WEIGHTED WEAK TYPE INEQUALITIES FOR GENERALIZED HARDY OPERATORS

A.L. BERNARDIS, F.J. MARTÍN-REYES, AND P. ORTEGA SALVADOR

Abstract. We characterize the pairs of weights (v, w) for which the HardySteklov type operator $T f(x)=g(x) \int_{s(x)}^{h(x)} K(x, y) f(y) d y$ applies $L^{p}(v)$ into weak $-L^{q}(w), q<p$, assuming certain monotonicity conditions on g, s, h and K.

1. Introduction

Let us consider the Hardy-Steklov type operator defined by

$$
T f(x)=g(x) \int_{s(x)}^{h(x)} K(x, y) f(y) d y, \quad f \geq 0
$$

where g is a nonnegative measurable function, s and h are continuous and increasing functions $(x<y \Rightarrow s(x) \leq s(y), h(x) \leq h(y))$ defined on an interval (a, b) such that $s(x) \leq h(x)$ for all $x \in(a, b)$ and the kernel $K(x, y)$ defined on $\{(x, y): x \in$ (a, b) and $s(x) \leq y \leq h(x)\}$ satisfies
(i) $K(x, y) \geq 0$;
(ii) it is increasing and continuous in x and decreasing in y;
(iii) $K(x, z) \leq D[K(x, h(y))+K(y, z)]$ for $y \leq x$ and $s(x) \leq z \leq h(y)$, where the constant $D>1$ is independent of x, y and z.
Gogatishvili and Lang [3] characterized the pairs of weights for the strong and weak type (p, q) inequalities for the operator T in the case $p \leq q$. Actually, in [3] the authors deal with Banach functions spaces with some extra condition. On the other hand, Chen and Sinnamon [2] have characterized the weighted strong-type inequality for $1<p, q<\infty$ in terms of a normalizing measure. In both papers they work with more general functions s, h and K.

The goal of this paper is to characterize the weighted weak type inequalities in the case $q<p$. It is well known that strong type inequalities for the operator T can be deduced directly from the corresponding ones for $g(x)=1$, but this is not the case when we work with weak type inequalities. In [5] it was characterized the weighted weak type inequality in the case $q<p$ for the operator T when $s \equiv 0$, $h(x)=x$ and $K \equiv 1$. The result was obtained for monotone functions g. In fact, in the proof of the result the authors used the condition

$$
\begin{equation*}
\inf _{x \in E} g(x)=\inf _{x \in(\alpha, \beta)} g(x) \tag{1.1}
\end{equation*}
$$

[^0]for any bounded set E, where $\alpha=\inf E$ and $\beta=\sup E$. This property clearly holds if g is monotone or if there exists x_{0} such that g is increasing in (a, x_{0}] and decreasing in $\left[x_{0}, b\right)$. In our result we shall assume (1.1) and the same condition for the function $g(x) K(x, y)$, that is, for all y and every bounded set $E_{y} \subset\{x: s(x) \leq y \leq h(x)\}$,
\[

$$
\begin{equation*}
\inf _{x \in E_{y}}[g(x) K(x, y)]=\inf _{x \in\left(\alpha_{y}, \beta_{y}\right)}[g(x) K(x, y)] \tag{1.2}
\end{equation*}
$$

\]

where $\alpha_{y}=\inf E_{y}$ and $\beta_{y}=\sup E_{y}$.
Examples of Hardy-Steklov type operators are the modified Riemann-Liouville operators defined for $\alpha>0$ and $\eta \in \mathbb{R}$ as $x^{\eta} \int_{0}^{x}(x-y)^{\alpha} f(y) d y$ or the more general version $x^{\eta} \int_{A x}^{B x}(x-y)^{\alpha} f(y) d y$, with $0<A<B \leq 1$ and $x>0$; the modified logarithmic kernel operators $x^{\eta} \int_{0}^{x} \log ^{\beta}(x / y) f(y) d y$, with $\beta>0$ and $\eta \in \mathbb{R}$; the Steklov operator $T f(x)=\int_{x-1}^{x+1} f$; the Riemann-Liouville operators with general variable limits $\int_{s(x)}^{h(x)}(x-y)^{\alpha} f(y) d y$, with $s(x) \leq h(x) \leq x$. This last operator was studied in [6] in the case $-1<\alpha<0$.

As far as we know, our result is new even for the particular cases $T f(x)=$ $g(x) \int_{0}^{x} K(x, y) f(y) d y$ and $T f(x)=\int_{s(x)}^{h(x)} K(x, y) f(y) d y$. For this last operator, conditions (1.1) and (1.2) holds trivially because $K(x, y)$ is increasing in x.

The notation is standard: $w(E)$ denotes the integral $\int_{E} w$, if $1<p<\infty$, then p^{\prime} denotes the conjugate exponent of p defined by $1 / p+1 / p^{\prime}=1$ and $L^{q, \infty}(w)$ will denote the space of measurable functions f such that

$$
\|f\|_{q, \infty ; w}=\sup _{\lambda>0} \lambda(w(\{x:|f(x)|>\lambda\}))^{\frac{1}{q}}<\infty .
$$

2. Statement and proof of the Result

In the next theorem we state the result of this article.

Theorem Let s and h be increasing continuous functions defined on an interval (a, b) satisfying $s(x) \leq h(x)$ for $x \in(a, b)$. Let $K(x, y)$ defined on $\{(x, y): x \in$ (a, b) and $s(x) \leq y \leq h(x)\}$ satisfying (i), (ii), (iii) and let g be a nonnegative function defined on (a, b) satisfying (1.1) and (1.2). Let q, p and r be such that $0<q<p, 1<p<\infty$ and $1 / r=1 / q-1 / p$. Let w and v be nonnegative measurable functions defined on (a, b) and $(s(a), h(b))$, respectively. The following statements are equivalent.
(i) There exists a positive constant C such that

$$
[w(\{x \in(a, b): T f(x)>\lambda\})]^{1 / q} \leq \frac{C}{\lambda}\left(\int_{s(a)}^{h(b)} f^{p} v\right)^{1 / p}
$$

for all $f \geq 0$ and all positive real number λ.
(ii) The functions

$$
\Phi_{1}(x)=\sup \left\{\inf _{t \in(c, d)}[g(t) K(t, h(\bar{c}))]\left(\int_{c}^{d} w\right)^{1 / p}\left(\int_{s(d)}^{h(\bar{c})} v^{1-p^{\prime}}\right)^{1 / p^{\prime}}\right\}
$$

where the supremum is taken over all the numbers \bar{c}, c and d such that $a \leq \bar{c} \leq c<x<d \leq b$ and $s(d) \leq h(\bar{c})$ and

$$
\Phi_{2}(x)=\sup \left\{\left(\inf _{t \in(c, d)} g(t)\right)\left(\int_{c}^{d} w\right)^{1 / p}\left(\int_{s(d)}^{h(c)} K^{p^{\prime}}(c, y) v^{1-p^{\prime}}(y) d y\right)^{1 / p^{\prime}}\right\}
$$

where the supremum is taken over all the numbers c and d such that $a \leq$ $c<x<d \leq b$ and $s(d) \leq h(c)$, belong to $L^{r, \infty}(w)$

Let us observe that if $g \equiv 1$ we get that $\Phi_{1} \leq \Phi_{2}$. Then, in this case, the weighted weak type inequality (i) is equivalent to $\Phi_{2} \in L^{r, \infty}(w)$. On the other hand, if $K \equiv 1$ then $\Phi_{1}=\Phi_{2}$ and we recover Theorem 1.9 in [1].

To prove the theorem we shall use the following lemma (see Lemma 1.4 in [1] for the proof).

Lemma Let a and b be real numbers such that $a<b$. Let $s, h:(a, b) \rightarrow \mathbb{R}$ be increasing and continuous functions such that $s(x) \leq h(x)$ for all $x \in(a, b)$. Let $\left\{\left(a_{j}, b_{j}\right)\right\}_{j}$ be the connected components of the open set $\Omega=\{x \in(a, b): s(x)<$ $h(x)\}$. Then
(a) $\left(s\left(a_{j}\right), h\left(b_{j}\right)\right) \cap\left(s\left(a_{i}\right), h\left(b_{i}\right)\right)=\emptyset$ for all $j \neq i$.
(b) For every j there exists a (finite or infinite) sequence $\left\{m_{k}^{j}\right\}$ of real numbers such that:
(i) $a_{j} \leq m_{k}^{j}<m_{k+1}^{j} \leq b_{j}$ for all k and j;
(ii) $\left(a_{j}, b_{j}\right)=\cup_{k}\left(m_{k}^{j}, m_{k+1}^{j}\right)$ a. e. for all j;
(iii) $s\left(m_{k+1}^{j}\right) \leq h\left(m_{k}^{j}\right)$ for all k and j and $s\left(m_{k+1}^{j}\right)=h\left(m_{k}^{j}\right)$ if $a_{j}<m_{k}^{j}<$ $m_{k+1}^{j}<b_{j}$.

Proof of the Theorem: $(i) \Rightarrow(i i)$: First, we shall prove that $\Phi_{1} \in L^{r, \infty}(w)$, i.e. we shall prove that

$$
\begin{equation*}
\sup _{\lambda>0} \lambda\left[w\left(\left\{x \in(a, b): \Phi_{1}(x)>\lambda\right\}\right)\right]^{1 / r}<\infty . \tag{2.1}
\end{equation*}
$$

Let $\lambda>0$ and $S_{\lambda}=\left\{x \in(a, b): \Phi_{1}(x)>\lambda\right\}$. For every $z \in S_{\lambda}$ there exist \bar{c}_{z}, c_{z} and d_{z} with $a \leq \bar{c}_{z} \leq c_{z}<z<d_{z} \leq b$ such that $s\left(d_{z}\right) \leq h\left(\bar{c}_{z}\right)$ and

$$
\begin{equation*}
\lambda<\inf _{t \in\left(c_{z}, d_{z}\right)}\left[g(t) K\left(t, h\left(\bar{c}_{z}\right)\right)\right]\left(\int_{c_{z}}^{d_{z}} w\right)^{1 / p}\left(\int_{s\left(d_{z}\right)}^{h\left(\bar{c}_{z}\right)} v^{1-p^{\prime}}\right)^{1 / p^{\prime}} . \tag{2.2}
\end{equation*}
$$

Let $\mathcal{K} \subset S_{\lambda}$ be a compact set. Then there exist $\left(c_{z_{1}}, d_{z_{1}}\right), \ldots,\left(c_{z_{k}}, d_{z_{k}}\right)$ which cover \mathcal{K}. We may assume without loss of generality that $\sum_{j=1}^{k} \chi_{\left(c_{z_{j}}, d_{z_{j}}\right)} \leq 2 \chi_{\cup_{j=1}^{k}\left(c_{z_{j}}, d_{z_{j}}\right)}$. Let $f:(s(a), h(b)) \rightarrow \mathbb{R}$ defined by

$$
f(y)=\left(\sum_{j=1}^{k} \frac{v^{-p^{\prime}}(y) \chi_{\left(s\left(d_{z_{j}}\right), h\left(\bar{c}_{z_{j}}\right)\right)}(y)}{\left(\inf _{t \in\left(c_{z_{j}}, d_{z_{j}}\right)}\left[g(t) K\left(t, h\left(\bar{c}_{z_{j}}\right)\right)\right] \int_{s\left(d_{z_{j}}\right)}^{h\left(\bar{c}_{z_{j}}\right)} v^{1-p^{\prime}}\right)^{p}}\right)^{1 / p} .
$$

If $z \in\left(c_{z_{j}}, d_{z_{j}}\right)$ then we have $T f(z)=g(z) \int_{s(z)}^{h(z)} K(z, y) f(y) d y \geq 1$. Therefore, $\cup_{j=1}^{k}\left(c_{z_{j}}, d_{z_{j}}\right) \subset\{x \in(a, b): T f(x) \geq 1\}$. Applying the weighted weak type inequality and (2.2) we obtain

$$
\begin{aligned}
\int_{\cup_{j=1}^{k}\left(c_{z_{j}}, d_{z_{j}}\right)} w & \leq C\left(\sum_{j=1}^{k} \frac{\int_{s\left(d_{z_{j}}\right)}^{h\left(\bar{c}_{z_{j}}\right)} v^{1-p^{\prime}}}{\left(\inf _{t \in\left(c_{z_{j}}, d_{z_{j}}\right)}\left[g(t) K\left(t, h\left(\bar{c}_{z_{j}}\right)\right)\right] \int_{s\left(d_{z_{j}}\right)}^{h\left(\bar{c}_{z_{j}}\right)} v^{1-p^{\prime}}\right)^{p}}\right)^{q / p} \\
& =C\left(\sum_{j=1}^{k} \frac{1}{\left(\inf _{t \in\left(c_{z_{j}}, d_{z_{j}}\right)}\left[g(t) K\left(t, h\left(\bar{c}_{z_{j}}\right)\right)\right]^{p}\left(\int_{s\left(d_{z_{j}}\right)}^{h\left(\bar{c}_{z_{j}}\right)} v^{1-p^{\prime}}\right)^{p-1}\right.}\right)^{q / p} \\
& \leq \frac{C}{\lambda^{q}}\left(\sum_{j=1}^{k} \int_{c_{z_{j}}}^{d_{z_{j}}} w\right)^{q / p} \\
& \leq \frac{C}{\lambda^{q}}\left(\int_{\cup_{j=1}^{k}\left(c_{z_{j}}, d_{z_{j}}\right)} w\right)^{q / p} .
\end{aligned}
$$

The last inequality implies that $\lambda\left(\int_{\mathcal{K}} w\right)^{1 / r} \leq C$ for any compact set $\mathcal{K} \subset S_{\lambda}$ which implies (2.1). The proof of (2.1) for the function Φ_{2} follows in a similar way applying (i) to the function

$$
f(y)=\left(\sum_{j=1}^{k} \frac{K^{p^{\prime}}\left(c_{z_{j}}, y\right) v^{-p^{\prime}}(y) \chi_{\left(s\left(d_{z_{j}}\right), h\left(c_{z_{j}}\right)\right)}(y)}{\left(\inf _{t \in\left(c_{z_{j}}, d_{z_{j}}\right)} g(t) \int_{s\left(d_{z_{j}}\right)}^{h\left(c_{z_{j}}\right)} K^{p^{\prime}}\left(c_{z_{j}}, t\right) v^{1-p^{\prime}}(t) d t\right)^{p}}\right)^{1 / p} .
$$

(ii) $\Rightarrow(i)$: Let $\left\{a^{N}\right\}_{N=1}^{\infty}$ and $\left\{b^{N}\right\}_{N=1}^{\infty}$ be sequences in (a, b) such that

$$
\lim _{N \rightarrow \infty} a^{N}=a \quad \text { and } \quad \lim _{N \rightarrow \infty} b^{N}=b
$$

In order to prove (i) it will suffice to show that

$$
w\left(\left\{x \in\left(a^{N}, b^{N}\right): T f(x)>\lambda\right\}\right) \leq \frac{C}{\lambda^{q}},
$$

for all nonnegative function f bounded with compact support such that $\int_{s(a)}^{h(b)} f^{p} v=$ 1 and with a constant C independent of N, λ and f.
Let us fix $N \in \mathbb{N}$. Observe that if $O_{\lambda}=\left\{x \in\left(a^{N}, b^{N}\right): T f(x)>\lambda\right\}$ and $U=\{x \in$ $\left.(a, b): \Phi_{1}(x) \leq \lambda^{q / r}, \Phi_{2}(x) \leq \lambda^{q / r}\right\}$, then

$$
\begin{aligned}
w\left(O_{\lambda}\right) \leq & w\left(O_{\lambda} \cap U\right)+2 w\left(\left\{x \in(a, b): \Phi_{1}(x)>\lambda^{q / r}\right\}\right) \\
& +w\left(\left\{x \in(a, b): \Phi_{2}(x)>\lambda^{q / r}\right\}\right) \\
\leq & w\left(O_{\lambda} \cap U\right)+2 \frac{\left\|\Phi_{1}\right\|_{r, \infty ; w}^{r}}{\lambda^{q}}+\frac{\left\|\Phi_{2}\right\|_{r, \infty, ; w}^{r}}{\lambda^{q}}
\end{aligned}
$$

Therefore the implication will be proved if we establish that $w\left(O_{\lambda} \cap U\right) \leq \frac{C}{\lambda^{q}}$. Let $\left(a_{j}, b_{j}\right)$ and $\left\{m_{k}^{j}\right\}$ be the sequences given by the lemma for the set $\Omega_{N}=\{x \in$
$\left.\left(a^{N}, b^{N}\right): s(x)<h(x)\right\}$. Then, for fixed j,

$$
\begin{equation*}
w\left(O_{\lambda} \cap U \cap\left(a_{j}, b_{j}\right)\right)=\sum_{k} w\left(O_{\lambda} \cap U \cap\left(m_{k}^{j}, m_{k+1}^{j}\right)\right) . \tag{2.3}
\end{equation*}
$$

If $x \in\left(m_{k}^{j}, m_{k+1}^{j}\right)$, since $s\left(m_{k+1}^{j}\right) \leq h\left(m_{k}^{j}\right)$, we get that

$$
\begin{aligned}
T f(x)= & g(x) \int_{s(x)}^{s\left(m_{k+1}^{j}\right)} K(x, y) f(y) d y+g(x) \int_{s\left(m_{k+1}^{j}\right)}^{h\left(m_{k}^{j}\right)} K(x, y) f(y) d y \\
& +g(x) \int_{h\left(m_{k}^{j}\right)}^{h(x)} K(x, y) f(y) d y=T_{j, k}^{1} f(x)+T_{j, k}^{2} f(x)+T_{j, k}^{3} f(x)
\end{aligned}
$$

It is clear that

$$
w\left(O_{\lambda} \cap U \cap\left(m_{k}^{j}, m_{k+1}^{j}\right)\right) \leq w\left(E^{1}\right)+w\left(E^{2}\right)+w\left(E^{3}\right)
$$

where $E^{\ell}=\left\{x \in\left(m_{k}^{j}, m_{k+1}^{j}\right) \cap U: T_{j, k}^{\ell} f(x)>\lambda / 3\right\}, \ell=1,2,3$.
First, notice that the property (iii) of the kernel K implies

$$
\begin{equation*}
K(x, y) \leq D\left[K\left(x, h\left(m_{k}^{j}\right)\right)+K\left(m_{k}^{j}, y\right)\right] \tag{2.4}
\end{equation*}
$$

for $x \in\left(m_{k}^{j}, m_{k+1}^{j}\right)$ and $y \in\left(s\left(m_{k+1}^{j}\right), h\left(m_{k}^{j}\right)\right)$.
In order to estimate $w\left(E^{1}\right)$ let us observe that

$$
\begin{aligned}
T_{j, k}^{1} f(x) \leq & D g(x) K\left(x, h\left(m_{k}^{j}\right)\right) \int_{s(x)}^{s\left(m_{k+1}^{j}\right)} f(y) d y \\
& +D g(x) \int_{s(x)}^{s\left(m_{k+1}^{j}\right)} K\left(m_{k}^{j}, y\right) f(y) d y=D T_{j, k}^{1,1} f(x)+D T_{j, k}^{1,2} f(x)
\end{aligned}
$$

Then, $w\left(E^{1}\right) \leq w\left(E^{1,1}\right)+w\left(E^{1,2}\right)$, where

$$
E^{1, \ell}=\left\{x \in\left(m_{k}^{j}, m_{k+1}^{j}\right) \cap U: T_{j, k}^{1, \ell} f(x)>\lambda / 6 D\right\}, \quad \ell=1,2 .
$$

Let us select an increasing sequence $\left\{x_{i}\right\}_{i}, x_{i} \in\left(m_{k}^{j}, m_{k+1}^{j}\right)$, such that $x_{0}=m_{k}^{j}$ and

$$
\int_{s\left(x_{i}\right)}^{s\left(m_{k+1}^{j}\right)} f=\int_{s\left(x_{i-1}\right)}^{s\left(x_{i}\right)} f
$$

Let $E_{i}^{1,1}=E^{1,1} \cap\left(x_{i}, x_{i+1}\right), \alpha_{i}^{1}=\inf E_{i}^{1,1}$ and $\beta_{i}^{1}=\sup E_{i}^{1,1}$. If $E_{i}^{1,1} \neq \emptyset$, let $t \in E_{i}^{1,1}$. Using the property of the sequence $\left\{x_{i}\right\}_{i}$ we have that

$$
\frac{\lambda}{6 D} \leq 4 g(t) K\left(t, h\left(m_{k}^{j}\right)\right) \int_{s\left(x_{i+1}\right)}^{s\left(x_{i+2}\right)} f .
$$

Now, by using (1.2) and Hölder inequality we get

$$
\frac{\lambda}{6 D} \leq 4 \inf _{t \in\left(\alpha_{i}^{1}, \beta_{i}^{1}\right)}\left[g(t) K\left(t, h\left(m_{k}^{j}\right)\right)\right]\left(\int_{s\left(x_{i+1}\right)}^{s\left(x_{i+2}\right)} v^{1-p^{\prime}}\right)^{1 / p^{\prime}}\left(\int_{s\left(x_{i+1}\right)}^{s\left(x_{i+2}\right)} f^{p} v\right)^{1 / p}
$$

Now, multiplying by $\left(\int_{\alpha_{i}^{1}}^{\beta_{i}^{1}} w\right)^{1 / p}$ and using the inequalities $s\left(\beta_{i}^{1}\right) \leq s\left(x_{i+1}\right)$ and $s\left(x_{i+2}\right) \leq s\left(m_{k+1}^{j}\right) \leq h\left(m_{k}^{j}\right)$ we get that

$$
\begin{aligned}
\frac{\lambda}{6 D}\left(\int_{\alpha_{i}^{1}}^{\beta_{i}^{1}} w\right)^{1 / p} & \leq 4 \Phi_{1}(x)\left(\int_{s\left(x_{i+1}\right)}^{s\left(x_{i+2}\right)} f^{p} v\right)^{1 / p} \\
& \leq 4 \lambda^{q / r}\left(\int_{s\left(x_{i+1}\right)}^{s\left(x_{i+2}\right)} f^{p} v\right)^{1 / p}
\end{aligned}
$$

where x is any element of $E_{i}^{1,1}$ and summing up in i we obtain

$$
\begin{equation*}
w\left(E^{1,1}\right) \leq \frac{C}{\lambda^{q}} \int_{s\left(m_{k}^{j}\right)}^{s\left(m_{k+1}^{j}\right)} f^{p} v \tag{2.5}
\end{equation*}
$$

To estimate $w\left(E^{1,2}\right)$, we select an increasing sequence $\left\{z_{i}\right\}_{i}, z_{i} \in\left(m_{k}^{j}, m_{k+1}^{j}\right)$, such that $z_{0}=m_{k}^{j}$ and

$$
\int_{s\left(z_{i}\right)}^{s\left(m_{k+1}^{j}\right)} K\left(m_{k}^{j}, y\right) f(y) d y=\int_{s\left(z_{i-1}\right)}^{s\left(z_{i}\right)} K\left(m_{k}^{j}, y\right) f(y) d y
$$

As before, let $E_{i}^{1,2}=E^{1,2} \cap\left(z_{i}, z_{i+1}\right), \alpha_{i}^{2}=\inf E_{i}^{1,2}$ and $\beta_{i}^{2}=\sup E_{i}^{1,2}$. If $E_{i}^{1,2} \neq \emptyset$ then Hölder inequality and (1.1) give

$$
\frac{\lambda}{6 D} \leq 4 \inf _{t \in\left(\alpha_{i}^{2}, \beta_{i}^{2}\right)} g(t)\left(\int_{s\left(z_{i+1}\right)}^{s\left(z_{i+2}\right)} K^{p^{\prime}}\left(m_{k}^{j}, t\right) v^{1-p^{\prime}}(t) d t\right)^{1 / p^{\prime}}\left(\int_{s\left(z_{i+1}\right)}^{s\left(z_{i+2}\right)} f^{p} v\right)^{1 / p}
$$

Notice that $s\left(\beta_{i}^{2}\right) \leq s\left(z_{i+1}\right), m_{k}^{j} \leq \alpha_{i}^{2}$ and $s\left(z_{i+2}\right) \leq s\left(m_{k+1}^{j}\right) \leq h\left(m_{k}^{j}\right) \leq h\left(\alpha_{i}^{2}\right)$. Then multiplying by $\left(\int_{\alpha_{i}^{2}}^{\beta_{i}^{2}} w\right)^{1 / p}$ both members of the above inequality we get

$$
\begin{aligned}
\frac{\lambda}{6 D}\left(\int_{\alpha_{i}^{2}}^{\beta_{i}^{2}} w\right)^{1 / p} & \leq 4 \Phi_{2}(x)\left(\int_{s\left(z_{i+1}\right)}^{s\left(z_{i+2}\right)} f^{p} v\right)^{1 / p} \\
& \leq 4 \lambda^{q / r}\left(\int_{s\left(z_{i+1}\right)}^{s\left(z_{i+2}\right)} f^{p} v\right)^{1 / p}
\end{aligned}
$$

where x is any element of $E_{i}^{1,2}$. Now, summing up in i and putting together with (2.5) we obtain

$$
w\left(E^{1}\right) \leq \frac{C}{\lambda^{q}} \int_{s\left(m_{k}^{j}\right)}^{s\left(m_{k+1}^{j}\right)} f^{p} v
$$

To estimate $w\left(E^{2}\right)$ we proceed in a similar way. In fact, by using (2.4) we get that

$$
\begin{aligned}
T_{j, k}^{2} f(x) & \leq D g(x) K\left(x, h\left(m_{k}^{j}\right)\right) \int_{s\left(m_{k+1}^{j}\right)}^{h\left(m_{k}^{j}\right)} f(y) d y+D g(x) \int_{s\left(m_{k+1}^{j}\right)}^{h\left(m_{k}^{j}\right)} K\left(m_{k}^{j}, y\right) f(y) d y \\
& =D T_{j, k}^{2,1} f(x)+D T_{j, k}^{2,2} f(x),
\end{aligned}
$$

which implies that $w\left(E^{2}\right) \leq w\left(E^{2,1}\right)+w\left(E^{2,2}\right)$, where the sets $E^{2, \ell}, \ell=1,2$ are defined as the sets $E^{1, \ell}$ with $T_{j, k}^{2, \ell} f$ instead of $T_{j, k}^{1, \ell} f$. Now, the estimates of $w\left(E^{2,1}\right)$
and $w\left(E^{2,2}\right)$ follow as in the previous cases obtaining

$$
w\left(E^{2}\right) \leq \frac{C}{\lambda^{q}} \int_{s\left(m_{k+1}^{j}\right)}^{h\left(m_{k}^{j}\right)} f^{p} v
$$

Actually, the estimations are easier because we do not need to split the sets $E^{2, \ell}$. For the estimation of $w\left(E^{3}\right)$ let us define the function

$$
H(x)=\int_{h\left(m_{k}^{j}\right)}^{h(x)} K(x, y) f(y) d y
$$

Since h is continuous and K is continuous in the first variable, we may select a decreasing sequence $\left\{x_{i}\right\}_{i}$ in $\left(m_{k}^{j}, m_{k+1}^{j}\right)$ such that $x_{0}=m_{k+1}^{j}$ and $H\left(x_{i}\right)=$ $\int_{h\left(m_{k}^{j}\right)}^{h\left(x_{i}\right)} K\left(x_{i}, y\right) f(y) d y=(D+1)^{-i} H\left(m_{k+1}^{j}\right)$. We claim that

$$
H\left(x_{i}\right) \leq(D+1)^{4}\left(K\left(x_{i+2}, h\left(x_{i+3}\right)\right) \int_{h\left(m_{k}^{j}\right)}^{h\left(x_{i+3}\right)} f+\int_{h\left(x_{i+3}\right)}^{h\left(x_{i+2}\right)} K\left(x_{i+2}, y\right) f(y) d y\right)
$$

In fact, first notice that

$$
\begin{aligned}
H\left(x_{i}\right) & =(D+1)^{2} \int_{h\left(m_{k}^{j}\right)}^{h\left(x_{i+2}\right)} K\left(x_{i+2}, y\right) f(y) d y \\
& =(D+1)^{2}\left[\int_{h\left(m_{k}^{j}\right)}^{h\left(x_{i+3}\right)} K\left(x_{i+2}, y\right) f(y) d y+\int_{h\left(x_{i+3}\right)}^{h\left(x_{i+2}\right)} K\left(x_{i+2}, y\right) f(y) d y\right]
\end{aligned}
$$

Now, applying property (iii) of K we get that

$$
\begin{aligned}
H\left(x_{i}\right) \leq & D(D+1)^{2}\left[K\left(x_{i+2}, h\left(x_{i+3}\right)\right) \int_{h\left(m_{k}^{j}\right)}^{h\left(x_{i+3}\right)} f+\int_{h\left(m_{k}^{j}\right)}^{h\left(x_{i+3}\right)} K\left(x_{i+3}, y\right) f(y) d y\right] \\
& +(D+1)^{2} \int_{h\left(x_{i+3}\right)}^{h\left(x_{i+2}\right)} K\left(x_{i+2}, y\right) f(y) d y \\
\leq & (D+1)^{3}\left[K\left(x_{i+2}, h\left(x_{i+3}\right)\right) \int_{h\left(m_{k}^{j}\right)}^{h\left(x_{i+3}\right)} f+\int_{h\left(x_{i+3}\right)}^{h\left(x_{i+2}\right)} K\left(x_{i+2}, y\right) f(y) d y\right] \\
& +\frac{D}{D+1} H\left(x_{i}\right),
\end{aligned}
$$

and the claim follows. Now, we have that

$$
w\left(E^{3}\right) \leq \sum_{i \geq 0}\left[w\left(E_{i}^{3,1}\right)+w\left(E_{i}^{3,2}\right)\right]
$$

where

$$
E_{i}^{3,1}=\left\{x \in\left(x_{i+1}, x_{i}\right) \cap U: g(x) K\left(x_{i+2}, h\left(x_{i+3}\right)\right) \int_{h\left(m_{k}^{j}\right)}^{h\left(x_{i+3}\right)} f>\frac{\lambda}{6(D+1)^{4}}\right\}
$$

and

$$
E_{i}^{3,2}=\left\{x \in\left(x_{i+1}, x_{i}\right) \cap U: g(x) \int_{h\left(x_{i+3}\right)}^{h\left(x_{i+2}\right)} K\left(x_{i+2}, y\right) f(y) d y>\frac{\lambda}{6(D+1)^{4}}\right\} .
$$

Working as in previous cases we have that

$$
\sum_{i \geq 0} w\left(E_{i}^{3,2}\right) \leq \frac{C}{\lambda^{q}} \int_{h\left(m_{k}^{j}\right)}^{h\left(m_{k+1}^{j}\right)} f^{p} v
$$

In order to estimate $\sum_{i \geq 0} w\left(E_{i}^{3,1}\right)$ we shall apply Lemma 1 in [4]. Let $\left\{u_{s}^{\prime}\right\}$ be the decreasing sequence in $\left(m_{k}^{j}, m_{k+1}^{j}\right)$ defined by $u_{0}^{\prime}=m_{k+1}^{j}$ and

$$
\int_{h\left(m_{k}^{j}\right)}^{h\left(u_{s}^{\prime}\right)} f=2^{-s} \int_{h\left(m_{k}^{j}\right)}^{h\left(m_{k+1}^{j}\right)} f
$$

and let $\left\{u_{n}\right\}$ be the subsequence of $\left\{u_{s}^{\prime}\right\}$ defined by $u_{0}=u_{0}^{\prime}$ and if $\left[u_{s+1}^{\prime}, u_{s}^{\prime}\right) \cap\left\{x_{i}\right\}=$ \emptyset, then we delete the term u_{s+1}^{\prime} of $\left\{u_{s}^{\prime}\right\}$. Let $\tilde{E}_{n}^{3,1}=\cup_{\left\{i \geq 0: u_{n+1} \leq x_{i+3}<u_{n}\right\}} E_{i}^{3,1}$, $\tilde{\alpha}_{n}=\inf \tilde{E}_{n}^{3,1}$ and $\tilde{\beta}_{n}=\sup \tilde{E}_{n}^{3,1}$. If $u_{s+1}^{\prime}=u_{n+1} \leq x_{i+3}<u_{n}$, by the construction of the sequences we get that $x_{i+3} \leq u_{s}^{\prime}$ and $u_{n+2} \leq u_{s+2}^{\prime}$, then

$$
\int_{h\left(m_{k}^{j}\right)}^{h\left(x_{i+3}\right)} f \leq \int_{h\left(m_{k}^{j}\right)}^{h\left(u_{s}^{\prime}\right)} f=4 \int_{h\left(u_{s+2}^{\prime}\right)}^{h\left(u_{s+1}^{\prime}\right)} f \leq 4 \int_{h\left(u_{n+2}\right)}^{h\left(u_{n+1}\right)} f .
$$

Let us assume that $\tilde{E}_{n}^{3,1} \neq \emptyset$. By the above inequalities and the monotonicity of K we have for all $t \in \tilde{E}_{n}^{3,1}$

$$
\begin{aligned}
\frac{\lambda}{6(D+1)^{4}} & \leq 4 g(t) K\left(t, h\left(x_{i+3}\right)\right) \int_{h\left(u_{s+2}^{\prime}\right)}^{h\left(u_{s+1}^{\prime}\right)} f \\
& \leq 4 g(t) K\left(t, h\left(u_{n+1}\right)\right) \int_{h\left(u_{n+2}\right)}^{h\left(u_{n+1}\right)} f .
\end{aligned}
$$

Now, multiplying by $\left(\int_{\tilde{\alpha}_{n}}^{\tilde{\beta}_{n}} w\right)^{1 / p}$, applying Hölder inequality and using that $s\left(\tilde{\beta}_{n}\right) \leq$ $h\left(u_{n+2}\right)$ we get that

$$
\begin{aligned}
\frac{\lambda}{6(D+1)^{4}}\left(\int_{\tilde{\alpha}_{n}}^{\tilde{\beta}_{n}} w\right)^{1 / p} & \leq 4 \Phi_{1}(x)\left(\int_{h\left(u_{n+2}\right)}^{h\left(u_{n+1}\right)} f^{p} v\right)^{1 / p} \\
& \leq 4 \lambda^{q / r}\left(\int_{h\left(u_{n+2}\right)}^{h\left(u_{n+1}\right)} f^{p} v\right)^{1 / p}
\end{aligned}
$$

where x is any point in $\tilde{E}_{n}^{3,1}$. Then

$$
\begin{aligned}
& \sum_{i \geq 0} w\left(E_{i}^{3,1}\right)=\sum_{n} \sum_{\left\{i \geq 0: u_{n+1} \leq x_{i+3}<u_{n}\right\}} w\left(E_{i}^{3,1}\right) \leq \sum_{n} w\left(\tilde{E}_{n}^{3,1}\right) \\
& \leq \sum_{n} \int_{\tilde{\alpha}_{n}}^{\tilde{\beta}_{n}} w \leq \frac{C}{\lambda^{q}} \sum_{n} \int_{h\left(u_{n+2}\right)}^{h\left(u_{n+1}\right)} f^{p} v \leq \frac{C}{\lambda^{q}} \int_{h\left(m_{k}^{j}\right)}^{h\left(m_{k+1}^{j}\right)} f^{p} v .
\end{aligned}
$$

Putting together the estimations of $w\left(E^{1}\right), w\left(E^{2}\right)$ and $w\left(E^{3}\right)$ we have

$$
w\left(O_{\lambda} \cap U \cap\left(m_{k}^{j}, m_{k+1}^{j}\right)\right) \leq \frac{C}{\lambda^{q}} \int_{s\left(m_{k}^{j}\right)}^{h\left(m_{k+1}^{j}\right)} f^{p} v
$$

Summing up in k in the above inequality and by (2.3) we get that

$$
w\left(O_{\lambda} \cap U \cap\left(a_{j}, b_{j}\right)\right) \leq \frac{C}{\lambda^{q}} \int_{s\left(a_{j}\right)}^{h\left(b_{j}\right)} f^{p} v .
$$

Keeping in mind the lemma and summing up in j we obtain the desired inequality.

References

[1] A.L. Bernardis, F.J. Martín-Reyes and P. Ortega Salvador Weighted inequalities for HardySteklov operators, to appear in Canad. J. Math.
[2] T. Chen and G. Sinnamon Generalized Hardy operators and normalizing measures, J. Ineq. Appl. 7 (2002), 829-866.
[3] A. Gogatishvili and J. Lang The generalized Hardy operator with kernel and variable integral limits in Banach function spaces, J. Ineq. Appl. 4 (1999), 1-16.
[4] Q. Lai Weighted modular inequalities for Hardy type operators, Proc. London Math. Soc. 3 79 (1999), 649-672
[5] F.J. Martín-Reyes and P. Ortega On weighted weak type inequalities for modified Hardy operators, Proc. Amer. Math. Soc. 1266 (1998), 1739-1746.
[6] D.V. Prokhorov Weighted estimates for the Riemann-Liouville operators with variable limits, Siberian Math. J. 446 (2003), 1049-1060.

IMAL-CONICET, Güemes 3450, (3000) Santa Fe, Argentina
E-mail address: bernard@ceride.gov.ar
Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

E-mail address: martin_reyes@uma.es
Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

E-mail address: ortega@anamat.cie.uma.es

[^0]: 2000 Mathematics Subject Classification. Primary 26D15; Secondary 46E30, 42B25.
 Key words and phrases. Hardy-Steklov operator, weights, inequalities.
 This research has been partially supported by Spanish goverment Grant MTM2005-8350-C0302. The first author was supported in part by CAI+D-UNL and CONICET. The second and third authors were supported by Junta de Andalucía Grant FQM 354.

