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Abstract

Estimation in the context of functional data analysis is almost always non parametric, since

the object to be estimated lives in an infinite dimensional space. That is the case for the

functional linear model with a real response and a process as covariables. In a recent paper

Ferré and Yao state that the estimation of the Effective Dimension Reduction (EDR) subspace

via SIR has parametric order. We will show in this note that a strong condition is needed for

their statement to be true.

keywords and phrases: Dimension Reduction, Functional Data Analysis, Inverse regression

1 Introduction

Functional sliced inverse regression is the generalization of slice inverse regression (SIR; Li, 1991)

to the infinite dimensional setting. Functional SIR was introduced by Dauxois, Ferré and Yao

(2001), and Ferré and Yao (2003). Those papers show that root-n consistent estimators can not

be expected. Ferré and Yao (2005) claimed a new method of estimation that is root-n consistent.

We argue that their results is not true under the conditions that they stated, but may be so when

the covariance operator Γ of the covariable X is restricted. More specifically, root-n consistency

may be achievable when Γ has an spectral decomposition with eigenfunctions of the covariance

operator Γe of E(X|Y ) or of the orthogonal complement of Γe. The EDR subspace can then be

estimated as the span of the eigenfunctions of Γe, and therefore root-n consistency follows from

the root-n consistency of principal component analysis for functional data (Dauxois, Pousse, and

Romain, 1982).

2 The setting in Ferré and Yao (2005)

Let (X, Y ) be a random variable that takes values in L2[a, b]×R. X is a centered stochastic process

with finite fourth moment. Then the covariance operators of X and E(X|Y ) exist and are denoted

Γ and Γe, and Γ is a Hilbert-Smith operator that is assumed to be positive definite.
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Ferré and Yao (2005) assume the usual linearity condition for sliced inverse regression extended

to functional data in the context of the model

Y = g(〈θ1, X〉, . . . , 〈θD, X〉, ε),

where g is a function in L2[a, b], ε is a centered real random variable, θ1, . . . , θD are D indepen-

dent functions in L2[a, b] and 〈, 〉 indicates the usual interior product in L2[a, b]. They called

span(θ1, . . . , θD) the Effective Dimension Reduction (EDR) subspace. Then, under their linearity

condition the EDR subspace contains the Γ-orthonormal eigenvectors of Γ−1Γe associated with

the positive eigenvalues. If an additional coverage condition is assumed then a basis for the EDR

subspace will be the Γ-orthonormal eigenvectors of Γ−1Γe associated with the D positive eigen-

values. Therefore the goal is to estimate the subspaces generated by those eigenvectors. Since Γ

is one-to-one and because of the coverage condition, the dimensions of R(Γe) and R(Γ−1Γe) are

both D. Here, R(B) denotes the range of an operator B, which is the set of functions B(f) with

f belonging to the domain T (B) of the operator B.

To estimate Γe it is possible to slice the range of Y (Ferré and Yao, 2003) or to use a kernel

approximation (Ferré and Yao, 2005). Under the conditions on the model, L2 consistency and the

central limit theorem follow for the estimators of Γe. To approximate Γ, in general, the sample

covariance operator is used and consistency and central limit theorem for the approximation of Γ

follow (Dauxois, Pousse and Romain, 1982).

In a finite-dimensional context, the estimation of the EDR space does not pose any problem

since Γ−1 is accurately estimated by the inverse of the empirical covariance matrix of X. This

is not true for functional inverse regression when, as assumed by Ferré and Yao (2005), Γ is a

Hilbert-Schmidt operator with infinite rank: the inverse is ill-conditioned if the range of Γ is not

finite dimensional. Regularization of the Γ̂ can be used to overcome this difficulty. Estimation of

Γe is easier, since Γe has finite rank. Because of the non continuity of the inverse of a Hilbert-Smith

operator, Ferré and Yao (2003) can not get a root-n consistent estimator of the EDR subspace. To

overcome that difficulty Ferré and Yao (2005, Section 4) made the following comment:

Under our model, Γ−1Γe has finite rank. Then, it has the same eigen subspace associated

with positive eigenvalues as Γ+
e Γ, where Γ+

e is a generalized inverse of Γe.

They use this comment to justify estimating the EDR subspace from the spectral decomposition

of a root-n consistent sample version of Γ+
e Γ. However, the conclusion – R(Γ−1Γe) = R(Γ+

e Γ) – in

Ferré and Yao’s comment is not true in the context used by them, but may hold in a more restricted

context. More specifically, additional structure seems necessary to equate R(Γ+
e Γ), the space that

can be estimated, with R(Γ−1Γe) the space that we wish to know. For clarity and to study the

implications of Ferré and Yao’s claim we will use
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Condition A: R(Γ−1Γe) = R(Γ+
e Γ).

Condition A is equivalent to Ferré and Yao’s claim stated previously. If Condition A were

true then it would seem possible to estimate the eigenvectors of Γ−1Γe more directly by using

eigenvectors of the operator Γe. In the next section we give justification for these claims, and

provide necessary conditions for regressions in which Condition A holds.

3 The results

We first give counter examples to show that Condition A is not true in the context used by Ferré

and Yao (2005), even in the finite dimensional case. Consider

Γ =

2 1

1 4

 and Γe =

2 0

0 0

 ,

then R(Γ−1Γe) = span((4,−1)′) but R(Γ+
e Γ) = span((1, 0)′) and so R(Γ−1Γe) 6= R(Γ+

e Γ).

For the infinite dimensional case we consider L2[0, 1] and any orthonormal basis {φi}∞i=1 of

L2[0, 1]. We define f =
∑∞

i=1 aiφi with ai 6= 0 and
∑∞

i=1 a2
i < ∞. We define Γ as the operator in

L2[0, 1] with eigenfunctions φi and corresponding eigenvalue λi. We ask that λi > 0 for all i and∑∞
i=1 λ2

i < ∞. These conditions guarantee that Γ is a Hilbert-Smith operator and strictly positive

definite. Let h = Γ(f); by definition, h ∈ T (Γ−1). Now h /∈ span(f). In fact, suppose h = cf . Then

h = Γ(f) =
∞∑
i=1

λi〈f, φi〉φi = c
∞∑
i=1

〈f, φi〉φi.

Now, since 〈f, φi〉 = ai 6= 0 for all i we have λi = c for all i, contradicting the fact that
∑∞

i=1 λ2
i < ∞.

Define the operator Γe to be the identity operator in span(h) and 0 in span(h)⊥. The generalized

inverse of such operator coincides with Γe. Now, R(Γ−1Γe) = span(f) and R(Γ+
e Γ) = span(h) and

from the fact that h /∈ span(f) we get R(Γ−1Γe) 6= R(Γ+
e Γ).

The next three lemmas give implications of Condition A.

Lemma 1. If Condition A holds then R(Γe) = R(Γ−1Γe).

Proof. Given a set B ⊂ L2[0, 1], let us denote by B⊥ its orthogonal complement using the usual

interior product in L2[a, b]. The closure of the set B, denoted by B̄, will be the smallest closed set

(using the topology defined through the usual interior product) containing B. For an operator B

from L2[a, b] into itself, let B∗ denote its adjoint operator, again using the usual interior product.

Let {β1, . . . , βD} denote the D eigenfunctions, with eigenvalues nonzero, of Γ+
e Γ. If Condition

A is true then

span(β1, . . . , βD) = R(Γ−1Γe) = R(Γ+
e Γ) ⊂ R(Γ+

e ).
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By definition of generalized inverse (Groetsch, 1977) we have

R(Γ+
e ) = N(Γe)⊥ = R(Γ∗e) = R(Γe) = R(Γe)

where we use the fact that Γe is self-adjoint and the fact that R(Γe) has dimension D and therefore

is closed. Since R(Γe) has dimension D, the result follows.

Lemma 1 shows that we can construct span(β1, . . . , βD) from the D eigenfunctions of Γe asso-

ciated with nonzero eigenvalues. From Daxouis, Pousse and Romain (1982), the eigenvectors of the

approximate Γn
e converge to the eigenvectors of Γe at the root-n rate (Γn

e and Γe have finite rank

D and therefore they are compact operators). Therefore we can approximate span(β1, . . . , βD) at

the same rate. Let us note that the D eigenfunctions of Γe need not be Γ-orthogonormals.

Lemma 2. Under Condition A we have R(ΓΓe) ⊂ R(Γe).

Proof. Since Γ is one to one, R(Γ) = L2[a, b]. On the other hand, by hypothesis, R(Γe) ⊂ T (Γ−1).

From the definition of the inverse of an operator (Groetsch, 1977) we have that ΓΓ−1 = Id in

T (Γ−1), where Id indicates the identity operator. Now, let us take v ∈ R(ΓΓe). Then v = ΓΓew for

some w ∈ L2[a, b] and therefore Γ−1v = Γew = Γ−1Γeh for some h ∈ L2[a, b] (this last inequality

follows from Lemma 1). Since Γ−1 is one to one (in its domain) we get v = Γeh ∈ R(Γe).

In mathematical terms, R(ΓΓe) ⊂ R(Γe) implies that R(Γe) is an invariant subspace of the

operator Γ (see Conway, 1990, page 39). That, in turn, implies that Γ has a spectral decomposition

with eigenfunctions that live in R(Γe) or its orthogonal complement, as indicated by the following

lemma, the finite dimensional form of which was stated by Cook, Li and Chiaromonte (2006).

Lemma 3. Suppose Condition A is true. Then Γ has a spectral decomposition with eigenfunctions

on R(Γe) or R(Γe)⊥.

Proof. Let v be an eigenvector of Γ associated to the eigenvalue λ > 0. Since R(Γe) is closed (for

being finite dimensional), v = u + w with u ∈ R(Γe) and w ∈ R(Γe)⊥. Since from Lemma 2,

Γu ∈ R(Γe) and Γw ∈ R(Γe)⊥ we have that u and w are also eigenvectors of Γ if both u and w are

different from zero. Otherwise v belongs to R(Γe) or R(Γe)⊥.

Now, let {vi}∞i=1 be a spectral decomposition of Γ. We can assure that there is a enumerable

quantity since Γ is compact in L2[0, 1]. From what we said above vi = ui + wi with ui and wi

eigenvectors in R(Γe) and R(Γe)⊥ respectively. Now, we consider {ui : ui 6= 0} and {wi : wi 6= 0}.
Clearly they form a spectral decomposition of Γ with eigenfunctions on R(Γe) or R(Γe)⊥.
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4 Conclusions

SIR has proven to be a useful method in finite dimensions. One of its advantages is that it yields a

root-n consistent estimator of the EDR subspace without pre-specifying a parametric model. In the

functional case, on the other hand, one needs to estimate the inverse of a Hilbert-Smith operator

with infinite rank. Consequently functional SIR would not normally yield a root-n consistent

estimator, and we were surprised to see Ferré and Yao’s (2005) claim of root-n consistency. It turns

out that their result is not generally true but may hold in a more restricted context.

We proved that a sufficient condition to achieve root-n consistency is that the covariance of

the covariables has an spectral decomposition with eigenfunctions living either in the range of the

covariance of the expectation of the covariables given the response or in its orthogonal complement.

As a consequence a more direct estimation of such subspace is possible.

Since FDA is a relative new area, we do not know if Condition A is generally reasonable in

practice. Further study is needed to resolve such issues.
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