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1 Introduction

We start by introducing a family of operators that we are going to deal
with.
Let dγ(x) = e−|x|

2
dx be the Gaussian measure and F ∈ C1(Rn) such that

i)
∫
Rn F (x) dγ(x) = 0,

ii) ∀ε : 0 < ε < 1 there exists Cε > 0 such that |F (x)| ≤ Cεe
ε|x|2 and

|∇F (x)| ≤ Cεeε|x|
2
.

Let us remark that property ii) provides a function ψ satisfying the property
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iii) |F (x)| ≤ ψ(|x|) for some continuous function ψ : [0,+∞)→ [0,+∞) for
which there exists a δ > 0 with 1−2/n < δ < 1, such that ψ(t)e−(1−δ)t2

is a non-increasing function for all t ≥ 0.

Indeed, for 0 < ε < 2/n we set ψ(t) = Cεe
εt2 and δ = 1− ε. In what follows

we denote by ψ any function satisfying property iii). As we shall see the
smaller the function ψ is taken the better is the result obtained in Theorem
2. For instance, for F equals to any Hermite polynomial of degree k we
might take ψ(t) ' 1 + tk.
Remark: The hypothesis on the monotonicity of ψ(t)e−(1−δ)t2 can be relaxed
by assuming such a monotonicity just for t ≥ N for some positive constant
N. Indeed, if such a function ψ exists, then by defining

φ(t) =


max0≤s≤N ψ(s) if 0 ≤ t ≤ N

max0≤s≤N ψ(s)

ψ(N) ψ(t) if t ≥ N

this turns out to have all the properties described in (iii).

Given a real number m > 0 and F as above, we define

TF,mf(x) = p.v.

∫
Rn

KF,m(x, y)f(y) dy

with

KF,m(x, y) =
∫ 1

0

rm−1

(
− log r
1− r2

)(m−2)/2

F

(
y − rx√
1− r2

)
e−|y−rx|

2/(1−r2)

(1− r2)n/2+1
dr

=
1
2

∫ 1

0

(1− t)(m−2)/2

(
− log

√
1− t

t

)(m−2)/2

F

(
y −
√

1− tx√
t

)
e−u(t)

tn/2+1
dt, (1)

where this last equation was obtained by the change of variables t = 1− r2,
and

u(t) =
|y −

√
1− tx|2

t
.

This operator was firstly introduced by W. Urbina in [10] and later taken
up by S. Pérez in [8] where she proved under the hypotheses (i) and (ii)
on F that it is strong type (p, p), 1 < p < ∞ and its “local part” is weak
type (1,1). It is a generalization of the Gaussian Riesz transforms. In fact,
when F (x) = Hα(x) the n-dimensional Hermite polynomial of degree |α|
and m = |α|, the operator TF,m is the Gaussian Riesz transform of order
m. It is known that the weak type (1, 1) for these operators holds true if
and only if m ≤ 2 (see [6], [1], [2], [4], and [9]).
A rather intricate proof of the weak type (1, 1) for the Gaussian Riesz Trans-
forms of order m = 2 and n > 1 is given in [9]. There is another proof of
this result in [4] but it contains a mistake. An interesting consequence of the
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results in this paper is a different and simpler proof of the above mentioned
weak type inequality.
Our goal in this paper is to answer the question: what are the precise con-
ditions needed on F and on m to guarantee the weak type (1, 1) of the
associated singular integral operator TF,m?
We present here results concerning with this question in the two sections
below which will be called the negative result and the positive result.
On section 2, Theorem 1 roughly says that if the function ψ(t) controlling
F increases at infinity more than t2, then the operator TF,m fails to be weak
type (1, 1).
On section 3, in order to get sufficient conditions on F for the weak type
(1, 1) of TF,m we solve a more general problem. In fact, under the hypotheses
(i) – (iii) on F we find precise weights w, depending on the function ψ, in
order to ensure that TF,m is bounded from L1(wdγ) into L1,∞(dγ).

2 The negative result

The following theorem is a generalization of what is already known about
the behaviour on L1(dγ) of the higher order Gaussian Riesz transforms.

Theorem 1 Let Ωt = {z ∈ Rn : min
1≤i≤n

|zi| ≥ t} and β(t) =
inf
Ωt

F (z)

t2
, if

lim supt→∞ β(t) = +∞, then the operator TF,m is not of weak type (1,1)
with respect to the Gaussian measure.

Proof To see that TF,mf need not satisfy the weak type (1, 1) inequality, we
refer to [4] where it is shown that the higher order Riesz transforms need
not be weak type (1, 1) with respect to γ if their order is greater than 2.
There they take y ∈ Rn such that |y| is large and yi ≥ c|y|, i = 1, . . . , n,
and define J =

{
ξ y
|y| + v : 1

2 |y| < ξ < 3
4 |y|, v ⊥ y, |v| < 1

}
. It follows that

for x ∈ J there is a c > 0 so that yi−rxi√
1−r2 ≥

c|y|√
1−r2 ≥ c|y|, i = 1, . . . , n, and

therefore

F

(
y − rx√
1− r2

)
≥ c|y|2β(c|y|).

Thus, for x ∈ J

KF,m(x, y) ≥ c |y|2β(c|y|)
∫ 3/4

1/4

e−|rx−y|
2/(1−r2)

(1− r2)n/2+1
dr

≥ c |y|2β(c|y|)
∫ 3/4

1/4

eξ
2−|y|2e−((ξ−r|y|)2+r2|v|2)/(1−r2) dr

≥ c |y|2β(c|y|)eξ
2−|y|2

∫ 3/4

1/4

e−c(ξ−r|y|)
2
dr

≥ c |y|β(c|y|)eξ
2−|y|2 .
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Now, if we take f = δye
|y|2 (by δy we mean the delta measure at the point

y) we get for x ∈ J

TF,m(δye|y|
2
)(x) ≥ |y|β(c|y|)eξ

2

≥ c |y|β(c|y|)e(|y|/2)
2
.

Let us assume that TF,m is weak type (1, 1) with respect to γ. Then

γ(J) ≤ γ{x ∈ Rn : TF,mf(x) > c |y|β(c|y|)e(|y|/2)
2
}

≤ C
e−(|y|/2)2

|y|β(c|y|)
,

but γ(J) ∼ e−(|y|/2)2 |y|−1; therefore β is bounded for |y| large, which is a
contradiction with the assumption on β.

3 The positive result

Since the weak type (1,1) need not be true, the natural question that arises
is what weights should we put in the domain in order to get a weak type
inequality with respect to the Gaussian measure? For the case of the Gaus-
sian Riesz transforms this can be deduced from the proof of a theorem in
Pérez ’s paper [7], that is, for |α| > 2

Rα : L1((1 + |y||α|−2)dγ)→ L1,∞(dγ).

Moreover, it can be proved that for every 0 < ε < |α| − 2, there exists a
function f ∈ L1((1 + |y|ε)dγ) such that Rαf /∈ L1,∞(dγ), see [2].
It was the above result for the higher order Gaussian Riesz transforms that
led us to study this type of weighted inequalities for this family of singular
integral operators. The method of proof we use is based upon a refinement of
several inequalities used by S. Pérez in [7] and the application of a technique
developed by Garćıa-Cuerva et al in [3] which allows us to get rid of the
classical technique called “forbidden regions technique”.

Theorem 2 The operator TF,m maps continuously L1(wdγ) into L1,∞(dγ)
with w(y) = 1 ∨max1≤t≤|y| η(t) and

η(s) =


ψ(s)
s

if 1 ≤ m < 2

ψ(s)
s2

if m ≥ 2

where a ∨ b = max{a, b}.

As an immediate consequence we get the following
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Corollary 1 if for s large either ψ(s) ≤ Cs when 1 ≤ m < 2 or ψ(s) ≤ Cs2
when m ≥ 2, then the operator TF,m is of weak type (1, 1) with respect to
the Gaussian measure.

Proof of Theorem 2
In order to prove this theorem for each x ∈ Rn let us split up Rn into five
regions
R1 =B(x, n(1∧1/|x|)), usually called the “local region”,

R2 ={y /∈R1 such that x·y ≤ 0},

R3 ={y /∈R1 such that x· y> 0 and |y| ≤ |x|},

R4 ={y /∈R1 such that x·y > 0 and |x| < |y| < 2|x|},

R5 ={y /∈R1 such that x·y > 0 and |y| ≥ 2|x|},

where a ∧ b = min{a, b}.
Now for each i = 1, . . . , 5 we define T iF,m as the integral operator with
kernel χRi

KF,m where χRi
is the indicator function of the set Ri. Therefore

in order to get the result it will be enough to prove that each T iF,m maps
continuously L1(wdγ) into L1,∞(dγ).
Observe that for the operator T 1

F,m, ususally called the local part, the result
follows from [8] where S. Pérez proved that T 1

F,m is of weak type (1, 1) with
respect to the Gaussian measure.

Boundedness of the operator T 2
F,m.

We will prove that for y ∈ R2 we get

|KF,m(x, y)| ≤ Ce−|y|
2
w(y), (2)

whence it will follow that T 2
F,m maps continuously L1(w dγ) into L1(dγ).

Let us call a = |x|2 + |y|2, and b = 2x · y, then a ≥ n/2 and

u(t) =
a

t
− |x|2 −

√
1− t
t

b.

Since b ≤ 0,
a

t
− |x|2 ≤ u(t). (3)

By applying property iii), after the change of variables s =
a

t
− a, taking

into account that
t

− log
√

1− t
≤ C, we obtain that for 1 ≤ m < 2

|KF,m(x, y)| ≤ C

∫ 1

0

(1− t)(m−1)/2ψ

(√
a

t
− |x|2

)
e−(a/t−|x|2)

tn/2+1
√

1− t
dt

≤ C

an/2

∫ ∞
0

(s+ a)n/2−1

(
s

s+ a

)(m−2)/2

e−(s+|y|2)
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ψ
(√

s+ |y|2
)
ds

≤ Ce−(1−δ)|y|2 ψ(|y|)
a

∫ ∞
0

(
s+ a

a

)n/2−1(
s

s+ a

)(m−2)/2

e−δ(s+|y|
2)ds

≤ Ce−|y|
2 w(|y|)
a1/2

∫ ∞
0

(
s+ a

a

)n/2−1(
s

s+ a

)(m−2)/2

e−δsds,

and for m ≥ 2, since (1− t)− log
√

1− t
t

≤ C,

|KF,m(x, y)| ≤ C

∫ 1

0

ψ

(√
a

t
− |x|2

)
e−(a/t−|x|2)

tn/2+1
dt

≤ C

an/2

∫ ∞
0

(s+ a)n/2−1e−(s+|y|2))ψ
(√

s+ |y|2
)
ds

≤ Ce−(1−δ)|y|2 ψ(|y|)
a

∫ ∞
0

(
s+ a

a

)n/2−1

e−δ(s+|y|
2)ds

≤ Ce−|y|
2
w(|y|)

∫ ∞
0

(
s+ a

a

)n/2−1

e−δsds.

Thus (2) will follow once we prove that for 1 ≤ m < 2∫ ∞
0

(
s+ a

a

)n/2−1(
s

s+ a

)(m−2)/2

e−δsds ≤ Ca1/2, (4)

while for m ≥ 2 ∫ ∞
0

(
s+ a

a

)n/2−1

e−δsds ≤ C, (5)

since a ≥ n

2
. In order to prove inequality (5), we divide the integral into two

terms,
∫ 1

0
+
∫∞
1

. For the first one we use that s+a
a ' C, and for the second

one we use that s+a
a ≤ 3s and we are through with (5). For (4) we again

split the integral into two terms as before and call them I and II. Then

I ' Ca(2−m)/2

∫ 1

0

s(m−2)/2e−δsds ≤ Ca1/2

since 1 ≤ m < 2 and

II ≤ C

∫ ∞
1

sn/2−1(1 +
a

s
)(2−m)/2e−δsds

≤ Ca(2−m)/2

∫ ∞
1

sn/2−1e−δsds

≤ Ca1/2.

With this last estimate we are done with the study of T 2
F,m.
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For the remaining regions we need to prove that if x · y > 0 the following
estimate for the kernel

|KF,m(x, y)| ≤ Ce−u0η(
√
u0)
(
|x+ y|
|x− y|

)n/2
(

2|x||y|
|x|2 + |y|2

u
1/2
0 + 1) (6)

holds, where

u0 =
|y|2 − |x|2

2
+
|x− y||x+ y|

2
= min

0<t<1
u(t).

Also as it was shown in [5], u0 = u(t0) with

t0 = 2
√
a2 − b2

a+
√
a2 − b2

∼ |x− y|
|x+ y|

. (7)

Let us prove (6). By using (1) and property iii), we get

|KF,m(x, y)| ≤ C


∫ 1

0
ψ(
√
u(t)) e

−u(t)

tn/2+1
dt√
1−t if 1 ≤ m < 2

∫ 1

0
ψ(
√
u(t)) e

−u(t)

tn/2+1 dt if m ≥ 2
. (8)

Since x · y > 0 we have the following estimates due to S. Pérez∫ 1

0

u1/2(t)√
1− t

e−νu(t) dt

t2
+
∫ 1

0

u(t)e−νu(t) dt

t2
≤ Ce−νu0

|x+ y|
|x− y|(

2|x||y|
|x|2 + |y|2

u
1/2
0 + 1

)
(9)

and ∫ 1

0

u1/2(t)e−νu(t) dt

t3/2
√

1− t
≤ C e

−νu0

t
1/2
0

(10)

hold for ν > 0 and n ≥ 1, see [7, Lemma 2 on page 41, inequality (1) on
page 53], and [9, Lemma 2.3];
and for n > 1

e−((n−2)/n)u(t)t−(n−2)/2 ≤ Ce−((n−2)/n)u0

(
|x+ y|
|x− y|

)(n−2)/2

(11)

also holds, see [5].
Now the proof of (6) will be split into two cases:
Case n = 1.
For 1 ≤ m < 2, using (iii) and (10) with ν = δ > 0, we obtain

|KF,m(x, y)| ≤ C
ψ(
√
u0)

√
u0

e−(1−δ)u0

∫ 1

0

u1/2(t)e−δu(t) dt

t3/2
√

1− t

≤ Cη(
√
u0)e−(1−δ)u0

e−δu0

t
1/2
0

≤ Ce−u0η(
√
u0)
(
|x+ y|
|x− y|

)1/2

.
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For m ≥ 2 we apply property iii) to inequality (8) and get the following
estimate

|KF,m(x, y)| ≤ C
ψ(
√
u0)

u
1/2
0

e−(1−δ)u0

∫ 1

0

u1/2(t)e−δu(t) dt

t3/2
. (12)

Now let us proceed to bound
∫ 1

0

u1/2(t)e−δu(t) dt

t3/2
. First we split∫ 1

0
=
∫ t0
0

+
∫ 1

t0
= I + II

I ≤
√
t0

u
1/2
0

∫ 1

0

u(t)e−δu(t) dt

t2

≤
(
|x− y|
|x+ y|

)1/2
e−δu(t)

u
1/2
0

|x+ y|
|x− y|

(
2|x||y|
|x|2 + |y|2

u
1/2
0 + 1

)
where in order to get these bounds we applied inequality (9) with ν = δ > 0.
As for the estimate of II by using (10) with ν = δ > 0 we get

II ≤
√

1− t0
∫ 1

t0

u1/2(t)e−δu(t) dt

t3/2
√

1− t
≤ C |x||y|
|x|2 + |y|2

e−δu0

t
1/2
0

.

Now combining these two estimates with (12), inequality (6) follows in this
case too.
Therefore the proof of (6) is complete for the case n = 1.
Case n > 1.
We use (8), (11), property iii) and (9) with ν = 2/n− (1− δ) > 0, and we
get for 1 ≤ m < 2

|KF,m(x, y)| ≤ Ce−((n−2)/n)u0

(
|x+ y|
|x− y|

)(n−2)/2 ∫ 1

0

ψ(
√
u(t)) e−(2/n)u(t)

1
t2
√

1− t
dt

≤ Ce−((n−2)/n)u0−(1−δ)u0
ψ(
√
u0)

√
u0

(
|x+ y|
|x− y|

)(n−2)/2

∫ 1

0

u1/2(t)√
1− t

e−(2/n−(1−δ))u(t) dt

t2

≤ Ce−u0η(
√
u0)
(
|x+ y|
|x− y|

)n/2( 2|x||y|
|x|2 + |y|2

u
1/2
0 + 1

)

and for m ≥ 2

|KF,m(x, y)| ≤ Ce−((n−2)/n)u0

(
|x+ y|
|x− y|

)(n−2)/2 ∫ 1

0

ψ(
√
u(t))e−(2/n)u(t) dt

t2
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≤ Ce−((n−2)/n)u0−(1−δ)u0
ψ(
√
u0)

u0

(
|x+ y|
|x− y|

)(n−2)/2

∫ 1

0

u(t)e−(2/n−(1−δ))u(t) dt

t2

≤ Ce−u0η(
√
u0)
(
|x+ y|
|x− y|

)n/2( 2|x||y|
|x|2 + |y|2

u
1/2
0 + 1

)
.

This finishes the proof of (6). Before getting into the study of the remaining
operators let us observe that

u0 ≤ |y|2. (13)

Indeed, after setting g = x− y and h = x+ y, we deduce immediately this
inequality from 2|g||h| ≤ |g|2 + |h|2 .

Boundedness of the operator T 3
F,m.

We may assume that |x| ≥ 1 since otherwise R3 = ∅.
We claim that on R3

|KF,m(x, y)| ≤ C|x|ne|x|
2
e−(|x||x−y|)/2w(y)e−|y|

2
. (14)

In order to prove this inequality let us consider two cases:
If u0 ≥ 1, then from inequality (6)

|KF,m(x, y)| ≤ Ce−u0 max
1≤t≤|y|

η(t)
(
|x+ y|
|x− y|

)n/2
u

1/2
0

≤ Ce−u0

(
|x+ y|
|x− y|

)n/2
(|x− y||x+ y|)1/2w(y)

≤ Ce−u0 |x|nw(y),

since u0 ≤ |x−y||x+y|2 and |x− y||x+ y| ≥ n.
If u0 ≤ 1, let us prove that |KF,m(x, y)| ≤ Ce−u0 |x|n.
From (8)

|KF,m(x, y)| ≤ C

∫ 1

0

ψ(
√
u(t))

e−u(t)

tn/2+1

dt√
1− t

and using property iii) we have

|KF,m(x, y)| ≤ Cψ(
√
u0)e−(1−δ)u0

∫ 1

0

e−δu(t)

tn/2+1

dt√
1− t

.

To end the proof of this inequality we shall see that∫ 1

0

e−δu(t)

tn/2+1

dt√
1− t

≤ C |x|n.
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Let us split
∫ 1

0

=
∫ 1/(2|x|2)

0

+
∫ 1/2

1/(2|x|2)
+
∫ 1

1/2

= I + II + III. Observe that

III ≤ C, and

II ≤ C
∫ 1/2

1/(2|x|2)

dt

tn/2+1
≤ C|x|n.

As for I, taking into account that |
√

1− tx− y| ≥ (1− 1
2n

)|x− y| if

0 ≤ t ≤ 1
2|x|2

, we have after an appropriate change of variables that

I ≤ C

|x− y|n
≤ C|x|n.

Now inequality (14) follows from the two cases above and taking into ac-
count that since |x+ y| ≥ |x| and |x| ≥ |y|, e−u0 ≤ e|x|2e−(|x||x−y|)/2e−|y|

2
.

Let us check that T 3
F,m in this case maps L1(wdγ) continuously into L1(dγ).∫

Rn

|T 3
F,mf(x)|dγ(x) ≤ C

∫
Rn

∫
|x|>|y|

e−(|x||y−x|)/2 |x|ndx |f(y)| w(y) dγ(y)

≤ C

∫
Rn

|f(y)| w(y) dγ(y).

Boundedness of the operators T 4
F,m and T 5

F,m

Before taking care of the remaining operators we prove the following remark
which will be used to estimate their kernels.
Remark: If y /∈ B(x, n(1 ∧ 1

|x| )), |y| > |x|, and x · y ≥ 0, then u0 ≥ 1.
In fact, under these hypotheses on x and y, |x − y||x + y| ≥ |x + y|n(1 ∧
1/|x|) ≥ (1 ∨ |x|)n(1 ∧ 1/|x|) ≥ n. Thus

u0 =
|y|2 − |x|2

2
+
|x− y||x+ y|

2
≥ n/2

and so the result follows when n ≥ 2. As for n = 1, u0 = y2 − x2 ≥ 1.

Let α(x, y) denote the sine of the angle between x and y. We start by
showing the following estimates for the kernel KF,m(x, y).
On R4

|KF,m(x, y)| ≤ C|x|ne|x|
2

(
1 ∧ e

−c|x|4α2(x,y)/(|y|2−|x|2+α(x,y)|x|2)

(|y|2 − |x|2 + α(x, y)|x|2)(n−1)/2

)
(15)

w(y)e−|y|
2
.

And on R5

|KF,m(x, y)| ≤ C(1 + |x|)e|x|
2
e−cα

2(x,y)|x|2w(y)e−|y|
2
. (16)
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To prove inequality (15) we start from (6) and observe that 1+ 2|x||y|
|x|2+|y|2u

1/2
0 ≤

Cu
1/2
0 and η(

√
u0) ≤ max

1≤t≤|y|
η(t) ≤ w(y) since 1 ≤ √u0 ≤ |y| according to

(13) and the above remark. In this way we get the bound

Ce−u0w(y)
|x+ y|n

(|x− y||x+ y|)n/2
u

1/2
0 . (17)

Now, taking into account that

(|x− y||x+ y|)2 = (|y|2 − |x|2)2 + 4|x|2|y|2α2(x, y), (18)

|x| ∼ |y|, and |x− y||x+ y| ∼ |y|2 − |x|2 + |α(x, y)||x|2, we get

u0 = |y|2 − |x|2 +
|x− y||x+ y| − (|y|2 − |x|2)

2

= |y|2 − |x|2 +
2|x|2|y|2α2(x, y)

|y|2 − |x|2 + |x− y||x+ y|
(19)

≥ |y|2 − |x|2 +
c|x|4α2(x, y)

|y|2 − |x|2 + α(x, y)|x|2

and also u0 ≤ |x− y||x+ y|. These remarks applied to (17) give (15).
On R5 first we observe that (13) implies that u1/2

0 ≤ |y| which implies that
1 + |x||y|

|x|2+|y|2u
1/2
0 ≤ C(1 + |x|). Also |x+y||x−y| ≤ C and from the expression of

u0 given in (19) together with (18)

u0 ≥ |y|2 − |x|2 +
c|x|2|y|2α2(x, y)

|y|2 − |x|2 + |x||y||α(x, y)|
,

and by taking into account that in this region |x| ≤ 1
2 |y|, u0 is bounded

below by |y|2 − |x|2 + c|x|2α2(x, y). Therefore with these estimates on R5

we get from (6)

|KF,m(x, y)| ≤ C(1 + |x|)e|x|
2
e−cα

2(x,y)|x|2w(y)e−|y|
2
.

From (15) and (16) it will be enough to prove that the operators

S0f(x) = |x|ne|x|
2
∫
R4

(
1 ∧ e

−c|x|4α2(x,y)/(|y|2−|x|2+α(x,y)|x|2)

(|y|2 − |x|2 + α(x, y)|x|2)(n−1)/2

)
f(y)w(y)dγ(y)

and

S1f(x) = (1 + |x|)e|x|
2
∫
R5

e−cα
2(x,y)|x|2f(y)w(y)dγ(y)

map L1(wdγ) into L1,∞(dγ). Let us point out here that the idea of this
proof was taken from [3, Lemma 4.3].
Without loss of generality we may assume that f ≥ 0. For λ > 0 let Ei
be the level set {x ∈ Rn : Sif(x) > λ}, for i = 0, 1. We shall prove
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that γ(Ei) ≤ C
λ ||f ||1,wdγ . Let r0 and r1 be the unique positive roots of the

equations

rn0 e
r20 ||f ||1,wdγ = λ and (1 + r1)er

2
1 ||f ||1,wdγ = λ.

Therefore Ei ∩ {x ∈ Rn : |x| < ri} = ∅. On the other hand, since we are
working on a space of finite measure, it is enough to take λ > K||f ||1,wdγ
and by choosing K large enough we may assume that both r0 and r1 are
larger than one. Hence γ{x ∈ Rn : |x| > 2ri} ≤ Crn−2

i e−4r2i ≤ C
λ ||f ||1,wdγ .

Thus we only need to estimate γ{x ∈ Ei : ri ≤ |x| ≤ 2ri}.
Let E′i = {x′ ∈ Sn−1 : ∃ρ ∈ [ri, 2ri] with ρx′ ∈ Ei} and for x′ ∈ E′i let
ρi(x′) be the smallest such ρ. Then Sif(ρi(x′)x′) = λ by the continuity of
Sif(x). This implies that for i = 0

Ceρ0(x
′)2rn0

∫
|y|≥r0

(
1 ∧ e

−cr40α
2(x′,y)/(|y|2−r20+α(x′,y)r20)

(|y|2 − r20 + α(x′, y)r20)(n−1)/2

)
f(y)w(y)dγ(y) ≥ λ,

(20)
and for i = 1 since r1 > 1

Ceρ1(x
′)2r1

∫
|y|≥r1

e−cα
2(x′,y)r21f(y)w(y)dγ(y) ≥ λ. (21)

Clearly

γ{x ∈ Ei : ri ≤ |x| ≤ 2ri} ≤
∫
E′i

dσ(x′)
∫ 2ri

ρi(x′)

e−ρ
2
ρn−1dρ

≤ C

∫
E′i

e−ρ
2
i (x′)rn−2

i dσ(x′).

Combining this estimate with (20), we get

γ{x ∈ E0 : r0 ≤ |x| ≤ 2r0} ≤
C

λ

∫
E′0

r2n−2
0 dσ(x′)(I0 + II0); (22)

with

I0 =
∫
{|y|≥r0, α(x′,y)r20≥c}

e−cr
4
0α

2(x′,y)/(|y|2−r20+α(x′,y)r20)

(|y|2 − r20 + α(x′, y)r20)(n−1)/2
f(y)w(y)dγ(y)

and
II0 =

∫
{α(x′,y)r20≤c}

f(y)w(y)dγ(y);

and for i = 1

γ{x ∈ E1 : r1 ≤ |x| ≤ 2r1} ≤
C

λ

∫
E′1

rn−1
1 dσ(x′)(I1 + II1) (23)

with
I1 =

∫
{|y|≥r1, α(x′,y)r1≥c}

e−cα
2(x′,y)r21f(y)w(y)dγ(y)
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and

II1 =
∫
{α(x′,y)r1≤c}

f(y)w(y)dγ(y).

It is immediate to verify that

r2n−2
0

∫
{α(x′,y)r20≤c}

dσ(x′) ≤ C and rn−1
1

∫
{α(x′,y)r1≤c} dσ(x′) ≤ C, (24)

which give, after changing the order of integration in (22) and (23), the
desired estimates for the terms involving II0 and II1 respectively.
Now let us prove that for |y| > r0

r2n−2
0

∫
{α(x′,y)r20≥c}

e−cr
4
0α

2(x′,y)/(|y|2−r20+α(x′,y)r20)

(|y|2 − r20 + α(x′, y)r20)(n−1)/2
dσ(x′) ≤ C (25)

and for |y| > r1

rn−1
1

∫
{α(x′,y)r1≥c}

e−cα
2(x′,y)r21dσ(x′) ≤ C. (26)

Remark: We observe that for n = 1 the sets {α(x′, y)r20 ≥ c} and {α(x′, y)r1 ≥
c} are empty.
For any fixed y ∈ Rn with n > 1, we choose coordinates on Sn−1 in such a
way that the north pole is on the direction of y. Then the left hand side of
(25) can be written as

r2n−2
0

∫
{sin θr20≥c}

e−cr
4
0 sin2 θ/(|y|2−r20+sin θr20) sinn−2 θ

(|y|2 − r20 + sin θ r20)(n−1)/2
dθ.

The boundedness of this integral when restricted to the angles θ such that
sin θ ≥ 1/2 follows easily by using that |t|n−1e−ct

2 ≤ C. For the remaining
integral we introduce the factor cos θ in the integral, make the change of
variables α = sin θ, and get

r2n−2
0

∫
{αr20≥c}

e−cr
4
0α

2/(|y|2−r20+αr20) αn−3

(|y|2 − r20 + αr20)(n−3)/2

αdα

|y|2 − r20 + αr20
.

(27)
Performing the change of variables

u =
r40α

2

|y|2 − r20 + αr20

and observing that

du = r40
2|y|2 − 2r20 + αr20
|y|2 − r20 + αr20

αdα

|y|2 − r20 + αr20
≥ r40

αdα

|y|2 − r20 + αr20
,

we see that the expression (27) is bounded by
∫∞
0
e−cuu(n−3)/2du ≤ C, since

n ≥ 2.
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To prove (26), a similar argument as the one above may be applied. In order
to take care of the integral restricted to the angles θ for which sin θ ≥ 1/2
we use again |t|n−1e−ct

2 ≤ C, and for the remaining integral the same
argument applies in order to make the change of variables α = sin θ and
therefore we get

rn−1
1

∫
{αr1≥c}

e−cr
2
1α

2
αn−2dα ≤ C

∫ ∞
0

e−cu
2
un−2du ≤ C,

since again n ≥ 2. Having proved (25) and (26), by changing the order of
integration in (22) and (23) we get also the desired estimate for the terms
involving I0 and I1 respectively and at the same time we end the proof of
Theorem 2.
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