Algebra univers. **58** (2008) 335–340 0002-5240/08/030335 – 06, *published online* May 14, 2008 DOI 10.1007/s00012-008-2074-0 © Birkhäuser Verlag, Basel, 2008

Algebra Universalis

Free MV_n-algebras

MANUELA BUSANICHE AND ROBERTO CIGNOLI

ABSTRACT. In this note we characterize free algebras in varieties of MV-algebras generated by a finite chain \mathbf{L}_n as algebras of continuous functions from the spectrum of the Boolean skeleton of the free algebra into \mathbf{L}_n .

1. Introduction

 MV_n -algebras, for n an integer ≥ 2 , were introduced in [10] as the algebraic counterpart of Lukasiewicz n-valued logic. Of course, MV_2 -algebras coincide with Boolean algebras.

Since the variety of MV_n -algebras is generated by a semi-primal algebra, it follows that each MV_n -algebra can be represented by *n*-valued continuous functions over the Stone space of its Boolean skeleton [5, 11, 12].

A characterization of the Boolean skeleton of a free MVn-algebra as a free Boolean algebra over a certain poset was given in [2]. The aim of this paper is to use this fact to give a description of free MV_n -algebras over an arbitrary cardinal in terms of *n*-valued continuous functions over the Stone space of a free Boolean algebra over a certain poset. When the number of free generators is finite, our description coincides with the one given by A. Monteiro in 1969 (see [6, Theorem 8.6.1] and the corresponding Bibliographical Remarks).

The description of free MV_n -algebras given in this paper should be compared with the one given in [12]. Alternative descriptions are in [9] and [8].

2. Preliminaries

We assume familiarity of the reader with the theory of MV-algebras. We refer to [6] for all unexplained notions.

Presented by J. Berman.

Received May 9, 2006; accepted in final form May 15, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 03D30, 03D35.

Key words and phrases: MV_n -algebras, free algebras, Stone space, Moisil operators.

Let $n \in \mathbb{N}$. \mathbb{MV}_n denotes the variety of MV-algebras generated by the *n*-element MV-chain \mathbf{L}_n . The universe L_n of \mathbf{L}_n is the finite set

$$\left\{\frac{0}{n-1},\frac{1}{n-1},\ldots,\frac{n-1}{n-1}\right\}.$$

Recall that \mathbf{L}_{d+1} is a subalgebra of \mathbf{L}_n iff d is a divisor of n-1.

As it is well known, the set of idempotent elements of each algebra $\mathbf{A} \in \mathbb{MV}_n$ forms the universe of a subalgebra of \mathbf{A} which is a Boolean algebra. This algebra will be denoted by $\mathbf{B}(\mathbf{A})$.

Given an integer $n \ge 1$, $\operatorname{Div}(n)$ will denote the set of divisors of n, and $\operatorname{Div}^*(n)$ the set of proper divisors of n, i.e., $\operatorname{Div}^*(n) = \{d \in \operatorname{Div}(n) \colon d < n\}$. Both sets become distributive lattices under the divisibility order.

For each $n \ge 2$, an *n*-valued Boolean space is a pair $\langle X, \rho \rangle$, such that X is a Boolean space and ρ is a meet-homomorphism from the lattice of divisors of n-1 into the lattice of closed subsets of X, such that $\rho(n-1) = X$.

If the set L_n is equipped with the discrete topology, and (X, ρ) is an *n*-valued Boolean space, then $\mathcal{C}_n(X, \rho)$ denotes the MV_n-algebra formed by the continuous functions f from X into L_n such that $f(\rho(d)) \subseteq L_{d+1}$ for each $d \in \text{Div}^*(n-1)$, with the algebraic operations defined pointwise. Clearly, the correspondence that assigns to each clopen U its characteristic function defines an isomorphism from Clop(X) onto $\mathbf{B}(\mathcal{C}_n(X, \rho))$.

Since the variety \mathbb{MV}_n is generated by the algebra L_n , which is a semiprimal algebra (a discriminator term for L_n is $\tau(x, y, z) = ((\sigma_1^n((x \to y) \land (y \to x)) \land z) \lor (\neg \sigma_1^n((x \to y) \land (z \to x)) \land x))$, where \rightarrow denotes Lukasiewicz implication), the next theorem follows at once from [11, Theorem 6.5] (cf [5, 12]). An elementary direct proof is given in [7, Theorem 1.5].

Theorem 2.1. For each $\mathbf{A} \in \mathbb{MV}_n$, there is a Boolean space $X(\mathbf{A})$ and a meet homomorphism $\rho_{\mathbf{A}}$ from $\operatorname{Div}(n-1)$ into the lattice of closed subsets of $X(\mathbf{A})$, satisfying $\rho_{\mathbf{A}}(n-1) = X(\mathbf{A})$, such that $\mathbf{A} \cong C_n(X(\mathbf{A}), \rho_{\mathbf{A}})$. Moreover, $X(\mathbf{A})$ is isomorphic to the Stone space of the Boolean algebra $\mathbf{B}(\mathbf{A})$.

For every $n \geq 2$ and for every $\mathbf{A} \in \mathbb{MV}_n$, we can define the *Moisil operators* in *A*. These operators are one-variable terms $\sigma_1^n(x), \ldots, \sigma_{n-1}^n(x)$ in the language $(\neg, \rightarrow, \top)$ such that for every $j = 1, \ldots, n-1$,

$$\sigma_i^n \colon \mathbf{A} \to \mathbf{B}(\mathbf{A}).$$

In particular, when evaluated on the algebras \mathbf{L}_n we have

$$\sigma_i^n(\frac{j}{(n-1)}) = \begin{cases} 1 & \text{if } i+j \ge n, \\ 0 & \text{if } i+j < n, \end{cases}$$
(2.1)

336

Vol. 58, 2008

Free MV_n -algebras

for i = 1, ..., n - 1 (see [1], [4] or [13]). The most important property of these operators is the following one (see [3]).

Theorem 2.2. Let $\mathbf{A} \in \mathbb{MV}_n$. Then $x \in B(\mathbf{A})$ if and only if $\sigma_{n-1}^n(x) = x$. Furthermore,

$$\sigma_{n-1}^{n}(x) = \min\{b \in B(\mathbf{A}) : x \le b\} \text{ and } \sigma_{1}^{n}(x) = \max\{a \in B(\mathbf{A}) : a \le x\}.$$

Recall that a Boolean algebra **B** is said to be *free over a poset* Y if for each Boolean algebra **C** and for each non-decreasing function $f: Y \to \mathbf{C}$, f can be uniquely extended to a homomorphism from **B** into **C**. We shall denote by **Free**_{\mathbb{N}_n}(X) the free algebra in the variety \mathbb{M}_n over a set X of generators. The next theorem is proved in [2, 2.12].

Theorem 2.3. $\mathbf{B}(\mathbf{Free}_{\mathbb{MV}_n}(X))$ is the free Boolean algebra over the poset $Y := \{\sigma_i^n(x) : x \in X, i = 1, ..., n-1\}.$

The proof of [2, Lemma 3.6] can be easily adapted to give the following.

Lemma 2.4. Consider the poset $Y = \{\sigma_i^n(x) : x \in X, i = 1, ..., n-1\}$. The correspondence that assigns to each upwards closed subset $S \subseteq Y$ the Boolean filter U_S generated by the set $S \cup \{\neg y : y \in Y \setminus S\}$, defines a bijection from the set of upwards closed subsets of Y onto the ultrafilters of $\mathbf{B}(\mathbf{Free}_{MV_n}(X))$.

3. Main result

Using the information in Theorem 2.1 and Theorem 2.3, we shall give a characterization of the free algebras in \mathbb{MV}_n as algebras of continuous functions.

Given X and the poset $Y = \{\sigma_i^n(x) : x \in X, i = 1, ..., n-1\}$, each chain $K_j^n(x) := \sigma_j^n(x) < \cdots < \sigma_{n-1}^n(x)$ for $1 \le j \le n-1$ and $x \in X$ will be called an x-chain of Y. Clearly, $K_i^n(x) \cap K_j^n(y) = \emptyset$ whenever $x \ne y, 1 \le i, j \le n-1$, and

$$Y = \bigcup_{x \in X} K_1^n(x). \tag{3.2}$$

Let R_{n-1} be the set of upwards closed subsets of Y. Notice that a subset S of Y belongs to R_{n-1} if and only if it is a union of x-chains. Let

$$Ch_x = \{K_j^n(x) \mid j = 1, \dots, n-1\} \cup \{\emptyset\}.$$

For each $d \in \text{Div}^*(n-1)$ we define the set

$$H_d^x = \{ C \in Ch_x \mid \frac{\#C}{n-1} \in L_{d+1} \},\$$

where #C denotes the cardinal of the set C.

For each $d \in \text{Div}^*(n-1)$, we define $R_d \subseteq R_{n-1}$ such that $S \in R_d$ iff $S = \bigcup_{x \in X} C_x$ for $C_x \in H_d^x$. Then we have the following:

M. Busaniche and R. Cignoli

Algebra univers.

Theorem 3.1. Free_{$\mathbb{N}V_n$}(X) is isomorphic to the algebra of continuous functions f from the Stone space of the free Boolean algebra over the poset $Y = \{\sigma_i^n(x) : x \in X, i = 1, ..., n - 1\}$ into \mathbf{L}_n such that for each $d \in \text{Div}^*(n - 1)$ and each $S \in R_d$, $f(U_S) \in L_{d+1}$.

Proof. From Theorem 2.1 and Theorem 2.3 we can assert that $\mathbf{Free}_{\mathbb{MV}_n}(X)$ is isomorphic to the algebra of continuous functions from the Stone space of the free Boolean algebra over the poset $Y = \{\sigma_i^n(x) : x \in X, i = 1, ..., n-1\}$ into \mathbf{L}_n such that $f(\rho(d)) \subseteq L_{d+1}$ for each $d \in \mathrm{Div}^*(n-1)$, where ρ is the corresponding meet homomorphism. Then we only need to prove the following claim.

Claim For each $d \in \text{Div}^*(n-1), U_S \in \rho(d)$ iff $S \in R_d$.

Proof of the claim. If $U_S \in \rho(d)$, from the proof of [7, Theorem 1.5], we know that

$$U_S = \chi^{-1}(\{1\}) \cap B(\mathbf{Free}_{\mathbb{MV}_n}(X))$$

for some homomorphism χ : $\mathbf{Free}_{\mathbb{MV}_n}(X) \to L_{d+1}$. Fix $x \in X$ and let $\chi(x) = \frac{j}{n-1} \in L_{d+1}$. Thus

$$\sigma_i^n(x) \in S \text{ iff } \chi(\sigma_i^n(x)) = 1 \text{ iff } \sigma_i^n(\chi(x)) = 1,$$

and from equation (2.1) this happens iff $i+j \ge n$. This implies that the x-chain C_x which is included in S has cardinality j. Since $\frac{j}{n-1} \in L_{d+1}$ we obtain that $C_x \in H_d^x$. Hence if $U_S \in \rho(d)$, then $S \in R_d$.

Now let $S \in R_d$ and $x \in X$. If we denote by C_x the only x-chain included in S, our hypothesis asserts that $\frac{\#C_x}{n-1} \in L_{d+1}$. Let

$$j_x = \begin{cases} 0 & \text{if } \sigma_1^n(x) \in S, \\ \max\{i \in \{1, \dots, n-1\} : \sigma_i^n(x) \notin S\} & \text{otherwise.} \end{cases}$$

Clearly $\#C_x = n - j_x - 1$. We define χ : $\mathbf{Free}_{\mathbb{MV}_n}(X) \to \mathbf{L}_n$ by $\chi(x) = \frac{n - j_x - 1}{n - 1}$, for each $x \in X$. Since X is a set of generators of $\mathbf{Free}_{\mathbb{MV}_n}(X), \chi(\mathbf{Free}_{\mathbb{MV}_n}(X)) \subseteq L_{d+1}$. We also have

$$U_S = \chi^{-1}(\{1\}) \cap B(\mathbf{Free}_{\mathbb{MV}_n}(X)).$$

Therefore $U_S \in \rho(d)$.

Taking into account Lemma 2.4, we obtain that for each $x \in X$, the function \hat{x} : Spec(**B**(**Free**_{MV_n}(X))) $\rightarrow L_n$ given by Theorem 2.1 is defined as follows, for each upwards closed subset S of Y:

$$\hat{x}(U_S) = \begin{cases} 1 & \text{if } \sigma_1^n(x) \in U_S, \\ \frac{n - j_x - 1}{n - 1} & \text{otherwise.} \end{cases}$$
(3.3)

Vol. 58, 2008

Free MV_n -algebras

4. Free MV_n-algebras over a finite set of generators

We shall consider now the algebra $\mathbf{Free}_{\mathbb{MV}_n}(X)$ where X is a finite set of cardinality $r \in \mathbb{N}$. According with Theorem 2.3 the Stone space of $\mathbf{B}(\mathbf{Free}_{\mathbb{MV}_n}(X))$ is a discrete space with n^r elements (i.e, the cardinality of R_{n-1}). For each $S \in R_{n-1}$ let

$$r_S = \{d : S \in R_d \text{ and } S \notin R_j \text{ for any } j \in \text{Div}^*(d)\}.$$

Following Theorem 3.1, to every $f \in \mathbf{Free}_{\mathbb{NV}_n}(X)$ we can assign an element $\overline{x} \in \prod_{S \in \mathbb{R}_{n-1}} L_{r_S+1}$ such that $x_S = f(U_S)$. It is not hard to check that the assignment is an injective homomorphism. On the other hand, if we consider an element $\overline{x} \in \prod_{S \in \mathbb{R}_{n-1}} L_{r_S+1}$ and define $f(U_S) = x_S$ for each $U_S \in \text{Spec } \mathbf{B}(\mathbf{Free}_{\mathbb{NV}_n}(X))$, it is obvious that f is continuous and that $f(U_S) \in L_{d+1}$ for each $S \in \mathbb{R}_d$. Therefore the algebra $\mathbf{Free}_{\mathbb{NV}_n}(X)$ is isomorphic to the direct product $\prod_{S \in \mathbb{R}_{n-1}} L_{r_S+1}$.

Therefore we can conclude the following:

Theorem 4.1.

$$\mathbf{Free}_{\mathbb{MV}_n}(X) \cong \prod_{d \in \mathrm{Div}(n-1)} \mathbf{L}_{d+1}^{\alpha_d}$$

where for each $d \in \text{Div}(n-1)$, α_d is the cardinality of the set $(R_d \setminus \bigcup_{k \in \text{Div}^*(d)} R_k)$.

Example 4.2. Let p be a prime number. Consider $\operatorname{Free}_{\mathbb{MV}_{p+1}}(X)$ where X is a finite set of cardinality r. Then R_p has p^r elements while R_1 has 2^r elements. According to Theorem 4.1 we have

$$\mathbf{Free}_{\mathbb{MV}_{p+1}}(X) \cong \mathbf{L}_{p+1}^{p^r - 2^r} \times \mathbf{L}_2^{2^r}.$$

Notice that our description coincides with the one given in [6, Theorem 8.6.1].

References

- V. Boicescu, A. Filipoiu, G. Georgescu, and S. Rudeanu, *Lukasiewicz-Moisil Algebras*, Elsevier, Amsterdam, 1991.
- [2] M. Busaniche and R. Cignoli, Free algebras in varieties of BL-algebras generated by a BL_n -chain, Journal of the Australian Mathematical Society 80 (2006), 419–439.
- [3] R. Cignoli, Moisil Algebras, Notas de Lógica Matemática, Universidad Nac. del Sur, Bahía Blanca, Argentina 27 (1970).
- [4] R. Cignoli, Proper n-Valued Lukasiewicz Algebras as S-algebras of Lukasiewicz n-Valued Propositional Calculi, Stud. Log. 41 (1982), 3–16.
- [5] R. Cignoli, Natural dualities for the algebras of Lukasiewicz finitely-valued logics, Bull. Symb. Logic. 2 (1996), 218.
- [6] R. Cignoli, M. I. D'Ottaviano, and D. Mundici, Algebraic foundations of many-valued reasoning, Kluwer Academic Pub., Dordrecht, 2000.
- [7] R. Cignoli and L. Monteiro, Maximal subalgebras of MVn-algebras. A proof of a conjecture of A. Monteiro, Stud. Log. 84 (2006), 393–405.

M. Busaniche and R. Cignoli

- [8] A. Di Nola, R. S. Grigolia, and G. Panti, *Finitely generated free MV-algebras and their automorphism groups*, Stud. Log. **61** (1998), 65–78.
- [9] A. Di Nola and R. S. Grigolia, Projective MV-algebras and their automorphism groups, J of Mult.-Valued Logic and Soft Computing, 9 (2003), 291–317.
- [10] R. S. Grigolia, An algebraic analysis of Lukasiewicz Tarski n-valued logical systems. In: R. Wójcicki, G. Malinowski (Eds.), Selected papers on Lukasiewicz sentential calculus, Ossolineum, Wrocław (1977), 81–92.
- [11] K. Keimel and H. Werner, Stone duality for varieties generated by a quasi-primal algebra, Mem. Amer. Math. Soc. No. 148 (1974), 59–85.
- [12] P. Niederkorn, Natural dualities for varieties of MV-algebras, J. Math. Anal. Appl. 225 (2001), 58–73.
- [13] A. J. Rodríguez and A. Torrens, Wajsberg Algebras and Post Algebras, Stud. Log. 53 (1994), 1–19.

Manuela Busaniche

M. Busaniche Instituto de Matemática Aplicada del Litoral- FIQ, CONICET-UNL, Guemes 3450, S3000GLN-Santa Fe, Argentina e-mail: manuelabusaniche@yahoo.com.ar

Roberto Cignoli

R. Cignoli Instituto Argentino de Matemática, CONICET, Saavedra 15, piso 3, C1083ACA-Capital Federal, Argentina *e-mail*: cignoli@dm.uba.ar