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ABSTRACT. We extend the results by Jones and Rosenblatt about the series of the differences
of differentiation operators along lacunary sequences to BMO and to the setting of weighted Lp-
spaces. We use a different approach which allows to establish that the one-sided SawyerAp weights
are the natural ones to study the boundedness and convergence of that series in weighted spaces.

1. Introduction

Jones and Rosenblatt studied [2] the behavior of the series of the differences of ergodic
averages and the series of the differences of differentiation operators along lacunary se-
quences in the context of the Lp spaces. In this article we give a different approach to these
questions and we extend their results about the series of the differences of differentiation
operators to BMO and to the setting of weighted Lp spaces. We point out that the estimates
in weighted spaces turn out to be a useful tool to establish the results for the series of the
differences of ergodic averages associated to a strongly continuous one parameter group of
positive operators acting on some Lp(µ); the details will appear in a forthcoming article.

Let ρ > 1 and let εk , k ∈ Z, be a ρ-lacunary sequence of positive numbers, that is,

εk+1/εk ≥ ρ for all k .

This implies clearly that limk→−∞ εk = 0 and limk→∞ εk = ∞. Therefore if f ∈ Lp(R),
1 ≤ p < ∞, and

Dkf (x) = 1

εk

∫ εk

0
f (x + t) dt (1.1)
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then limk→−∞Dkf (x) = f (x) and limk→∞Dkf (x) = 0 a.e. In order to give some
information about how the convergence occurs, we may consider the series

∞∑
k=−∞

(Dkf (x)−Dk−1f (x))

which obviously converges a.e. by the above remark. As it is explained in [2], the cancella-
tion in this series is crucial. Therefore, it is natural to ask about the convergence properties
of

∞∑
k=−∞

vk(Dkf (x)−Dk−1f (x)) , (1.2)

where vk is a bounded sequence of real or complex numbers. One of our aims is to study
the convergence properties of that series in the setting of weighted spaces and not only in
the Lebesgue measure case. This implies that our approach must be different from the one
in [2]. In order to explain why our approach should be different, let us recall the argument
in [2].

Jones and Rosenblatt obtained the results for the operator

0∑
k=−∞

vk(Dkf (x)−Dk−1f (x)) (1.3)

but this is probably a minor difference. They obtained the results by considering the
following series:

0∑
k=−∞

vk(Dkf (x)− Ekf (x)) and
0∑

k=−∞
vk(Ekf (x)− Ek−1f (x)) , (1.4)

where εk = 2−k and Ek is the conditional expectation operator with respect to the dyadic
σ -algebra with 2−k atoms. Since the properties of convergence of the second series in (1.4)
are well known, the problem is reduced to study the first series. Notice that the first series
in (1.4) defines formally a two-sided operator in the sense that for fixed x the values of the
series depend on the values of f (y) for y < x and y > x. In this way, if we study the
weights for this series we are naturally led to consider Muckenhoupt Ap weights, i.e., the
weights for the two-sided Hardy-Littlewood maximal function defined by

Mf (x) = sup
η,ε>0

1

η + ε

∫ ε

−η
|f (x + t)| dt .

[The same can be said for the second series in (1.4).] However, if we look at the original
series (1.3), we realize that it is a one-sided operator, in the sense that for fixed x the values
of the series depend only on the values of f (y) for y > x. Therefore the natural weights to
be considered are the good weights for the one-sided Hardy-Littlewood maximal function
defined by

M+f (x) = sup
ε>0

1

ε

∫ ε

0
|f (x + t)| dt , (1.5)
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which are a class of weights wider than the Muckenhoupt Ap classes. So, we have to study
directly the convergence of (1.2) without going through the conditional expectations. In
what follows we fix the problems, the notations and state the results.

Throughout the article, we will consider a bounded sequence {vk}, k ∈ Z, of real
or complex numbers. We shall say that {vk} is a multiplying sequence and we shall write
‖vk‖∞ = supk |vk|. For a locally integrable function f we consider the averages Dkf (x)
as in (1.1), that is, Dkf (x) = ϕk ∗ f (x) where ϕk(x) = 1

εk
χ (−εk,0)(x). For each N ∈ Z

2,
N = (N1, N2) with N1 < N2 we define the sum

TNf (x) =
N2∑
k=N1

vk(Dkf (x)−Dk−1f (x)) = KN ∗ f (x) , (1.6)

where

KN(x) =
N2∑
k=N1

vk(ϕk(x)− ϕk−1(x)) .

Our goal is to prove convergence results of TNf (x) as N = (N1, N2) tends to (−∞,+∞)

which means thatN1 → −∞ andN2 → +∞. As usual, to prove the a.e. convergence, we
shall study the boundedness of the associated maximal operator

T ∗f (x) = sup
N∈Z2

|TNf (x)|

in the setting of the weighted spaces

Lp(w) =
{
f : f is measurable and ‖f ‖Lp(w) =

(∫
R

|f |pw
)1/p

< ∞
}
.

Since the operators TN are convolution operators with kernels KN supported in (−∞, 0),
the study of T ∗ is related to the right-sided Hardy-Littlewood maximal operatorM+ defined
in (1.5). We recall the well-known results about weights for M+:

(1) The operatorM+ is of weak type (1, 1)with respect to the measurew(x) dx if and
only ifw ∈ A+

1 [6, 3], i.e., there exists C such thatM−w(x)≤ Cw(x) a.e. (M− is
the left-sided Hardy-Littlewood maximal function defined as M−f (x) =
supε>0

1
ε

∫ ε
0 |f (x − t)| dt).

(2) The operator M+ is bounded in Lp(w), 1 < p < ∞, if and only if w ∈ A+
p [6],

i.e., if there exists C such that for any three points a < b < c

(∫ b

a

w

) 1
p
(∫ c

b

w1−p′
) 1
p′

≤ C(c − a) , (1.7)

where p + p′ = pp′.

Of course, there are similar results for the operator M− reversing the orientation of R.
Now we can state the main results.

Theorem 1. Let {εk} be a ρ-lacunary sequence. Let {vk} be a multiplying sequence. If
1 < p < ∞ and w ∈ A+

p then there exists a constant C depending only on ρ, p, and
‖vk‖∞ such that ∥∥T ∗f

∥∥
Lp(w)

≤ C ‖f ‖Lp(w)
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for all functions f ∈ Lp(w).
Theorem 2. Let {εk} be a ρ-lacunary sequence. Let {vk} be a multiplying sequence. If
w ∈ A+

1 then there exists a constant C depending only on ρ and ‖vk‖∞ such that

w
({
x ∈ R : ∣∣T ∗f (x)

∣∣ > λ
}) ≤ C

λ
‖f ‖L1(w) ,

for all λ > 0 and all functions f ∈ L1(w).

Using these theorems and proving the a.e. convergence in a suitable dense class of
functions we obtain the following theorem.

Theorem 3. Let {εk} be a ρ-lacunary sequence. Let {vk} be a multiplying sequence.
Assume that w is a weight in A+

p .

(i) If 1 < p < ∞ then TNf converges a.e. and in Lp(w) norm for all f ∈ Lp(w) as
N = (N1, N2) tends to (−∞,+∞).

(ii) If p = 1 then TNf converges a.e. and in measure for all f ∈ L1(w) as N = (N1, N2)

tends to (−∞,+∞).

The above result includes the case of the Lebesgue measure (w = 1) which was
obtained in [2]. In the case of the space BMO we can not expect to obtain a.e. convergence
or norm convergence. However, a nice substitute can be found. We state the result in the
next theorem.

Theorem 4. Let {εk} be a ρ-lacunary sequence. Let {vk} be a multiplying sequence.
Then the operators TNf converge in the sense of the weak ∗ topology of BMO.

The organization of the article is as follows. Sections 2 and 3 are devoted to state
notations and properties of the lacunary sequences. In Section 4 we prove some properties
of the kernelsKN . Section 5 is devoted to prove uniform boundedness of the operators TN ,
while Theorems 1, 2, 3, and 4 are proved in Sections 6, 7, 8, and 9, respectively.

Throughout the article, the letterC means a positive constant not necessarily the same
at each occurrence.

2. Some Notation and Previous Facts

We denote by Lp = Lp(R), 1 ≤ p < ∞, the Lebesgue space consisting of all measurable
functions f defined in R such that

||f ||Lp =
(∫

R

|f (x)|p dx
)1/p

< ∞ .

For p = ∞, we write L∞ for the space of all measurable f such that

||f ||L∞ = ess sup |f (x)| < ∞ .

When Lebesgue measure is replaced byw(x) dx (for some nonnegative measurable function
w in R) we denote the corresponding weighted spaces by Lp(w).

For a locally integrable function f (f ∈ L1
loc), we define the sharp maximal function

f �(x) = sup
x∈I

1

|I |
∫
I

|f (y)− fI | dy ,
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where I is an arbitrary interval in R and fI = |I |−1
∫
I
f . Now, we define the space

BMO =
{
f ∈ L1

loc : ||f ||BMO = ∥∥f �∥∥∞ < ∞
}
.

An atom is a function a ∈ L∞ supported in an interval I and such that

|a(x)| ≤ 1/|I |,
∫
I

a(x) dx = 0

and the space H 1 is, as usual, the subspace of L1 formed by all functions

f (x) =
∑
i

λiai(x) ,

where
∑
i |λi | < ∞ and the functions ai are atoms. The norm of f in H 1 is defined by

||f ||H 1 = inf
∑
i |λi |, where the infimum is taken over the sequences {λi} appearing in

all the possible decompositions of f . It is known that if we identify in BMO the constant
functions with 0, we have that BMO is the dual space of H 1.

The study of the operators TN in weighted spaces requires the introduction of the
following one-sided maximal functions:

M+
s f (x) = sup

h>0

(
1

h

∫ x+h

x

|f (y)|s dy
)1/s

(1 ≤ s < ∞)

and

f+,#(x) = sup
h>0

1

h

∫ x+h

x

(
f (y)− 1

h

∫ x+2h

x+h
f

)+
dy ,

where f is a locally integrable function taking values in R and z+ stands for the positive
part of the real number z. We shall also need the following theorem that was proved in [4].

Theorem 5. For any 0 < p < ∞ and w ∈ A+∞ = ∪p>1A
+
p there exists C such that

∫
R

∣∣M+f (x)
∣∣pw(x) dx ≤ C

∫
R

(
f+,#(x)

)p
w(x) dx

whenever the left-hand side is finite.

3. Lacunary Sequences

We prove in this section some properties of the ρ-lacunary sequence {εk}. The next propo-
sition shows that, without loss of generality, we may assume that

1 < ρ ≤ εk+1

εk
≤ ρ2 . (3.1)

Proposition 1. Given the ρ-lacunary sequence {εk} and the multiplying sequence {vk},
we can define a ρ-lacunary sequence {ηk} and a multiplying sequence {wk} verifying the
following properties:

(i) 1 < ρ ≤ ηk+1
ηk

≤ ρ2 and ||vk||∞ = ||wk||∞.
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(ii) For all N = (N1, N2) there exists M = (M1,M2) with TN = T̃M , where T̃M is the
operator defined in (1.6) for the new sequences {ηk} and {wk}.
Proof. Let η0 = ε0, and let us construct ηl for positive l as follows (the argument for
negative l is analogous). If ρ2 ≥ ε1/ε0 ≥ ρ, define η1 = ε1. In the opposite case where
ε1/ε0 > ρ2, let η1 = ρε0. It verifies ρ2 ≥ η1/η0 = ρ ≥ ρ. Further, ε1/η1 ≥ ρ2ε0/ρε0 =
ρ. Again, if ε1/η1 ≤ ρ2, then η2 = ε1. If this is not the case, define η2 = ρ2ε0 ≤ ε1. By
the same calculations as before, η0, η1, η2 are part of a lacunary sequence satisfying (3.1).
To continue the sequence, either η3 = ε1 (if ε1/η2 ≤ ρ2) or η3 = ρ3η0 (if ε1/η2 > ρ2).
Since ρ > 1, this process ends at some k0 such that ηk0 = ε1. The rest of the elements ηk
are built in the same way, as the original εk plus the necessary terms put in between two
consecutive εk to get (3.1).

Let J (k) = {j : εk−1 < ηj ≤ εk}, D̃jf (x) = 1
ηj

∫ ηj
0 f (x + t) dt and wj = vk if

j ∈ J (k). Then

vk(Dkf (x)−Dk−1f (x)) =
∑
j∈J (k)

wj
(
D̃jf (x)− D̃j−1f (x)

)
.

If M = (M1,M2) is such that ηM2 = εN2 and ηM1−1 = εN1−1 we get that

TNf (x) =
N2∑
k=N1

vk(Dkf (x)−Dk−1f (x))

=
M2∑
j=M1

wj
(
D̃jf (x)− D̃j−1f (x)

) = T̃Mf (x) .

It follows from this proposition that it is enough to prove all the results of this article
in the case of a ρ-lacunary sequence satisfying (3.1). For this reason, in the rest of the article
we assume that {εk} satisfies (3.1) without saying it explicitly. Observe that the following
properties hold:

(
1

ρ

)2(m−n)
≤ εn

εm
≤
(

1

ρ

)m−n
, for all m > n . (3.2)

In fact, these inequalities follow from (3.1) and the equality

εn

εm
= εn

εn+1

εn+1

εn+2
· · · εm−1

εm
.

If we denote by α the smaller positive integer such that

1/ρ + (1/ρ)α ≤ 1 ,

we get from (3.2) that

εi + εm ≤ εm+1 for all m ≥ i + α − 1 . (3.3)
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4. Properties of the Kernels KN

The next lemma allows us to prove the boundedness of the operators TN uniformly on L2.

Lemma 1. There exists a constant C depending only on ρ and ‖vk‖∞ such that

sup
N

∣∣K̂N(ξ)∣∣ = sup
N

∣∣∣∣∣∣
N2∑
k=N1

vk
(
ϕ̂(εkξ)− ϕ̂(εk−1ξ)

)∣∣∣∣∣∣ ≤ C ,

for all ξ ∈ R and where f̂ (ξ) = ∫
e−iξxf (x) dx is the Fourier transform of f .

Proof. For fixed ξ ∈ R, let k0 be such that εk0−1 < 1/|ξ | ≤ εk0 . Then

∣∣K̂N(ξ)∣∣ ≤
∞∑

k=−∞
|vk|

∣∣ϕ̂(εkξ)− ϕ̂(εk−1ξ)
∣∣

≤ ‖vk‖∞
k0−1∑
k=−∞

· · · + ‖vk‖∞
∞∑
k=k0

· · · = I + II .

To estimate I , the mean value theorem and (3.1) yield

∣∣ϕ̂(εkξ)− ϕ̂(εk−1ξ)
∣∣ =

∫ 0

−1

∣∣e−iξεkx − e−iξεk−1x
∣∣ dx

≤ C(εk − εk−1)|ξ | ≤ Cρ2εk−1|ξ | .
Then, using (3.2) we get

I ≤ C‖vk‖∞|ξ |ρ2
k0−1∑
k=−∞

εk−1 ≤ C‖vk‖∞|ξ |ρ2
k0−1∑
k=−∞

(
1

ρ

)k0+1−k
εk0

≤ C‖vk‖∞
|ξ |ρ2εk0

ρk0+1

k0−1∑
k=−∞

ρk = C‖vk‖∞ρ|ξ |εk0

ρ − 1

≤ C‖vk‖∞ρ3

ρ − 1
,

where in the last inequality we have used that εk0 ≤ ρ2εk0−1 ≤ ρ2

|ξ | .
To estimate II we observe that |ϕ̂(εkξ)| ≤ 2

|ξ |εk . Then, by (3.2) we get that

II ≤ ‖vk‖∞
∞∑
k=k0

(∣∣ϕ̂k(ξ)∣∣+ ∣∣ϕ̂k−1(ξ)
∣∣)

≤ 4‖vk‖∞
|ξ |

∞∑
k=k0

1

εk−1

≤ 4‖vk‖∞
|ξ |εk0−1

∞∑
k=k0

(
1

ρ

)k−k0

≤ 4‖vk‖∞ρ3

ρ − 1
,

where in the last inequality we have used that |ξ |εk0−1 ≥ |ξ | εk0
ρ2 ≥ 1

ρ2 .
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In what follows we shall prove that the kernels KN verify a one-sided smoothness
condition uniformly. The proofs are similar to the ones in [7]. First, we shall need the
following lemma.

Lemma 2. If j ≥ i+α, 0 < x ≤ εi and εj < y < εj+1, thenχ(x,x+εk)(y)−χ(0,εk)
(y) =

0 unless k = j in which case

χ(x,x+εk)(y)−χ(0,εk)
(y) = χ(εj ,x+εj )(y) .

Proof. It is clear that for k > j ,

0 < x ≤ εi ≤ εj < y < εj+1 ≤ εk < x + εk ,

and thus [
χ(x,x+εk)(y)−χ(0,εk)

(y)
]
χ(εj ,εj+1)

(y) = 0 .

For k ≤ j − 1, by (3.3), we get that

εk < x + εk ≤ εi + εj−1 ≤ εj .

Then

χ(x,x+εk)(y)χ (εj ,εj+1)
(y) = χ(0,εk)

(y)χ (εj ,εj+1)
(y) = 0 .

Finally, in the case k = j , since by (3.3) x < εj < x + εj ≤ εi + εj ≤ εj+1 we have that

[
χ(x,x+εj )(y)−χ(0,εj )

(y)
]
χ(εj ,εj+1)

(y) = χ(x,x+εj )(y)χ (εj ,εj+1)
(y)

= χ(εj ,x+εj )(y) .

Lemma 3. Let 1 ≤ r < ∞, j ≥ i + α and 0 < x ≤ εi . Then

(∫ εj+1

εj

|KN(x − y)−KN(−y)|r dy
)1/r

≤ Cj ε
1/r−1
j ,

where Cj = 2‖vk‖∞
ρ(j−i)/r .

Proof. First, we have

|KN(x − y)−KN(−y)|

=
∣∣∣∣∣∣
N2∑
k=N1

vk

(
1

εk
χ (−εk,0)(x − y)− 1

εk−1
χ(−εk−1,0)

(x − y)

)
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−
N2∑
k=N1

vk

(
1

εk
χ (−εk,0)(−y)− 1

εk−1
χ(−εk−1,0)

(−y)
)∣∣∣∣∣∣

≤
∣∣∣∣∣∣
N2∑
k=N1

vk

εk
(χ (−εk,0)(x − y)−χ(−εk,0)(−y))

∣∣∣∣∣∣
+
∣∣∣∣∣∣
N2∑
k=N1

vk

εk−1
(χ (−εk−1,0)

(x − y)−χ(−εk−1,0)
(−y)

∣∣∣∣∣∣
≤ 2‖vk‖∞

N2∑
k=N1−1

1

εk
|χ(−εk,0)(x − y)−χ(−εk,0)(−y)|

= 2‖vk‖∞
N2∑

k=N1−1

1

εk
|χ(x,x+εk)(y)−χ(0,εk)

(y)| .

Now, applying Lemma 2 we get that(∫ εj+1

εj

|KN(x − y)−KN(−y)|r dy
)1/r

≤ 2‖vk‖∞x1/r

εj

≤ 2‖vk‖∞
ρ(j−i)/r

ε
1/r−1
j ,

where in the last inequality we have used that, by (3.2), x ≤ εi ≤ εj /ρ
j−i .

Remark 1. It follows from the proof of the above lemma that if N = (N1, N2) with
N2 < i + α ≤ j or i + α ≤ j < N1 then

|KN(x − y)−KN(−y)| = 0

for all x ∈ (0, εi] and y ∈ (εj , εj+1).

The condition in Lemma 3 is called the one-sidedDr condition, that is, we have proved
that for every r ∈ [1,∞) the kernels KN satisfy the one-sided condition Dr uniformly on
N . This condition implies Hörmander’s condition as we prove in the next corollary.

Corollary 1. The kernels KN satisfy the following Hörmander’s condition uniformly:
There exists a constant C depending only on ρ and ‖vk‖∞ such that∫

|y|>Cρ |x|
|KN(x − y)−KN(−y)| dy ≤ C, x ∈ R ,

where Cρ = ρ2(α+1) and x 
= 0.

Proof. Given x ∈ R\{0} let i ∈ Z such that εi−1 < |x| ≤ εi . It is clear by the lacunarity
of the sequence {εj } that

{y : |y| > Cρ |x|} ⊂ {y : |y| > Cρεi−1} ⊂ {y : |y| > εi+α} .
Now, let us observe that if εi−1 < |x| ≤ εi and −εj+1 < y ≤ −εj with j ≥ i + α, then
KN(x − y) = KN(−y) = 0. So that we only need to consider y > 0. Thus,∫

|y|>Cρ |x|
|KN(x − y)−KN(−y)| dy ≤

∫
y>εi+α

|KN(x − y)−KN(−y)| dy .



OF10 A. L. Bernardis, M. Lorente, F. J. Martín-Reyes, M. T. Martínez, A. de la Torre, and J. L. Torrea

Now, if x > 0, the lemma follows simply from Lemma 3 with r = 1. If x < 0, by a change
of variables we can obtain the same boundedness.

5. Boundedness of the Operators TN

This section is devoted to prove the uniform boundedness of the operators TN . More
precisely, we shall prove the following theorem.

Theorem 6. The operators TN verify the following inequalities with constants indepen-
dent of N and f .

(i) For all λ > 0, |{x ∈ R : |TNf (x)| > λ}| ≤ C
λ
‖f ‖L1 .

(ii) For 1 < p < ∞, ‖TNf ‖Lp ≤ Cp ‖f ‖Lp .

(iii) ‖TNf ‖BMO ≤ C ‖f ‖BMO.

(iv) For 1 < s < ∞, [|TNf |]+,#(x) ≤ CM+
s f (x).

Proof. It follows from Lemma II.6.1 in [1] that (i) and (ii) hold since the kernels KN
satisfy Hörmander’s condition uniformly and the Fourier transforms are uniformly bounded
in L∞.

Before proving (iii) we state and prove the following technical lemma.

Lemma 4. Given f ∈ BMO, x0 ∈ R, 1 < p < ∞, h > 0, i ∈ Z such that εi−1 < h ≤ εi ,
j > i and I = (x0, x0 + h), we have that

(
1

εj+1

∫ x0+εj+1

x0

|f (x)− fI |p dx
)1/p

≤ C(1 + j − i)‖f ‖BMO .

Proof. Let Ij = (x0, x0 + εj ). Then,

(
1

εj+1

∫ x0+εj+1

x0

|f (x)− fI |p dx
)1/p

≤
(

1

εj+1

∫ x0+εj+1

x0

|f (x)− fIj+1 |p dx
)1/p

+
j+1∑
l=i+1

|fIl − fIl−1 | + |fIi − fI | = I + II + III .

The first term is bounded by a constant times ‖f ‖BMO by John-Nirenberg’s theorem. On
the other hand, by (3.1), we have that

II + III ≤
j+1∑
l=i+1

1

εl−1

∫ x0+εl−1

x0

|f (x)− fIl | dx + 1

|I |
∫
I

|f (x)− fIi | dx

≤
j+1∑
l=i+1

ρ2

εl

∫ x0+εl

x0

|f (x)− fIl | dx + ρ2

εi

∫ x0+εi

x0

|f (x)− fIi | dx

≤ ρ2(j − i + 2)‖f ‖BMO .

Now, we shall prove (iii). Fix x0 ∈ R and h > 0. Consider the interval I =
(x0, x0 + h). We split f according to the interval I as f = f0 + f1 + f2 + fI , where f0 =
(f − fI )χ (−∞,x0)

, f1 = (f − fI )χ (x0,x0+ρ2(α+1)h) and f2 = (f − fI )χ (x0+ρ2(α+1)h,∞).
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Since |TNf (x)| < ∞, it is enough to prove that there exists a constant C depending only
on ρ and ‖vk‖∞, but not on N , such that

1

|I |
∫
I

|TNf (x)− TNf2(x0)| dx ≤ C‖f ‖BMO .

Observe that TNf0(x) = 0 for all x ∈ I . Also, since the operators Dk are averages, we
have that TNfI (x) = 0. Therefore,

|TNf (x)− TNf2(x0)| ≤ |TNf1(x)| + |TNf2(x)− TNf2(x0)| .
Now, since the operators TN are uniformly bounded in Lp for 1 < p < ∞ we have that

1

|I |
∫
I

|TNf1(x)| dx ≤
(

1

|I |
∫
I

|TNf1(x)|p dx
)1/p

≤ C

(
1

h

∫ x0+ρ2(α+1)h

x0

|f (x)− fI |p dx
)1/p

≤ C‖f ‖BMO ,

where the last inequality follows by arguing as in the proof of Lemma 4. In order to
handle II , let us fix i such that εi−1 ≤ h ≤ εi . Thus, for x ∈ I , we obtain

|TNf2(x)− TNf2(x0)| ≤
∫ ∞

ρ2(α+1)h

|KN((x − x0)− y)−KN(−y)||f (y + x0)− fI | dy

≤
∞∑

j=i+α

∫ εj+1

εj

|KN((x − x0)− y)−KN(−y)||f (y + x0)− fI | dy ,

where in the last inequality we have used that by (3.2), ρ2(α+1)h ≥ ρ2(α+1)εi−1 ≥ εi+α .
Then, by Hölder inequality, Lemma 3 and Lemma 4 we get that

|TNf2(x)− TNf2(x0)| ≤ C

∞∑
j=i+α

ε
1/r ′
j

(∫ εj+1

εj

|KN((x − x0)− y)−KN(−y)|r dy
)1/r

×
(

1

εj+1

∫ x0+εj+1

x0

|f (y)− fI |r ′ dy
)1/r ′

≤ C

∞∑
j=i+α

1

ρ(j−i)/r
(1 + j − i)||f ||BMO ≤ C ||f ||BMO .

Finally, we shall prove (iv). It is proved in [4] that

f+,#(x) ≤ sup
h>0

inf
a∈R

(
1

h

∫ x+h

x

(f (y)− a)+dy + 1

h

∫ x+2h

x+h
(a − f (y))+dy

)
.

If we use the above inequality we get that

f+,#(x) ≤ sup
h>0

inf
a∈R

(
1

h

∫ x+h

x

|f (y)− a| dy + 1

h

∫ x+2h

x+h
|a − f (y)| dy

)

≤ C sup
h>0

inf
a∈R

1

h

∫ x+h

x

|f (y)− a| dy .
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Thus, it is enough to prove that for fixed x0 there is, for each positive h, a real number a
that may depend on x0 and h such that

1

h

∫ x0+h

x0

∣∣|TNf | − a
∣∣ dx ≤ CM+

s f (x0) .

As in the proof of (iii), we split f as f = f0 + f1 + f2, where f0 = fχ(−∞,x0)
,

f1 = fχ(x0,x0+ρ2(α+1)h) and f2 = fχ(x0+ρ2(α+1)h,∞) and choose a = |TNf2(x0)|. It is
clear that, since |TNf (x)| < ∞ and |TNf2(x0)| < ∞,

∣∣|TNf (x)| − |TNf2(x0)|
∣∣ ≤ |TNf1(x)| + |TNf2(x)− TNf2(x0)| .

Now, again as in the proof of (iii), for x ∈ (x0, x0 + h) and εi−1 < h ≤ εi , we get that

|TNf2(x)− TNf2(x0)| ≤ C

∞∑
j=i+α

ε
1/s
j

(∫ εj+1

εj

|K((x − x0)− y)−K(−y)|s′ dy
)1/s′

×
(

1

εj+1

∫ x0+εj+1

x0

|f (y)|s dy
)1/s

≤ CM+
s f (x0) ,

and

1

h

∫ x0+h

x0

|TNf1(x)| dx ≤
(

1

h

∫ x0+h

x0

|TNf1(x)|s dx
)1/s

≤
(

1

h

∫ x0+ρ2(α+1)h

x0

|f (x)|s dx
)1/s

≤ CM+
s f (x0) .

Thus, the theorem follows.

6. Proof of Theorem 1

First, we shall prove that the operators TN are uniformly bounded in the weightedLp spaces.

Theorem 7. Let 1 < p < ∞ and w ∈ A+
p . There exists a constant C depending on p,

ρ, and ‖vk‖∞ such that∫
|TNf (x)|pw(x) dx ≤ C

∫
|f (x)|pw(x) dx .

Proof. We know that A+
p ⊂ A+∞ and that for each w ∈ A+

p there is an s bigger than one

such that p/s > 1 and w ∈ A+
p/s (see [6]). On the other hand, since

|TNf (x)| ≤ 2‖vk‖∞(N2 −N1 + 1)M+f (x) ,

we get that ∫
R

[
M+(|TNf |)(x)]pw(x) dx < ∞ .
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Thus, applying Theorem 5 and Theorem 6 (iv) we have

∫
|TNf (x)|pw(x) dx ≤ C

∫ [
M+(|TNf |)(x)]pw(x) dx

≤ C

∫ [
(|TNf |)+,#(x)]pw(x) dx

≤ C

∫ [
M+
s f (x)

]p
w(x) dx

= C

∫ [
M+(|f |s)(x)]p/s w(x) dx

≤ C

∫
|f (x)|pw(x) dx ,

where in the last inequality we have applied thatM+ is bounded inLp/s(w) sincew ∈ A+
p/s .

Now, we prove the Lp boundedness of the operator T ∗. For N = (N1, N2), we
shall use TN1,N2 to denote the operator TN . We start proving a pointwise estimate for the
operators

T ∗
Mf (x) = sup

|N1|,|N2|≤M
|TN1,N2f (x)| .

Theorem 8. For each s ∈ (1,∞) there exists a constantC depending on s, ρ, and ‖vk‖∞
such that for every x ∈ R and every M > 0

T ∗
Mf (x) ≤ C

[
M+(|T−M,Mf |)(x)+M+

s f (x)
]
.

Proof. Since the operators TN1,N2 are given by convolutions, they are invariant under
translations, and therefore it is enough to prove the theorem for x = 0. Observe that

TN1,N2f (x) = TN1,Mf (x)− TN2+1,Mf (x) .

Then, it will suffice to estimate |Tm,Mf (0)| for |m| ≤ M with constants independent of m
and M . Let us split f as f = f1 + f2 + f3, where f1 = fχ(0,εm−1)

, f2 = fχ(εm−1,∞),
and f3 = fχ(−∞,0). First, notice that Tm,M(f3)(0) = 0. Then

|Tm,Mf (0)| ≤ |Tm,Mf1(0)| + |Tm,Mf2(0)|
= I + II .

It is clear that

I =
∣∣∣∣∣
∫ εm−1

0

M∑
k=m

vk

(
1

εk
− 1

εk−1

)
f (y) dy

∣∣∣∣∣
≤ ‖vk‖∞

1

εm−1

∫ εm−1

0
|f (y)| dy ≤ ‖vk‖∞M+f (0) .
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On the other hand,

II = 1

εm−1−α

∫ εm−1−α

0
|Tm,Mf2(0)| dx

≤ 1

εm−1−α

∫ εm−1−α

0
|T−M,Mf (x)| dx

+ 1

εm−1−α

∫ εm−1−α

0
|T−M,Mf1(x)| dx

+ 1

εm−1−α

∫ εm−1−α

0
|Tm,Mf2(0)− Tm,Mf2(x)| dx

+ 1

εm−1−α

∫ εm−1−α

0
|T−M,m−1f2(x)| dx

= A1 + A2 + A3 + A4 .

(If m = −M we understand that A4 = 0). It is obvious that

A1 ≤ M+(|T−M,Mf |)(0) .
For the second term, we use the uniform boundedness on Ls of the operators T−M,M given
in Theorem 6 (ii). Thus,

A2 ≤
(

1

εm−1−α

∫ εm−1−α

0
|T−M,Mf1(x)|s dx

)1/s

= C

(
1

εm−1−α

∫ εm−1

0
|f (x)|s dx

)1/s

≤ ρ2α/s M+
s f (0) ,

where in the last inequality we have used condition (3.2). To estimate A3, we proceed as
in Theorem 6 (iv) and thus

|Tm,Mf2(0)− Tm,Mf2(x)| ≤ CM+
s f (0) .

Finally, we estimate A4. First, it is clear that

A4 ≤ C

εm−1−α

∫ εm−1−α

0

m−1∑
−M−1

1

εk

∫
R

χ(εm−1,∞)(y)χ (x,x+εk)(y)|f (y)| dy dx .

By using (3.3) we get that for x ∈ (0, εm−1−α) and k ≤ m−2, x+ εk ≤ εm−1−α + εm−2 ≤
εm−1. Therefore, the sum in the above inequality reduces to the term k = m− 1. Thus, by
using (3.3) again we get

A4 ≤ C

εm−1

∫ εm−1+εm−1−α

0
|f (y)| dy ≤ CM+f (0) .

Putting all these inequalities together and using thatM+f (x) ≤ M+
s f (x) for all s ∈ (1,∞),

we are done.

Proof of Theorem 1. Since if w ∈ A+
p there is an s bigger than one and such that

p/s > 1 and w ∈ A+
p/s [6] then∫ [

M+
s f (x)

]p
w(x) dx ≤ C

∫
|f (x)|pw(x) dx .
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Now, from Theorems 7 and 8 we get that∫ [
T ∗
Mf (x)

]p
w(x) dx ≤ C

∫
|f (x)|pw(x) dx ,

where the constant C does not depend on M . Consequently, letting M increase to infinity,
we see that the same holds for the operator T ∗, and we are done.

7. Proof of Theorem 2

We begin studying the behavior of T ∗ on the functions of compact support and zero average.
For this, we shall need the following remark.

Remark 2. It is clear that A+
1 implies the following condition: There exists C such that

for any M > 1 and every interval I = (a, a + h)∫ a

a−Mh
w ≤ CMh ess inf{w(x) : x ∈ I } .

It follows from this property that if w satisfies A+
1 then the following one-sided doubling

property holds: There exists C such that for any M > 1∫ a+h

a−Mh
w ≤ (CM + 1)

∫ a+h

a

w .

Lemma 5. Let a be supported on I = (0, εi) and such that
∫
I
a = 0 and let w ∈ A+

1 .

There exists C such that∫
z<−εi+α

T ∗a(z)w(z) dz ≤ C

∫
I

|a(z)|w(z) dz .

Proof. Let us write∫
z<−εi+α

T ∗a(z)w(z) dz =
∞∑

m=i+α

∫ −εm

−εm+1

T ∗a(z)w(z) dz .

If z ∈ (−εm+1,−εm) and u ∈ I , then by (3.3) z−u ∈ (−εm+2,−εm). Thus,χ(−εk,0)(z−
u) = 1 for all k ≥ m+ 2 and χ(−εk,0)(z − u) = 0 for all k ≤ m. Then, for fixed N ∈ Z

2

and by using that
∫
I
a = 0 we get that

|TNa(z)| ≤
∞∑

k=−∞

∣∣∣∣
∫
I

vk

(
1

εk
χ (−εk,0)(z− u)− 1

εk−1
χ(−εk−1,0)

(z− u)

)
a(u) du

∣∣∣∣
=
∣∣∣∣
∫
I

vm+1
1

εm+1
χ(−εm+1,0)

(z− u)a(u) du

∣∣∣∣
+
∣∣∣∣
∫
I

vm+2
1

εm+1
χ(−εm+1,0)

(z− u)a(u) du

∣∣∣∣ .
On one hand, we can see that if z ≥ −εm+1 + εi , then z − u > z − εi ≥ −εm+1 and as a
consequenceχ(−εm+1,0)

(z− u) = 1. Thus, applying again that
∫
I
a = 0, we get that both
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terms in the above inequalities are zero for z ≥ −εm+1 + εi . On the other hand, both terms
are dominated by C 1

εm+1

∫
I
|a|. Therefore

∫
z<−εi+α

T ∗a(z)w(z) dz ≤ C

∞∑
m=i+α

1

εm+1

(∫
I

|a(u)| du
)∫ −εm+1+εi

−εm+1

w(z) dz .

Let r > 1 such that wr ∈ A+
1 [6]. By Hölder’s inequality and Remark 2 we have that

∫ −εm+1+εi

−εm+1

w(z) dz ≤
(∫ −εm+1+εi

−εm+1

wr(z) dz

) 1
r

ε
1
r′
i

≤ C ε
1
r′
i (εm+1)

1
r ess inf{w(x) : x ∈ I } .

Hence, ∫
z<−εi+α

T ∗a(z)w(z) dz ≤ C ε
1
r′
i

∞∑
m=i+α

1

(εm)
1
r′

∫
I

|a|w ≤ C

∫
I

|a|w .

Corollary 2. Let a be supported on I = (x∗, x∗ + h) and such that
∫
I
a = 0 and let

w ∈ A+
1 . If A = ρ2(α+1) there exists C independent of x∗, h, and a, such that∫

z<x∗−Ah
T ∗a(z)w(z) dz ≤ C

∫
I

|a(z)|w(z) dz .

Proof. Observe that it is sufficient to prove the corollary for x∗ = 0. Choose i such that
εi−1 ≤ h < εi. Then a is supported on (0, εi) and has integral zero. Furthermore, by (3.2),
−Ah < −εi+α and∫

z<−Ah
T ∗a(z)w(z) dz ≤

∫
z<−εi+α

T ∗a(z)w(z) dz ≤ C

∫
I

|a(z)|w(z) dz .

Theorem 9. Let w ∈ A+
1 . Then there exists C, depending only on w, so that for any

λ > 0 and all f ∈ L1(w)

w
({
x ∈ R : T ∗f (x) > λ

}) ≤ C

λ

∫
|f (x)|w(x) dx .

Proof. Let Oλ = {x : M+f (x) > λ}. It is well known that if {Ii} are the connected
components of Oλ, then λ = 1

|Ii |
∫
Ii
f = fIi . We decompose f as

f = f χR\Oλ +
∑

fIi χIi +
∑

(f − fIi )χIi .

As usual, f χR\Oλ + ∑
fIi χIi will be denoted by g and

∑
(f − fIi )χIi = ∑

bi by b.
Observe that each bi has support on Ii and average zero. Now,∫

R

|g(y)|w(y) dy ≤
∫

R\Oλ
|f (y)|w(y) dy +

∑
w(Ii)fIi (7.1)

=
∫

R\Oλ
|f (y)|w(y) dy + λ

∑
w(Ii)

=
∫

R\Oλ
|f (y)|w(y) dy + λw(Oλ)

≤ C

∫
R

|f (y)|w(y) dy ,
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because the operator M+f is of weak type (1, 1) with respect to w.
For each interval I = (a, a + h), let us denote by I ∗ the interval (a − Ah, a + h),

where A = ρ2(α+1). We also denote Õλ the union of all the intervals I ∗
i . Observe that

w
({
x : T ∗f (x) > λ

}) ≤ w
({
x : T ∗g(x) > λ/2

})+ w
(
Õλ
)

+ w
({
x /∈ Õλ : T ∗b(x) > λ/2

}) = I + II + III .

The one-sided doubling property of the weight and the weak type (1, 1) inequality forM+
give

II = w
( ∪i I ∗

i

) ≤ Cw(Oλ) ≤ C

λ

∫
|f (y)|w(y) dy .

On the other hand, since A+
1 implies condition A+

p for any p > 1, Theorem 1 implies that
T ∗ is a bounded operator in Lp(w). Then we have

w
({
x : T ∗g(x) > λ/2

}) ≤ C

λp

∫ (
T ∗g(y)

)p
w(y) dy ≤ C

λp

∫
|g(y)|pw(y) dy

≤ C

λ

∫
|g(y)|w(y) dy ≤ C

λ

∫
|f (y)|w(y) dy .

Observe that in the last two inequalities we have used |g| ≤ λ and (7.1). Finally, by using
Corollary 2 and the one-sided nature of the operator T ∗, we have

III ≤ C

λ

∫
R\Õλ

T ∗b(x)w(x) dx ≤ C

λ

∑
i

∫
R\I∗

i

T ∗bi(x)w(x) dx

≤ C

λ

∑
i

∫
Ii

|bi(x)|w(x) dx .

Since the Ii’s are disjoint and b(x) = bi(x) on each Ii the last term is bounded by

C

λ

∫
|b(x)|w(x) dx = C

λ

∫
|f (x)− g(x)|w(x) dx ≤ C

λ

∫
|f (x)|w(x) dx .

8. Proof of Theorem 3

We start proving the convergence in the Schwartz’s class S.

Theorem 10. The functions TNψ(x) converge for all ψ ∈ S and for every x ∈ R as
N = (N1, N2) tends to (−∞,+∞).

Proof. It will suffice to show that T0,Mψ(x) and T−M,0ψ(x) converge as M → +∞.
We shall prove that

|T−M,0ψ(x)− T−N,0ψ(x)| + |T0,Mψ(x)− T0,Nψ(x)|
= |T−M,−N−1ψ(x)| + |TN+1,Mψ(x)| = I + II

is small for N < M and N big enough. First, let us observe that from (3.2) we have that
for each m ≤ n

n∑
k=m

εk ≤ C εn and
n∑

k=m

1

εk
≤ C

1

εm
. (8.1)



OF18 A. L. Bernardis, M. Lorente, F. J. Martín-Reyes, M. T. Martínez, A. de la Torre, and J. L. Torrea

Since
∫
KN = 0 for every N ∈ Z

2, by using the mean value theorem and (8.1) we get that

I =
∣∣∣∣
∫
K−M,−N−1(x − y)[ψ(y)− ψ(x)] dy

∣∣∣∣
≤ 2

∥∥ψ ′∥∥
L∞||vk||∞

∫ −N−1∑
k=−M−1

ϕk(u)|u| du

≤ C

−N−1∑
k=−M−1

1

εk

∫ 0

−εk
|u| du ≤ C

−N−1∑
k=−M−1

εk ≤ Cε−N−1 ,

which is small whenN is big enough. On the other hand, by using (8.1) again we have that

II ≤ 2||vk||∞
∫ M∑

k=N
ϕk(x − y)|ψ(y)| dy

≤ C

M∑
k=N

1

εk
||ψ ||L1 ≤ C

εN
||ψ ||L1 ,

which is small taking for N big enough.

The above theorem and Theorems 1 and 2 with w = 1 allow us to prove that there
exists the limit of TNf (x) a.e. for all f ∈ Lp(dx) with 1 ≤ p < ∞. Now, since
Lp(dx) ∩ Lp(w) is a dense subset of Lp(w), this fact and Theorem 1 allow us to prove
that there exists the limit of TNf (x) a.e. for all f ∈ Lp(w) with 1 ≤ p < ∞. On the other
hand, by using the dominated convergence theorem, we can prove the convergence in the
Lp(w) norm for 1 < p < ∞. For p = 1, convergence in measure follows by standard
arguments.

9. Proof of Theorem 4

We shall see that T0,Mf and T−M,0f converges in the sense of the weak ∗ topology. Since
the operators TN , N = (N1, N2), are uniformly bounded in BMO [Theorem 6 (iii)], it will
be enough to show that for each sequence of atoms {ai} and each sequence {λi} ∈ �1

aN,M =
∣∣∣∣∣

∞∑
i=1

λi

∫
Ii

ai(x)(T−M,0f (x)− T−N,0f (x)) dx
∣∣∣∣∣

+
∣∣∣∣∣

∞∑
i=1

λi

∫
Ii

ai(x)(T0,Mf (x)− T0,Nf (x)) dx

∣∣∣∣∣
tends to 0 for N,M → +∞. Let us take N < M . Then

aN.M ≤
∞∑
i=1

|λi |
∣∣∣∣
∫
Ii

ai(x)TN+1,Mf (x) dx

∣∣∣∣
+

∞∑
i=1

|λi |
∣∣∣∣
∫
Ii

ai(x)T−M,−N−1f (x) dx

∣∣∣∣ = bN,M + cN,M .
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For each i ∈ N, let Ii = [xi, xi + hi] and ki ∈ Z such that εki−1 < hi ≤ εki . As in the
proof of Theorem 6 (iii), we split f = f i0 +f i1 +f i2 +fIi , where f i0 = (f −fIi )χ (−∞,xi )

,

f i1 = (f − fIi )χ (xi ,xi+ρ2(α+1)hi )
and f i2 = (f − fIi )χ (xi+ρ2(α+1)hi ,∞). Observe that

TNf
i
0 (x) = 0 for all x ∈ Ii and all N ∈ Z

2. Also, since the operators Dk are averages, we
have that TNfIi (x) = 0, for all N ∈ Z

2. Then, since |TNf (x)| < ∞ for all x ∈ R and
each N ∈ Z

2 and
∫
Ii
ai = 0 we have that

bN,M ≤
L∑
i=1

|λi |
∫
Ii

|ai(x)|
∣∣TN+1,Mf

i
1 (x)

∣∣ dx
+

L∑
i=1

|λi |
∫
Ii

|ai(x)|
∣∣TN+1,Mf

i
2 (x)− TN+1,Mf

i
2 (xi)

∣∣ dx
+

∞∑
i=L+1

|λi |
∫
Ii

|ai(x)||TN+1,Mf (x)− (TN+1,Mf )Ii | dy = A1 + A2 + A3 .

On one hand, for some 1 < p < ∞ we get that

A1 ≤
L∑
i=1

|λi |‖ai‖Lp′
∥∥TN+1,Mf

i
1

∥∥
Lp

and, since f i1 ∈ Lp for all 1 < p < ∞, by applying Theorem 3 (i) with w = 1 we get that
A1 → 0 forN → ∞. On the other hand, by (3.2) we have that ρ2(α+1)hi > ρ2(α+1)εki−1 ≥
εki+α . Then, by Hölder’s inequality, Remark 1, Lemma 3, and Lemma 4 we get that

∣∣TN+1,Mf
i
2 (x)− TN+1,Mf

i
2 (xi)

∣∣
≤
∫
y>ρ2(α+1)hi

|KN+1,M((x − xi)− y)−KN+1,M(−y)||f (y + xi)− fIi | dy

≤
∫
y>εki+α

|KN+1,M((x − xi)− y)−KN+1,M(−y)||f (y + xi)− fIi | dy

≤
∞∑

j=N+1

(∫ εj+1

εj

|KN+1,M((x − xi)− y)−KN+1,M(−y)|r dy
)1/r

×
(∫ εj+1

0
|f (y + xi)− fIi |r

′
dy

)1/r ′

≤ C||f ||BMO

∞∑
j=N+1

1 + j − ki

ρ(j−ki )/r
.

Then, taking N big enough we get that A2 → 0. Finally, since the operators TN are
uniformly bounded on BMO we get that

A3 ≤
∞∑

i=L+1

|λi |||TN+1,Mf ||BMO ≤ C||f ||BMO

∞∑
i=L+1

|λi | ,

which is small if we choose L big enough. In the same way we can prove that cN,M → 0.
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10. Final Remark: The Vector Valued Setting

If we work in a vector valued setting we obtain results of boundedness and convergence
for more general operators. In order to see this, assume that vk is a bounded sequence in
a Hilbert space H. Then the operators TN are well defined for locally integrable functions
f : R → R. We notice that TNf (x) ∈ H for all x ∈ R. All the results in this article hold
in this setting for the appropriate Bochner-Lebesgue spaces LpH (see [5] for definitions and
notations). The proofs are the same. We only may notice that we require a Hilbert space
and not a Banach space because in the proof of the boundedness of TN in L2

H we need to
use that the Fourier transform is bounded in L2

H.
One of the results in this vector valued setting says that ifw ∈ A+

p , 1 < p < ∞, then
there exists C such that ∫ ∣∣T ∗f

∣∣pw ≤ C

∫
|f |pw (10.1)

for all functions f ∈ Lp(w), where T ∗ is the maximal operator defined by

T ∗f (x) = sup
N

||TNf (x)||H ,

and || ||H stands for the norm in the Hilbert space. If H is the space �2 and vk is the
canonical basis of �2 then T ∗f is equal to the square function

Sf (x) =
( ∞∑
k=−∞

|Dkf (x)−Dk−1f (x)|2
)1/2

and, therefore, the above result means in this special case that if w ∈ A+
p , 1 < p < ∞,

then S applies Lp(w) into Lp(w). This result was previously obtained in [7].
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