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Abstract

The concept of flexibility—originated in the context of heat exchanger networks—
is associated with a substructure which guarantees the performance of the original
structure, in a given range of possible states. We extend this concept to combinato-
rial optimization problems, and prove several computational complexity results in
this new framework.

Under some monotonicity conditions, we prove that a combinatorial optimization
problem polynomially transforms to its associated flexibility problem, but that the
converse need not be true.

In order to obtain polynomial flexibility problems, we have to restrict ourselves
to combinatorial optimization problems on matroids. We also prove that, when
relaxing in different ways the matroid structure, the flexibility problems become
NP -complete. This fact is shown by proving the NP -completeness of the flexibility
problems associated with the Shortest Path, Minimum Cut and Weighted Matching
problems.
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1 Flexibility and combinatorial optimization problems

The concept of flexibility arose from chemical engineering problems in the
design of heat exchanger networks (see, for example [2]). This concept is
associated with a substructure which guarantees the performance of the orig-
inal structure in a given range of possible states. In the context of heat
exchanger networks, this performance is defined by the value of a Maximum
Flow-Minimum Cut. This problem motivated us to extend the flexibility con-
cept to general combinatorial optimization problems.

Following [5], in a combinatorial optimization problem we deal with a finite
set A, a vector of costs c ∈ R

A and a family F(A) of subsets of A. The cost
of F ⊆ A will be indicated by c (F ) =

∑
a∈F ca, and the optimal value by

ξFA (c) = min(max) {c(F ) : F ∈ F(A)} .

If F(A) = ∅, we set ξFA (c) = +∞ and ξFA (c) = −∞, respectively. We say that
F ∈ F(A) is c-optimal if c(F ) = ξFA (c).

We will identify a particular combinatorial optimization problem by the
oracle algorithm F which decides, in constant time, whether a given subset of
A belongs to the family F(A).

Working on flexibility problems, we consider a family of instances de-
termined by a given set A and vectors c−, c+ ∈ Z

A
+, defining the state set

S =
{
c ∈ R

A : c− ≤ c ≤ c+
}
. We also consider a substructure given by

B ⊆ A. For simplicity we will indicate by ξFB (c), the optimal value corre-
sponding to the restriction of c to R

B.

Given a state set S and W ⊆ S, we will say that B is F -flexible in W if
ξFB (c) = ξFA (c), for all c ∈ W . When W = S, we just say that B is F -flexible.

The F-flexibility problem (F -flex) is formulated as follows:

INSTANCE: A finite set A; B ⊆ A; c+, c− ∈ Z
A
+.

QUESTION: Is there c with c− ≤ c ≤ c+ and ξFA (c) �= ξFB (c)?

Notice that F -flex consists of answering whether B is not F -flexible.

From now on, we restrict ourselves to combinatorial optimization problems
verifying some kind of monotonicity under inclusion on the optimal value. We
say that F is monotone increasing (decreasing) if for all c ∈ R

A and B ⊆ A
we have ξFB (c) ≤ ξFA (c) (ξFB (c) ≥ ξFA (c)).

In fact, most of the combinatorial optimization problems of interest are
monotone. In particular, between the problems considered here, the Weighted
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Matching problem and the Maximum Weight Forest problem are monotone
increasing maximization problems, whereas the Shortest Path problem is a
monotone increasing minimization problem and the Minimum Cut problem is
monotone decreasing.

The monotonicity imposed on the optimal value leads us to prove that
solving F -flex is equivalent to asking whether a given element a ∈ A is use-
ful for S, following the terminology introduced in [1] in the context of the
Maximum Flow problem. Formally, we prove:

Lemma 1.1 F-flex may be reduced to the family of instances given by B =
A \ {a}, for a ∈ A.

The key of the proof is the fact that the answer corresponding to an in-
stance of F -flex given by (A, B, c+, c−) is YES if and only if, for any B′ with
B ⊆ B′ ⊆ A, at least one of the instances (A, B′, c+, c−) and (B′, B, c+, c−)
has also an affirmative answer.

In the next section we show that solving F -flex is always at least as hard as
solving F , and try to find families of optimization problems with polynomial
complexity associated flexibility problems.

The proofs of all computational complexity results are strongly based on
the fact that, when checking flexibility, it is enough to do so on a finite subset
of states, called test set. In particular, for F ⊆ A we define the F -state
cF ∈ Z

A
+ by:

• if F is a minimization problem, cF
a = c−a if a ∈ F and cF

a = c+
a if a /∈ F ;

• if F is a maximization problem, cF
a = c+

a if a ∈ F and cF
a = c−a if a /∈ F .

We prove that, for a given F ∈ F(A), the F -state is that state for which
F has the greatest possibility of being optimal in the sense that, if F is a
c-optimal element for some c ∈ S, then F is cF -optimal.

Moreover:

Lemma 1.2 Let A, B ⊆ A, c− and c+ defining an instance of F-flex. If
F is a monotone increasing minimization problem or a monotone decreasing
maximization problem, then {cF : F ∈ F(A)} is a test set. If F is a mono-
tone increasing maximization problem or a monotone decreasing minimization
problem, then {cF : F ∈ F(B)} is a test set.

Let us point out that, for a general combinatorial optimization problem
F , the cardinalities of the test sets given by Lemma 1.2 are non polynomial
in the size of A.
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2 Looking for polynomial flexibility problems

In order to compare the computational complexities of F and F -flex, we need
to take into account the relationship between F(B) and F(A), when B ⊆ A.
Let us impose the following monotonicity conditions on the set of feasible
solutions

(P1) for every E ∈ F(B), there exists F ∈ F(A) such that E ⊆ F ,

(P2) if E ∈ F(A) and E ⊆ B then E ∈ F(B).

Under these conditions we can prove:

Theorem 2.1 F may be polynomially reduced to its corresponding flexibility
problem, F-flex.

Let us observe that, for the Weighted Matching, the Maximum Weight
Forest and the Shortest Path problems, it holds that

(P3) F(B) = {F ∈ F(A) : F ⊆ B},
whereas, for the Minimum Cut problem it holds that

(P4) F(B) = {F ∩ B : F ∈ F(A)}.
Each of the properties (P3) and (P4) imply (P1) and (P2). Conditions

(P1) and (P2) are the weakest we may impose for proving Theorem 2.1. In
fact, when finding the optimal value of F we just use (P1), and then (P2) is
necessary in order to find an optimal element.

From Theorem 2.1, if we want to find polynomial flexibility problems, we
should reduce our search to the family of polynomial optimization problems.

An exchanger network is a digraph D = (V1 ∪ V2, E) with V1 ∩ V2 = ∅,
E ⊆ V1 × V2 and a vector c ∈ R

V1∪V2 (for i ∈ V1, ci is the supply of i and
for j ∈ V2, cj is the demand of j). The maximum exchange in this class of
networks can be modeled as a Maximum Flow-Minimum Cut problem in a
certain st-network.

In [1] and [4] we may find two independent proofs of the NP -completeness
of the Minimum Cut flexibility problem (FF ), even on instances with c− =
0. However, considering those instances of FF corresponding to exchanger
networks (FT ), the problem becomes polynomial when c− = 0.

Nevertheless,

Theorem 2.2 FT is NP-complete.

The proof is based on the reduction of the Balanced Complete Bipartite
Graph problem (BCBG). BCBG consists in deciding whether there is a com-

N.E. Aguilera et al. / Electronic Notes in Discrete Mathematics 30 (2008) 303–308306



plete bipartite balanced subgraph of certain size in a given bipartite graph.
The proof of its NP -completeness may be found for example in [3, p. 196].

We wonder if tightening conditions (P1) and (P2)—imposing, for example
(P3)—we may establish the converse of Theorem 2.1. However, we prove:

Theorem 2.3 The Shortest Path flexibility problem (FP) is NP-complete.

In this case, we reduce DVDP2 to the Shortest Path problem. Given a
digraph G and nodes s, r, t, w of G, DVDP2 consists in deciding whether there
exist vertex disjoint st- and rw-paths.

A combinatorial optimization problem F is hereditary if for all A, F ∈
F(A) and F ′ ⊆ F it holds that F ′ ∈ F(A). Since we deal with non negative
states, hereditary combinatorial optimization problems become relevant when
they are maximization problems.

Once again, instances with c− = 0 lead us to guess that hereditary opti-
mization problems could have “easy” associated flexibility problems.

Lemma 2.4 Let F be a hereditary problem satisfying condition (P2), c− = 0
and c+ with c+

a > 0 for some a ∈ A. Then, deciding if a is useful can be done
in constant time.

The key of the proof is to show that a ∈ A is useful if and only if {a} ⊆
F(A).

We now consider the Weighted Matching problem, which satisfies (P3) and
is also hereditary :

Theorem 2.5 TheWeighted Matching flexibility problem (FBM) is NP-complete,
even on instances corresponding to bipartite graphs.

The proof is based on the reduction of FP to FBM by using some known
transformation between shortest paths and maximum weighted matchings in
bipartite graphs.

Finally, hereditary optimization problems defined on matroids seem to
be the “best candidates” when looking for polynomial flexibility problems,
because of the characterization of matroids through greedy algorithms. In
this case, this assertion can be confirmed by the following result:

Theorem 2.6 The Maximum Independent Set (in a matroid) flexibility prob-
lem is polynomial.

For the proof we use some previous results which allow us to show that,
for an instance given by a matroid A, {c{a} : a ∈ A} is a test set.
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Finally, let us observe that the family of matchings in a bipartite graph is
the intersection of two matroids. Hence, Theorem 2.5 implies that:

Theorem 2.7 The Two Matroid Intersection flexibility problem is NP-complete.

This last result leads us to guess that a “matroid structure” is the “weak-
est” from which we can obtain polynomial flexibility problems.
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