Characterizations of postman sets

Néstor E. Aguilera ${ }^{\text {a }}$, Valeria A. Leoni ${ }^{\text {b }}$
${ }^{\text {a Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Litoral, Argentina. }}$
${ }^{\mathrm{b}}$ Universidad Nacional de Rosario and Fundación Antorchas, Argentina

Received 30 December 2003; received in revised form 1 September 2006; accepted 25 October 2006
Available online 6 May 2007

Abstract

Using results by McKee and Woodall on binary matroids, we show that the set of postman sets has odd cardinality, generalizing a result by Toida on the cardinality of cycles in Eulerian graphs. We study the relationship between T-joins and blocks of the underlying graph, obtaining a decomposition of postman sets in terms of blocks. We conclude by giving several characterizations of T-joins which are postman sets.

© 2007 Elsevier B.V. All rights reserved.

Keywords: T-joins; Postman sets; Cardinality; Graph block; Decomposition

1. Basic notation and definitions

We will consider finite undirected graphs $G=(V, E)$, with loops and parallel edges allowed. The set of odd-degree vertices of G will be denoted by $O(G)$, or simply by O when it is clear what the underlying graph is. Most other notation and conventions for graphs are similar to those in West [5]. In particular, paths and cycles have no repeated vertices, and loops are cycles.

As it is defined for example in [1], given a subset T of vertices with $|T|$ even, a set of edges $J \subset E$ is a T-join if $O\left(G_{J}\right)=T$ where $G_{J}=(V, J)$. We will be interested in the family $\mathscr{F}(T)$ of minimal T-joins: an inclusion-wise minimal T-join is just a T-join such that G_{J} is acyclic (see Lemma 3.2 and Corollary 3.3 below). Of course, $\mathscr{F}(T)$ is a clutter, i.e. a family of subsets of some base set-here E-none of which is included in another.

When $T=\emptyset$, the empty set is the unique minimal \emptyset-join, and it is convenient to work instead with the clutter \mathscr{C} of cycles (regarded as edge-sets), so that every non-empty \emptyset-join may be written as a union of disjoint cycles. When $T=O(G)$, the minimal T-joins are called postman sets, and we will indicate the corresponding clutter by \mathscr{P}.
We observe that although there are always postman sets, perhaps only the empty set (i.e. $\mathscr{P}=\{\emptyset\}$), we may have $\mathscr{J}(T)=\emptyset$ if some connected component of G contains an odd number of vertices of T. Similarly, \mathscr{C} could be empty.

2. Introduction

In 1973, Toida [4] proved that in an Eulerian graph there is an odd number of cycles passing through any given edge. This can be shown by deleting the edge, say with endpoints u and v, from the graph and showing that there is an

[^0]

Fig. 1. Kite.

Fig. 2. Paw and triangular prism: (a) paw; (b) triangular prism ($K_{2} \square C_{3}$).
odd number of (simple) u, v-paths in the resulting graph G^{\prime}. In this case $O\left(G^{\prime}\right)=\{u, v\}$, and the u, v-paths in G^{\prime} are precisely the postman sets in G^{\prime}.
McKee [3] showed in 1984 that Toida's result actually characterizes Eulerian graphs: every edge is in an odd number of cycles if and only if $O(G)=\emptyset$. It is worth mentioning that in 1990, Woodall [6] gave an alternative proof of McKee's converse, and both McKee and Woodall obtained it as a consequence of more general results in the framework of binary matroids, which we reproduce here as Theorem 3.1.

We use McKee's and Woodall's results directly to show a characterization of the family of postman sets through a condition involving all minimal T-joins and (some) cycles, the precise statement being given in Corollary 3.4. As a consequence of this characterization, in Corollary 3.5 we generalize Toida's result to postman sets in any graph, obtaining that \mathscr{P} has odd cardinality.

Certainly, for general T it is not true that $|\mathscr{J}(T)|$ is odd. For instance, in the kite of Fig. 1, there are four minimal T-joins when $T=\{2,4\}$.

In view of McKee's result, it is natural to wonder whether $|\mathscr{J}(T)|$ odd implies $T=O$. However, this is not true. For example, in the kite of Fig. 1 with $T=\{1,2\}$ we have $|\mathscr{J}(T)|=3$, but $T \not \subset O$ and $O \not \subset T$.
A simple way of looking at McKee's converse of Toida's result is to consider the symmetric difference of all cycles. Similarly, E will be itself a T-join (see Lemma 3.2 below) and therefore $T=O$ if every edge is in an odd number of minimal T-joins and the number of minimal T-joins is odd. However, even for postman sets we do not always have the latter property. For example, in the paw of Fig. 2(a), the edges in the cycle do not belong to any postman set. And in the triangular prism (the Cartesian product $K_{2} \square C_{3}$) shown in Fig. 2(b), each edge in the triangular bases belong to an even number (6) of postman sets.

Most of our results depend on Lemma 4.1 on the intersection of two clutters. We use it in Section 4 to show how T-joins and postman sets relate to cycles. Thus, if for general T we define

$$
\begin{aligned}
& E_{T}=\{e \in E: e \in J \text { for some } J \in \mathscr{J}(T)\}, \\
& H_{T}=\{e \in E: e \notin J \text { for all } J \in \mathscr{J}(T)\},
\end{aligned}
$$

we see in Lemma 4.2 that a cycle C is contained either in E_{T} or in H_{T}, in Lemma 4.3 that if $C \subset E_{T}$ then it is the symmetric difference of two T-joins, and in Theorem 4.4 that E_{O} may be written as the symmetric difference of some postman sets (and no cycles).

The example of the paw also suggests that the blocks of the graph play an important role in the structure of T-joins and postman sets, and we study this interplay in Section 5. In Theorem 5.4 we see that E_{T} and H_{T} are unions of blocks of G, necessarily disjoint. This is strengthened for postman sets in Lemmas 5.5 and 5.6 , and Theorem 5.7, which gives a block decomposition of postman sets.

In Section 6 we combine our findings to give several characterizations of postman sets.

3. Toida and McKee's results for postman sets

Following Woodall [6], a binary matroid is a pair (S, W) where S is a finite set and W is a subspace of 2^{S} (with scalar operations modulo 2). Also, a circuit in a binary matroid (S, W) is a minimal non-empty set in W.

One of the main results in McKee [3] and Woodall [6] is:
3.1 Theorem (McKee [3], Woodall [6]). Suppose (S,W) is a binary matroid. Then $S \in W$ if and only if each element of S lies in an odd number of circuits. Equivalently, S is the Boolean sum of some set of circuits if and only if S is the Boolean sum of the set of all circuits.

Denoting by $A \triangle Z$ the symmetric difference of the sets A and Z, we will make frequent use of the following well known result (see e.g. [1, p. 168]):
3.2 Lemma. If J^{\prime} is a T^{\prime}-join, then J is a T-join if and only if $J \triangle J^{\prime}$ is a $\left(T \Delta T^{\prime}\right)$-join.

One immediate consequence of this Lemma is that the symmetric difference of T-joins is a \emptyset-join which, if not empty, is the disjoint union of cycles. Also, a T-join J containing a cycle C cannot be minimal, since $J \triangle C=J \backslash C$ is a T-join strictly inside J. We state these results formally for future reference:
3.3 Corollary. Suppose J is a T-join, and $\mathscr{J}(T)$ is the clutter of minimal T-joins. If J contains a cycle, then $J \notin \mathscr{F}(T)$. On the other hand, if $J \notin \mathscr{\mathscr { G }}(T)$, then it is the disjoint union of a minimal T-join and cycles.

We now consider the matroid (S, W) where $S=E$ and W is the linear subspace spanned by minimal T-joins and cycles. By the previous corollary, in this matroid every minimal T-join is a circuit, but there may be some cycles that are not circuits, namely cycles that contain all of the vertices in T. (Since $|T|$ is even, such a cycle can be split into two-necessarily minimal- T-joins. All other cycles are circuits of the matroid.) Thus we have:
3.4 Corollary. E is the symmetric difference of all the postman sets and some of the cycles (namely, the circuits of the binary matroid (E, W) just mentioned).

Conversely, if $O \neq \emptyset$ and E is the symmetric difference of all minimal T-joins and some cycles, then $T=O$.
Proof. Since E is an O-join, by Corollary 3.3 we may write E as the symmetric difference of a postman set and cycles. This implies $E=S \in W$ and Theorem 3.1 gives the first part of the result.

For the remaining part, we notice that a symmetric difference of T-joins and cycles is either a T-join or a \emptyset-join, according to the number of T-joins is odd or even. If $O \neq \emptyset, E$ is not a \emptyset-join and therefore it must be both a T-join and an O-join, i.e. $T=O$.

By Lemma 3.2, the symmetric difference of some postman sets and some cycles is either an O-join or a \emptyset-join, depending on whether or not an odd number of postman sets is considered in the symmetric difference. Since E is an O-join, the previous Corollary shows that the total number of postman sets must be odd. This is true even if $O=\emptyset$, where $\mathscr{P}=\{\emptyset\}$. Thus, we obtain the generalization of Toida's result to postman sets:

3.5 Corollary. The family of postman sets of G has odd cardinality.

Remark. Although to prove this result we relied on McKee's and Woodall's results, it could also be proved directly inside graph theory (without explicit mention of binary matroids), for example by induction on the number of edges.

Remark. If in Corollary 3.4 we have $O=\emptyset, E$ may be written as a disjoint union of cycles, and by Theorem 3.1, E is the symmetric difference of all minimal T-joins and some cycles. But we may have $T \neq O$, e.g. if G is a triangle and $|T|=2$. When $O=\emptyset \neq T,|\mathscr{\mathscr { L }}(T)|$ must be even.

4. T-joins and cycles

We will need the following result on the intersection of two clutters. Notice that although it has a matroid-and even binary matroid-flavor, we are not asking directly for any matroid property.
4.1 Lemma. Let \mathscr{Y} and \mathscr{Z} be clutters on the same base set X, and suppose $Y \in \mathscr{Y}$ is such that for every $Z \in \mathscr{Z}$ there exist $Y^{\prime} \in \mathscr{Y}$ and $Z^{\prime} \in \mathscr{Z}$ with $Y^{\prime} \cap Z^{\prime}=\emptyset$ and $Y^{\prime} \cup Z^{\prime} \subset Y \triangle Z$. Then

$$
Y \cap Z=\emptyset \quad \text { for all } Z \in \mathscr{Z} \text {. }
$$

Proof. Suppose there exists $Z \in \mathscr{Z}$ such that $Y \cap Z \neq \emptyset$ and consider $Z_{0} \in \mathscr{Z}$ such that $Y \cap Z_{0} \neq \emptyset$ and

$$
\left|Y \cup Z_{0}\right|=\min \{|Y \cup Z|: Z \in \mathscr{Z} \text { and } Y \cap Z \neq \emptyset\} .
$$

By hypothesis, there exist $Y^{\prime} \in \mathscr{Y}$ and $Z^{\prime} \in \mathscr{Z}$ such that Y^{\prime} and Z^{\prime} are disjoint and $Y^{\prime} \cup Z^{\prime} \subset Y \triangle Z_{0}$.
Since $Z^{\prime} \subset Y \triangle Z_{0}$ but $Y \cap Z_{0} \neq \emptyset$, there are elements in Z_{0} which are not in Z^{\prime}, i.e. $Z^{\prime} \neq Z_{0}$ and since \mathscr{Z} is a clutter, we must have $Z^{\prime} \not \subset Z_{0}$. Therefore, there exist elements of Z^{\prime} in Y, that is,

$$
\begin{equation*}
Y \cap Z^{\prime} \neq \emptyset . \tag{4.1}
\end{equation*}
$$

Since $Z^{\prime} \subset Y \triangle Z_{0} \subset Y \cup Z_{0}$, we have $Y \cup Z^{\prime} \subset Y \cup Z_{0}$. But since $Z^{\prime} \in \mathscr{Z}$ and $Y \cap Z^{\prime} \neq \emptyset$, by our choice of Z_{0} we must have $\left|Y \cup Z^{\prime}\right|=\left|Y \cup Z_{0}\right|$, and (given the inclusion),

$$
Y \cup Z^{\prime}=Y \cup Z_{0} .
$$

Furthermore, $Y^{\prime} \backslash Y \subset\left(Y \cup Z_{0}\right) \backslash Y=\left(Y \cup Z^{\prime}\right) \backslash Y=Z^{\prime} \backslash Y$, which implies $Y^{\prime} \backslash Y=\emptyset$ since Z^{\prime} and Y^{\prime} are disjoint. Since Y and Y^{\prime} are members of the clutter \mathscr{Y} and $Y^{\prime} \subset Y$, we have $Y^{\prime}=Y$, but then $Y \cap Z^{\prime}=Y^{\prime} \cap Z^{\prime}=\emptyset$, contradicting (4.1).

A first consequence of Lemma 4.1 is the following:
4.2 Lemma. Suppose $\mathscr{\mathscr { G }}(T) \neq \emptyset$ and let $e \in E$ be such that $e \notin J$ for every minimal T-join J, i.e. $e \in H_{T}$. Then $C \subset H_{T} \quad$ for every cycle C such that $e \in C$.

Consequently for any cycle C either $C \subset E_{T}$ or $C \subset H_{T}$.
Also, every edge on a cycle which intersects some $J \in \mathscr{J}(T)$ must be in some minimal T-join.
Proof. For fixed $J \in \mathscr{J}(T)$, we use Lemma 4.1 with

$$
\mathscr{Y}=\mathscr{J}(T), \quad \mathscr{Z}=\{C \in \mathscr{C}: e \in C\} \quad \text { and } \quad Y=J .
$$

We need to show that given $C \in \mathscr{Z}$, there exist $J^{\prime} \in \mathscr{J}(T)$ and $C^{\prime} \in \mathscr{Z}$ such that $J^{\prime} \cap C^{\prime}=\emptyset$ and $J^{\prime} \cup C^{\prime} \subset J \triangle C$.
But $J_{0}=J \triangle C$ is a T-join, which cannot be minimal since by hypothesis e is not in any minimal T-join and $e \in C \backslash J \subset J_{0}$. Therefore, there exist $J^{\prime} \in \mathscr{J}(T)$ with $J^{\prime} \subset J_{0}$ and a cycle C^{\prime} with $e \in C^{\prime} \subset J_{0} \triangle J^{\prime}=J_{0} \backslash J^{\prime}$, so that $J^{\prime} \in \mathscr{F}(T)$ and $C^{\prime} \in \mathscr{Z}$ are disjoint and $J^{\prime} \triangle C^{\prime} \subset J \triangle C$.

It follows from Lemma 4.1, that $J \cap C=\emptyset$ for every cycle C with $e \in C$. Since this holds for every $J \in \mathscr{F}(T)$, it follows that $C \subset H_{T}$ for every such cycle C.

Similarly, we also have:
4.3 Lemma. Suppose C_{0} is a cycle such that $C_{0} \cap J_{0} \neq \emptyset$ for some $J_{0} \in \mathscr{J}(T)$. Then there exist $J_{1}, J_{2} \in \mathscr{J}(T)$ such that

$$
C_{0}=J_{1} \triangle J_{2} .
$$

Remark. This is another way of showing that $C_{0} \cap E_{T} \neq \emptyset$ implies $C_{0} \subset E_{T}$.

Proof. It will be enough to show that

$$
\begin{equation*}
J_{1} \triangle C_{0} \in \mathscr{\mathscr { C }}(T) \text { for some } J_{1} \in \mathscr{F}(T), \tag{4.2}
\end{equation*}
$$

and then take $J_{2}=J_{1} \triangle C_{0}$.
Assume (4.2) does not hold, so that for each $J \in \mathscr{F}(T)$ the T-join $J \triangle C_{0}$ is not minimal.
In this case, by Corollary 3.3, for each $J \in \mathscr{J}(T)$ we may find a cycle C^{\prime} and $J^{\prime} \in \mathscr{\mathscr { L }}(T)$ such that $J^{\prime} \cap C^{\prime}=\emptyset$ and $J \triangle C_{0} \supset J^{\prime} \triangle C^{\prime}=J^{\prime} \cup C^{\prime}$.
Applying Lemma 4.1 with

$$
\mathscr{Y}=\mathscr{C}, \mathscr{Z}=\mathscr{J}(T) \quad \text { and } \quad Y=C_{0},
$$

we have

$$
J \cap C_{0}=\emptyset \quad \text { for every } J \in \mathscr{J}(T),
$$

contradicting the hypothesis of the lemma.
We have seen in Corollary 3.4 that E may be written as the symmetric difference of (all) postman sets and (some) cycles. We now show that we need not consider cycles if $H_{O}=\emptyset$.
4.4 Theorem. Suppose $O \neq \emptyset$ and let $E_{O}=\{e \in E: e \in P$ for some $P \in \mathscr{P}\}$. Then there exists $\left\{P_{1}, P_{2}, \ldots, P_{s}\right\} \subset \mathscr{P}$ with s odd and

$$
E_{O}=P_{1} \Delta P_{2} \Delta \cdots \Delta P_{s} .
$$

If $H_{O} \neq \emptyset$, there also exist disjoint cycles $C_{1}, C_{2}, \ldots, C_{t}$ contained in H_{O} such that

$$
H_{O}=C_{1} \Delta \cdots \Delta C_{t},
$$

that is, H_{O} is a union of disjoint cycles.
Therefore,

$$
E=P_{1} \Delta \cdots \Delta P_{s} \Delta C_{1} \Delta \cdots C_{t}
$$

where the cycles are pairwise disjoint and the postman sets do not intersect the cycles.
Proof. Since $O \neq \emptyset$, there exists $P_{1} \in \mathscr{P}, P_{1} \neq \emptyset$, and $E \backslash P_{1}$ is a (possibly empty) disjoint union of cycles. By Lemma 4.2 each of these cycles is either contained in E_{O} or in H_{O}, and so we may write

$$
E \backslash P_{1}=C_{1}^{\prime} \Delta \cdots \Delta C_{r}^{\prime} \Delta C_{1} \Delta \cdots C_{t},
$$

where $C_{i}^{\prime} \subset E_{O}$ for $i=1, \ldots, r$ and $C_{i} \subset H_{O}$ for $i=1 \ldots t$.
By Lemma 4.3, for every $i=1, \ldots, r$ we may find $P_{2 i}$ and $P_{2 i+1}$ in \mathscr{P} such that $C_{i}^{\prime}=P_{2 i} \Delta P_{2 i+1}$, hence

$$
E_{O}=P_{1} \Delta \cdots \Delta P_{s}
$$

with $s=2 r+1$, and

$$
H_{O}=C_{1} \Delta \cdots \Delta C_{t},
$$

proving the result.
Remark. The previous proof does not rely on the results by McKee and Woodall.

5. T-joins and blocks

In this section we study the connection between the block structure of the graph $G=(V, E)$ and the structure of minimal T-joins of G, using the following definition for blocks, which differs from that given by West [5, p. 155]:
5.1 Definition. Given a graph $G=(V, E)$, a set $B \subset E$ is a block of G if B consists of either a single cut-edge, a single loop, or the set of edges of a maximal 2-connected loopless subgraph of G.

Lemma 4.2 gives information about 2-connected subgraphs induced by blocks of G : either for any edge e in such a block there exists $J \in \mathscr{J}(T)$ with $e \in J$, or else the edges of the block do not intersect any minimal T-join. Since loops are in no minimal T-join, the other interesting blocks to us are the cut-edges (bridges), and these are taken care of by Lemma 5.3. To prove it, we will use the following well known result (see e.g. [1, p. 180]):
5.2 Lemma. If $S \subset V$ and J is a T-join, then

$$
|S \cap T| \equiv|\delta(S) \cap J|(\bmod 2)
$$

where $\delta(S)$ is the set of edges having exactly one endpoint in S.
In particular, if $|S \cap T|$ is odd then $\delta(S) \cap J \neq \emptyset$.
5.3 Lemma. Suppose $\mathscr{J}(T) \neq \emptyset$.
(a) If $e \in E$ is a cut-edge of G, then either $e \in J$ for every T-join J or $e \notin J$ for every $J \in \mathscr{J}(T)$.
(b) If e is not a cut-edge, then there exists a T-join J with $e \notin J$.

Proof. Suppose e is a cut-edge such that $e \in J$ for some $J \in \mathscr{J}(T)$, and let u and v be its endpoints. If $G_{u}=\left(V_{u}, E_{u}\right)$ is the connected component of $G^{\prime}=(V, E \backslash\{e\})$ containing u, then $\delta\left(V_{u}\right) \cap J=\{e\}$, and therefore, by Lemma 5.2, $\left|V_{u} \cap T\right|$ must be odd and $e \in J^{\prime}$ for every T-join J^{\prime}.

For the second part, if e is not a cut-edge, then there exists a cycle C with $e \in C$. If $J \in \mathscr{J}(T)$ is such that $e \in J$, then $J \triangle C$ contains a minimal T-join J^{\prime} with $e \notin J^{\prime}$.

Combining Lemmas 4.2 and 5.3 we have:
5.4 Theorem. E_{T} is the union of some blocks of G, and H_{T} is the union of the remaining blocks.

Since the blocks of the underlying graph are shared by T-joins for different T 's, it is not surprising that we may use them to relate minimal T-joins and postman sets:
5.5 Lemma. Let $H_{O}=\{e \in E: e \notin P$ for every $P \in \mathscr{P}\}$. Then for arbitrary T, either no minimal T-join intersects H_{O} or else every T-join does.

Proof. If $O=\emptyset$, then $H_{O}=E$, and the result is obvious. So let us consider the case $O \neq \emptyset$ and suppose there exist $J \in \mathscr{J}(T)$ and $e \in H_{O} \cap J$. We will show that every $J^{\prime} \in \mathscr{J}(T)$ must intersect H_{O}.

If $e \in J^{\prime}$, then obviously J^{\prime} intersects H_{O}. Otherwise $J \triangle J^{\prime}$ contains a cycle C such that $e \in C \subset J \triangle J^{\prime}$. But C is inside H_{O}, and therefore J^{\prime} has an edge in H_{O} ($C \not \subset J$ since J contains no cycles).
5.6 Lemma. $e \in E$ is a cut-edge if and only if $e \in P$ for every $P \in \mathscr{P}$.

Proof. Suppose e is a cut-edge. Then, since H_{O} is a union of cycles or empty (Lemma 4.4), $e \notin H_{O}$. This implies that e is in some postman set, and by the first part of Lemma 5.3, that $e \in P$ for every $P \in \mathscr{P}$.

The converse is covered by the second part of Lemma 5.3.
Let $B_{1}, B_{2}, \ldots, B_{r}$ be the blocks of $G=(V, E)$, and for $i=1, \ldots, r$ let O_{i} be the set of odd-degree vertices of $G_{i}=\left(V_{i}, B_{i}\right)$, where V_{i} is the set of endpoints of the edges in B_{i}.

Since the B_{i} 's are pairwise disjoint, we may write $E=B_{1} \Delta \cdots \Delta B_{r}$ and therefore $O(G)=O_{1} \Delta \cdots \Delta O_{r}$. Hence, if \mathscr{P}_{i} is the family of postman sets in G_{i} and for each $i=1, \ldots, r$ we choose $P_{i} \in \mathscr{P}_{i}$,

$$
P_{1} \Delta \cdots \Delta P_{r}=P_{1} \cup \cdots \cup P_{r}
$$

will be a postman set in G since it is an O-join having no cycles (if it contained one, it would be inside a block and hence contained in one of the P_{i} 's).

Suppose now $P \in \mathscr{P}$ and the block B_{i} consists of a single edge e. If e is a loop then $\mathscr{P}_{i}=\{\emptyset\}$ and $e \notin P$, i.e. $P_{i}=\emptyset=P \cap B_{i}$ is the only postman set in G_{i}. On the other hand, if e is a cut-edge in $G, P_{i}=\{e\}$ is the unique postman set in \mathscr{P}_{i} by Lemma 5.6, and since $e \in P$ we have $P_{i}=P \cap B_{i}$.

If G_{i} is 2-connected, we see that $E \backslash P$ is a union of disjoint cycles in G ($P \neq E$, since B_{i} contains a cycle), so that $B_{i} \cap(E \backslash P)=B_{i} \backslash P$ is also a union of disjoint cycles in G_{i}, and therefore $B_{i} \cap P$ is an O_{i}-join which must contain a postman set $P_{i} \in \mathscr{P}_{i}$.

Taking the union (which equals the symmetric difference) of all P_{i} 's so constructed, we obtain a postman set in G which is contained in P and therefore must be precisely P. Thus $P_{i}=P \cap B_{i}$ for all $i=1, \ldots, r$.

We sum up these findings in a theorem:
5.7 Theorem. There is a one to one correspondence between \mathscr{P} and $\mathscr{P}_{1} \times \cdots \times \mathscr{P}_{r}$, given by

$$
P \rightarrow\left(P \cap B_{1}, \ldots, P \cap B_{r}\right) \quad \text { and } \quad\left(P_{1}, \ldots, P_{r}\right) \rightarrow P_{1} \Delta \cdots \Delta P_{r}
$$

Consequently, if E^{\prime} is the union of some of the blocks of G and $G^{\prime}=\left(V, E^{\prime}\right)$, then $P \cap E^{\prime}$ is a minimal $O\left(G^{\prime}\right)$-join for every $P \in \mathscr{P}$.

Remark. We may have $\mathscr{P}_{i}=\{\emptyset\}$ —when the corresponding G_{i} is Eulerian—and this is the case if and only if B_{i} is one of the blocks forming H_{O}.

6. Postman sets

Let us denote by R the symmetric difference $O \Delta T$ (which may be empty), and by $\mathscr{J}(R)$ the corresponding clutter of minimal R-joins (with possibly $\mathscr{J}(R)=\{\emptyset\}$). We have:
6.1 Theorem. If $\mathscr{J}(T) \neq \emptyset$ and $G_{T}=\left(V, E_{T}\right)$, then the following conditions are equivalent:
(i) T is the set of odd-degree vertices of $\left(V, E_{T}\right)$, i.e. $\mathscr{\mathscr { L }}(T)$ is the set of postman sets of G_{T}.
(ii) $E_{T}=J_{1} \triangle J_{2} \triangle \cdots \Delta J_{s}$, for some $\left\{J_{1}, J_{2}, \ldots, J_{s}\right\} \subset \mathscr{J}(T)$ and odd s.
(iii) $|\mathscr{I}(T)|$ is odd, and $E_{T}=J_{1} \Delta J_{2} \Delta \cdots \Delta J_{s}$ for some $\left\{J_{1}, J_{2}, \ldots, J_{s}\right\} \subset \mathscr{J}(T)$.
(iv) For every $P \in \mathscr{P}$ there exists $J \in \mathscr{L}(T)$ such that $J \subset P$.
(v) For every $P \in \mathscr{P}$ there exist $J_{P} \in \mathscr{J}(T)$ and $D_{P} \in \mathscr{J}(R)$ such that J_{P} and D_{P} are disjoint and $P=J_{P} \cup D_{P}$.
(iv) E is the disjoint union of E_{T}, E_{R} and H_{O}.
(vii) E_{T} and E_{R} are disjoint.

Proof. (ii) Follows from (i) by Theorem 4.4, and if (ii) holds, then E_{T} is a T-join, which implies $O\left(G_{T}\right)=T$ and (i). Thus, (i) and (ii) are equivalent.

By Corollary 3.5, (iii) follows from (i) and (ii). Conversely, (iii) implies (i): by Theorem 3.1, E_{T} is the symmetric difference of all minimal T-joins and some cycles in G_{T}, and since $|\mathscr{J}(T)|$ is odd, E_{T} is both an $O\left(G_{T}\right)$-join and a T-join, which implies (i).

Let us now show the implications (i) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (vii) \Rightarrow (i).
The block decomposition given in Theorem 5.4 tells us that each of the blocks B_{1}, \ldots, B_{r} of G is contained in either E_{T} (intersecting every T-join) or H_{T} (intersecting no minimal T-join). By Theorem 5.7, we know that for given $P \in \mathscr{P}$ and $i(1 \leqslant i \leqslant r), P \cap B_{i} \in \mathscr{P}_{i}$. By the same Theorem applied now to the graph $G_{T}=\left(V, E_{T}\right)$, we see that

$$
J=\bigcup_{i: B_{i} \subset E_{T}} P \cap B_{i}
$$

(that is, $\left.J=\triangle_{i: B_{i} \subset E_{T}} P \cap B_{i}\right)$ is a postman set in G_{T}. Thus, if $T=O\left(G_{T}\right)$, then $J=P \cap E_{T}$ is a T-join in G_{T}, so that (i) implies (iv).

Suppose now (iv) holds and for given $P \in \mathscr{P}$, let J be a T-join contained in P. Since P has no cycles, J is minimal and-even more-is the unique T-join contained in P, since if there were two, their symmetric difference would contain a cycle inside P. Let us denote by J_{P} this unique (minimal) T-join.

If $R=O \triangle T$, we observe that $D_{P}=P \triangle J_{P}$ is an R-join contained in P, and by the argument just used for J_{P}, we obtain that $D_{P} \in \mathscr{J}(R)$ and that D_{P} is the only R-join contained in P, so that (iv) implies (v).

We will now show that if (v) holds, then $J \cap D=\emptyset$ for every $J \in \mathscr{J}(T)$ and $D \in \mathscr{J}(R) .{ }^{1}$ This follows from Lemma 4.1 by considering for fixed $J \in \mathscr{J}(T)$:

$$
\mathscr{Y}=\mathscr{J}(T), \quad \mathscr{Z}=\mathscr{J}(R) \quad \text { and } \quad Y=J
$$

and observing that given $D \in \mathscr{Z}$, the O-join $J \triangle D$ contains a postman set P, which may be written as $J_{P} \cup D_{P}$ (by (v)), with $J_{P} \in \mathscr{J}(T), D_{P} \in \mathscr{J}(R)$ and $J_{P} \cap D_{P}=\emptyset$. Therefore

$$
\begin{equation*}
E_{T} \cap E_{R}=\emptyset \tag{6.1}
\end{equation*}
$$

since no $e \in E$ may be simultaneously in a minimal T-join and a minimal R-join.
Moreover, by Lemma 5.5, we know that either H_{O} intersects every minimal T-join or it intersects none. Since $J_{P} \cap H_{O}=\emptyset$, we must have $J \cap H_{O}=\emptyset$ for all $J \in \mathscr{J}(T)$, and thus

$$
\begin{equation*}
E_{T} \cap H_{O}=\emptyset \tag{6.2}
\end{equation*}
$$

Similarly, since in Lemma 5.5 T is arbitrary, we may apply the same reasoning with T replaced by R (by the symmetry in condition (v)), so that

$$
\begin{equation*}
E_{R} \cap H_{O}=\emptyset \tag{6.3}
\end{equation*}
$$

Observing that every postman set is the disjoint union of a minimal T-join and a minimal R-join, we see that E_{O} is the disjoint union of E_{T} and E_{R}. Finally, since by definition $E_{O} \cup H_{O}=E$, we must have

$$
\begin{equation*}
E=E_{T} \cup E_{R} \cup H_{O} \tag{6.4}
\end{equation*}
$$

From Eqs. (6.1)-(6.4), we see that (v) implies (vi).
(vi) clearly implies (vii).

If (vii) holds then for $J \in \mathscr{J}(T)$ and $D \in \mathscr{J}(R)$ it must be that $J \cap D=\emptyset$. Hence $P=J \triangle D=J \cup D$ is an O-join which has no cycles since the blocks forming E_{T} and E_{R} are disjoint. So $P \in \mathscr{P}$. Also since $J \subset E_{T}, D \subset E_{R}$ and $E_{T} \cap E_{R}=\emptyset$, we have $J=P \cap E_{T}$, that is, J is the restriction of P to the blocks forming E_{T}. So by the last part of Theorem 5.7, $O\left(G_{T}\right)=T$ which is (i).

Remark. Guenin in [2] gives another characterization of postman sets. By defining T-cuts to be sets of the form $\delta(U)$ with $|U \cap T|$ odd, when $T \neq \emptyset$ we have $T=O$ if and only if every T-cut (minimal or not) has an odd number of edges.

References

[1] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver, Combinatorial Optimization, Wiley, New York, 1998.
[2] B. Guenin, Packing T-joins and edge colouring in planar graphs, Math. Oper. Res., to appear.
[3] T.A. McKee, Recharacterizing Eulerian: intimations of new duality, Discrete Math. 51 (1984) 237-242.
[4] S. Toida, Properties of a Euler graph, J. Franklin Inst. 295 (1973) 343-345.
[5] D. West, Introduction to Graph Theory, second ed., Prentice-Hall, Englewood Cliffs, NJ, 2001.
[6] D.R. Woodall, A proof of McKee's Eulerian-bipartite characterization, Discrete Math. 84 (1990) 217-220.

[^1]
[^0]: E-mail addresses: aguilera@arcride.edu.ar (N.E. Aguilera), valeoni@fceia.unr.edu.ar (V.A. Leoni).

[^1]: ${ }^{1}$ Notice that this is actually condition (vii).

