
COMPOSITION OF OPERATORS IN ORLICZ SPACES

B. BONGIOANNI AND E. HARBOURE

Abstract. In this work we find sharp conditions for boundedness on Orlicz
spaces of the composition of j operators, each one being of restricted weak

type (p, p) for some p > 1, and of strong type (∞,∞). Particularly, we find

necessary and sufficient conditions to obtain modular inequalities for the j-
times composition of the Cesàro Maximal function of order α. With this

approach we treat a kind of strong maximal function related to Cesàro averages
over n-dimensional rectangles.

1. Introduction

Let (Ω, µ) be a measure space and M(Ω) the space of measurable functions. Let
j ∈ N and T1, T2, . . . , Tj , be sublinear operators defined on M(Ω), so that all of
them are of strong type (∞,∞), and for a given p ≥ 1, of restricted weak type (p, p),
1 ≤ k ≤ j, that is, there exist constants Ak and Bk such that for any measurable
function f ∈ M(Ω)

‖Tkf‖∞ ≤ Ak‖f‖∞,
and

µTkf (s) ≤
(

Ak

s

∫ ∞

0

µ
1/p
f

)p

for all s > 0,

where µg denotes the distribution of a measurable function g.
It is well known that for a sublinear operator T these two conditions can be

expressed in just one inequality, namely

(1) µTf (t) ≤

(
C

t

∫ ∞

t/C

µf (s)1/pds

)p

for all t > 0,

where C is a constant independent of f and t.
In turn, the last inequality is equivalent to

(2) (Tf)∗(t) ≤ C
1

t1/p

∫ t

0

f∗(s)s
1
p−1ds ,

where g∗ denotes the rearrangement of a measurable function g (see for example
[1]).

Observe that the right hand side of (2) is the modified Hardy operator, Hp

defined in (22) below, acting on the rearrangement of f . Furthermore, for this
operator, inequality (2) is known to be an equivalence.

As we shall see these and even more general Hardy type operators will play a
central role in modelling our situation and in obtaining the main results.
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Now we remind the definition of Orlicz spaces. Let Ψ : [0,∞] → [0,∞] an
increasing function such that limt→0 Ψ(t) = 0 and limt→∞ Ψ(t) = ∞. The set of
functions

LΨ(Ω) = {f ∈ M(Ω) :
∫

Ω

Ψ(ε |f |) dµ < ∞ for some ε > 0 }

is called Orlicz space associated to Ψ.
In this work we are interested in boundedness properties in Orlicz spaces for the

composition operator

(3) T1 ◦ T2 ◦ · · · ◦ Tj ,

where Tk, 1 ≤ k ≤ j, satisfies the above conditions.
In [6], Neuguebauer deals with modular inequalities for a finite iterated composi-

tion of a single operator that behaves like the Hardy-Littlewood maximal function,
that is, of strong type (∞,∞) and of weak type (1, 1). Such composition may
no longer be weak type (1, 1) and therefore classical interpolation results can not
be applied directly. However, they satisfy more general weak type inequalities like
those introduced in [3]. In fact, Theorem 2 in [6] might be derived from the results
in [3] after using Lemma 1 in [6].

In this paper we will give answers to the problem of finding modular inequalities
for the composition operator (3). Since for p = 1, weak type (p, p) and restricted
weak type (p, p) are the same, we deal with the case p > 1. Other classical operators
that satisfy the assumptions made on Tk are the one sided Cesàro maximal function
operators of order α = 1

p , defined for f ∈ M([0, 1]) and x ∈ [0, 1] by

(4) M−
α f(x) = sup

0≤c<x

1
(x− c)α

∫ x

c

|f(s)|(s− c)α−1ds

taking averages to the left, and

(5) M+
α f(x) = sup

x<c≤1

1
(c− x)α

∫ c

x

|f(s)|(c− s)α−1ds

taking averages to the right (see [5]). Let us notice that the case α = 1 gives the
one sided Hardy-Littlewood maximal functions.

We start by giving in Section 2 an estimate for the distribution function of the
composition operator. This formula leads us to consider operators satisfying more
general inequalities of this type (see (7)). These inequalities can be seen as the
restricted weak type version of the ones appearing in [3]. In Section 3 we give
modular inequalities for operators satisfying such general conditions and we apply
the general result to obtain boundedness properties for the composition operator.
Further, we show that the obtained modular inequalities are the best possible. As
an application of these results, in Section 4 we deal with a kind of strong maximal
function related with Cesàro averages over a family of rectangles on Rn.

2. A distribution estimate

For clearness we will deal with the case when T1, T2, . . . , Tj , are all the same
operator, Tk = T for k = 1, 2, . . . , j. It is easy to modify the notation in the proofs
of theorems and lemmas in this paper in order to obtain the same conclusions for
the operator (3) when the T1, T2, . . . , Tj , are not necessarily the same.
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Let T (j) =

j times︷ ︸︸ ︷
T ◦ · · · ◦ T be the j-times composition of the operator T . Following

[6], next Lemma gives us an estimate for the distribution of T (j)f for the case p > 1.

Lemma 1. Let p ≥ 1. If the operator T satisfies (1) then, T (j) satisfies

(6) µT (j)f (t) ≤
[

1
(j − 1)!t

∫ ∞

t

µf (s/Cj)1/p [log(s/t)](j−1)
ds

]p

for all t > 0.

Proof. We proceed by induction on the number of iterations. For j = 1, inequalities
(6) are (1) are the same. Now, suppose (6) is satisfied for some j ≥ 1. If we call
g = T (j)f ,

µ({|T (j+1)f | > t}) = µ({|Tg| > t})

≤

[
C

t

∫ ∞

t/C

µg(s)1/pds

]p

and the last term is bounded by[
C

t

∫ ∞

t/C

1
(j − 1)!s

∫ ∞

s

µf (r/Cj)1/p [log(r/s)](j−1)
dr ds

]p

.

From Fubini-Tonelli’s theorem, we have[
C

(j − 1)!t

∫ ∞

t/C

µf (r/Cj)1/p

∫ r

t/C

1
s

[log(r/s)](j−1)
ds dr

]p

.

Performing the inner integral in the last expression we obtain[
C

j!t

∫ ∞

t/C

µf (r/Cj)1/p [log(Cr/t)]j dr

]p

,

which is the same as the second term of (6), after a change of variables.
�

3. Modular inequalities

Inequality (6) yields to consider operators T satisfying for some p > 1 and a
constant C,

(7) µTf (t) ≤

[
C

t

∫ ∞

t/C

µf (s)1/pw(s/t) ds

]p

for all t > 0,

where w : [1,∞) → [0,∞) is continuous. Even tough we are interested in the case
w(s) = logj−1(s) there is no loss of clearness in working with a general w.

In what follows a : [0,∞) → (0,∞) and b : [0,∞) → (0,∞) will be continuous
functions, with

∫∞
1

a = ∞ and b increasing. Let

Φ(t) =
∫ t

0

a(s) ds and Ψ(t) =
∫ t

0

b(s) ds,

for all t ≥ 0.
Since the more interesting applications concern the local behavior of Tf we shall

work on a space Ω of finite measure. In this case the small values of t are irrelevant
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either in in condition (7) or in the definition of Ψ and Φ. Later, at the end of this
section we present the corresponding results for Ω not necessarily of finite measure.

Theorem 1. Let Ω be a finite measure space and T a sublinear operator satisfying
(7). If there exists a constant C such that

(8) sup
t>1

(∫ t

1

a(s)
sp

wp(t/s) ds

)1/p(∫ ∞

t

b(C s)−p′/p ds

)1/p′

< ∞

then, there exists a constant C ′ such that∫
Ω

Φ(|Tf |) dµ ≤ C ′ + C ′
∫

Ω

Ψ(C ′ |f |) dµ

for all f ∈ M(Ω).

Proof. Let f be a function in the domain of T . From (7),∫
Ω

Φ(|Tf |)dµ =
∫ ∞

0

a(s)µTf (s)ds

≤
(∫ 1

0

+
∫ ∞

1

)
a(s)µTf (s)ds

is bounded by

Φ(1)µ(Ω) +
∫ ∞

1

a(s)
sp

[∫ ∞

s

µf (t/C)1/pw(t/s) dt

]p

ds,

for some constant C. Now, if we call

h(t) =
[∫ ∞

t

b(Cr)−p′/pdr

]1/pp′

and g(t) = [µf (t/C)b(Ct)]1/p,

from Hölder’s inequality,∫ ∞

1

a(s)
sp

[∫ ∞

s

µf (t/C)1/p w(t/s)dt

]p

ds =

=
∫ ∞

1

a(s)
sp

[∫ ∞

s

g(t)w(t/s)h(t)
1

h(t)b(Ct)1/p
dt

]p

ds

can be bounded by∫ ∞

1

a(s)
sp

[∫ ∞

s

[g(t) w(t/s) h(t)]p dt

][∫ ∞

s

b(Cr)−p′/ph(r)−p′dr

]p/p′

ds .

If we apply Fubini-Tonelli’s Theorem, the last expression is∫ ∞

1

[g(t) h(t)]p
∫ t

1

a(s)
sp

wp(t/s)
[∫ ∞

s

b(Cr)−p′/ph(r)−p′dr

]p/p′

ds dt.

Integrating by parts, we have

(9)
∫ ∞

s

b(Cr)−p′/ph(r)−p′dr = p′
[∫ ∞

s

b(Cr)−p′/pdr

]1/p′
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and

(10)
∫ t

1

a(s)
sp

wp(t/s)
[∫ s

1

a(r)
rp

wp(s/r) dr

]−1/p′

ds =

= p

[∫ t

1

a(r)
rp

wp(t/r) dr

]1/p

.

Now, identity (9) and inequality (8) gives∫ t

1

a(s)
sp

wp(t/s)
[∫ ∞

s

b(Cr)−p′/ph(r)−p′dr

]p/p′

ds =

= (p′)p/p′
∫ t

1

a(s)
sp

wp(t/s)
[∫ ∞

s

b(Cr)−p′/pdr

]p/(p′)2

ds

≤ (p′)p/p′Cp/p′
∫ t

1

a(s)
sp

wp(t/s)
[∫ s

1

a(r)
rp

wp(s/r) dr

]−1/p′

ds,

and from identity (10) the last expression is a constant times[∫ t

1

a(r)
rp

wp(t/r) dr

]1/p

≤ C

[∫ ∞

t

b(Cr)−p′/pdr

]−1/p′

= Ch(t)−p,

where the last inequality is due to (8). Therefore,∫
Ω

Φ(|T (j)f |)dµ ≤ Φ(1)µ(Ω) + p(p′)p/p′Cp

∫ ∞

1

µf (t/C)b(Ct)dt

≤ Φ(1)µ(Ω) + p(p′)p/p′Cp−1

∫
Ω

Ψ(C2f)dµ,

and the proof is finished.
�

As a consequence of Lemma 1 and Theorem 1 for the case w(s) = log(j−1)(s), we
obtain modular inequalities for the j-times composition of an operator of restricted
weak type (p, p) and strong type (∞,∞).

Theorem 2. Let Ω be a finite measure space, p > 1, and T an operator that
satisfies inequality (1). If for some constant C, a and b satisfy

(11) sup
t>1

(∫ t

1

a(s)
sp

logp(j−1)(t/s) ds

)1/p(∫ ∞

t

b(C s)−p′/p ds

)1/p′

< ∞

then, there exists a constant C ′ such that∫
Ω

Φ(|T (j)f |) dµ ≤ C ′ + C ′
∫

Ω

Ψ(C ′ |f |) dµ

for all f ∈ M(Ω).

In order to show that condition (8) is the best possible we introduce a Hardy
type operator for which (7) holds with equivalence. If p > 1, w : [1,∞) → [0,∞)
is non-decreasing and f is an integrable function of [0, 1], we define the operator

T w
p f(x) =

1
p x1/p

∫ x

0

f(s) s
1
p−1 w(x/s) ds for all x ∈ [0, 1].
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We will need the following lemma.

Lemma 2. If f is non-increasing, then T w
p f is also non-increasing.

Proof. Let x, y ∈ [0, 1] and x < y. By a change of variables, since f is non-
increasing, we have

T w
p f(x) =

1
x1/p

∫ x

0

f(s) s1/p−1 w(x/s) ds

=
1

y1/p

∫ y

0

f

(
x

y
t

)
t1/p−1w(y/t) dt

≥ 1
y1/p

∫ y

0

f(t) t1/p−1w(y/t) dt = T w
p f(y).

�

Theorem 3. If b is monotone and for some constant C,

(12)
∫ 1

0

Φ(|T w
p f(x)|) dx ≤ C + C

∫ 1

0

Ψ(C |f(x)|) dx for all f ∈ M([0, 1]),

then the functions a and b satisfy (8).

Proof. We deal first with the case when b has the property that there exists a
constant C1 such that

(13) w(t)
(∫ ∞

t

b(Cs)−p′/pds

)1/p′

≤ C1 for all t > 1.

Fix t > 1 and let

ht(s) =
1
At

b(Cs)−p′ s > 0,

with At = t b(Ct)−p′/p +
∫∞

t
b(Cs)−p′/pds. The fact that b is monotone and (13),

implies b is non-increasing and lim
s→∞

b(s) = ∞. Thus, ht is non-decreasing, and also

lims→∞ ht(s) = 0 and h−1
t (s) is well defined for s > 0.

Now, consider the function ft ∈ M([0, 1]) defined by

ft = h−1
t χ(0,ht(t)).

Observe that, if (12) is satisfied with a constant C, then it is also satisfied with any
constant greater than C. Hence, we can assume b(C) ≥ 1, and

ht(t) =
1
At

b(Ct)−p′ ≤ 1
tb(Ct)

≤ 1.

Then, ht(t) is in the interval [0, 1].
The distribution of ft is

µft(s) =

{
ht(t) for 0 < s ≤ t

ht(s) for s > t.
(14)



COMPOSITION OF OPERATORS IN ORLICZ SPACES 7

Then, as b is non-decreasing, we have

1
C

∫ 1

0

Ψ(C|ft(x)|) dx =
∫ ∞

0

b(Cs)µft(s) ds

≤ tb(Ct)ht(t) +
∫ ∞

t

b(Cs)ht(s) ds

≤ 1
At

[
tb(Ct)−p′/p +

∫ ∞

t

b(Cs)−p′/p ds

]
≤ 1,

and thus

(15) C + C

∫
[0,1]

Ψ(C|ft|) ≤ C + C2.

On the other hand,∫ 1

0

Φ(|T w
p ft(x)|)dx =

∫ ∞

0

a(s)µT w
p ft

(s) ds

≥
∫ t

1

a(s)µT w
p ft

(s) ds.

(16)

If s > T w
p ft(1), by Lemma 2, the function T w

p ft non-increases, then there exists
xs ∈ [0, 1], so that

{x : T w
p ft(x) > s} = [0, xs),

and since T w
p is continuous,

(17) s = T w
p ft(xs) =

1
xs

1/p

∫ xs

0

ft(y) y
1
p−1 w(xs/y) dy.

If s < t, and as ft ≤ T w
p ft, we have

xs ≥ xt ≥ µft
(t) = ht(t).

Then, since w increases, from (17) we have

xs ≥

(
w(xs/xt)

s

∫ ht(t)

0

ft(y) y
1
p−1 dy

)p

.(18)

If T w
p ft(1) < s < t,

xs

xt
=

(
t
∫ xs

0
f(y) y

1
p−1 w(xs/y) dy

s
∫ xt

0
f(y) y

1
p−1 w(xt/y) dy

)p

≥
(

t

s

)p

>
t

s
.

Hence, from (18) it follows

(19) xs ≥

(
w(t/s)

s

∫ ht(t)

0

ft(y) y
1
p−1 dy

)p

.
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From the definition of ft,∫ ht(t)

0

ft(y) y
1
p−1 dy = t ht(t)1/p +

∫ ∞

t

ht(r)1/p dr

= A
1/p′

t

≥
(∫ ∞

t

b−p′/p(Cr)dr

)1/p′

.

Then, by inequality (19),

xs ≥
wp(t/s)

sp

(∫ ∞

t

b−p′/p(Cr)dr

)p/p′

for all s ∈ (T w
p ft(1), t).

If s ∈ (1, T w
p ft(1)), µT w

p ft(s) = 1, by (13) and w non-decreasing,

1 ≥ 1
Cp

1

wp(t)
(∫ ∞

t

b−p′/p(Cr)dr

)p/p′

≥ 1
Cp

1

wp(t/s)
sp

(∫ ∞

t

b−p′/p(Cr)dr

)p/p′

,

and thus, there exists a constant C2 such that

(20) µT w
p ft(s) ≥

1
C2

wp(t/s)
sp

(∫ ∞

t

b(Cr)−p′/p dr

)p/p′

for all 1 < s < t.

Therefore, from (12), (15), (16) and (20) we get (8).
In order to finish the proof of this theorem, it remains to consider the case when

the function b does not have the property (13). In the case∫ ∞

1

b−p′/p = ∞,

following the example in [2], we consider

f = h−1χ[0,1]

where

h(x) =
b(x)−p′(∫ x

1/2
b−p′/pds

)p x ≥ 1,

and, as it was shown there, ∫ 1

0

f(r)r1/p−1dr = ∞.

Since
∫ 1

0
f(r)r1/p−1dr ≤ T w

p f(1) ≤ T w
p f(x) for all x ∈ [0, 1], the left side of (12) is

infinite.
The remaining case is when

(21)
∫ ∞

1

b−p′/p < ∞.

Thus, we can choose an increasing sequence of numbers tn for n = 1, 2, . . . , so that

w(tn)
(∫ ∞

tn

b(s)−p′/pds

)1/p′

≥ n.
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Also, as b is monotone and satisfies (21) it must be non-decreasing, and so we can
choose t1 ≥ 1 and b(t1) ≥ 1.

We will see that the operator T w
p can not satisfy (12) for any Φ increasing.

For n = 1, 2, . . . let

hn(s) =
b(s)−p′

An
for all s ≥ 0,

with An = tn b(tn)−p′/p +
∫∞

tn
b(s)−p′/pds, and consider the function

fn(x) = h−1
n (x)χ[0,hn(tn))(x)

for all x in the interval [0, 1]. Since b(t1) ≥ 1,

hn(tn) =
b(tn)−p′

An
≤ 1

tn b(tn)
≤ 1

tn

and due to t1 ≥ 1 and tn ≥ t1, the number hn(tn) is a point of [0, 1].
In the same way as before, from the expression of the distribution of fn,∫ 1

0

Ψ(|fn(x)|)dx =
∫ ∞

0

b(s)µfn
(s)ds

≤ hn(tn)
∫ tn

0

b(s)ds +
∫ ∞

tn

b(s)hn(s)ds

≤ 1
An

[
tnb(tn)−p′/p +

∫ ∞

tn

b(s)−p′/pds

]
≤ 1.

On the other hand, due to hn(tn) ≤ 1/tn,

T w
p fn(1) ≥ w(tn)

∫ hn(tn)

0

f(y) y
1
p−1 dy

= w(tn)A1/p′

n

≥ w(tn)
(∫ ∞

tn

b−p′/p(r) dr

)1/p′

≥ n.

and since T w
p fn is non-increasing,

T w
p fn(x) ≥ n for all x ∈ [0, 1].

Therefore, if we have (12), as T w
p is lineal, we would have

Φ
(

n

C (j − 1)! pj

)
≤
∫ 1

0

Φ(T w
p (fn(x)/C)) dx

≤ C + C

∫ 1

0

Ψ(fn(x))dx

≤ 2C

for all n ∈ N, and this is a contradiction because Φ is unbounded.
�



10 B. BONGIOANNI AND E. HARBOURE

A particular case of the operator T w
p , when w ≡ 1

p , is the operator

(22) Hpf(x) =
1

p x1/p

∫ x

0

f(y) y
1
p−1 dy.

It is easy to check that Hp is of restricted weak type (p, p) (but not of weak type
(p, p)) and strong type (∞,∞), then it satisfies inequality (1).

An other example of T w
p is the j-times composition of Hp as following lemma

shows.

Lemma 3. Let j ∈ N and f be an integrable function on [0, 1] with respect to the
Lebesgue measure. Then,

(23) H(j)
p f(x) =

1
(j − 1)!pj x1/p

∫ x

0

f(y) y
1
p−1 logj−1(x/y) dy,

for all x in [0, 1].

Proof. We proceed by induction. For j = 1, (23) is the definition of Hp. Suppose
that (23) is true for some j ≥ 1. Then, from Fubini-Tonelli’s Theorem, if x belongs
to [0, 1],

H(j+1)
p f(x) =

1
p x1/p

∫ x

0

H(j)
p f(y) y

1
p−1 dy

=
1

(j − 1)!pj+1x1/p

∫ x

0

1
y

∫ y

0

f(r) r
1
p−1 logj−1(y/r) dr dy

=
1

(j − 1)!pj+1x1/p

∫ x

0

f(r) r
1
p−1

∫ x

r

1
y

logj−1(y/r) dy dr

=
1

j!pj+1x1/p

∫ x

0

f(r) r
1
p−1 logj−1(x/r) dr.

�

From the previous lemma and Theorem 3 we obtain sharp modular inequalities
for j-times composition of Hp.

Theorem 4. Let p > 1 and b monotone. There exists a constant C, such that∫ 1

0

Φ(|H(j)
p f(x)|) dx ≤ C + C

∫ 1

0

Ψ(C |f(x)|) dx

for all f ∈ M([0, 1]) if, and only if, the functions a and b satisfy (11).

Now we present a result for the Cesàro operators.

Theorem 5. Let 0 < α < 1 and b monotone. There exists a constant C such that

(24)
∫ 1

0

Φ(|(M−
α )(j)f(x)|) dx ≤ C + C

∫ 1

0

Ψ(C |f(x)|) dx

for all f ∈ M([0, 1]) if, and only if, for some constant C ′

(25) sup
t>1

(∫ t

1

a(s)
s1/α

log
j−1

α (t/s) ds

)α(∫ ∞

t

b(C ′ s)−
α

1−α ds

)1−α

< ∞.

The same holds for M+
α .
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Proof. As we have mentioned in the introduction, the operator M−
α is of restricted

weak type (1/α, 1/α) and strong type (∞,∞) and so it satisfies inequality (1).
Then, as consequence of Theorem 2 condition (25) implies (24). To see that con-
dition (25) is necessary we just observe that for x ∈ [0, 1], Hpf(x) ≤ M−

α f(x) and
then H(j)

p f(x) ≤ (M−
α )(j)f(x) for any j and then we can use Theorem 4.

The result for M+
α follows from the identity M+

α f(x) = M−
α g(1−x), with g(x) =

f(1− x), for all x ∈ [0, 1]; since f and g have the same distribution.
�

The results contained in this section have a corresponding version when Ω is
not of finite measure. Conditions about a and b like (8) and (11) changes because
the values of t near 0 may be important when Ω has not finite measure. Also the
wanted modular inequality is different. The results are presented without proofs in
the following theorems.

Theorem 6. Let Ω be a finite measure space, w : [1,∞) → [0,∞) continuous and
T : M(Ω) → M(Ω) an operator satisfying for some p > 1,

µTf (t) ≤
[
1
t

∫ ∞

t

µf (s)1/pw(s/t)ds

]p

for all t > 0.

If there exists a constant C such that

sup
t>0

(∫ t

0

a(s)
sp

wp(t/s) ds

)1/p(∫ ∞

t

b(C s)−p′/p ds

)1/p′

< ∞

then, there exists a constant C ′ such that∫
Ω

Φ(|Tf |) dµ ≤ C ′
∫

Ω

Ψ(C ′ |f |) dµ

for all f ∈ M(Ω).

If we consider the operators M−
α and M+

α defined over the whole real line (see
[5]) we have the analogous of Theorem 5.

Theorem 7. Let 0 < α < 1. There exists a constant C such that∫
R

Φ(|(M−
α )(j)f(x)|) dx ≤ C

∫
R

Ψ(C |f(x)|) dx

for all f ∈ M(R) if, and only if, for some constant C ′

sup
t>0

(∫ t

0

a(s)
s1/α

log
j−1

α (t/s) ds

)α(∫ ∞

t

b(C ′ s)−
α

1−α ds

)1−α

< ∞.

The same holds for M+
α .

4. The strong Cesàro maximal function on Rn

For a locally integrable function f and x ∈ Rn, the Hardy-Littlewood maximal
function operator over cubes is defined as

Mf(x) = sup
x∈Q

1
|Q|

∫
Q

|f(y)| dy

where the supremum is taken over all cubes Q with sides parallel to the coordinates
axes and containing x.
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If we take rectangles instead of cubes, the resulting operator is known as the
strong maximal function operator defined by

MSf(x) = sup
x∈R

1
|R|

∫
R

|f(y)| dy

where the supremum is taken over all rectangles R with sides parallel to the coor-
dinates axes and containing x.

We may write this maximal function as

MSf(x) = sup
ai<xi<bi

1∏n
i=1(bi − ai)

∫ b1

a1

∫ b2

a2

. . .

∫ bn

an

|f(y)| dyn . . . dy1

for all x = (x1, x2, . . . , xn) ∈ Rn.
It is well known that this operator is strong type (p, p) for all p > 1, nevertheless

it is not of weak type (1, 1). In [4] modular inequalities in Orlicz spaces are treated
for this operator.

In order to study α-Cesàro continuity in Rn we may deal with the Cesàro max-
imal function operator of order α in Rn defined for f ∈ M(Rn) and x ∈ Rn, as

(26) Mαf(x) = sup
x∈Q

α

|Q|(n−1+α)/n

∫
Q

|f(y)|d(y, Qc)α−1dy.

Here d(y, Qc) denotes the distance form the point y to the complement of Q,
and the supremum is taken over all cubes Q containing the point x and with sides
parallel to the coordinate axes.

When n = 1, for f ∈ M(R) and x ∈ R, (26) can be written as

Mαf(x) = sup
c<x<d

α

d− c

∫ d

c

|f(s)|
(

1− |2s− d− c|
d− c

)α−1

ds,

which is the bilateral version of the Cesàro maximal function operators (5) and (4).
Let f ∈ M(Rn) and x ∈ Rn, we define the strong Cesàro maximal function

operator of order α as

MS
α f(x) = sup

ci<xi<di

αn∏n
i=1(di − ci)

∫ d1

c1

∫ d2

c2

· · ·

· · ·
∫ dn

cn

|f(y)|
n∏

i=1

(
1− |2 yi − di − ci|

di − ci

)α−1

dyn . . . dy2 dy1

for all x = (x1, x2, . . . , xn) ∈ Rn.
Before dealing with the strong Cesàro Maximal function, we would like to point

out that for the Cesàro maximal function operator over cubes (26), we may ob-
tain the same results as the one dimensional case contained in [2]. This sublinear
operator, is also of restricted weak type (1/α, 1/α) and strong type (∞,∞). In
fact, the same arguments of [2] can be easily adapted, giving an estimate for the
rearrangement of the function d(x,Qc) for a cube Q contained in Rn.

The rest of this section is devoted to apply Theorem 2 in order to obtain modular
inequalities for the strong Cesàro maximal function operator.

Theorem 8. Let 0 < α < 1 and Ω be a bounded set of Rn, and suppose the
functions a and b satisfy for some constant C

(27) sup
t>1

(∫ t

1

a(s)
s1/α

log
n−1

α (t/s) ds

)α(∫ ∞

t

b(C s)−
α

1−α ds

)1−α

< ∞,
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then there exists a constant C ′ such that

(28)
∫

Ω

Φ(|MS
α f(x)|) dx ≤ C ′ + C ′

∫
Ω

Ψ(C ′ |f(x)|) dx

for all f supported in Ω.

Proof. For f ∈ M(Rn) and i = 1, . . . , n, let us consider the operator

Tif(x) = Mα(f(x1, . . . , xi−1, ·, xi+1, . . . , xn))(xi) for all x in Rn.

Then, we have
MS

α ≤ T1 ◦ T2 ◦ · · · ◦ Tn.

For i = 1, . . . , n, we check that the operator Ti satisfies (1). For clearness in the
notation, we suppose i = 1. Let x′ = (x2, . . . , xn), then x = (x1, x

′). Since Mα

satisfies (1), for t > 0 we have

µT1f (t) =
∫

Rn

χ{y∈Rn: T1f(y)>t}(x) dx

=
∫

Rn−1

∫
R

χ{u∈R: (Mαf(·,x′))(u)>t}(x1)dx1dx′

≤
∫

Rn−1

(
C

t

∫ ∞

t/C

|{x1 ∈ R : f(x1, x
′) > s}|αds

)1/α

dx′,

and due to Minkowski integral inequality, the last integral is bounded by[
C

t

∫ ∞

t/C

(∫
Rn−1

|{x1 ∈ R : f(x1, x
′) > s}| dx′

)α

ds

]1/α

=

=

[
C

t

∫ ∞

t/C

µf (s)αds

]1/α

.

Therefore the operator MS
α is bounded by a composition of operators which sat-

isfies the hypotheses of Theorem 2, then condition (27) implies modular inequality
(28).

�
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