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Abstract

We aim to prove inequalities of the form |δk−λ(x, t)∇ku(x, t)| � CM−
R+M

#,λ,k
D

u(x, t) for solutions of
∂u
∂t

= �u on a domain Ω = D × R
+, where δ(x, t) is the parabolic distance of (x, t) to parabolic boundary

of Ω , M−
R+ is the one-sided Hardy–Littlewood maximal operator in the time variable on R

+, M
#,λ,k
D

is
a Calderón–Scott type d-dimensional elliptic maximal operator in the space variable on the domain D

in R
d , and 0 < λ < k < λ + d. As a consequence, when D is a bounded Lipschitz domain, we obtain

estimates for the Lp(Ω) norm of δ2n−λ(∇2,1)nu in terms of some mixed norm
∫ ∞

0 ‖u(·, t)‖p

B
λ,p
p (D)

dt for

the space Lp(R+,B
λ,p
p (D)) with ‖ · ‖

B
λ,p
p (D)

denotes the Besov norm in the space variable x and where

∇2,1 = (∇2, ∂
∂t

).
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0. Introduction

The main result of this paper, which is contained in Theorem 5.4, is a pointwise estimate for
the space time gradients of a temperature u on a cylindrical domain in terms of an iteration of two
maximal operators. The result is an extension to the parabolic setting of the elliptic inequalities
proved by S. Dahlke and R. DeVore in [2], see also D. Jerison and C. Kenig in [7]. After an
improvement of the parabolic mean value formula and the analysis of the kernel and the operator
that provides the space derivatives of temperatures, we obtain a pointwise estimate for space
gradients weighted by powers of the distance to the parabolic boundary in terms of an iteration
of two maximal operators which are well known in harmonic analysis: the one-sided maximal
Hardy–Littlewood operator M− in the time variable and the Calderón–Scott maximal operator
M#,λ,k in the space variable.

We would like to point out that these results are a part of a larger program which looks for
a parabolic theory, similar to the elliptic one developed in [2], in order to obtain regularity im-
provements for temperatures in terms of adequate Besov type norms which could help in the
analysis of the rate of convergence for nonlinear approximation methods for parabolic equations.
In particular we mention that a time localized version of Corollary 6.2 can be used to obtain, fol-
lowing the interpolation technique used in [7], parabolic Besov type estimates in space and time
variables in terms of mixed Lebesgue–Besov norms. These results shall be published elsewhere.

The paper is organized as follows. In Section 1 we prove a smooth mean value formula for
temperatures and we introduce some basic notation that shall be used in the sequel. Section 2 is
devoted to obtain a distributional representation for the space derivatives of the kernel obtained in
Section 1. Here we also prove some basic but essential properties of that distribution. As a corol-
lary we obtain a formula for derivatives of temperatures. In Section 3 we introduce the one-sided
Hardy–Littlewood maximal operator M− and the Calderón–Scott maximal operator M#,λ,k . We
prove in this section a basic lemma which shall be used in Section 4 in order to get the pointwise
estimate on R

d+1 contained in Theorem 4.1. In Section 5 we obtain basic pointwise estimates
for some parabolic gradients of temperatures on cylindrical domains. Section 6 is devoted to ob-
tain Lp-estimates for space–time gradients of temperatures in terms of mixed Lebesgue–Besov
norms for cylindrical domains of the form D × R

+ with D a Lipschitz domain in R
d .

1. Smooth parabolic mean value formula

In 1966 W. Fulks proves in [6] a mean value property for caloric functions involving integra-

tion on the level surfaces of the fundamental solution Wt(x) = (4πt)− d
2 e− |x|2

4t for t > 0, for the
heat equation ∂u

∂t
= �u. In 1973, N.A. Watson gives in [12] a parabolic mean value formula in

terms of (d + 1)-volume integrals over the heat balls defined by

E(x, t; r) = {
(y, s) ∈ R

d+1: s � t, ν(x − y, t − s) � r
}
,

where ν(x, t) = (Wt(x))− 1
d = (4πt)

1
2 e

|x|2
4dt . Precisely,

u(x, t) = 1

4rd

∫∫
E(x,t;r)

u(y, s)
|x − y|2
(t − s)2

dy ds (1.1)
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provided that E(x, t; r) is contained in the domain of the temperature u. For a proof of (1.1)
see [5]. From (1.1), by using spherical coordinates for the space variable, taking derivatives with
respect to the radial variable, we get that

u(x, t) = − 1

2rd

0∫
− r2

4π

( ∫
Sd−1

u
(
x + Rr(s)w, t + s

)
dw

)
Rr(s)

d

s
ds, (1.2)

with Rr(s) = |y| =
√

−2sd ln r2

−4πs
.

Even when smooth versions of (1.1) are considered elsewhere, see [11] for instance, for the
sake of completeness and as a chance to write explicitly our notation we shall state and prove in
the next lemma the formula that will be used throughout this paper.

Lemma 1.1. Let η be a C ∞(R), nonnegative function supported on [0,1] satisfying
d

∫ 1
0 η(r)rd−1 dr = 1. Then for every temperature u we have that

u(x, t) =
∫∫
Rd+1

Kδ(x − y, t − s)u(y, s) dy ds, (1.3)

where

K(x, t) = 1

4

|x|2
t2

η
(
ν(x, t)

)
and

Kδ(x, t) = 1

δd+2
K

(
x

δ
,

t

δ2

)
,

provided that the closure of E(x, t; δ) is contained in the domain of the temperature u.

Proof. Let us first notice that is enough to prove formula (1.3) for (x, t) = (0,0). Take δ > 0
small enough in such a way that the closure of E(0,0; δ) is contained in the domain of the
temperature u. Multiplying both sides of (1.2) by 2dη( r

δ
)rd−1 and integrating with respect to r

on the interval (0, δ), we get

u(0,0)

δ∫
0

2dη

(
r

δ

)
rd−1 dr

= −d

δ∫
0

0∫
− r2

4π

( ∫
Sd−1

u
(
Rr(s)w, s

)
dS(w)

)
Rr(s)

d

s
ds η

(
r

δ

)
dr

r
. (1.4)

Notice now that the choice of the support of η allows us to apply Fubini’s theorem to inter-
change orders of integration on (1.4). Then for s fixed, performing the change of variables r �→
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τ = Rr(s) and taking into account that dRr (s)
dr

= − 1
2 (Rr(s))

−12s d
(−4πs)

r2
2r

(−4πs)
= −2s dτ−1r−1

from which dr
r

= − τ
2sd

dτ , we get the desired formula

2δdu(0,0) = −d

0∫
− δ2

4π

1

s

δ∫
√−4πs

∫
Sd−1

u
(
Rr(s)w, s

)
dS(w)Rr(s)

dη

(
r

δ

)
dr

r
ds

= 1

2

0∫
− δ2

4π

1

s

Rδ(s)∫
R√−4πs (s)

∫
Sd−1

u(τw, s) dS(w)
τd+1

s
η

(
R−1

τ (s)

δ

)
dτ ds

= 1

2

0∫
− δ2

4π

1

s2

Rδ(s)∫
0

τd+1
∫

Sd−1

u(τw, s) dS(w)η

(
1

δ
(−4πs)

1
2 e

−τ2
4ds

)
dτ ds

= 1

2

0∫
− δ2

4π

∫
B(0;Rδ(s))

u(y, s)η

(
1

δ
(−4πs)

1
2 e

−|y|2
4ds

) |y|2
s2

dy ds,

in the third equality we have used that R√−4πs(s) = 0. Here B(0;Rδ(s)) denotes the d-
dimensional Euclidean ball centered at the origin with radius Rδ(s). �
2. Spatial derivatives of the caloric mean value kernel

The aim of this section is to obtain an explicit formula for spatial derivatives of the kernel Kδ

introduced in Section 1. We also prove here some useful structural properties of the family of
kernels which represent those derivatives.

Let us first observe that for fixed δ > 0 and t < 0 the kernel Kδ(x, t) is a smooth function of x,
actually C ∞. Let us write Nα(x, t) to denote the classical derivative ∂αK = ∂ |α|

∂x
αd
d ... ∂x

α1
1

K of K

for fixed t and α = (α1, . . . , αd) a multi-index of nonnegative integers (α ∈ N
d
0 ). Let us observe

that Nα needs not generally be an integrable function on R
d+1. In fact, for α = 1 and d = 1 for

example, with η1(s) = sη′(s) we have that

Nα(x, t) = 1

2

x3

t3
η1

(
ν(x, t)

) + 2
x

t2
η
(
ν(x, t)

)
.

It is easy to see that if for example η is a positive constant on the interval ( 1
4 , 3

4 ), we have that

∫∫
{(x,t): 1

4 <ν(x,t)< 3
4 , x>0}

x

t2
η
(
ν(x, t)

)
dx dt = +∞.
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On the other hand, since η1(s) vanishes for s ∈ ( 1
4 , 3

4 ), we see that∫∫
{(x,t): 1

4 <ν(x,t)< 3
4 , x>0}

∣∣Nα(x, t)
∣∣dx dt =

∫∫
{(x,t): 1

4 <ν(x,t)< 3
4 , x>0}

2
x

t2
η
(
ν(x, t)

)
dx dt = +∞.

Since K is an L1(Rd+1) function with compact support, the derivatives of order α of K ,
with α = (α1, . . . , αd), make also sense as distributions. Let us denote by DαK the distributional
derivatives of K . Even when these derivatives are generally not functions themselves, we shall
prove some integral representation formulas. The precise result is contained in the next theorem.
The angle brackets 〈·,·〉 are used for the distributional duality of E = C ∞(Rd+1) and E ′. For
a given C ∞(Rd+1) function ϕ we write Pkϕ(x, t) to denote the Taylor polynomial at x0 = 0
(MacLaurin) of degree k for the function defined on R

d by x �→ ϕ(x, t) for t fixed.

Theorem 2.1. For δ > 0 and α = (α1, . . . , αd) a multi-index of nonnegative integers and for
every ϕ ∈ C ∞(Rd+1) we have that

〈
Dα(Kδ),ϕ

〉 = δ−|α|
∫∫
Rd+1

(
Nα

)
δ
(x, t)

[
ϕ(x, t) − P|α|−1ϕ(x, t)

]
dx dt, (2.1)

where the integral on the right-hand side converges absolutely.

The proof of Theorem 2.1 will be a consequence of the following basic properties of the
derivatives of K . We shall use the following notation. For m ∈ N0, h(m) equals m

2 if m is even
and m−1

2 if m is odd. For a given multi-index α ∈ N
d
0 we write h(α) to denote the d-vector of

integers given by h(α) = (h(α1), h(α2), . . . , h(αd)).

Lemma 2.2. For δ > 0, a fixed multi-index α = (α1, . . . , αd) with |α| > 0, we have:

(2.2.1) For every t real K(x, t) is a C ∞ function of x ∈ R
d and

Nα(x, t) =
d∑

i=1

3∑
j=1

∑
0�β�h(α−(j−1)ei )

xα+(4−2j)ei+2β

t |α|−|β|+3−j
η

ij
β

(
ν(x, t)

)
, (2.2)

where η
ij
β are C ∞ functions of a real variable with support contained in suppη.

(2.2.2) For ϕ ∈ C ∞(Rd+1) and each s ∈ R the function of y given by Nα(y, s)ϕ(y, s) belongs
to L1(Rd). Moreover the function of s

∫
Rd Nα(y, s)ϕ(y, s) dy belongs to L1(R) and the

distribution DαK is given as the iterated integral

〈
DαK,ϕ

〉 = ∫
R

{∫
Rd

Nα(y, s)ϕ(y, s) dy

}
ds. (2.3)

(2.2.3) For each t , the function Nα(x, t)xβ belongs to L1(Rd) and
∫

Rd Nα(x, t)xβ dx = 0 for
every 0 � |β| < |α|.

(2.2.4) Nα[ϕ − P|α|−1ϕ] ∈ L1(Rd+1) for every ϕ ∈ C ∞(Rd+1).
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Let us give the proof of Theorem 2.1 assuming that Lemma 2.2 holds.

Proof of Theorem 2.1. We shall first show that the integral on the right-hand side of (2.1) is
absolutely convergent. From (2.2.4) we know that this property is true when δ = 1. On the other
hand, since for any positive δ we have that P|α|−1ϕδ = (P|α|−1ϕ)δ , the convergence of the integral
for general δ follows from (2.2.4) by changing variables. From (2.2.2) and (2.2.3) we have, for
each ϕ ∈ C ∞(Rd+1), that

〈
DαK,ϕ

〉 = ∫
R

{∫
Rd

Nα(x, t)
[
ϕ(x, t) − P|α|−1ϕ(x, t)

]
dx

}
dt.

Now from (2.2.4) and from Fubini–Tonelli theorem we have (2.1) for δ = 1. Take now any δ > 0.
By the change of variables y = x

δ
and s = t

δ2 , we have that

∫∫
Rd+1

δ−|α|(Nα
)
δ
(x, t)

[
ϕ(x, t) − (P|α|−1ϕ)(x, t)

]
dx dt

= δ−|α|
∫∫
Rd+1

Nα(y, s)
[
ϕ
(
δy, δ2s

) − (P|α|−1ϕ)
(
δy, δ2s

)]
dy ds

= δ−|α|−d−2
∫∫
Rd+1

Nα(y, s)
[
ϕ 1

δ
(y, s) − (P|α|−1ϕ 1

δ
)(y, s)

]
dy ds.

Now, applying the case of δ = 1 already considered with ϕ 1
δ

instead of ϕ, we readily see that the
right-hand side in (2.1) is given by

δ−|α|−d−2〈DαK,ϕ 1
δ

〉 = δ−|α|−d−2(−1)|α|〈K,∂α(ϕ 1
δ
)
〉 = δ−d−2(−1)|α|〈K,(∂αϕ) 1

δ

〉
.

Finally, since K ∈ L1(Rd+1),∫∫
Rd+1

δ−|α|(Nα
)
δ
(x, t)

[
ϕ(x, t) − (P|α|−1ϕ)(x, t)

]
dx dt

= (−1)|α|
∫∫
Rd+1

K(x, t)∂αϕ
(
δx, δ2t

)
dx dt

= δ−d−2(−1)|α|
∫∫
Rd+1

K

(
y

δ
,

s

δ2

)
∂αϕ(y, s) dy ds

= (−1)|α|
∫∫
Rd+1

Kδ(y, s)∂αϕ(y, s) dy ds

= 〈
Dα(Kδ),ϕ

〉
. �
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For the proof of (2.2.1) in Lemma 2.2 we shall make use of a somehow explicit expression
for the space derivatives of φ(ν(x, t)) where φ is any C ∞ function of a real variable.

Lemma 2.3. Let φ be a C ∞ function of a positive real variable. Then for any multi-index γ ∈ N
d
0

we have

∂γ
(
φ
(
ν(x, t)

)) =
∑

0�β�h(γ )

xγ−2β

t |γ |−|β| φ
γ
β

(
ν(x, t)

)
,

where each φ
γ
β is a C ∞ function of a positive real variable with support contained in the support

of φ.

Proof. Let us start by showing by induction on m that for each i = 1, . . . , d the formula

∂m

∂xm
i

(
φ
(
ν(x, t)

)) =
∑

0�n�h(m)

xm−2n
i

tm−n
φm

n

(
ν(x, t)

)
(2.4)

holds for some smooth functions φm
n supported in the support of φ. When m = 1 (2.4) reads

∂
∂xi

(φ(ν(x, t))) = xi

t
φ1

0(ν(x, t)) where φ1
0(s) = sφ′(s). Let us assume that (2.4) holds as stated

for derivatives of order m. Let us assume that m is even. The case m odd can be handled in a
similar way. Hence

∂m+1

∂xm+1
i

(
φ
(
ν(x, t)

))
=

∑
0�n� m

2

1

tm−n

∂

∂xi

(
xm−2n
i φm

n

(
ν(x, t)

))

= 1

t
m
2

dφm
m/2

ds

(
ν(x, t)

)
ν(x, t)

xi

t

+
∑

0�n< m
2

1

tm−n

[
(m − 2n)xm−2n−1

i φm
n

(
ν(x, t)

) + xm−2n
i

dφm
n

ds

(
ν(x, t)

)
ν(x, t)

xi

t

]

=
∑

0�n< m
2

x
(m+1)−2(n+1)
i

t (m+1)−(n+1)
φm

n

(
ν(x, t)

) +
∑

0�n� m
2

x
(m+1)−2n
i

t (m+1)−n
φ̃m

n

(
ν(x, t)

)
.

Since in the case m even we have that h(m + 1) = m
2 , we only have to observe that each term in

the above two sums can be identified with some of the terms of the following

∑
0�k� m

2

x
(m+1)−2k
i

t (m+1)−k
ψm+1

k

(
ν(x, t)

)

for adequate ψm+1
k with support contained in the support of φ. The desired result for any arbitrary

multi-index γ follows by iteration of (2.4). �
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Proof of (2.2.1). From Leibniz rule, we have that

Nα(x, t) =
d∑

i=1

∂α

(
x2
i

t2
η
(
ν(x, t)

))

= 1

t2

d∑
i=1

∑
0�β�α

(
α

β

)
∂β

(
x2ei

)
∂α−β

(
η
(
ν(x, t)

))

=
d∑

i=1

(
α

0

)
x2
i

t2
∂αη

(
ν(x, t)

) +
d∑

i=1

2

(
α

ei

)
xi

t2
∂α−ei η

(
ν(x, t)

)

+
d∑

i=1

2

(
α

2ei

)
1

t2
∂α−2ei η

(
ν(x, t)

)
.

For each one of the three derivatives in the last term above, we apply Lemma 2.3. The first one
gives the terms in (2.2) corresponding to j = 1. The second to j = 2 and the third to j = 3. �
Proof of (2.2.2). Take ϕ ∈ C ∞(Rd+1), and s ∈ R. If s � 0, then Nα(y, s)ϕ(y, s) ≡ 0 on R

d .
For s < 0, the function of y defined by Nα(y, s) is bounded and has bounded support. So that
Nα(y, s)ϕ(y, s) is in L1(Rd) as a function of y ∈ R

d . On the other hand, since for s fixed K(y, s)

is C ∞(Rd) of y, integrating by parts, we see that∫
Rd

Nα(y, s)ϕ(y, s) dy = (−1)|α|
∫
Rd

K(y, s)∂αϕ(y, s) dy.

Notice now that K(y, s)∂αϕ(y, s) is absolutely integrable on R
d+1 since K belongs to

L1(Rd+1), K has compact support and ∂αϕ is bounded on the support of K . Hence from Fu-
bini’ theorem the function of s given by

∫
Rd K(y, s)∂αϕ(y, s) dy belongs to L1(R). So does∫

Rd Nα(y, s)ϕ(y, s) dy. Let us finally check (2.3). By the same integration by parts in the inte-
gral with respect to y performed before,∫

R

{∫
Rd

Nα(y, s)ϕ(y, s) dy

}
ds = (−1)|α|

∫
R

{∫
Rd

K(y, s)∂αϕ(y, s) dy

}
ds

= (−1)|α|
∫∫
Rd+1

K(y, s)∂αϕ(y, s) dy ds

= (−1)|α|〈K,∂αϕ
〉

= 〈
DαK,ϕ

〉
. �

Proof of (2.2.3). The integrability of ∂αK(x, t)xβ as functions of x are easy to check. In fact, for
t � 0 the function of x given by ∂αK(x, t) is identically zero. For t < 0, ∂αK(·, t) has compact
support and is bounded as a function of x. Integrating by parts, with 0 � |β| < |α|, we have then∫

Rd ∂αK(x, t)xβ dx = (−1)|α| ∫
Rd K(x, t)∂α(xβ) dx = 0. �
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Proof of (2.2.4). Let us write ϕt to denote the function of the variable x ∈ R
d defined by ϕt (x) =

ϕ(x, t) when ϕ ∈ C ∞(Rd+1). The MacLaurin polynomial for ϕt of order |α| − 1 is given by

P|α|−1ϕt (x) =
|α|−1∑
k=0

1

k!
∑
|γ |=k

∂γ ϕt (0)xγ ,

and

ϕt (x) − P|α|−1ϕt (x) = 1

(|α| − 1)!
∑

|γ |=|α|
xγ

1∫
0

∂γ ϕt (σx)(1 − σ)|α|−1 dσ.

In order to prove that Nα[ϕ −P|α|−1ϕ] as a function of (x, t) belongs to L1(Rd+1) we only have
to check that each function of the form xγ Nα(x, t), with |γ | = |α| belongs to L1(Rd+1). On
the other hand, using formula (2.2) for Nα , it will be enough to show that each function of the

form η̃(ν(x, t)) xα+(4−2j)ei+2β

t |α|−|β|+3−j xγ belongs to L1(Rd+1) when |γ | = |α|; i = 1, . . . , d ; j = 1,2,3;
0 � β � h(α − (j − 1)ei) and η̃ is a bounded function of real variable with support contained in
that of η. So that it shall be enough to show that∫∫

E∗(0,0;1)

|xα+(4−2j)ei+2β+γ |
t |α|−|β|+3−j

dx dt < ∞

for E∗(0,0;1) = {(x, t): (x,−t) ∈ E(0,0;1)} and those values of α, β , γ , i and j . The above in-
tegral can be estimated after an application of Fubini’s theorem and the introduction of spherical
coordinates in R

d by an integral of the form

1∫
0

t−|α|+|β|−3+j

( R1(−t)∫
0

ρ|α|+4−2j+2|β|+|γ |+d−1 dρ

)
dt

= c

1∫
0

t−|α|+|β|−3+j
(
R1(−t)

)2|α|+4−2j+2|β|+d
dt

= c

1∫
0

t−|α|+|β|−3+j t |α|+2−j+|β|+ d
2

(
ln

1

4πt

)|α|+2−j+|β|+ d
2

dt

= c

1∫
0

t2|β|+ d
2 −1

(
ln

1

4πt

)ε

dt

for some positive number ε. Since the last integral is finite, we are done. �
Since from Theorem 2.1 DαKδ is a compactly supported Schwartz distribution on R

d+1 given
by (2.1) its convolution with a C ∞(Rd+1) function v(x, t) is well defined and is nothing but the
weak derivative of Kδ ∗ v.
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Corollary 2.4. For any v ∈ C ∞(Rd+1) we have that

Dα(Kδ ∗ v)(x, t) = (
DαKδ

) ∗ v(x, t)

= δ−|α|
∫∫
Rd+1

(
Nα

)
δ
(x − y, t − s)

[
v(y, s) − P|α|−1v(y, s)

]
dy ds.

3. Hardy–Littlewood and Calderón–Scott maximal operators. A technical lemma

In this section we introduce the maximal operators that we shall use in the proof of Theo-
rem 4.1 of Section 4. We shall also review the basic boundedness properties of those operators
and we shall state and prove some technical lemmas that will be used in Section 4.

The one-sided character in the time variable of the kernel K(x, t) introduced in Section 1
leads us to handle the one-sided Hardy–Littlewood maximal operator

M−(g)(t) = sup
h>0

1

h

t∫
t−h

∣∣g(s)
∣∣ds

defined for any g ∈ L1
loc(R).

On the other hand, since the projection on the space of the space–time heat ball E(x, t; r) is an
Euclidean ball centered at x and since in the space variable we shall look for regularity properties
of temperatures, the natural operator is given by the sharp maximal function of order λ. For a
given positive number λ and a given L1

loc(R
d) function f , define

M#,λ(f )(x) = sup
r>0

inf
π∈P[λ]

1

|B(x; r)|1+ λ
d

∫
B(x;r)

∣∣f (y) − π(y)
∣∣dy,

where [λ] is the largest integer less than or equal to λ and Pm is the space of all polynomials of
degree at most m.

The boundedness properties of these two types of operators have been extensively studied.
Regarding the one-sided operator M−, let us only point out that since M−(g) � 2M(g) where
M is the centered Hardy–Littlewood maximal operator, then the boundedness of M− on Lp(dt)

(1 < p � ∞) follow from the same property for M . On the other hand the boundedness of M−
as an operator on weighted Lebesgue spaces has been obtained by E. Sawyer [10], see also
K. Martín-Reyes [8]. Actually these results provide a class of weights which is strictly larger
than the usual Muckenhoupt Ap weights which is associated to M .

Regarding the sharp maximal operator, let us mention the comprehensive treatment of maxi-
mal functions measuring regularity by R. DeVore and R. Sharpley [4]. From [4] we shall borrow
the following estimate which holds for any λ > 0 and any 1 � p � ∞,∥∥M#,λ(f )

∥∥
Lp(Rd )

� c‖f ‖
B

λ,p
p (Rd )

,

where ‖f ‖
B

λ,p
p (Rd )

denotes the Besov norm with regularity exponent λ and p = q . See [9].
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We shall actually deal with the maximal operator defined for any smooth function and k >

λ > 0, with k ∈ N by

M#,λ,k(f )(x) = sup
r>0

1

|B(x; r)|1+ λ
d

∫
B(x;r)

∣∣f (y) − Px(y)
∣∣dy, (3.1)

where Px(y) is the Taylor polynomial of degree k − 1 for f at x. Notice that when λ is non-
integer and k = [λ] + 1, this operator is the Calderón–Scott maximal operator (see [1]).

The next lemma provides pointwise estimates in terms of the one-sided maximal function for
convolution operators which naturally appear in the proof of Theorem 4.1.

For a given L1(R) kernel κ , a given L1(R) function g and a given positive number δ, let us
define

κ∗(g)(t) = sup
δ>0

∣∣∣∣1

δ

∫
R

κ

(
s

δ

)
g(t − s) ds

∣∣∣∣.
Lemma 3.1. Set κ(t) = tϑ (ln 1

t
)θ X(0,1)(t) with −1 < ϑ < 0 and θ > 0. Then, there exists a

constant C depending only on ϑ and θ such that κ∗(g)(t) � CM−(g)(t) for every integrable
function g defined on R.

Proof. Let us first show following the lines of [3, Chapter 10], that if κ is a nonnegative inte-
grable kernel supported on R

+ and nonincreasing on R
+, then for every δ > 0∣∣∣∣1

δ

∫
R

κ

(
s

δ

)
g(t − s) ds

∣∣∣∣ � 4

(∫
R

κ

)
M−(g)(t). (3.2)

By dyadic decomposition of R
+ and since κ is nonincreasing, we get∣∣∣∣1

δ

∫
R

κ

(
s

δ

)
g(t − s) ds

∣∣∣∣ �
∑
j∈Z

1

δ

∫
δ2j �s<δ2j+1

κ

(
s

δ

)∣∣g(t − s)
∣∣ds

�
∑
j∈Z

1

δ
κ
(
2j

) ∫
0�s�δ2j+1

∣∣g(t − s)
∣∣ds

= 2
∑
j∈Z

2j κ
(
2j

)( 1

δ2j+1

∫
0�s�δ2j+1

∣∣g(t − s)
∣∣ds

)

� 2

(∑
j∈Z

2j κ
(
2j

))
M−(g)(t)

and we also have that

∫
R+

κ(s) ds =
∑
j∈Z

2j∫
2j−1

κ(s) ds �
∑
j∈Z

κ
(
2j

)(
2j − 2j−1) = 1

2

∑
j∈Z

2j κ
(
2j

)
.
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Hence we obtain (3.2).
To show the integrability of the special kernel κ(t) = tϑ (ln 1

t
)θ X(0,1)(t) notice that with

ϑ − ε > −1 and ε > 0 we have

κ(t) = tϑ−ε · tε
(

ln
1

t

)θ

X(0,1)(t)

and that tε(ln 1
t
)θ is bounded on (0,1]. It is easy to see for t ∈ (0,1) that κ is nonincreasing. �

4. Maximal function estimates for the convolution operator induced by the distribution
DαKδ on RRR

d+1

We know, see Corollary 2.4, that the derivatives of the convolution of Kδ (δ > 0) with a
C ∞(Rd+1) function v is given by

Dα(Kδ ∗ v)(x, t) = δ−|α|
∫∫
Rd+1

(
Nα

)
δ
(x − y, t − s)

[
v(y, s) − P|α|−1v(y, s)

]
dy ds. (4.1)

For a given positive real number λ, and k any integer larger than λ, let us define the maximal
operator

Mλ,k(v)(x, t) = sup
δ>0

δk−λ
∣∣∇k(Kδ ∗ v)(x, t)

∣∣,
where ∇k is the vector of all the space derivatives of order k. The main result of this section is
the following pointwise estimate for Mλ,k .

Theorem 4.1. For 0 < λ < k < λ + d and k ∈ N there exists a constant C = C(λ, k, d) such that
the inequality

Mλ,k(v)(x, t) � CM−[
M#,λ,k(v)

]
(x, t) (4.2)

holds for every C ∞ function v defined on R
d+1.

Let us point out that the right-hand side in (4.2) is the iteration of the operators M#,λ,k acting
on x and M− acting on the time variable, precisely,

M−[
M#,λ,k(v)

]
(x, t) = sup

h>0

1

h

t∫
t−h

M#,λ,k
(
v(·, s))(x) ds.

Proof of Theorem 4.1. Take v ∈ C ∞(Rd+1) and fix δ > 0. In order to estimate ∇k(Kδ ∗ v)

we shall consider a fixed multi-index α of length k and we shall estimate Dα(Kδ ∗ v) using the
representation formula (4.1). Now, from (2.2.1), the kernel Nα splits as a finite sum

∑
i∈I Nα

i of
kernels each of them bounded above in absolute value by kernels with the following basic shape
Ñα

i (x, t) = Qα
i (|x|, t)ηα

i (ν(x, t)) with ηα
i a C ∞ function of a real variable with compact support

and Qα
i (|x|, t) is C ∞ on R

d+1+ = {(x, t) ∈ R
d+1: t > 0}, and increasing as a function of |x| for t
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fixed. Also the kernel Qα
i is parabolically homogeneous of degree −|α| − 2, in other words,

Qα
i (μ|x|,μ2t) = μ−|α|−2Qα

i (|x|, t), μ > 0. Since in the proof of (2.2.4) we actually show that
Nα

i [ϕ − P|α|−1ϕ] is integrable for each i ∈ I , each integral∫∫
Rd+1

(
Nα

i

)
δ
(x − y, t − s)

[
v(y, s) − P|α|−1v(y, s)

]
dy ds

is absolutely convergent and its sum for i ∈ I gives us a representation of Dα(Kδ ∗ v)(x, t).
Hence in order to show (4.2), we have to estimate the maximal operator induced by anyone of
these terms with kernel (Nα

i )δ . From the absolute convergence of the integral, and from Fubini’s
theorem we have that

Mλ
i,δ(v)(x, t) := δk−λ

∣∣∣∣δ−|α|
∫∫
Rd+1

(
Nα

i

)
δ
(x − y, t − s)

[
v(y, s) − P|α|−1v(y, s)

]
dy ds

∣∣∣∣
� δ−λ

t∫
t− δ2

4π

∫
y∈B

(
Ñα

i

)
δ
(x − y, t − s)

∣∣v(y, s) − P|α|−1v(y, s)
∣∣dy ds,

where B is the Euclidean ball B(x,Rδ(t − s)) with

Rδ(t − s) =
√

2d(t − s) ln
δ2

4π(t − s)
.

Next we multiply and divide the inner space integral by the Lebesgue measure of the ball B

raised to the power of 1 + λ
d

and we use the boundedness of ηα
i in order to obtain the upper

estimate

Mλ
i,δ(v)(x, t)

� cδ−λ

t∫
t−δ2

|B|1+ λ
d

{
1

|B|1+ λ
d

∫
B

(
Qα

i

)
δ

(|x − y|, t − s
)∣∣v(y, s) − P|α|−1v(y, s)

∣∣dy

}
ds

� c

δ2

t∫
t−δ2

δ2−λ+k−d
(
Rδ(t − s)

)d+λQα
i

(
Rδ(t − s), t − s

)
M#,λ,k

(
v(·, s))(x) ds,

where the monotonicity property of Qα
i in its first variable together with the fact |x − y| <

Rδ(t − s), the homogeneity of Qα
i and the definition of M#,λ,k have been used. Notice that from

the definition of Rδ(t − s) and the homogeneity of Qα
i , we have

Qα
i

(
Rδ(t − s), t − s

) = Qα
i

(
(t − s)

1
2

√
2d ln

δ2

4π(t − s)
, t − s

)
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= 1

(t − s)
k+2

2

Qα
i

(√
2d ln

δ2

4π(t − s)
,1

)
.

By inspection of the terms in the expansion for Nα given in (2.2.1) we see that for each i ∈ I ,
we have

Qα
i

(√
2d ln

δ2

4π(t − s)
,1

)
� c

(
ln

1

4π( t−s

δ2 )

)θi

with θi > 0.

Hence

Mλ
i,δ(v)(x, t) � c

δ2

t∫
t−δ2

δ2−λ+k−d (t − s)
d+λ

2

(t − s)1+ k
2

(
ln

1

4π( t−s

δ2 )

)θi+ d+λ
2

M#,λ,k
(
v(·, s))(x) ds

= c

δ2

t∫
t−δ2

(
t − s

δ2

) d+λ−2−k
2

(
ln

1

4π( t−s

δ2 )

)θi+ d+λ
2

M#,λ,k
(
v(·, s))(x) ds.

Since from our choice of k and λ, d+λ−2−k
2 > −1, from Lemma 3.1 the last integral is bounded

by the one-sided Hardy–Littlewood maximal operator M− for each δ > 0 and each i ∈ I , hence
Mλ,k(v) � CM−[M#,λ,k(v)]. �
5. Estimates for space and time derivatives of temperatures on cylindrical domains

In this section we shall write Ω to denote a cylindrical domain on R
d+1 of the form D × R

+,
where D is an open set in R

d .
We shall use the standard parabolic distance function defined on R

d+1 × R
d+1 as

ρ
(
(x, t); (y, s)

) = max
{|x − y|,√|t − s|}.

Let us define the function δ(x, t) on Ω as the parabolic distance of (x, t) ∈ Ω to the parabolic
boundary of Ω . Precisely,

δ(x, t) = ρ
(
(x, t), ∂parΩ

) = inf
{
ρ
(
(x, t); (y, s)

)
: (y, s) ∈ ∂parΩ

}
,

where ∂parΩ = (D × {0}) ∪ (∂D × R
+) is the parabolic boundary of Ω .

Notice that for any temperature u in Ω , any (x, t) ∈ Ω and any 0 < δ < δ(x, t), the mean
value formula (1.3) holds true since for those values of δ the support of Kδ(x − y, t − s) as a
function of (y, s) is contained in Ω . Moreover, the same is true for the support of the kernel
(Nα)δ(x − y, t − s) when 0 < δ < δ(x, t). In particular the formula for the space derivatives of
Kδ ∗ v given in Corollary 2.4 remains true for v ∈ C ∞(Ω) for these values of δ.

From the above observations and the results of the previous section, we readily realize that
we shall be able to obtain estimates for a local version of the maximal function Mλ,k in terms of
local versions of M− and M#,λ,k .
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For a given λ > 0, k any integer larger than λ and v ∈ C ∞(Ω), we define

Mλ,k
Ω (v)(x, t) = sup

0<δ<δ(x,t)

δk−λ
∣∣∇k(Kδ ∗ v)(x, t)

∣∣.
For a given L1

loc(R) function g supported on R
+ and a given t > 0, let us write

M−
R+(g)(t) = sup

0<h<t

1

h

t∫
t−h

∣∣g(s)
∣∣ds,

to denote the local version of the one-sided maximal operator restricted to R
+. On the other hand,

for a given f smooth function on D we define the local version of the Calderón–Scott maximal
function of order λ by

M
#,λ,k
D (f )(x) = sup

0<δ<δ(x)

1

|B(x; δ)|1+ λ
d

∫
B(x;δ)

∣∣f (y) − Px(y)
∣∣dy,

where δ(x) = inf{|x − y|: y ∈ ∂D} and Px is the Taylor polynomial of degree k − 1 for f at x.
By simple inspection of the proofs of Theorem 4.1 and Lemma 3.1 and the above remarks,

we have the following result.

Theorem 5.1. For 0 < λ < k < λ+d and k ∈ N, there exists a constant C = C(λ, k, d) such that
for every Ω = D × R

+ with D open in R
d the inequality

Mλ,k
Ω (v)(x, t) � CM−

R+
[
M

#,λ,k
D (v)

]
(x, t)

holds for every function v in C ∞(Ω) and every (x, t) ∈ Ω .

When the above result is applied to a temperature u = u(x, t) in Ω we have the following
statement.

Corollary 5.2. If u is a temperature in Ω , then

δk−λ(x, t)
∣∣∇ku(x, t)

∣∣ � CM−
R+

[
M

#,λ,k
D (u)

]
(x, t)

for every (x, t) ∈ Ω , when 0 < λ < k < λ + d , k ∈ N.

In order to obtain estimates for mixed space–time derivatives of temperatures, let us introduce
some notation. Given a smooth function v on Ω let us write ∇2,1v(x, t) to denote the (d2 + 1)-
vector given by the d2 second-order purely spatial derivatives of v and the first derivative of v

with respect to time, i.e., ∇2,1v = (∇2v, ∂v
∂t

). We shall also say that given a multi-index α̃ =
(α1, . . . , αd ;αd+1) in N

d+1
0 the derivative ∂α̃v is of parabolic order |α| + 2αd+1. By (∇2,1)n(v),

n ∈ N, we mean the vector of all the derivatives of parabolic order 2n of the smooth function v.
Explicitly, each component of (∇2,1)n(v) has the form ∂α̃v with |α| + 2αd+1 = 2n. So that we
always have, in each one of these derivatives, an even number of space derivatives. We shall use
the notation |(∇2,1)nu| for the Euclidean length of (∇2,1)nu. The next elementary lemma shall
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allow us to transfer the spatial estimates in Corollary 5.2 to mixed space–time derivatives for
temperatures.

Lemma 5.3. Let u be a temperature in Ω and α̃ = (α;αd+1) ∈ N
d+1
0 with 2n = |α| + 2αd+1,

n ∈ N. Then the derivative ∂α̃u belongs to the linear span of ∇2nu.

Proof. Induction in αd+1. When αd+1 = 1, we have that

∂α̃u = ∂(α;0)
(
∂(0;1)u

) = ∂(α;0)(�u) ∈ span∇2nu.

Assuming that result holds for αd+1 = j ∈ N and let us prove it for αd+1 = j + 1,

∂α̃u = ∂(α;0)∂(0;j+1)u = ∂(α;0)∂(0;j)�u = ∂(α;0)�∂(0;j)u.

Notice now that the last term is a linear combination of derivatives of the form ∂(β;0)∂(0;j)u, with
|β| = |α| + 2. So that we can apply the induction hypothesis to each one of this terms to obtain
that ∂α̃u is in the linear span of ∇2nu. �

As a corollary of Theorem 5.1, its Corollary 5.2 and the above considerations we readily have
that the next statement holds true.

Theorem 5.4. For 0 < λ < 2n < λ+d and n ∈ N there exists a constant C such that the inequal-
ity

δ2n−λ(x, t)
∣∣(∇2,1)n

u(x, t)
∣∣ � CM−

R+
[
M

#,λ,2n
D (u)

]
(x, t)

holds for every temperature u in Ω and every (x, t) ∈ Ω .

6. Lp-estimates for space–time gradients of temperatures in terms of mixed
Lebesgue–Besov norms

In analogy with the definition of Cλ
p(D) (see [4, Section 6]) let us write C λ,m

p (D) to denote the

space of all those Lp(D) functions f for which M
#,λ,m
D (f ) belongs to Lp(D) equipped with the

norm ‖f ‖
C λ,m

p (D)
= ‖f ‖Lp(D) +‖M#,λ,m

D (f )‖Lp(D). From Corollary 5.4 in [4], when λ is a non-

integer positive number, M#,λ
D = sup0<r<δ(x) infπ∈P[λ] |B(x; r)|−1− λ

d

∫
B(x;r) |f −π | is pointwise

equivalent to the Calderón–Scott maximal operator, so that in this case C λ,[λ]+1
p (D) = Cλ

p(D).

Hence, from the immersion of Besov B
λ,p
p (D) spaces into the space Cλ

p(D) ([4, Corollary 11.6]

and the footnote [2, p. 7]) when D is a Lipschitz domain, we conclude that B
λ,p
p (D) ↪→

C λ,[λ]+1
p (D) which, for a bounded D is continuously immersed in C λ,m

p (D) for m � [λ] + 1.

Let us introduce the mixed norm spaces defined by Lq(R+,C λ,m
p (D)) and by Lq(R+,B

λ,p
p (D))

with 1 � q � ∞, 1 � p � ∞ and λ > 0. The corresponding norms for a d + 1 variables function
v are

‖v‖
Lq(R+,C λ,m

p (D))
=

( ∫
R+

∥∥v(·, t)∥∥q

C λ,m
p (D)

dt

) 1
q
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and

‖v‖
Lq(R+,B

λ,p
p (D))

=
( ∫

R+

∥∥v(·, t)∥∥q

B
λ,p
p (D)

dt

) 1
q

.

As a corollary of Theorem 5.4 we obtain the next basic result.

Theorem 6.1. Let Ω = D × R
+ with D a bounded domain in R

d . Let 1 < p � ∞ be given. For
0 < λ < 2n < λ + d and n ∈ N there exists a constant C1 depending on p, λ and n such that for
every temperature u in Ω we have the inequalities∥∥δ2n−λ

∣∣(∇2,1)n
u
∣∣∥∥

Lp(Ω)
� C1‖u‖

Lp(R+,C λ,2n
p (D))

.

Proof. Follows from Theorem 5.4 and the boundedness of M−
R+ on Lp(R) for p > 1. �

Notice also that for p = 1 a weak type inequality of the form∫
D

∣∣{t ∈ R
+: δ2n−λ(x, t)

∣∣(∇2,1)n
u(x, t)

∣∣ > μ
}∣∣dx

� C

μ

∫
D

∥∥M
#,λ,2n
D u(x, ·)∥∥

L1(R+)
dx

� C1

μ
‖u‖

L1(R+,C λ,2n
1 (D))

follows from the weak type (1,1) of the time operator M−
R+ .

Since the weight functions ω(t) for which the one-sided maximal operator M− is bounded on
Lp(ω dt) (p > 1) are characterized by the one-sided Muckenhoupt condition A−

p (see [8,10]),
the above results extend to mixed norms with weighted Lp-norms in the time variable.

Corollary 6.2. If Ω = D × R
+ with D a bounded Lipschitz domain in R

d , 1 < p � ∞, λ a
non-integer positive number and n an integer such that [λ] + 1 � 2n < λ + d , then∥∥δ2n−λ

∣∣(∇2,1)n
u
∣∣∥∥

Lp(Ω)
� C2‖u‖

Lp(R+,B
λ,p
p (D))

for some constant C2 and every temperature u in Ω .

References

[1] A.P. Calderón, R. Scott, Sobolev type inequalities for p > 0, Studia Math. 62 (1) (1978) 75–92.
[2] S. Dahlke, R.A. DeVore, Besov regularity for elliptic boundary value problems, Comm. Partial Differential Equa-

tions 22 (1–2) (1997) 1–16.
[3] M. de Guzmán, Real Variable Methods in Fourier Analysis, North-Holland Math. Stud., vol. 46, North-Holland,

Amsterdam, 1981, Notas de Matemática [Mathematical Notes], 75.
[4] R.A. DeVore, R.C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 47 (293) (1984),

viii+115.



Author's personal copy

1956 H. Aimar et al. / Journal of Functional Analysis 255 (2008) 1939–1956

[5] L.C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1998.
[6] W. Fulks, A mean value theorem for the heat equation, Proc. Amer. Math. Soc. 17 (1966) 6–11.
[7] D. Jerison, C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1) (1995)

161–219.
[8] F.J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy–Littlewood maximal functions,

Proc. Amer. Math. Soc. 117 (3) (1993) 691–698.
[9] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser., vol. 1, Duke Univ. Press, Durham, NC, 1976.

[10] E. Sawyer, Weighted inequalities for the one-sided Hardy–Littlewood maximal functions, Trans. Amer. Math.
Soc. 297 (1) (1986) 53–61.

[11] N. Suzuki, N.A. Watson, Mean value densities for temperatures, Colloq. Math. 98 (1) (2003) 87–96.
[12] N.A. Watson, A theory of subtemperatures in several variables, Proc. London Math. Soc. (3) 26 (1973) 385–417.


