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Abstract

Using results by McKee and Woodall on binary matroids, we show that the set of postman sets has odd cardinality, generalizing
a result by Toida on the cardinality of cycles in Eulerian graphs. We study the relationship between T -joins and blocks of the
underlying graph, obtaining a decomposition of postman sets in terms of blocks. We conclude by giving several characterizations
of T -joins which are postman sets.
© 2007 Elsevier B.V. All rights reserved.
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1. Basic notation and definitions

We will consider finite undirected graphs G= (V , E), with loops and parallel edges allowed. The set of odd-degree
vertices of G will be denoted by O(G), or simply by O when it is clear what the underlying graph is. Most other
notation and conventions for graphs are similar to those in West [5]. In particular, paths and cycles have no repeated
vertices, and loops are cycles.

As it is defined for example in [1], given a subset T of vertices with |T | even, a set of edges J ⊂ E is a T -join
if O(GJ ) = T where GJ = (V , J ). We will be interested in the family J(T ) of minimal T -joins: an inclusion-wise
minimal T -join is just a T -join such that GJ is acyclic (see Lemma 3.2 and Corollary 3.3 below). Of course, J(T ) is
a clutter, i.e. a family of subsets of some base set—here E—none of which is included in another.

When T = ∅, the empty set is the unique minimal ∅-join, and it is convenient to work instead with the clutter C
of cycles (regarded as edge-sets), so that every non-empty ∅-join may be written as a union of disjoint cycles. When
T = O(G), the minimal T -joins are called postman sets, and we will indicate the corresponding clutter by P.

We observe that although there are always postman sets, perhaps only the empty set (i.e. P = {∅}), we may have
J(T ) = ∅ if some connected component of G contains an odd number of vertices of T . Similarly, C could be empty.

2. Introduction

In 1973, Toida [4] proved that in an Eulerian graph there is an odd number of cycles passing through any given
edge. This can be shown by deleting the edge, say with endpoints u and v, from the graph and showing that there is an
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Fig. 1. Kite.

Fig. 2. Paw and triangular prism: (a) paw; (b) triangular prism (K2�C3).

odd number of (simple) u, v-paths in the resulting graph G′. In this case O(G′) = {u, v}, and the u, v-paths in G′ are
precisely the postman sets in G′.

McKee [3] showed in 1984 that Toida’s result actually characterizes Eulerian graphs: every edge is in an odd number
of cycles if and only if O(G)=∅. It is worth mentioning that in 1990, Woodall [6] gave an alternative proof of McKee’s
converse, and both McKee and Woodall obtained it as a consequence of more general results in the framework of binary
matroids, which we reproduce here as Theorem 3.1.

We use McKee’s and Woodall’s results directly to show a characterization of the family of postman sets through
a condition involving all minimal T -joins and (some) cycles, the precise statement being given in Corollary 3.4. As
a consequence of this characterization, in Corollary 3.5 we generalize Toida’s result to postman sets in any graph,
obtaining that P has odd cardinality.

Certainly, for general T it is not true that |J(T )| is odd. For instance, in the kite of Fig. 1, there are four minimal
T -joins when T = {2, 4}.

In view of McKee’s result, it is natural to wonder whether |J(T )| odd implies T = O. However, this is not true. For
example, in the kite of Fig. 1 with T = {1, 2} we have |J(T )| = 3, but T /⊂ O and O /⊂ T .

A simple way of looking at McKee’s converse of Toida’s result is to consider the symmetric difference of all cycles.
Similarly, E will be itself a T -join (see Lemma 3.2 below) and therefore T = O if every edge is in an odd number of
minimal T -joins and the number of minimal T -joins is odd. However, even for postman sets we do not always have
the latter property. For example, in the paw of Fig. 2(a), the edges in the cycle do not belong to any postman set. And
in the triangular prism (the Cartesian product K2�C3) shown in Fig. 2(b), each edge in the triangular bases belong to
an even number (6) of postman sets.

Most of our results depend on Lemma 4.1 on the intersection of two clutters. We use it in Section 4 to show how
T -joins and postman sets relate to cycles. Thus, if for general T we define

ET = {e ∈ E: e ∈ J for some J ∈ J(T )},
HT = {e ∈ E: e /∈ J for all J ∈ J(T )},

we see in Lemma 4.2 that a cycle C is contained either in ET or in HT , in Lemma 4.3 that if C ⊂ ET then it is the
symmetric difference of two T -joins, and in Theorem 4.4 that EO may be written as the symmetric difference of some
postman sets (and no cycles).

The example of the paw also suggests that the blocks of the graph play an important role in the structure of T -joins
and postman sets, and we study this interplay in Section 5. In Theorem 5.4 we see that ET and HT are unions of blocks
of G, necessarily disjoint. This is strengthened for postman sets in Lemmas 5.5 and 5.6, and Theorem 5.7, which gives
a block decomposition of postman sets.

In Section 6 we combine our findings to give several characterizations of postman sets.
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3. Toida and McKee’s results for postman sets

Following Woodall [6], a binary matroid is a pair (S, W) where S is a finite set and W is a subspace of 2S (with
scalar operations modulo 2). Also, a circuit in a binary matroid (S, W) is a minimal non-empty set in W .

One of the main results in McKee [3] and Woodall [6] is:

3.1 Theorem (McKee [3], Woodall [6]). Suppose (S, W) is a binary matroid. Then S ∈ W if and only if each element
of S lies in an odd number of circuits. Equivalently, S is the Boolean sum of some set of circuits if and only if S is the
Boolean sum of the set of all circuits.

Denoting by A�Z the symmetric difference of the sets A and Z, we will make frequent use of the following well
known result (see e.g. [1, p. 168]):

3.2 Lemma. If J ′ is a T ′-join, then J is a T -join if and only if J�J ′ is a (T �T ′)-join.

One immediate consequence of this Lemma is that the symmetric difference of T -joins is a ∅-join which, if not
empty, is the disjoint union of cycles. Also, a T -join J containing a cycle C cannot be minimal, since J�C = J\C is
a T -join strictly inside J . We state these results formally for future reference:

3.3 Corollary. Suppose J is a T -join, andJ(T ) is the clutter of minimal T -joins. If J contains a cycle, then J /∈J(T ).
On the other hand, if J /∈J(T ), then it is the disjoint union of a minimal T -join and cycles.

We now consider the matroid (S, W) where S = E and W is the linear subspace spanned by minimal T -joins
and cycles. By the previous corollary, in this matroid every minimal T -join is a circuit, but there may be some
cycles that are not circuits, namely cycles that contain all of the vertices in T . (Since |T | is even, such a cycle
can be split into two—necessarily minimal—T -joins. All other cycles are circuits of the matroid.) Thus
we have:

3.4 Corollary. E is the symmetric difference of all the postman sets and some of the cycles (namely, the circuits of the
binary matroid (E, W) just mentioned).

Conversely, if O �= ∅ and E is the symmetric difference of all minimal T -joins and some cycles, then T = O.

Proof. Since E is an O-join, by Corollary 3.3 we may write E as the symmetric difference of a postman set and cycles.
This implies E = S ∈ W and Theorem 3.1 gives the first part of the result.

For the remaining part, we notice that a symmetric difference of T -joins and cycles is either a T -join or a ∅-join,
according to the number of T -joins is odd or even. If O �= ∅, E is not a ∅-join and therefore it must be both a T -join
and an O-join, i.e. T = O. �

By Lemma 3.2, the symmetric difference of some postman sets and some cycles is either an O-join or a ∅-join,
depending on whether or not an odd number of postman sets is considered in the symmetric difference. Since E is an
O-join, the previous Corollary shows that the total number of postman sets must be odd. This is true even if O = ∅,
where P = {∅}. Thus, we obtain the generalization of Toida’s result to postman sets:

3.5 Corollary. The family of postman sets of G has odd cardinality.

Remark. Although to prove this result we relied on McKee’s and Woodall’s results, it could also be proved directly
inside graph theory (without explicit mention of binary matroids), for example by induction on the number of edges.

Remark. If in Corollary 3.4 we have O = ∅, E may be written as a disjoint union of cycles, and by Theorem 3.1, E

is the symmetric difference of all minimal T -joins and some cycles. But we may have T �= O, e.g. if G is a triangle
and |T | = 2. When O = ∅ �= T , |J(T )| must be even.
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4. T -joins and cycles

We will need the following result on the intersection of two clutters. Notice that although it has a matroid—and even
binary matroid—flavor, we are not asking directly for any matroid property.

4.1 Lemma. Let Y and Z be clutters on the same base set X, and suppose Y ∈ Y is such that for every Z ∈ Z there
exist Y ′ ∈ Y and Z′ ∈ Z with Y ′ ∩ Z′ = ∅ and Y ′ ∪ Z′ ⊂ Y�Z. Then

Y ∩ Z = ∅ for all Z ∈ Z.

Proof. Suppose there exists Z ∈ Z such that Y ∩ Z �= ∅ and consider Z0 ∈ Z such that Y ∩ Z0 �= ∅ and

|Y ∪ Z0| = min{|Y ∪ Z|: Z ∈ Z and Y ∩ Z �= ∅}.
By hypothesis, there exist Y ′ ∈ Y and Z′ ∈ Z such that Y ′ and Z′ are disjoint and Y ′ ∪ Z′ ⊂ Y�Z0.
Since Z′ ⊂ Y�Z0 but Y ∩ Z0 �= ∅, there are elements in Z0 which are not in Z′, i.e. Z′ �= Z0 and since Z is a

clutter, we must have Z′ /⊂ Z0. Therefore, there exist elements of Z′ in Y, that is,

Y ∩ Z′ �= ∅. (4.1)

Since Z′ ⊂ Y�Z0 ⊂ Y ∪ Z0, we have Y ∪ Z′ ⊂ Y ∪ Z0. But since Z′ ∈ Z and Y ∩ Z′ �= ∅, by our choice of Z0
we must have |Y ∪ Z′| = |Y ∪ Z0|, and (given the inclusion),

Y ∪ Z′ = Y ∪ Z0.

Furthermore, Y ′\Y ⊂ (Y ∪ Z0)\Y = (Y ∪ Z′)\Y = Z′\Y , which implies Y ′\Y = ∅ since Z′ and Y ′ are disjoint.
Since Y and Y ′ are members of the clutter Y and Y ′ ⊂ Y , we have Y ′ =Y , but then Y ∩Z′ =Y ′ ∩Z′ = ∅, contradicting
(4.1). �

A first consequence of Lemma 4.1 is the following:

4.2 Lemma. Suppose J(T ) �= ∅ and let e ∈ E be such that e /∈ J for every minimal T -join J , i.e. e ∈ HT . Then

C ⊂ HT for every cycle C such that e ∈ C.

Consequently for any cycle C either C ⊂ ET or C ⊂ HT .
Also, every edge on a cycle which intersects some J ∈ J(T ) must be in some minimal T -join.

Proof. For fixed J ∈ J(T ), we use Lemma 4.1 with

Y = J(T ), Z = {C ∈ C: e ∈ C} and Y = J .

We need to show that given C ∈ Z, there exist J ′ ∈ J(T ) and C′ ∈ Z such that J ′ ∩ C′ = ∅ and J ′ ∪ C′ ⊂ J�C.
But J0 = J�C is a T -join, which cannot be minimal since by hypothesis e is not in any minimal T -join and

e ∈ C\J ⊂ J0. Therefore, there exist J ′ ∈ J(T ) with J ′ ⊂ J0 and a cycle C′ with e ∈ C′ ⊂ J0�J ′ = J0\J ′, so that
J ′ ∈ J(T ) and C′ ∈ Z are disjoint and J ′�C′ ⊂ J�C.

It follows from Lemma 4.1, that J ∩ C = ∅ for every cycle C with e ∈ C. Since this holds for every J ∈ J(T ), it
follows that C ⊂ HT for every such cycle C. �

Similarly, we also have:

4.3 Lemma. Suppose C0 is a cycle such that C0 ∩ J0 �= ∅ for some J0 ∈ J(T ). Then there exist J1, J2 ∈ J(T ) such
that

C0 = J1�J2.

Remark. This is another way of showing that C0 ∩ ET �= ∅ implies C0 ⊂ ET .
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Proof. It will be enough to show that

J1�C0 ∈ J(T ) for some J1 ∈ J(T ), (4.2)

and then take J2 = J1�C0.
Assume (4.2) does not hold, so that for each J ∈ J(T ) the T -join J�C0 is not minimal.
In this case, by Corollary 3.3, for each J ∈ J(T ) we may find a cycle C′ and J ′ ∈ J(T ) such that J ′ ∩ C′ = ∅ and

J�C0 ⊃ J ′�C′ = J ′ ∪ C′.
Applying Lemma 4.1 with

Y = C,Z = J(T ) and Y = C0,

we have

J ∩ C0 = ∅ for every J ∈ J(T ),

contradicting the hypothesis of the lemma. �

We have seen in Corollary 3.4 that E may be written as the symmetric difference of (all) postman sets and (some)
cycles. We now show that we need not consider cycles if HO = ∅.

4.4 Theorem. Suppose O �= ∅ and let EO={e ∈ E: e ∈ P for some P ∈ P}. Then there exists {P1, P2, . . . , Ps} ⊂ P
with s odd and

EO = P1�P2� · · · �Ps .

If HO �= ∅, there also exist disjoint cycles C1, C2, . . . , Ct contained in HO such that

HO = C1� · · · �Ct ,

that is, HO is a union of disjoint cycles.
Therefore,

E = P1� · · · �Ps�C1� · · · Ct ,

where the cycles are pairwise disjoint and the postman sets do not intersect the cycles.

Proof. Since O �= ∅, there exists P1 ∈ P, P1 �= ∅, and E\P1 is a (possibly empty) disjoint union of cycles. By Lemma
4.2 each of these cycles is either contained in EO or in HO , and so we may write

E\P1 = C′
1� · · · �C′

r�C1� · · · Ct ,

where C′
i ⊂ EO for i = 1, . . . , r and Ci ⊂ HO for i = 1 . . . t .

By Lemma 4.3, for every i = 1, . . . , r we may find P2i and P2i+1 in P such that C′
i = P2i�P2i+1, hence

EO = P1� · · · �Ps ,

with s = 2r + 1, and

HO = C1� · · · �Ct ,

proving the result. �

Remark. The previous proof does not rely on the results by McKee and Woodall.
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5. T -joins and blocks

In this section we study the connection between the block structure of the graph G = (V , E) and the structure of
minimal T -joins of G, using the following definition for blocks, which differs from that given by West [5, p. 155]:

5.1 Definition. Given a graph G = (V , E), a set B ⊂ E is a block of G if B consists of either a single cut-edge, a
single loop, or the set of edges of a maximal 2-connected loopless subgraph of G.

Lemma 4.2 gives information about 2-connected subgraphs induced by blocks of G: either for any edge e in such
a block there exists J ∈ J(T ) with e ∈ J , or else the edges of the block do not intersect any minimal T -join. Since
loops are in no minimal T -join, the other interesting blocks to us are the cut-edges (bridges), and these are taken care
of by Lemma 5.3. To prove it, we will use the following well known result (see e.g. [1, p. 180]):

5.2 Lemma. If S ⊂ V and J is a T -join, then

|S ∩ T | ≡ |�(S) ∩ J | (mod 2),

where �(S) is the set of edges having exactly one endpoint in S.
In particular, if |S ∩ T | is odd then �(S) ∩ J �= ∅.

5.3 Lemma. Suppose J(T ) �= ∅.

(a) If e ∈ E is a cut-edge of G, then either e ∈ J for every T -join J or e /∈ J for every J ∈ J(T ).
(b) If e is not a cut-edge, then there exists a T -join J with e /∈ J .

Proof. Suppose e is a cut-edge such that e ∈ J for some J ∈ J(T ), and let u and v be its endpoints. If Gu = (Vu, Eu)

is the connected component of G′ = (V , E\{e}) containing u, then �(Vu) ∩ J = {e}, and therefore, by Lemma 5.2,
|Vu ∩ T | must be odd and e ∈ J ′ for every T -join J ′.

For the second part, if e is not a cut-edge, then there exists a cycle C with e ∈ C. If J ∈ J(T ) is such that e ∈ J ,
then J�C contains a minimal T -join J ′ with e /∈ J ′. �

Combining Lemmas 4.2 and 5.3 we have:

5.4 Theorem. ET is the union of some blocks of G, and HT is the union of the remaining blocks.

Since the blocks of the underlying graph are shared by T -joins for different T ’s, it is not surprising that we may use
them to relate minimal T -joins and postman sets:

5.5 Lemma. Let HO = {e ∈ E: e /∈ P for every P ∈ P}. Then for arbitrary T , either no minimal T -join intersects
HO or else every T -join does.

Proof. If O = ∅, then HO = E, and the result is obvious. So let us consider the case O �= ∅ and suppose there exist
J ∈ J(T ) and e ∈ HO ∩ J . We will show that every J ′ ∈ J(T ) must intersect HO .

If e ∈ J ′, then obviously J ′ intersects HO . Otherwise J�J ′ contains a cycle C such that e ∈ C ⊂ J�J ′. But C is
inside HO , and therefore J ′ has an edge in HO (C /⊂ J since J contains no cycles). �

5.6 Lemma. e ∈ E is a cut-edge if and only if e ∈ P for every P ∈ P.

Proof. Suppose e is a cut-edge. Then, since HO is a union of cycles or empty (Lemma 4.4), e /∈ HO . This implies that
e is in some postman set, and by the first part of Lemma 5.3, that e ∈ P for every P ∈ P.

The converse is covered by the second part of Lemma 5.3. �

Let B1, B2, . . . , Br be the blocks of G = (V , E), and for i = 1, . . . , r let Oi be the set of odd-degree vertices of
Gi = (Vi, Bi), where Vi is the set of endpoints of the edges in Bi .
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Since the Bi’s are pairwise disjoint, we may write E = B1� · · · �Br and therefore O(G) = O1� · · · �Or . Hence,
if Pi is the family of postman sets in Gi and for each i = 1, . . . , r we choose Pi ∈ Pi ,

P1� · · · �Pr = P1 ∪ · · · ∪ Pr

will be a postman set in G since it is an O-join having no cycles (if it contained one, it would be inside a block and
hence contained in one of the Pi’s).

Suppose now P ∈ P and the block Bi consists of a single edge e. If e is a loop then Pi = {∅} and e /∈ P , i.e.
Pi =∅=P ∩Bi is the only postman set in Gi . On the other hand, if e is a cut-edge in G, Pi ={e} is the unique postman
set in Pi by Lemma 5.6, and since e ∈ P we have Pi = P ∩ Bi .

If Gi is 2-connected, we see that E\P is a union of disjoint cycles in G (P �= E, since Bi contains a cycle), so that
Bi ∩ (E\P) = Bi\P is also a union of disjoint cycles in Gi , and therefore Bi ∩ P is an Oi-join which must contain a
postman set Pi ∈ Pi .

Taking the union (which equals the symmetric difference) of all Pi’s so constructed, we obtain a postman set in G

which is contained in P and therefore must be precisely P. Thus Pi = P ∩ Bi for all i = 1, . . . , r .
We sum up these findings in a theorem:

5.7 Theorem. There is a one to one correspondence between P and P1 × · · · × Pr , given by

P → (P ∩ B1, . . . , P ∩ Br) and (P1, . . . , Pr) → P1� · · · �Pr .

Consequently, if E′ is the union of some of the blocks of G and G′ = (V , E′), then P ∩ E′ is a minimal O(G′)-join
for every P ∈ P.

Remark. We may have Pi = {∅}—when the corresponding Gi is Eulerian—and this is the case if and only if Bi is
one of the blocks forming HO .

6. Postman sets

Let us denote by R the symmetric difference O�T (which may be empty), and by J(R) the corresponding clutter
of minimal R-joins (with possibly J(R) = {∅}). We have:

6.1 Theorem. If J(T ) �= ∅ and GT = (V , ET ), then the following conditions are equivalent:

(i) T is the set of odd-degree vertices of (V , ET ), i.e. J(T ) is the set of postman sets of GT .
(ii) ET = J1�J2� · · · �Js , for some {J1, J2, . . . , Js} ⊂ J(T ) and odd s.

(iii) |J(T )| is odd, and ET = J1�J2� · · · �Js for some {J1, J2, . . . , Js} ⊂ J(T ).
(iv) For every P ∈ P there exists J ∈ J(T ) such that J ⊂ P .
(v) For every P ∈ P there exist JP ∈ J(T ) and DP ∈ J(R) such that JP and DP are disjoint and P = JP ∪ DP .

(iv) E is the disjoint union of ET , ER and HO .
(vii) ET and ER are disjoint.

Proof. (ii) Follows from (i) by Theorem 4.4, and if (ii) holds, then ET is a T -join, which implies O(GT ) = T and (i).
Thus, (i) and (ii) are equivalent.

By Corollary 3.5, (iii) follows from (i) and (ii). Conversely, (iii) implies (i): by Theorem 3.1, ET is the symmetric
difference of all minimal T -joins and some cycles in GT , and since |J(T )| is odd, ET is both an O(GT )-join and a
T -join, which implies (i).

Let us now show the implications (i) ⇒ (iv) ⇒ (v) ⇒ (vi) ⇒ (vii) ⇒ (i).
The block decomposition given in Theorem 5.4 tells us that each of the blocks B1, . . . , Br of G is contained in either

ET (intersecting every T -join) or HT (intersecting no minimal T -join). By Theorem 5.7, we know that for given P ∈ P
and i (1� i�r), P ∩ Bi ∈ Pi . By the same Theorem applied now to the graph GT = (V , ET ), we see that

J =
⋃

i:Bi⊂ET

P ∩ Bi
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(that is, J = �i:Bi⊂ET
P ∩ Bi) is a postman set in GT . Thus, if T = O(GT ), then J = P ∩ ET is a T -join in GT , so

that (i) implies (iv).
Suppose now (iv) holds and for given P ∈ P, let J be a T -join contained in P. Since P has no cycles, J is minimal

and—even more—is the unique T -join contained in P, since if there were two, their symmetric difference would contain
a cycle inside P. Let us denote by JP this unique (minimal) T -join.

If R = O�T , we observe that DP = P�JP is an R-join contained in P, and by the argument just used for JP , we
obtain that DP ∈ J(R) and that DP is the only R-join contained in P, so that (iv) implies (v).

We will now show that if (v) holds, then J ∩D =∅ for every J ∈ J(T ) and D ∈ J(R).1 This follows from Lemma
4.1 by considering for fixed J ∈ J(T ):

Y = J(T ), Z = J(R) and Y = J ,

and observing that given D ∈ Z, the O-join J�D contains a postman set P, which may be written as JP ∪ DP (by
(v)), with JP ∈ J(T ), DP ∈ J(R) and JP ∩ DP = ∅. Therefore

ET ∩ ER = ∅, (6.1)

since no e ∈ E may be simultaneously in a minimal T -join and a minimal R-join.
Moreover, by Lemma 5.5, we know that either HO intersects every minimal T -join or it intersects none. Since

JP ∩ HO = ∅, we must have J ∩ HO = ∅ for all J ∈ J(T ), and thus

ET ∩ HO = ∅. (6.2)

Similarly, since in Lemma 5.5 T is arbitrary, we may apply the same reasoning with T replaced by R (by the symmetry
in condition (v)), so that

ER ∩ HO = ∅. (6.3)

Observing that every postman set is the disjoint union of a minimal T -join and a minimal R-join, we see that EO is
the disjoint union of ET and ER . Finally, since by definition EO ∪ HO = E, we must have

E = ET ∪ ER ∪ HO . (6.4)

From Eqs. (6.1)–(6.4), we see that (v) implies (vi).
(vi) clearly implies (vii).
If (vii) holds then for J ∈ J(T ) and D ∈ J(R) it must be that J ∩ D = ∅. Hence P = J�D = J ∪ D is an O-join

which has no cycles since the blocks forming ET and ER are disjoint. So P ∈ P. Also since J ⊂ ET , D ⊂ ER and
ET ∩ ER = ∅, we have J = P ∩ ET , that is, J is the restriction of P to the blocks forming ET . So by the last part of
Theorem 5.7, O(GT ) = T which is (i). �

Remark. Guenin in [2] gives another characterization of postman sets. By defining T -cuts to be sets of the form �(U)

with |U ∩T | odd, when T �= ∅ we have T =O if and only if every T -cut (minimal or not) has an odd number of edges.
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1 Notice that this is actually condition (vii).
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