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Abstract. We characterize the pairs of weights (v, w) for which the Hardy-

Steklov type operator Tf(x) = g(x)
R h(x)

s(x)
K(x, y)f(y) dy applies Lp(v) into

weak−Lq(w), q < p, assuming certain monotonicity conditions on g, s, h and
K.

1. Introduction

Let us consider the Hardy-Steklov type operator defined by

Tf(x) = g(x)
∫ h(x)

s(x)

K(x, y)f(y) dy, f ≥ 0,

where g is a nonnegative measurable function, s and h are continuous and increasing
functions (x < y ⇒ s(x) ≤ s(y), h(x) ≤ h(y)) defined on an interval (a, b) such that
s(x) ≤ h(x) for all x ∈ (a, b) and the kernel K(x, y) defined on {(x, y) : x ∈
(a, b) and s(x) ≤ y ≤ h(x)} satisfies

(i) K(x, y) ≥ 0;
(ii) it is increasing and continuous in x and decreasing in y;
(iii) K(x, z) ≤ D[K(x, h(y)) + K(y, z)] for y ≤ x and s(x) ≤ z ≤ h(y), where

the constant D > 1 is independent of x, y and z.
Gogatishvili and Lang [3] characterized the pairs of weights for the strong and

weak type (p, q) inequalities for the operator T in the case p ≤ q. Actually, in [3]
the authors deal with Banach functions spaces with some extra condition. On the
other hand, Chen and Sinnamon [2] have characterized the weighted strong-type
inequality for 1 < p, q < ∞ in terms of a normalizing measure. In both papers they
work with more general functions s, h and K.

The goal of this paper is to characterize the weighted weak type inequalities in
the case q < p. It is well known that strong type inequalities for the operator T
can be deduced directly from the corresponding ones for g(x) = 1, but this is not
the case when we work with weak type inequalities. In [5] it was characterized the
weighted weak type inequality in the case q < p for the operator T when s ≡ 0,
h(x) = x and K ≡ 1. The result was obtained for monotone functions g. In fact,
in the proof of the result the authors used the condition

(1.1) inf
x∈E

g(x) = inf
x∈(α,β)

g(x),
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for any bounded set E, where α = inf E and β = sup E. This property clearly holds
if g is monotone or if there exists x0 such that g is increasing in (a, x0] and decreasing
in [x0, b). In our result we shall assume (1.1) and the same condition for the function
g(x)K(x, y), that is, for all y and every bounded set Ey ⊂ {x : s(x) ≤ y ≤ h(x)},

(1.2) inf
x∈Ey

[g(x)K(x, y)] = inf
x∈(αy,βy)

[g(x)K(x, y)],

where αy = inf Ey and βy = sup Ey.
Examples of Hardy-Steklov type operators are the modified Riemann-Liouville

operators defined for α > 0 and η ∈ R as xη
∫ x

0
(x− y)αf(y) dy or the more general

version xη
∫ Bx

Ax
(x − y)αf(y) dy, with 0 < A < B ≤ 1 and x > 0; the modified

logarithmic kernel operators xη
∫ x

0
logβ(x/y)f(y) dy, with β > 0 and η ∈ R; the

Steklov operator Tf(x) =
∫ x+1

x−1
f ; the Riemann-Liouville operators with general

variable limits
∫ h(x)

s(x)
(x− y)αf(y) dy, with s(x) ≤ h(x) ≤ x. This last operator was

studied in [6] in the case −1 < α < 0.
As far as we know, our result is new even for the particular cases Tf(x) =

g(x)
∫ x

0
K(x, y)f(y) dy and Tf(x) =

∫ h(x)

s(x)
K(x, y)f(y) dy. For this last operator,

conditions (1.1) and (1.2) holds trivially because K(x, y) is increasing in x.
The notation is standard: w(E) denotes the integral

∫
E

w, if 1 < p < ∞, then
p′ denotes the conjugate exponent of p defined by 1/p + 1/p′ = 1 and Lq,∞(w) will
denote the space of measurable functions f such that

‖f‖q,∞;w = sup
λ>0

λ (w({x : |f(x)| > λ})) 1
q < ∞.

2. Statement and proof of the result

In the next theorem we state the result of this article.

Theorem Let s and h be increasing continuous functions defined on an interval
(a, b) satisfying s(x) ≤ h(x) for x ∈ (a, b). Let K(x, y) defined on {(x, y) : x ∈
(a, b) and s(x) ≤ y ≤ h(x)} satisfying (i), (ii), (iii) and let g be a nonnegative
function defined on (a, b) satisfying (1.1) and (1.2). Let q, p and r be such that
0 < q < p, 1 < p < ∞ and 1/r = 1/q−1/p. Let w and v be nonnegative measurable
functions defined on (a, b) and (s(a), h(b)), respectively. The following statements
are equivalent.

(i) There exists a positive constant C such that

[w({x ∈ (a, b) : Tf(x) > λ})]1/q ≤ C

λ

(∫ h(b)

s(a)

fpv

)1/p

for all f ≥ 0 and all positive real number λ.
(ii) The functions

Φ1(x) = sup



 inf

t∈(c,d)
[g(t)K(t, h(c̄))]

(∫ d

c

w

)1/p (∫ h(c̄)

s(d)

v1−p′
)1/p′



 ,
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where the supremum is taken over all the numbers c̄, c and d such that
a ≤ c̄ ≤ c < x < d ≤ b and s(d) ≤ h(c̄) and

Φ2(x) = sup



( inf

t∈(c,d)
g(t))

(∫ d

c

w

)1/p (∫ h(c)

s(d)

Kp′(c, y)v1−p′(y) dy

)1/p′


 ,

where the supremum is taken over all the numbers c and d such that a ≤
c < x < d ≤ b and s(d) ≤ h(c), belong to Lr,∞(w)

Let us observe that if g ≡ 1 we get that Φ1 ≤ Φ2. Then, in this case, the
weighted weak type inequality (i) is equivalent to Φ2 ∈ Lr,∞(w). On the other
hand, if K ≡ 1 then Φ1 = Φ2 and we recover Theorem 1.9 in [1].

To prove the theorem we shall use the following lemma (see Lemma 1.4 in [1] for
the proof).

Lemma Let a and b be real numbers such that a < b. Let s, h : (a, b) → R be
increasing and continuous functions such that s(x) ≤ h(x) for all x ∈ (a, b). Let
{(aj , bj)}j be the connected components of the open set Ω = {x ∈ (a, b) : s(x) <
h(x)}. Then
(a) (s(aj), h(bj)) ∩ (s(ai), h(bi)) = ∅ for all j 6= i.
(b) For every j there exists a (finite or infinite) sequence {mj

k} of real numbers such
that:

(i) aj ≤ mj
k < mj

k+1 ≤ bj for all k and j;
(ii) (aj , bj) = ∪k(mj

k,mj
k+1) a. e. for all j;

(iii) s(mj
k+1) ≤ h(mj

k) for all k and j and s(mj
k+1) = h(mj

k) if aj < mj
k <

mj
k+1 < bj.

Proof of the Theorem: (i) ⇒ (ii): First, we shall prove that Φ1 ∈ Lr,∞(w), i.e.
we shall prove that

(2.1) sup
λ>0

λ [w({x ∈ (a, b) : Φ1(x) > λ})]1/r
< ∞.

Let λ > 0 and Sλ = {x ∈ (a, b) : Φ1(x) > λ}. For every z ∈ Sλ there exist c̄z, cz

and dz with a ≤ c̄z ≤ cz < z < dz ≤ b such that s(dz) ≤ h(c̄z) and

(2.2) λ < inf
t∈(cz,dz)

[g(t)K(t, h(c̄z))]

(∫ dz

cz

w

)1/p (∫ h(c̄z)

s(dz)

v1−p′
)1/p′

.

Let K ⊂ Sλ be a compact set. Then there exist (cz1 , dz1), . . . , (czk
, dzk

) which cover
K. We may assume without loss of generality that

∑k
j=1 χ(czj

,dzj
) ≤ 2χ∪k

j=1(czj
,dzj

).
Let f : (s(a), h(b)) → R defined by

f(y) =




k∑

j=1

v−p′(y)χ(s(dzj
),h(c̄zj

))(y)
(
inft∈(czj

,dzj
)[g(t)K(t, h(c̄zj ))]

∫ h(c̄zj
)

s(dzj
) v1−p′

)p




1/p

.
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If z ∈ (czj
, dzj

) then we have Tf(z) = g(z)
∫ h(z)

s(z)
K(z, y)f(y) dy ≥ 1. Therefore,

∪k
j=1(czj

, dzj
) ⊂ {x ∈ (a, b) : Tf(x) ≥ 1}. Applying the weighted weak type

inequality and (2.2) we obtain

∫

∪k
j=1(czj

,dzj
)

w ≤ C




k∑

j=1

∫ h(c̄zj
)

s(dzj
) v1−p′

(
inft∈(czj

,dzj
)[g(t)K(t, h(c̄zj ))]

∫ h(c̄zj
)

s(dzj
) v1−p′

)p




q/p

= C




k∑

j=1

1

(inft∈(czj
,dzj

)[g(t)K(t, h(c̄zj
))]p(

∫ h(c̄zj
)

s(dzj
) v1−p′)p−1




q/p

≤ C

λq




k∑

j=1

∫ dzj

czj

w




q/p

≤ C

λq

(∫

∪k
j=1(czj

,dzj
)

w

)q/p

.

The last inequality implies that λ
(∫
K w

)1/r ≤ C for any compact set K ⊂ Sλ

which implies (2.1). The proof of (2.1) for the function Φ2 follows in a similar way
applying (i) to the function

f(y) =




k∑

j=1

Kp′(czj , y)v−p′(y)χ(s(dzj
),h(czj

))(y)
(
inft∈(czj

,dzj
) g(t)

∫ h(czj
)

s(dzj
) Kp′(czj , t)v1−p′(t) dt

)p




1/p

.

(ii) ⇒ (i): Let {aN}∞N=1 and {bN}∞N=1 be sequences in (a, b) such that

lim
N→∞

aN = a and lim
N→∞

bN = b.

In order to prove (i) it will suffice to show that

w({x ∈ (aN , bN ) : Tf(x) > λ}) ≤ C

λq
,

for all nonnegative function f bounded with compact support such that
∫ h(b)

s(a)
fpv =

1 and with a constant C independent of N , λ and f .

Let us fix N ∈ N. Observe that if Oλ = {x ∈ (aN , bN ) : Tf(x) > λ} and U = {x ∈
(a, b) : Φ1(x) ≤ λq/r, Φ2(x) ≤ λq/r}, then

w(Oλ) ≤w(Oλ ∩ U) + 2w({x ∈ (a, b) : Φ1(x) > λq/r})
+ w({x ∈ (a, b) : Φ2(x) > λq/r})

≤w(Oλ ∩ U) + 2
‖Φ1‖r

r,∞;w

λq
+
‖Φ2‖r

r,∞,;w

λq
.

Therefore the implication will be proved if we establish that w(Oλ ∩ U) ≤ C
λq . Let

(aj , bj) and {mj
k} be the sequences given by the lemma for the set ΩN = {x ∈
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(aN , bN ) : s(x) < h(x)}. Then, for fixed j,

(2.3) w(Oλ ∩ U ∩ (aj , bj)) =
∑

k

w(Oλ ∩ U ∩ (mj
k,mj

k+1)).

If x ∈ (mj
k,mj

k+1), since s(mj
k+1) ≤ h(mj

k), we get that

Tf(x) =g(x)
∫ s(mj

k+1)

s(x)

K(x, y)f(y)dy + g(x)
∫ h(mj

k)

s(mj
k+1)

K(x, y)f(y)dy

+ g(x)
∫ h(x)

h(mj
k)

K(x, y)f(y)dy = T 1
j,kf(x) + T 2

j,kf(x) + T 3
j,kf(x)

It is clear that

w(Oλ ∩ U ∩ (mj
k,mj

k+1)) ≤ w(E1) + w(E2) + w(E3),

where E` = {x ∈ (mj
k,mj

k+1) ∩ U : T `
j,kf(x) > λ/3}, ` = 1, 2, 3.

First, notice that the property (iii) of the kernel K implies

(2.4) K(x, y) ≤ D[K(x, h(mj
k)) + K(mj

k, y)]

for x ∈ (mj
k,mj

k+1) and y ∈ (s(mj
k+1), h(mj

k)).
In order to estimate w(E1) let us observe that

T 1
j,kf(x) ≤Dg(x)K(x, h(mj

k))
∫ s(mj

k+1)

s(x)

f(y) dy

+ Dg(x)
∫ s(mj

k+1)

s(x)

K(mj
k, y)f(y) dy = DT 1,1

j,k f(x) + DT 1,2
j,k f(x).

Then, w(E1) ≤ w(E1,1) + w(E1,2), where

E1,` = {x ∈ (mj
k,mj

k+1) ∩ U : T 1,`
j,k f(x) > λ/6D}, ` = 1, 2.

Let us select an increasing sequence {xi}i, xi ∈ (mj
k,mj

k+1), such that x0 = mj
k

and
∫ s(mj

k+1)

s(xi)

f =
∫ s(xi)

s(xi−1)

f.

Let E1,1
i = E1,1 ∩ (xi, xi+1), α1

i = inf E1,1
i and β1

i = sup E1,1
i . If E1,1

i 6= ∅, let
t ∈ E1,1

i . Using the property of the sequence {xi}i we have that

λ

6D
≤ 4g(t)K(t, h(mj

k))
∫ s(xi+2)

s(xi+1)

f.

Now, by using (1.2) and Hölder inequality we get

λ

6D
≤ 4 inf

t∈(α1
i ,β1

i )
[g(t)K(t, h(mj

k))]

(∫ s(xi+2)

s(xi+1)

v1−p′
)1/p′ (∫ s(xi+2)

s(xi+1)

fpv

)1/p

.
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Now, multiplying by
(∫ β1

i

α1
i

w
)1/p

and using the inequalities s(β1
i ) ≤ s(xi+1) and

s(xi+2) ≤ s(mj
k+1) ≤ h(mj

k) we get that

λ

6D

(∫ β1
i

α1
i

w

)1/p

≤ 4Φ1(x)

(∫ s(xi+2)

s(xi+1)

fpv

)1/p

≤ 4λq/r

(∫ s(xi+2)

s(xi+1)

fpv

)1/p

,

where x is any element of E1,1
i and summing up in i we obtain

(2.5) w(E1,1) ≤ C

λq

∫ s(mj
k+1)

s(mj
k)

fpv.

To estimate w(E1,2), we select an increasing sequence {zi}i, zi ∈ (mj
k, mj

k+1), such
that z0 = mj

k and
∫ s(mj

k+1)

s(zi)

K(mj
k, y)f(y) dy =

∫ s(zi)

s(zi−1)

K(mj
k, y)f(y) dy.

As before, let E1,2
i = E1,2 ∩ (zi, zi+1), α2

i = inf E1,2
i and β2

i = sup E1,2
i . If E1,2

i 6= ∅
then Hölder inequality and (1.1) give

λ

6D
≤ 4 inf

t∈(α2
i ,β2

i )
g(t)

(∫ s(zi+2)

s(zi+1)

Kp′(mj
k, t)v1−p′(t) dt

)1/p′ (∫ s(zi+2)

s(zi+1)

fpv

)1/p

.

Notice that s(β2
i ) ≤ s(zi+1), mj

k ≤ α2
i and s(zi+2) ≤ s(mj

k+1) ≤ h(mj
k) ≤ h(α2

i ).

Then multiplying by
(∫ β2

i

α2
i

w
)1/p

both members of the above inequality we get

λ

6D

(∫ β2
i

α2
i

w

)1/p

≤ 4Φ2(x)

(∫ s(zi+2)

s(zi+1)

fpv

)1/p

≤ 4λq/r

(∫ s(zi+2)

s(zi+1)

fpv

)1/p

,

where x is any element of E1,2
i . Now, summing up in i and putting together with

(2.5) we obtain

w(E1) ≤ C

λq

∫ s(mj
k+1)

s(mj
k)

fpv.

To estimate w(E2) we proceed in a similar way. In fact, by using (2.4) we get that

T 2
j,kf(x) ≤ Dg(x)K(x, h(mj

k))
∫ h(mj

k)

s(mj
k+1)

f(y) dy + Dg(x)
∫ h(mj

k)

s(mj
k+1)

K(mj
k, y)f(y) dy

= DT 2,1
j,k f(x) + DT 2,2

j,k f(x),

which implies that w(E2) ≤ w(E2,1) + w(E2,2), where the sets E2,`, ` = 1, 2 are
defined as the sets E1,` with T 2,`

j,k f instead of T 1,`
j,k f . Now, the estimates of w(E2,1)
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and w(E2,2) follow as in the previous cases obtaining

w(E2) ≤ C

λq

∫ h(mj
k)

s(mj
k+1)

fpv.

Actually, the estimations are easier because we do not need to split the sets E2,`.
For the estimation of w(E3) let us define the function

H(x) =
∫ h(x)

h(mj
k)

K(x, y)f(y) dy.

Since h is continuous and K is continuous in the first variable, we may select
a decreasing sequence {xi}i in (mj

k,mj
k+1) such that x0 = mj

k+1 and H(xi) =∫ h(xi)

h(mj
k)

K(xi, y)f(y) dy = (D + 1)−iH(mj
k+1). We claim that

H(xi) ≤ (D + 1)4
(

K(xi+2, h(xi+3))
∫ h(xi+3)

h(mj
k)

f +
∫ h(xi+2)

h(xi+3)

K(xi+2, y)f(y)dy

)
.

In fact, first notice that

H(xi) = (D + 1)2
∫ h(xi+2)

h(mj
k)

K(xi+2, y)f(y) dy

= (D + 1)2
[∫ h(xi+3)

h(mj
k)

K(xi+2, y)f(y) dy +
∫ h(xi+2)

h(xi+3)

K(xi+2, y)f(y) dy

]
.

Now, applying property (iii) of K we get that

H(xi) ≤D(D + 1)2
[
K(xi+2, h(xi+3))

∫ h(xi+3)

h(mj
k)

f +
∫ h(xi+3)

h(mj
k)

K(xi+3, y)f(y) dy

]

+ (D + 1)2
∫ h(xi+2)

h(xi+3)

K(xi+2, y)f(y) dy

≤(D + 1)3
[
K(xi+2, h(xi+3))

∫ h(xi+3)

h(mj
k)

f +
∫ h(xi+2)

h(xi+3)

K(xi+2, y)f(y) dy

]

+
D

D + 1
H(xi),

and the claim follows. Now, we have that

w(E3) ≤
∑

i≥0

[w(E3,1
i ) + w(E3,2

i )],

where

E3,1
i =

{
x ∈ (xi+1, xi) ∩ U : g(x)K(xi+2, h(xi+3))

∫ h(xi+3)

h(mj
k)

f >
λ

6(D + 1)4

}

and

E3,2
i =

{
x ∈ (xi+1, xi) ∩ U : g(x)

∫ h(xi+2)

h(xi+3)

K(xi+2, y)f(y)dy >
λ

6(D + 1)4

}
.
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Working as in previous cases we have that

∑

i≥0

w(E3,2
i ) ≤ C

λq

∫ h(mj
k+1)

h(mj
k)

fpv.

In order to estimate
∑

i≥0 w(E3,1
i ) we shall apply Lemma 1 in [4]. Let {u′s} be the

decreasing sequence in (mj
k,mj

k+1) defined by u′0 = mj
k+1 and

∫ h(u′s)

h(mj
k)

f = 2−s

∫ h(mj
k+1)

h(mj
k)

f

and let {un} be the subsequence of {u′s} defined by u0 = u′0 and if [u′s+1, u
′
s)∩{xi} =

∅, then we delete the term u′s+1 of {u′s}. Let Ẽ3,1
n = ∪{i≥0: un+1≤xi+3<un}E

3,1
i ,

α̃n = inf Ẽ3,1
n and β̃n = sup Ẽ3,1

n . If u′s+1 = un+1 ≤ xi+3 < un, by the construction
of the sequences we get that xi+3 ≤ u′s and un+2 ≤ u′s+2, then

∫ h(xi+3)

h(mj
k)

f ≤
∫ h(u′s)

h(mj
k)

f = 4
∫ h(u′s+1)

h(u′s+2)

f ≤ 4
∫ h(un+1)

h(un+2)

f.

Let us assume that Ẽ3,1
n 6= ∅. By the above inequalities and the monotonicity of K

we have for all t ∈ Ẽ3,1
n

λ

6(D + 1)4
≤ 4g(t)K(t, h(xi+3))

∫ h(u′s+1)

h(u′s+2)

f

≤ 4g(t)K(t, h(un+1))
∫ h(un+1)

h(un+2)

f.

Now, multiplying by
(∫ β̃n

α̃n
w

)1/p

, applying Hölder inequality and using that s(β̃n) ≤
h(un+2) we get that

λ

6(D + 1)4

(∫ β̃n

α̃n

w

)1/p

≤ 4Φ1(x)

(∫ h(un+1)

h(un+2)

fpv

)1/p

≤ 4λq/r

(∫ h(un+1)

h(un+2)

fpv

)1/p

,

where x is any point in Ẽ3,1
n . Then

∑

i≥0

w(E3,1
i ) =

∑
n

∑

{i≥0:un+1≤xi+3<un}
w(E3,1

i ) ≤
∑

n

w(Ẽ3,1
n )

≤
∑

n

∫ β̃n

α̃n

w ≤ C

λq

∑
n

∫ h(un+1)

h(un+2)

fpv ≤ C

λq

∫ h(mj
k+1)

h(mj
k)

fpv.

Putting together the estimations of w(E1), w(E2) and w(E3) we have

w(Oλ ∩ U ∩ (mj
k,mj

k+1)) ≤
C

λq

∫ h(mj
k+1)

s(mj
k)

fpv.
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Summing up in k in the above inequality and by (2.3) we get that

w(Oλ ∩ U ∩ (aj , bj)) ≤ C

λq

∫ h(bj)

s(aj)

fpv.

Keeping in mind the lemma and summing up in j we obtain the desired inequality.
¤
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