weak
type (1, 1) of T ∗µ,+ follows from Propositions 2.3 and 2.4.
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Now let us take care of the boundedness of T ∗µ,+ in L∞. For the case µ ≥ 0 this
boundedness is immediate since its kernel is non-negative and its integral equals 1.
Therefore let us study just the case −1/2 < µ < 0. By using (2.5) and proceeding
like in case 2 of the proof of the weak type (1, 1) inequality it follows

T ∗µ,+f(x)

≤ C

(1− r2)µ+1/2

∫ ∞

0

e
− (x2+y2)r2

1−r2
+ 2xyr

1−r2

(

1 +
2xyr

1− r2

)−µ
f(y) dλ(y)

≤ C

(1− r2)µ+1/2

∫ ∞

0

e
− |rx−y|

2

1−r2

(

1 +
2xyr

1− r2

)−µ
y2µ dy ‖f‖∞

=
C

(1− r2)µ+1/2

∫ ∞

0

e
− |rx−y|

2

1−r2

(

1 +
2(rx− y)y

1− r2
+

2y2

1− r2

)−µ
y2µ dy ‖f‖∞

≤ C

(
∫ ∞

0

e
− |rx−y|

2

1−r2

(1− r2)µ+1/2

(

1 +
2|rx− y|y
1− r2

)−µ
y2µ dy

+

∫ ∞

0

e
− |rx−y|

2

1−r2

(1− r2)1/2
dy

)

‖f‖∞.

In order to prove that the first integral of last inequality is bounded by a constant
independent of r, y, and x firstly we use (1.9) to obtain the inequality

(

2|rx− y|y
1− r2

)−µ
e
− |rx−y|

2

1−r2 ≤ C

(

y

(1− r2)1/2

)−µ
e
− |rx−y|

2

2(1−r2) .

Then we split the integral in two subintervals one from 0 to
√
1− r2 and the other

from
√
1− r2 to ∞ and we call them I and II. Now we proceed to bound each

part in the following way

I =

∫

√
1−r2

0

e
− |rx−y|

2

2(1−r2)

(1− r2)µ+1/2

(

1 +

(

y

(1− r2)1/2

)−µ)

y2µ dy

≤
∫

√
1−r2

0

y2µ

(1− r2)µ+1/2
dy +

∫

√
1−r2

0

yµ

(1− r2)(µ+1)/2
dy ≤ C,

and

II =

∫ ∞

√
1−r2

e
− |rx−y|

2

2(1−r2)

(1− r2)µ+1/2

(

1 +

(

y

(1− r2)1/2

)−µ)

y2µ dy

≤
∫ ∞

√
1−r2

e
− |rx−y|

2

2(1−r2)

(1− r2)µ+1/2
(
√

1− r2)2µ dy +

∫ ∞

√
1−r2

e
− |rx−y|

2

2(1−r2)

(1− r2)µ+1/2

yµ

(1− r2)−µ/2
dy

≤ 2

∫ ∞

0

e
− |rx−y|

2

2(1−r2)

(1− r2)1/2
dy ≤ C.
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This ends the proof of the boundedness of T ∗µ,+ in L∞ and at the same time the
proof of Theorem 2.1. 2
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