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Generalized Bessel potentials on Lipschitz type spaces
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We introduce generalizations of Bessel potentials by considering operators of the form o[(I — A)~1/?] where
the functions ¢ extend the classical power case. The kernel of such an operator is subordinate to a growth
function 77. We explore conditions on 7 in such a way that these operators become isomorphisms between
generalized Lipschitz spaces.

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

One of the main achievements of modern theories of function spaces is the unified approach of all classical spaces
through the harmonic, caloric or more general extensions to the upper half space. This point of view leads to the
notions of Triebel-Lizorkin and Besov spaces. The corner stones of such a development is the work of O. Besov
[2], M. Taibleson contained in [9], [10], [11] and H. Triebel [12], [13], [14] where the Lipschitz spaces of any
power order, Bessel potentials and operator theory have been deeply studied.

In 1965 S. Spanne, [6] studying generalized BMO spaces introduced the classes Lip,. Spaces of integrable
functions with non-power control were introduced even earlier giving rise to the theory of Orlicz spaces.

Generalized Lipschitz spaces with moduli of continuity different from powers were considered essentially by
Janson [4] and also by Ansorena-Blasco [1]. As it was pointed out by our referee, there are also relevant results
in these directions proved by Kaljabin (see for example [5]).

One of the central tools in the modern theory of Sobolev, the Bessel potential of fractional order, defines a
natural isomorphism between Lipschitz spaces. In fact, being isomorphisms between Lipschitz spaces A(«; p, q),
allows to solve particular problems by reducing them to the case 0 < a < 1, or, in other words, they provide
another characterization of these classes. A deep result of Stein and Zygmund shows that, in some sense, every
translation invariant operator improving Lipschitz spaces improves also Lebesgue spaces.

In the way of extending this result from generalized Lipschitz to generalized Lebesgue (Orlicz) spaces, it
becomes a central point dealing with some kind of apropriate Bessel potentials as isomorphisms between gener-
alized Lipschitz spaces.

In this paper, we introduce generalizations of Bessel potentials by considering operators which are formally
of type o[(I — A)~1/?], where ¢ includes the usual power case. This is achieved by introducing the right Fourier
multiplier (see Section 4). While in the classical case, Bessel potentials define a semigroup in the sense that
Jo 0 Jg = Ja4g, the composition of two of our potentials J;, o J,,, leads to the generalized potential corre-
sponding to a special product 771 ® 1o (see Section 5). This operation provides a semigroup structure for the class
of admissible functions 7, as it is shown in Section 3. The main purpose of this paper is the search of conditions
as general as possible on the functions 7 in order to have isomorphisms .J;,, between generalized Lipschitz spaces
(see Sections 6 and 7). A point that deserves special care and actually the one imposing restrictions on 7 is the
proof that our operators are onto. The precise class M of functions 7 for which J, is an isomorphism is fully
described in Section 3. Let us point out here that M contains some typical continuity moduli as ¢ (1 +log™ %)
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422 Iaffei: Generalized Bessel potentials

Even though the basic theory of generalized Lipschitz spaces can be found in the above mentioned literature
[4] and [1], we start our paper with an introduction to these spaces relying on the historical harmonic approach
through the Poisson kernel, which will be more appropriate to our purposes.

2 Generalized Lipschitz spaces

For related results and definitions see [4] and [1]. The basic difference in our approach is that a characterization
of Lipschitz spaces is given in terms of the harmonic extensions of functions.

Since we are interested in function spaces defined in terms of continuity moduli n more general than powers,
we shall start by introducing the basic properties of such functions 7. We shall say that a non-negative function n
defined on the positive real numbers is a modulus of continuity if 1 is non-decreasing and n(0) = 0 in the sense
that lim;_,o+ n(t) = 0. We say that two continuity moduli 7; and 7y are equivalent if there exist two constants

c1 and ¢y such that the inequalities ¢; < Z;Eg < ¢35 hold for every positive t. Given a non-negative function 7

defined on the set RT of non-negative real numbers and a real number «, we shall say that 7 has lower type « or
that 7 is of lower type « or even that « is a lower type for 7 if there exists a constant C' such that the inequality
n(st) < Cs*n(t) holds for every s < 1 and every ¢ > 0. If such an inequality holds for s > 1 we shall say that 7
has upper type a. Let us first notice that if 7 has lower type o and 3 < « then 1 has lower type 3. So that given
a function n with finite lower type, there is a left half line associated to it corresponding to all the lower types for
7. Also, given a function n with finite upper type, there is a right half line associated to 1 corresponding to all the
upper types for 7. Since every lower type is less than or equal to every upper type, given such a function n we
have a partition of the real numbers of the form R = L U I U U, where L and U are the half lines of the lower
and upper types and I is an interval which could be empty, closed, open or neither one of these, if I is not empty
this partition is disjoint. Let us observe that since 7 is non-decreasing, then 7 has lower type 0. The supremum of
L is called the Orlicz- Mahgranda lower index of 7. The expression 7 is of lower type greater than ~ makes sense

by saying that v belongs to L the interior of L. Similarly, 7 is of upper type less than v if v € U Let us notice
that for a given 7, having finite upper type is equivalent to the Orlicz As condition 1(2t) < An(t). Continuity
moduli satisfying Ay are usually called growth functions. Up to equivalence smoothness of growth functions can
be assumed. Indeed, in case 7 has positive lower type we can take 7j(t) = fg %@) ds as a regularization of 7. In
the general case, pick a real number € less than a lower type of 7, then

ARE
nio) = o [ 5.

is a differentiable function which is equivalent to 7.

Since, we are interested in the description of local continuity properties of functions in terms of 7 and, on the
other hand, functions like 7; (t) = min(t'/2,¢'/3) and 1y (t) = max(t*/2, t'/3) have the same types even when
they behave in quite different ways near zero, we are lead to the idea of local types by restricting ¢ to the range
0 <t <1 in the definition of lower and upper types given before.

Actually, local types can be extended to global types by changing the continuity modulus only for large values
of ¢, in fact if 7 is a growth function with local lower type « and local upper type 3, then 7(¢t) = n(¢) fort < 1
and 7(t) = Tl%) for ¢ > 1 has the desired properties.

Given a modulus of continuity 1 we shall denote by £, the vector space of those measurable, real valued,
essentially bounded functions defined on the euclidean space R™ such that wo(t) = ess sup,epn|f(z +t) —
f(@)] = ||f(-+t)— f(.)|| is bounded by An(|t|) for some constant A and every ¢ € R™. The space £, becomes
a normed space with

Woo(t)

n(t)

If 1 and 77 are equivalent continuity moduli, then £,, = L5 with equivalent norms. An extension of the argument
given by E. Stein in [7] allows us to show that £,, is a space of continuous functions since (0") = 0. It is easy
to show that if 7 has upper type less than one, and 7 is a growth function such that L,, = L, then 7)(t) and 7(t)
are equivalent for ¢ € [0, 1].

/]

£, = [[fll +sup
0
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The basic characterizations of £,, in terms of Besov type spaces is contained in the next theorem, which is an
extension of Theorem 7 in [7].

Theorem 2.1 Let 1 be a growth function of positive lower type o and upper type 3 less than one. Then a
bounded function f belongs to L, (R™) if and only if its Poisson integral u(xz,y) = (P, * f)(x) satisfies an
inequality of the type

HL@’@/)H < AW 2.1)
W o~  y’

for some constant A and every y > 0. Moreover if Ay is the smallest constant A for which (2.1) holds, then

[fllnoe = [flloc + A1 and |||z,
give equivalent norms.

Proof. Let us first assume that f € £,. Since the integral on R" of oLy Vamshes we have that

ou P, (1)
i < Y
1] < w122 ena

Using polar coordinates for the integral on the right, splitting the radial integral at » = y and finally applying the
lower type property of 7 in the bounded region and the upper type property of 7 in the unbounded region, we get

du
dy

N

1flle. [t ism=ty ==t Lo 10 gt o ignmty [T et g
S Ly | | Yy r . r 4+ | | r r 77(7") ,
0 0 )

! — Cn— 1 > 1 s
I, €57 N[y [y W g [T Lale) g ]
0 1

ys 8
1 (o)
1£lle, C"|5”1|[91/ Sn+a7177(y)ds+y71/ n(y)sﬁ*?ds}
0 1

<o),
Y

IA

In order to show that (2.1) implies that f € £, (R™), let us first state and prove the next lemma.

Lemma 2.2 Let ) be a growth function of upper type ( less than one and let [ be an essentially bounded
measurable function defined on R™. Then, (2.1) is equivalent to the existence of a positive constant A’ such that
the inequalities

W n(y) , 2.2)
y

Hamy

hold for every y > 0 and every j = 1, ..., n. The smallest constants A and A’ for which (2.1) and (2.2) hold are
comparable.

Proof. The proof follows the basic lines of that of Lemma 4 in [7]. Let us first show that (2.1) implies
(2.2). Using the semigroup property of Poisson integrals and the estimates for the L*(R™) norm of gf{' we

obtain || 6328“;] ||DQ < Al%. On the other hand, since %ﬁy) = — fyoo ay(?;mj u(z,y") dy’, from the upper type
property of n we get
8 oo /!
H U(x,y)H < A1/ n(%) a
1 [ 1 o
= A —/ 77(5224) ds < CAq —n(y)/ sP72ds < A, M
Yy Ji s Y 1 Y
The converse is proved by using that u solves the Laplace equation. O
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424 Iaffei: Generalized Bessel potentials

Let us now finish the proof of Theorem 2.1. Since we are now assuming that || g—Z ||OO <A %, Lemma 2.2
implies that || a‘% ||OO <A # For x and ¢ in R™, taking y = |¢| we have that f(x 4 ¢) — f(z) can be written as

{u(z+t,y) —u(z,y)Y+{f(e+t) —u(z+t,y)} — {f(x) —u(x,y)}. Notice now that the absolute value of the

first term in the last expresion is bounded by |¢| ZT‘L d“éz L£) H < nA'n(|t|). On the other hand the second

and the third terms are bounded by fotl H H dy < A f g 77 dy The conclusion follows from the fact that n
is of positive lower type. O

Let us observe that in the proof of Theorem 2.1 only that (2.1) implies (2.2) was actually used.
Let us point out that if we only have a growth function 7 with no further conditions on its lower or upper types,
we still have the inequality

Yy oo
o5, = ([ 5Pan [T ),
0Y || 0o T y T

where the right-hand side is generally not bounded by a constant times 7)(y).

The result of Theorem 2.1 suggests a way to define Besov type spaces for any growth function 7. Let 5 < oo
be an upper type for 7 and take k the smallest integer greater than 3, we define A(7); co) as the vector space of all
essentially bounded functions f whose Poisson integral satisfies the inequality

OFu(x,y) n(y)
] <o

for some constant A and every y > 0. The space A(n); co) becomes normed by || f||oc + Ak, Where Ay, is the
infimum of those constants A for which (2.3) holds. Let us point out that from the rate of decreasing at infinity
of the Poisson kernel and its derivatives, inequality (2.3) is true for y > 1, for every f € L*°(R"™). So that (2.3)
is actually a local condition in the sense that the only values of 7 that matter are those 7(¢) with 0 < ¢t < 1. Itis
not difficult to show that if 3 is an upper type for 7, then the usual Lipschitz space Ag (see [7]) is continuously
embedded into A(n; 00).

The precise choice of k as the smallest integer greater than [ is irrelevant as the following lemma shows.

Lemma 2.3 Let n be a growth function of upper type 3 and let f be an essentially bounded measurable
function defined on R™. Let m and | be two integers, both greater than 3. Then the two conditions

" u(x,y) 0'u(z,y)
8y7n ayl - -
are equivalent. Moreover, the smallest A, and A; holding in the above inequalities are comparable. In particu-

lar, we obtain that
I"u(z,y)
oy™ o

Y
| flloo + sup (
y>0
defines in A(n; 00) a norm equivalent to || f|

L)
ym

’ oo

m

n(y)

7500
In order to prove this lemma, we just mention that it is possible to extend the arguments of Stein applying
the techniques used to prove Theorem 2.1 and Lemma 2.2. In the same spirit we only state the main results for
these spaces: Zygmund type characterization in terms of second differences and a Sobolev type characterization
in terms of derivatives of f. The full details can be found in [3].
Theorem 2.4 Let 1) be a growth function of positive lower type o and upper type 3 less than 2. A function f
belongs to A(n; 00) if and only if f is a measurable essentially bounded function satisfying

[f(x+1) + fl@z—1) = 2f(2)]lc < An([t]).

Moreover the number

[1£lloo

defines a norm on A(n; 00) which is equivalent to || . || p;co-
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Theorem 2.5 Let 1) be a growth function of lower type a greater than one and upper type (3 with 3 — a < 1.
A function f belongs to A(n; 00) if and only if f € L*°(R™) and 86._1]; € A(7; 00) for every j = 1,...,n, with
n(t) = @ The norms || f || ;00 and || f || o + Z?:l ||%||T700 are equivalent.

In the study of operators acting on the A(7; co) arise kernels that belong to more general Lipschitz classes,
defined in terms of LP modulus of continuity for p > 1. In analogy with our definition of A(7; co) we define the

spaces A(n;p), p > 1; substituting the infinity norm by p norm. The basic properties of the spaces, A(n;00),
given in Theorem 2.1, (2.4) and (2.5) hold with the obvious modifications for the space A(7; p).

3 Some special classes of growth functions

We introduce in this section some definitions of certain classes of growth functions. To these classes will be-
long the functions associated to generalized Bessel potentials introduced in the next section. More precisely for
functions belonging to one of these classes we will show that their potentials are well defined and they work as
isomorphisms between generalized Lipschitz spaces.

Definition 3.1 A non negative function 7 is said to belong to the [ class if it is of positive lower type and
finite upper type. Let us observe that a function € J is necessarily quasi-increasing.

In this class we can define a special product n; ® 72 in the following way

- T 3.1

m@m(v) = /0 m(vt) n2(vv/T—2%)

The reason to introduce this special product will be clear in Section 5 where the composition of generalized
Bessel potentials is defined. In what follows we give a basic property which implies that this product es closed
inJ.

Proposition 3.2 For n; and ns in J, the function n = 11 Q 1y defined by (3.1) belongs to J and is equivalent
to n1Mo9, the usual pointwise product function of n1 and 1s.

Proof. Let a; > 0 and ay > 0 be lower types of 71 and 72 respectively. Then
1 a272
n(v) < Cn(v)na(v) / o=t (\/ 1—¢2 ) dt < Cni(v)n2(v). (3.2)
0
Similarly, if 51 and 3 are the upper types of 7; and 72 respectively, we have
1 B2—2
n(v) > cr]l(v)ng(v)/ t51_1<\/1 —t2) dt, (3.3)
0
and the equivalence 1; ® ny ~ 11172 is proved. This in turn, implies the first part of the statement. O
Definition 3.3 A function 7 of the J class belongs to 7, if it has an upper type less than one.
Definition 3.4 We denote by M, the class of functions  that can be written as

s o(7) dr

n(s) = n(l)e)r - (3.4)

with ¢ satisfying the following conditions

O<61§¢§02<1, 3.5
¢ € C((0,00)) and (3.6)
¢’ is absolutely integrable in a neighborhood of the origin. 3.7

Next we explore how M, is related to 7.
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426 Iaffei: Generalized Bessel potentials

Lemma 3.5 Let n be given by (3.4) above with ¢ satisfying only condition (3.5). Then 1 belongs to J, with
upper and lower type constants one. Conversely, given n € [J, with upper and lower type constants one, there
exists an equivalent growth function given by (3.4) with a function ¢ satisfying (3.5).

Proof. Let 7 to be as in (3.4) above with ¢ satisfying only condition (3.5). Let us show that 7 is of positive
lower type and of upper type less than one. In fact, for s < 1 we have

'I](St) = n(l)eff d)ErT) dTJrftSt @ dr _ n(t)e 1 @ du
_ n(t)e_fsl ¢>(/:t> du < n(t)e—cl(log 1-logs) _ n(t)scl )

This means that 7 is of lower type ¢; > 0 with constant 1; and, in a similar way it can be proved that 7 is of

upper type c2 < 1 with constant 1. Now, we show that for every n € 7, with upper and lower type « and 3, both

with constants one, there exists an equivalent growth function as (3.4) above with ¢ satisfying condition (3.5).

For such an 7 it is easy to check that "S([f) is quasi-decreasing, but perhaps not a decreasing function. However
7i(s)

sP

we can consider another function 7 equivalent to 7, with

i) _ su @

Sﬂ B t>s tﬁ

decreasing, by defining

Let us verify that 77 and 7 are equivalent

ot — B > B _
(s) = s SWSs 285 n(s)
Regarding the opposite inequality,
~ t C
n(s) = sﬁsupM < P supm = Cn(s),

t>s tﬁ o t>s Sﬂ

where we have used that %3) is quasi-decreasing. Therefore, without lost of generality we may assume that 7 is

of positive lower type « and of upper type 3 < 1 with % decreasing. Now the function

o [° (@)
nfl(s) =S /0 t1+a dta
0 <a < a < g,is equivalent to 7 and moreover it satisfies (3.4) and (3.5) with

or) _ ma)'(r)

T Na(T)

In fact,

vV

7 (5) o 10) /0 d  n(s)

58 tl=B+a — B_q’

So n(s) < na(s)(B8 — a). We get the opposite inequality of the equivalence using the positive lower type of 7

1
/ n(us) du < C
0

ulte  — aq—a

Ma(s) = n(s).

On the other hand, let us observe that
na(s) | n(s)
(1a)'(s) = a T + s

thus using the above estimates it follows easily that

alS a\S
a"_() < ()'(s) < 577_()
s s
giving (3.5) with ¢; = a and ¢o = . O
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Next we denote by M the class of those functions in J that can be obtained as a ®-product of a function in
M, with a non negative power function t”, v > 0. So

M=PM,, (3.8)

where P is the set of power functions with non negative exponent. Similarly we denote by N the functions that
can be obtained as the pointwise product of functions in P by M,. So

N = PM,. 3.9

Notice that A/ can also be described in exponential terms as in (3.4) with ¢ satisfying (3.6), (3.7) and changing
(3.5) by

0<cp <9< g <oo, with 0<co—c; < 1. (3.10)

It is easy to see that a result similar to Lemma 3.5 holds for the class A/ and those growth functions 7 of lower
type « and upper type (3 such that 0 < a < 8 < 00, f — a < 1 and type constants one.

The next lemma shows that locally the behavior of a function 7 belonging to A is determined by the number
¢(0) = lim;_ o+ ¢(t) which allways exists.

Lemma 3.6 Let ¢ be a function satisfying (3.7) and define n by (3.4). Then lim;_ o+ ¢(t) = ¢(0) exists
and for every positive ¢, there is a positive number §(€) such that n(t)s®©+e < n(st) < n(t)s?©O=¢ for every
0<s<land0<t<d(e).

Proof. For s < t we certainly have that

16(8) — d(s)] < / 16 (z)| da, 3.11)

then lim,_, o+ ¢(t) exists, call this number ¢(0). Let us take 0 < s < 1 and ¢ < &(¢€), where § is chosen in such a
way that, |¢(7) — ¢(0)| < e for every 0 < 7 < §(€). Then

st 6() g ¢ 6(r) gy (st e() g
n(st) = n(l)elt = 4 = p(1)ells Tt/ = dr]
< p(t)e T4 2FE A = pyp)e— (90— logt—log(s)) (1) 9(0)—¢

Similarly

vV

n(st) 77(t)ef(<;$(0)+e)(log t—log(st)) _ n(t)ezi)(O)Jre logs _ n(t)s¢(0)+e ) n
We would like to point out that condition (3.7) in Lemma 3.6 is essential. In fact it is possible to exhibit an
example of a function 7 given by (3.4) with ¢ satisfying (3.5) and having different upper and lower local indexes.
It is clear that even when conditions (3.4), (3.6), and (3.7) are preserved by pointwise multiplication, this is
not the case for (3.5) neither for (3.10). Nevertheless given ; and 772 in NV, changing the functions ¢;, i = 1,2,
outside a small neighborhood of the origin, we obtain 77;, ¢+ = 1, 2, such that the pointwise product 7,72 belongs
to A and it coincides with 7,72 in a neighborhood of the origin.

Let us finish this section with some examples about these classes of functions. Of course power fuctions
n(t) = t* correspond to the constant functions ¢(7) = . Forn € A" and 3 positive, t°7(t) also belongs to .
Also t~%n(t) belongs to N provided that « is less than a lower type for . Typical functions of the Orlicz setting
are also examples here

1 1
m(t) = t*log—, ma(t) = t* —, mn3(t) = t*log(log 1) ,
t log ¢

and, in each case, the corresponding function ¢; has the general form
¢i(t) = a+gi(t),
for g; a monotone smooth function with g;(07) = 0.
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4 Generalized Bessel potentials
The Bessel potential .J, of order o > 0 is the convolution operator with kernel given by

Go(z) = C/o e e 5T ?

This operator solves the formal expression (I — A)~%/2, It seems natural to introduce a generalization dealing
with the formal operators of the type ¢[(I — A)~1/2] where ¢ belongs to some class of positive functions
containing the power functions. Actually given a function ) € J if we take the kernel

ds

Gy(z) = C/O 67”%67&57%77(\/5) 5 4.1)

the integral defining G,,(z) converges and satisfies the following basic properties which are themselves natural
generalizations of the classical ones (see [9]).

G, is a non negative radial and integrable function on R"; 4.2)

(Gy) (2) = @[(1+4n* |2]*)"1/?]  where (u) = C(n)ﬁln(\/g)M : ) (4.3)

L denotes the Laplace transform and C(n) is a constant depending only on 17;

é:, and its multiplicative inverse ((/}:,) 71, both belong to the space 4.4)
O of all C* functions with slowly increasing derivatives. '

In other words we have that the convolution operator J,, with kernel G, thatis, J,, f(z) = (G, * f)(x), gives the
desired generalized Bessel potential induced by 7, J,,(f) = ¢[(I — A)~/2](f) in the sense that as distributions,
for any test function 1) we have

(In(f) (@) = o((1+47%[2*)712) f(0).

Let us now sketch the proof of (4.2), (4.3) and (4.4). Notice first that assuming (4.2) and (4.3), it becomes clear

—_ -1 . . . .
that both G,, and (G,,) ~ are C° functions on R™. In order to estimate the growth of their derivatives let us
introduce the function

0 = [ et M) gy - ool 4 antiepy ).

Since the derivatives of ® are linear combinations of powers of & multiplied by functions of the same kind that ®,
where aside from "(T\/g) there appear other powers of d, it is easy to see that the derivatives of ® (&) never grow

faster than polynomials of £. In order to show that the same is true for (é‘;) ! we only need to prove that ®(x)
is bounded below by a negative power of a polynomial. But this is true since changing variables in the definition
of ®(¢), the finiteness of the upper type of 7 gives

C

(&) > AT a2 g™

for some constant C' and any integer m greater than a half of an upper type for 7.
Properties (4.2) and (4.3) will immediately follow from the next lemma.

Lemma 4.1 The operator which transforms the measurable function h of the positive real variable 0, into the
function

5 e h(V/3
h(x) =/ P AP —(\(O dé
0
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is bounded from L' (R, e*“2/4’rdu/u) to L (R™). In fact

o0
/ h(z)| de < 2/ h(u) =% 24
n 0

u

~ 2
Moreover, the Fourier transform of h(x) is given by the Laplace transform of h(‘é/_) evaluated at %, in

other words
1+ 4m2[¢)?
A7 '

. 2
Proof. Since fRn e*’r% dz = 6™/2 for § > 0, we have from Tonelli’s theorem that

/ {/ 67‘—”‘526%5”/2@ dé} dr = / 5n/2 7H n/2|h<\5/_)| ds
n | Jo

W) = ¢ lh(\f)

Il
N

N
Q\
i
=
A
Z

| L

£

from which the first part of the lemma follows readily. In particular iz( ) is finite almost everywhere. Notice that
2 2
since h € L' (R* e iw %) we have that C{lh(‘/_)q( ) is finite, so that also E[‘h(\é/g)l}(lHLm ) is a well

defined for every £ € R™. Hence fooo e IHLW }L(T\[) dd is absolutely convergent. Let us compute the Fourier
transform of h, using the multiplication Plancherel formula: given a function f in L!(R") its Fourier transform

is the only L°°(R™) function f for which

f@)ola)de = [ F©)o(€)de,
R R™

. . . L n lg|?
holds for every ¢ in the Schwartz class S. Since the Fourier transform of e =™ l=1* s givenby 6" 2e "5 we

have that

/ 67&67w6|m|2$($)da: :/ e~dre ™% 52 ¢(x) dw

holds for every positive J. Let us now multiply by h( Vo ) both sides of this equality and integrate from 0 to co
with respect to the measure %‘5. After changing the order of integration we get

/n (E(x){/ooo e~ x (144 w2)}l(T\/g) dé} "

s 4.5)
> x 2 n h 5 g
= / o(x) / e‘ﬁe_”%é_fgdé de = o(x)h(z) dx ,
n 0 1) R
from which, since we are dealing with real functions, we get
2 h(V6) \ (L+4n* ¢
M) = £| = - .
™ O
In order to prove (4.2) and (4.3) it only remains to notice that € 7 implies that n € L' (R* e = ﬂ) In

fn()

fact, the positive lower type of 1 guarantees the integrability o in every neighborhood of the origin, and the

e 4m

finiteness of the upper type of 7 leads the integrability of M
are in position to give the precise definition of the potential.

for u > 1. With these properties of G,, we
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Definition 4.2 Let 7 be a function in the class 7. We define on each LP(R™) with 1 < p < oo the generalized
Bessel potential as the convolution

In(f) = Gpx f (4.6)

with f € LP(R™).
Of course, since G, € L' (R™) and ||G,||1 = 1, we have ||.J,,(f)|l, < | f]lp. 1 <p < .

A basic fact about the properties of G, that can be described in terms of the generalized Lipschitz classes
introduced in Section 2 is contained in the next result.

Theorem 4.3 Let n € J with upper type b < 1. Then G,, € A(n; 1).

Proof. Let us start by observing that under the current hypothesis in 7, we have that

Gy ()] < C”gﬁ”, @7
9 n(l=|)
‘%Gn(w)’ <C FEEE (4.8)

for some constant C. Since we already know that G,, € L' (R™), to prove the theorem we only have to show that

[ 1Gofa 1)~ Gyfa)lds < An(le).

/ |.|da:+/ || dz,
|z|<2t] |z[>2t]

we can use standard arguments to estimate each term on the right-hand side. For the first we use (4.7) and the
lower type of 1. For the second we can apply (4.8) and the upper type condition in 7. O

for some constant A. Since

[ (Gl 1) = Gyfa)| do

5 Composition of generalized Bessel potentials

As we pointed out in Section 1, while in the classical case the Bessel potentials define a semigroup in the sense
that J, o Jg = Ja+p Or Jio © Jys = Jrays the composition of these new operators 7y, and 7y, is the potential
Jn.on. for the special product 771 ® 12, defined by (3.1) which in fact is equivalent to the usual product 7172 It
suffices to prove that given 71 and 72 in J, Gy, * Gy, is Gy, @n,» With é;(x) = ¢; [(1+4n? |z[2)~1/2], where
the relationship between 7; and ; is £ {%\/5)} (s) = i (ﬁ), fori=1,2.

Since the kernels G, are radial functions, the convolution (Gm * Gy, is also radial and so is its Fourier’s

transform; this observation allows us think the (G, * G,,) as a function of the variable |z|. Applying the
14472 |z)?

convolution theorem for Laplace’s transform we get that for s = g

(G, * Gy (J2]) = sm(\/%) ‘/’2<¢%)
Clm)L [Ml (5)C(m)L [Ml (5)

o o

6 —
C(m,nz)ﬁl/o ’“<f)"2(5ff)d£] (5)

g —
C(nmm)ﬁ[%/o ’“(f) ”2(5f£€) gdﬁl (s) =

5.1
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= C(m,ng)c[%/o m (Vo) m(Vov1-1)

t 1—¢2

c4@>=cmmm££@§%ﬁf9%@,

where for the last equality we use an appropriate change of variables in the definition of 1; ® 79 given in (3.1).
So that Gy, * G, = G, @n,. This identity is the reason for introducing the special ®-product given in Section 3.

Proposition 5.1 Given a function 11 of positive lower type and upper type less than one, and a positive
number 3, the generalized Bessel kernel G, associated to 1 = t8 @ my belongs to the class A(n; 1).

Proof. Sincen = t’ @y, then J,, = Js0J,, where Jj is the classical Bessel potential of order 3. In other
words G, = Gg * Gy, . So that its Poisson extension can be written as Gy, (., y) = Gg(.,y1) * Gy, (-, y2) where
y1 + y2 = y. Let us denote by b the finite upper type of 7 and observe that b > (. Let [ be an integer greater
than b + 1, since [ — 1 > (3, taking [ — 1 derivatives of G, (., y1 + y2) with respect to y; and one derivative with
respect to ¥, by doing y1 = y2 = 4 we get that

0! o1 0
—G = ——Gg(z,y/2) x — Gy, (z,y/2).
8 a0 ( y) 8yl1_1 ﬁ( y/ ) 8y2 m ( y/ )
Now applying Young’s inequality and the estimate about the Poisson integral of the kernel G 3 and (4.8) we have
al
H_lGn(x,y) < A1) (5.2)
dy 1 Y O

6 The action of J,, on A(¥, p)

Since, from (4.2), the kernel G,, belongs to L' (R™), we certainly have that .J,, preserves generalized Lipschitz
spaces, but it is important to observe that the smoothness of G, allows us to expect that .J;, is regularity improving.
In fact we have the following result

Theorem 6.1 Let V € J and n € J, be two given growth functions. Then J, is a one to one continuous
operator from A(¥, p) into A(n¥, p) for every 1 < p < oc.

Proof. That the mapping J, is one to one can be proved exactly in the same way than for the classical
Bessel potentials (see [7]). To prove that the image of A(U, p) under J,, lies in A(n¥, p) and that the mapping is
continuous, let us take f € A(¥, p) and argue as follows. Let u denote the Poisson integral of f, and U be the
Poisson integral of .J,,(f) = Gy, * f. Thenu = P, x fand U = P, « Gy, * f. Thus U (z, y) = (G, (., y) * f) (),
where G,(z,y) is the Poisson integral of G,,(x). Now, from Theorem 4.3 and Lemma 2.3 we see that for every
m>1

< AT (6.1)
1 Yy

oG,
|G a)

For y = y1 + y» we see that
Ulz,y) = Uz, y1 +y2) = (Py, *x Gp) * (Py, * f)(x) = (Gy(m1) xul.,y2))(x) .

Taking [ derivatives with respect to y; and k derivatives with respect to yo, where [ > 1 and k is the smallest
integer greater than the upper type of ¥, we get

oMU (z,y) 0! oF

o By =Gy (z, yl)*a—ykumw% Yy =yi+ye.
Now, taking y; = y2 = y/2 since f € A(V, p), it follows from (6.1) that

ak

akJrl al

| a;ij < [5meatem)| e )|
< A (y/2) (y/2) 6.2)
s<NﬂwJ@QP-
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Observe that k£ + [ is an integer greater than the upper type of ¥7. To establish the continuity it only remains to
show that J,, f belongs to LP(R™). This fact is an immediate consequence of Young’s inequality for J,, f = G,* f,
since G, belongs to L' (R™) and f € LP(R™). O

Corollary 6.2 For 3 > 0 and V € [J, the Bessel Potentials Jz are one to one continuous operators from
A(¥;p) into A(UtP; p) for every 1 < p < <.

Proof. If 0 < B < 1 the proof is direct because it is a particular case of 7 in the theorem above. For any (3
we know that the kernels G 3 of Bessel Potentials satisfies one inequality like (6.1) (see [7]), with n(y) = y”?. In
other words, for m any integer greater than 3, we have

omG p
H Ty < AL (6.3)
aym 1 ym
Then the proof follows with the same argument used in the proof of the above theorem. O

Corollary 6.3 Ifn = 1, ® t° where n1 € J,, then Jy is a one to one continuous operator from A(V; p) into
A(n¥;p).

Proof. Since J,, = J,, o Jys and both of them are one to one continuous operators, so is J,,. O

7 J, as an isomorphism between generalized Lipschitz spaces

This section contains the main result of this paper.

Theorem 7.1 Given two functions ® and U in the class [J such that U /® is locally equivalent to a function
7 belonging to M, then J,, is a Banach space isomorphism between A(®; p) and A(V; p). In particular for any
n € M, J, is an isomorphism from A(®; p) onto A(n®; p).

For the classical Lipschitz spaces and Bessel potentials we have that the image of A(a;p) under Jg is all
of A(a + fB;p) (see [7], Chap. V). This result has a somehow trivial extension to our more general setting:
Js : A(W;p) — A(tPV;p) onto. So a special case of Theorem 7.1 can be proved, following the classical
approach of [7].

Lemma 7.2 Let 3> 0,1 <p < ocoand ¥ € J,. Then Jg maps A(V;p) isomorphically onto A(9t7; p).
Proof. As in the usual case it would be enough to prove that J, defines an operator from A(V;p) onto

A(t?¥;p). In fact we only have to observe that for a given f € A(t>¥;p) we have that f € A(¥;p) and
Af € A(¥; p); therefore arguing as in [7] p. 150, we get the result. O

The proof of Theorem 7.1 amounts to improve the arguments in [7] in order to get that an appropriate pertur-
bation .J,, of J» applies A(¥; p) onto A(t2V; p) for ¥ € J. Precisely we shall prove the following

Proposition 7.3 Let H (t) be a function in the class C'[(0, 00)] between two positive constants such that H' (t)
is absolutely integrable in a neighborhood of the origin, then v(t) = H(t)t> € J and J, is an isomorphism of
A(¥; p) onto A(Vt2; p); moreover

Jl/ = JQOTa

where T is a convolution operator giving an isometric mapping in A(V; p), with multiplier
m(x) = K+ Ch(a),

where K and C are constants and h is the integrable function from Lemma 4.1 associated to the function
h(t) =tH'(t).

First we gather two lemmas needed in the proof of Proposition 7.3.
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Lemma 7.4 a) A function K € L'(R™) defines a convolution continuous operator on A(¥; p), namely
1K fllop < K llwsp -

b) If also K is C* we have

(K+f) =K.f
in the distributional sense.

Proof. The proof of (a) follows the same lines of that of Theorem 6.1. The proof of part (b) is based on the
fact that since K * f belongs to LP(IR™), the involved equalities can be justified through Fubini’s theorem. [

We shall need the following trivial modification of a Wiener’s result (see [7], p. 134).
Wiener’s Lemma Let ¢y be an integrable function and A a number with A # 0 such that a + X is nowhere

zero, then there exists ¢ € L (R") so that (a + )\)_1 = @(x) + 1/

Proof of Proposition 7.3. Let us notice first that since Laplace transform applies equivalent positive func-
tions into equivalent positive function we see at once that

—

Gu = mé\27

where m is a C* function bounded above and below. Let us now get an explicit formula for m(z),

(&) - (LI (VD) (L

G (1 + 472 |2[*)~1

m(z) =
— C(1 + 4% 2| )/we*(%)éH(ﬁ)dd
- —c/ [ 1+4W2 (A+4r*2?) (%)B}H(ﬁ)dé
_ —c/ { (st 2)1 H(V§)ds.

The existence of lim H (¢) for ¢t — 07 is a consequence of the integrability of H' in a neighborhood of the origin.
Integrating by parts and setting h(t) = tH'(t) we obtain

m(x) = C[H/Oooe(%)éh(x/g)dff] = cln+£<h(\;§)>(l+f|§|2)1,

11,2 .
where  # 0 is the limit of H in the origin. Since h € L' (R*, e % %), by Lemma 4.1 we can write

m(z) = C |:/€—|—/~];(JJ):|

with h € LY(R™). Also h € > and therefore, by Lemma 7.4 b), the following equality in the sense of S’ is
valid for all f € A(T, p),

mf = eif + eohf = [(c16 + coh) * f] .
It follows that .J, = J5 o T with

Tf = (c16 4 coh) * f.
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From Lemma 7.4 a), we can assert that 7" is a continuous operator in A(¥;p). Since m does not vanish in a
neighborhood of the origin, we see that " is one to one. Moreover, by Wiener’s Lemma we get

1 .
— =c+ K

m

with K € L. Therefore we get that T-1, the inverse operator of 7', has the same structure of 7" itself: T 1is
the convolution with ¢§ + K and K belongs to L!(R™). This fact proves that 7! is continuous on A(¥;p).

Then we have shown that T is an isomorphism in A(;p) and thus J,, is an isomorphism between A(¥; p) and
A(t?¥; p) by invoking Lemma 7.2 for 3 = 2. O

Proposition 7.5 Let ¥ be a function in the class J and let n) be a function in the class M, then the operator
J% wten IS an isomorphism between A(V; p) and A(t*¥; p).

Proof. Let us first rewrite the function £ ® t®mn,

<%®t®ﬂ)(t) = 2t2/0t (520 2

U 12 —u?

! LT =2 du dv
4t / 'Un(t 1—-wv )A ﬂ(t’l} /1_u2) 1—u21—22

— 4t2// t\/l_vgél_uz) \/1ditu2 \/1df V2

Now, changing the variables (u, v) to (¢, #) with u = sin ¢ and v = sin 6, we have

t n(tsinb)
—®t t) = 4t dpdd .
<77® ®77)() // tcos@cosgp) 7

Then we can write

<%®t®n)(t)

where H (t) is defined by

n(tsinb)
dpdf .
/ / tcos@cos gp) 4

Then we check that this function H satisfies the conditions of Proposition 7.3. In order to show that H belongs to
C*(0, c0) it would be enough to prove that the derivative with respect to ¢ of %
in ¢ and 6. This derivative is given by

A2H(t),

is absolutely integrable

sin @ 7' (t sin 6) n(t cos 0 cos p) — cos @ cos ¢ n(tsin @) 1’ (t cos O cos p)
n2(t cos 0 cos ) '

We can see that each term above is bounded by an integrable function, we shall only work the first one, because
the second is similar. The first term is given by

sin @ 7' (tsin 6)
n(tcosfcosp)

Since 7 is in the class M,, i’ is a function of lower type o — 1, if « is a lower type for 7. As a consequence the
above expresion is bounded by

C'sin® 0 n/'(t)
cosP O cos? o n(t)’
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where we also used that 7 is a function of upper type (3. It is easy to see that the integral with respect to 6 of
sin® @ cos~? @ is less than or equal to

i V2
4 2
28/2 / sin® 0 df + / uwPdu,
0 0

which is finite because & > 0 and § < 1. Then

sin® 6 2 2 gy 1 du
< — — + 98 —_— ).
/ / cosﬁécosﬁ dipdf < C{\/ﬁ/o ub + /1/2~/1—u2

Now we check that H’ is absolutely integrable in a neighborhood of the origin. For the sake of simplicity we
substitute in the expression of H’, b (1) by ¢(t) of (3.4), then we get

n(t)
¢ n(tsin @) tsin @) — ¢(t cos 5 0
/ (1) di = / / / sin @(tsin @) — ¢(t cos ¢ cos )degp‘dt.
0 t cos p cos b)) t
Since 7 is positive we can apply Tonelli’s theorem to obtain that the above expresion is less than or equal to
/ / / n(tsin 6) ‘gf) tsin @) — ¢(t cos p cos 6) dtdbdy.

(t cos pcosb) t

n(tsin @)

Notice now that for every (6, ¢) in the integration domain and every fixed ¢ € (0, ¢), we have TEeos poasl) <

C (1 + (%)ﬁ), since for sin @ < cos @ cosf is n(tsinf) < n(tcosp cosh) and for sin @ > cos p cos b,

cos ¢ cos 0

from the upper type property of 7, we have % <C ( @%)ﬂ . So that, interchanging orders of
integration
/ H (1) dt
0
0 B 1 tsin 6
< C/ / / ( sin ) ’—/ &' (s) ds| dt do dy
COSQPCOSQ t tcospcos b
2 B €11 tsin 6
- c/ / ( sin ) (/ —/ ¢ (s) ds dt>d0d<p
COS@COSH 0 t t cospcos @
0 B (sin @Acos p cos 0)e (sin @Acos p cos0) " Ls dt
co [l ) (] #(s)  4s
COs @ cos 6 0 (sin@Vcos pcos )~ 1s t
(sin@Vcos pcosf)e € dt
. ¢s) / % ) v
(sin@Acos p cos 0)e (sin@Vcospcosh)~1s 13
B . . r
< / 1/ (s)] ds / / sin 0 logcosﬁcosga\/s%nﬁded()@7
COS p COS cos ¢ cosf cosfcosp Asind

which, from (3.7) and the fact that 3 < 1, finishes the proof of the proposition. o

Proof of Theorem 7.1. Since n € M can be written as 17; ® 3, with m € M,, then J, is the composition
Jy, © Jg. By Theorem 7.2 we know that .Jj is a isomorphism between A(®; p) and A(t°®; p). If we assume that
Jy, is an isomorphism between A(t°®; p) and A(t°®ny; p) then we are done, because being the function ®t%n;
locally equivalent to the function ¥ we have that the spaces A(t°®n;;p) and A(¥; p) coincide. Now we must
show the validity the asumption above. In fact, invoking Theorem 6.1 we know that J,,, is one-one and applies
continuously A(t°®;p) into A(t?®n1;p). Let us finally show that .J,, is onto. Let us consider the function
Ny = % ® t ® . Since m € M, from Proposition 7.5 we see that .J,,, is an isomorphism between A(tP®;p)

and A(t°T2®;p). On the other hand writting .J,,, = J_+. ot © Jn, with J_+ o, one to one, we see that J;,, must be
n1 n1

onto as an operator from A(t°®; p) to A(t?®ny;p). Finally the fact that J,,, is an isomorphism follows from the
open mapping theorem. O
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