DIFFERENCES OF ERGODIC AVERAGES FOR CESÀRO BOUNDED OPERATORS

A.L. BERNARDIS, M. LORENTE, F.J. MARTÍN-REYES, M.T. MARTÍNEZ, A. DE LA TORRE, AND J.L. TORREA

ABSTRACT. We prove that the weighted differences of ergodic averages, induced by a Cesàro bounded, strongly continuous, one-parameter group of positive, invertible, linear operators on L_p , 1 , converge a.e. and $in the <math>L^p$ norm. We obtain first the boundedness of the ergodic maximal operator and the convergence of the averages.

1. INTRODUCTION AND MAIN RESULTS

Let (X, \mathcal{F}, μ) be a σ -finite measure space and let $\Gamma = \{T^t : t \in \mathbb{R}\}$ be a one-parameter group of positive, invertible, linear operators on $L^p(\mu) = L^p(X, \mathcal{F}, \mu)$, for some fixed p in the range 1 . One of the classicalproblems in ergodic theory is to study the convergence of the averages

$$\mathcal{A}_{\varepsilon}^{+}f(x) = \frac{1}{\varepsilon} \int_{0}^{\varepsilon} T^{t}f(x)dt$$

as $\varepsilon \to 0^+$ and as $\varepsilon \to \infty$. If we know that this convergence holds in the almost everywhere sense or in the L^p -norm then it is reasonable to try to give some information about how the convergence occurs. In particular, given a lacunary sequence $\{\varepsilon_k\}_{k\in\mathbb{Z}}$, i.e., $\varepsilon_k > 0$ and $\frac{\varepsilon_{k+1}}{\varepsilon_k} \ge \rho > 1$ for all k, we may consider the series

$$\sum_{k=-\infty}^{\infty} \left(\frac{1}{\varepsilon_k} \int_0^{\varepsilon_k} T^t f(x) dt - \frac{1}{\varepsilon_{k-1}} \int_0^{\varepsilon_{k-1}} T^t f(x) dt \right)$$

which obviously converges. As the cancellation in this series is crucial (see [1]), it is natural to ask about the convergence properties of

(1.1)
$$\sum_{k=-\infty}^{\infty} \upsilon_k \left(\frac{1}{\varepsilon_k} \int_0^{\varepsilon_k} T^t f(x) dt - \frac{1}{\varepsilon_{k-1}} \int_0^{\varepsilon_{k-1}} T^t f(x) dt \right),$$

where v_k is a bounded sequence of real or complex numbers. Jones and Rosenblatt [4] studied this problem in the real line for $T^t f(x) = f(x+t)$ and when Γ is the group associated to an invertible, ergodic, measure preserving transformation. Our aim is to study the properties of convergence of (1.1) in a more

²⁰⁰⁰ Mathematics Subject Classification. Primary: 40A30; Secondary: 42C20.

Key words and phrases. Cesàro Bounded Operators, Ergodic Averages .

This research has been partially supported by CAI+D-UNL, CONICET , Junta de Andalucía and M.C.Y.T grants BFM2001-1638 and BFM2002-04013-C02-02.

general setting, that is, assuming that Γ is a strongly continuous, one-parameter group of positive, invertible, linear operators on $L^p(\mu) = L^p(X, \mathcal{F}, \mu)$. In order to prove a.e. convergence of the averages, the standard approach is to consider the maximal operator

$$\mathcal{M}^+f(x) = \sup_{\varepsilon > 0} |\mathcal{A}^+_{\varepsilon}f(x)|$$

and to prove a dominated ergodic estimate, i.e.,

$$\int_X |\mathcal{M}^+ f|^p d\mu \le C \int_X |f|^p d\mu.$$

It is clear that for such an inequality to hold, the averages $\mathcal{A}_{\varepsilon}^+$ must be uniformly bounded operators in $L^p(\mu)$, i.e.,

$$\sup_{\varepsilon>0} \|\mathcal{A}_{\varepsilon}f\|_p \le C \|f\|_p.$$

In other words, the semigroup $\Gamma_+ = \{T^t : t > 0\}$, must be Cesàro bounded. (This is obviously the case if T^t is a measure preserving transformation for each t.) Our first result proves that this condition is sufficient for the boundedness of the maximal operator.

Theorem 1.1. Let $1 . Let <math>(X, \mathcal{F}, \mu)$ be a σ -finite measure space and let $\Gamma = \{T^t : t \in \mathbb{R}\}$ be a strongly continuous one-parameter group of positive, invertible, linear operators on $L^p(\mu)$. The following conditions are equivalent:

(a) There exists C > 0 such that for all $f \in L^p(\mu)$,

$$\int_X |\mathcal{M}^+ f|^p d\mu \le C \int_X |f|^p d\mu.$$

(b) The semigroup $\Gamma_+ = \{T^t : t > 0\}$ is Cesàro bounded in $L^p(\mu)$, i.e., there exists C > 0 such that for all $f \in L^p(\mu)$,

$$\sup_{\varepsilon>0} ||\mathcal{A}_{\varepsilon}^+ f||_{L^p(\mu)} \le C ||f||_{L^p(\mu)}.$$

As a consequence of this theorem we obtain that (b) in Theorem 1.1 implies the convergence of the averages.

Theorem 1.2. Let $1 . Let <math>(X, \mathcal{F}, \mu)$ be a σ -finite measure space and let $\Gamma = \{T^t : t \in \mathbb{R}\}$ be a strongly continuous one-parameter group of positive, invertible, linear operators on $L^p(\mu)$. Assume that the semigroup $\Gamma_+ = \{T^t : t > 0\}$ is Cesàro bounded in $L^p(\mu)$. Then the following statements hold for every $f \in L^p(\mu)$:

- (a) $\lim_{\varepsilon \to 0^+} \mathcal{A}^+_{\varepsilon} f = f$ a.e. and in $L^p(\mu)$.
- (b) The averages $\mathcal{A}_{\varepsilon}^+ f$ converge a.e. and in $L^p(\mu)$ as $\varepsilon \to +\infty$.

Once we have the convergence of the averages we may consider the series (1.1). In order to study it, we need to prove L^p inequalities for a suitable maximal operator. First, we introduce some definitions.

Definition 1.3. Assume that $\Gamma = \{T^t : t \in \mathbb{R}\}$ is a strongly continuous oneparameter group of positive, invertible, linear operators on $L^p(\mu)$, $1 . Given a lacunary sequence <math>\{\varepsilon_k\}_{k\in\mathbb{Z}}$ and a bounded sequence $\{\upsilon_k\}_{k\in\mathbb{Z}}$ of real numbers, we define, for each $N = (N_1, N_2) \in \mathbb{Z}^2$, $N_1 \leq N_2$, the ergodic truncation operator by

$$\mathcal{T}_N f(x) = \sum_{k=N_1}^{N_2} \upsilon_k \left(\frac{1}{\varepsilon_k} \int_0^{\varepsilon_k} T^t f(x) dt - \frac{1}{\varepsilon_{k-1}} \int_0^{\varepsilon_{k-1}} T^t f(x) dt \right)$$

and the corresponding maximal operator

$$\mathcal{T}^*f(x) = \sup_N |\mathcal{T}_N f(x)|.$$

The L^p estimate for \mathcal{T}^* and the convergence of the series (1.1) are contained in the next theorem.

Theorem 1.4. Let $1 , <math>\{\varepsilon_k\}_{k \in \mathbb{Z}}$ a lacunary sequence and $\{v_k\}_{k \in \mathbb{Z}}$ a bounded sequence of real numbers. Let (X, \mathcal{F}, μ) be a σ -finite measure space and let $\Gamma = \{T^t : t \in \mathbb{R}\}$ be a strongly continuous one-parameter group of positive, invertible, linear operators on $L^p(\mu)$. Assume that the semigroup $\Gamma_+ = \{T^t : t > 0\}$ is Cesàro bounded in $L^p(\mu)$. Then the following statements hold:

(a) There exists C > 0 such that for every $f \in L^p(\mu)$

$$\int_X (\mathcal{T}^* f(x))^p d\mu(x) \le C \int_X |f(x)|^p d\mu(x).$$

(b) For every $f \in L^p(\mu)$, $\lim_{N \to \infty} \mathcal{T}_N f(x)$ exists a.e. and in $L^p(\mu)$, where $\lim_{N \to \infty} \mathcal{T}_N f(x)$ stands for $\lim_{N_1 \to -\infty, N_2 \to \infty} \mathcal{T}_N f(x)$ with $N = (N_1, N_2)$.

Remark 1.5. Theorem 1.1 is the continuous version of a result of F. J. Martín-Reyes and A. de la Torre [6]; the two-sided version of Theorem 1.1 is due to T.A. Gillespie and J.L. Torrea [3]. Theorem 1.4 in the case of a semigroup generated by an ergodic measure preserving transformation is due to R.L. Jones and J. Rosenblatt [4].

2. Some previous results

Let $\Gamma = \{T^t : t \in \mathbb{R}\}$ be a strongly continuous one-parameter group of positive, invertible, linear operators on $L^p(\mu)$, $1 , where <math>\mu$ is a σ -finite measure. The group structure of Γ and the positivity of each T^t assures that T^t is separation preserving. These properties and some technical facts as the meaning of $T^t f(x)$ as functions of (t, x) can be found in [3]. We list some of them that will be used in our proofs:

• For all t, there exists a function $H_t(x)$, such that for all $f \in L^p(\mu)$

(2.1)
$$\int_X |T^t f(x)|^p H_t(x) d\mu(x) = \int_X |f(x)|^p d\mu(x).$$

(See property (d), page 70, in [6] and (1.7)–(1.8) in [3]; in the notation in [3], $H_t(x) = h_t^{-p}(x)J_t(x)$.)

• Furthermore, if $(T^t)^*$ denotes de adjoint of T^t , then

(2.2)
$$H_t(x) = ((T^{-t})^* g^p)(x) (T^t g^{p'})^{1-p}(x)$$

for any function g > 0, $g \in L^{pp'}(\mu)$. (See property (e), page 70, in [6] or Remark 1.11 in [3]).

• For all $t \in \mathbb{R}$, for all $f \in L^p(\mu)$ and each compact subset of \mathbb{R} we have

(2.3)
$$T^t\left(\int_K T^s f(x)ds\right) \le \int_K T^{t+s} f(x)ds.$$

The same property holds for the adjoint operators $(T^t)^*$. (See (1.9) in [3]).

• If $0 \leq \gamma \leq p$ the one-parameter group $\Gamma_{\gamma} = \{S^t : t \in \mathbb{R}\}$ defined by $S^t f = (T^t f^{1/\gamma})^{\gamma}$ for all $f \geq 0$ is a strongly continuous group of positive invertible linear operators on $L^{p/\gamma}(\mu)$. We notice that if H_t is the function in (2.1) then

(2.4)
$$\int_X |S^t f(x)|^{p/\gamma} H_t(x) d\mu(x) = \int_X |f(x)|^{p/\gamma} d\mu(x).$$

for all $f \in L^{p/\gamma}(\mu)$.

We assume that the reader is familiar with the theory of weights for the one-sided Hardy-Littlewood maximal operator (see [8], [7] and [5]) defined by

$$M^{+}f(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f(t)| dt.$$

We recall that a weight w belongs to the class A_p^+ , p > 1, if for any $a \in \mathbb{R}$ and any h > 0,

$$\int_{a}^{a+h} w(t)dt \left(\int_{a+h}^{a+2h} w^{1-p'}dt\right)^{p-1} \le Ch^{p},$$

where p+p' = pp'. Condition A_p^+ is necessary and sufficient for the boundedness of M^+ from $L^p(w)$ into itself. A key fact is that if w belongs to the class A_p^+ , p > 1, then there exists $\gamma > 1$, $1 < \gamma < p$, such that w belongs to the class $A_{p/\gamma}^+$, where γ depends only on the constant in the condition A_p^+ . The following result from [2] will be used in the proof of Theorem 1.4.

Theorem 2.1. [2] Let $\{\varepsilon_k\}$ be a lacunary sequence and let $\{\upsilon_k\}$ be a bounded sequence of real numbers. For each $N = (N_1, N_2) \in \mathbb{Z}^2$, $N_1 \leq N_2$, we define the operator S_N acting on locally integrable functions $f : \mathbb{R} \to \mathbb{R}$, by

$$S_N f(x) = \sum_{k=N_1}^{N_2} \upsilon_k \left(\frac{1}{\varepsilon_k} \int_0^{\varepsilon_k} f(x+t) dt - \frac{1}{\varepsilon_{k-1}} \int_0^{\varepsilon_{k-1}} f(x+t) dt \right),$$

and the corresponding maximal operator

$$S^*f(x) = \sup_N |S_N f(x)|.$$

If $1 and <math>w \in A_p^+$ then there exists C > 0, depending only on p and on the constant in the definition of A_p^+ , such that

$$\int_{\mathbb{R}} |S^*f(x)|^p w(x) \, dx \le C \int_{\mathbb{R}} |f(x)|^p w(x) \, dx.$$

3. Proof of Theorem 1.1

It is obvious that $(a) \Rightarrow (b)$. We shall prove that $(b) \Rightarrow (c) \Rightarrow (a)$ where (c) means the following:

(c) For almost every $x \in X$, the function $t \to H_t(x)$ belongs to A_p^+ , with a constant independent of x.

In order to prove $(b) \Rightarrow (c)$, we shall use the so called Rubio de Francia algorithm. Let us assume that (b) holds. By hypothesis we have that there exists a constant C > 0 independent of $\varepsilon > 0$ and f such that

$$\int_{X} |\mathcal{A}_{2\varepsilon}^{+} f|^{p} d\mu \leq C \int_{X} |f|^{p} d\mu \quad \text{for all } f \in L^{p}(\mu)$$

and

$$\int_X |(\mathcal{A}_{2\varepsilon}^+)^* f|^{p'} d\mu \le C \int_X |f|^{p'} d\mu \quad \text{for all } f \in L^{p'}(\mu),$$

where $(\mathcal{A}_{2\varepsilon}^+)^*$ is the adjoint operator of $\mathcal{A}_{2\varepsilon}^+ f$. For $g \in L^{pp'}(\mu)$, we define

$$Q_{\varepsilon}g = \left(\mathcal{A}_{2\varepsilon}^+|g|^{p'}\right)^{1/p'}$$
 and $P_{\varepsilon}g = \left(\left(\mathcal{A}_{2\varepsilon}^+\right)^*|g|^p\right)^{1/p}$.

Then Q_{ε} , P_{ε} and $R_{\varepsilon} = Q_{\varepsilon} + P_{\varepsilon}$ are bounded from $L^{pp'}(\mu)$ into $L^{pp'}(\mu)$ with constants independent of $\varepsilon > 0$. Let us fix C > 0 such that $||R_{\varepsilon}g||_{L^{pp'}(\mu)} \leq C||g||_{L^{pp'}(\mu)}$, for all $g \in L^{pp'}(\mu)$ and all $\varepsilon > 0$. Now, for fixed g > 0, $g \in L^{pp'}(\mu)$ and $\varepsilon > 0$, let

$$G(x) = \sum_{j=0}^{\infty} \frac{R_{\varepsilon}^{(j)}g(x)}{(2C)^j},$$

where $R_{\varepsilon}^{(j)}$ is the *j*-th iteration of R_{ε} . Then, $G \in L^{pp'}(\mu)$, $g \leq G$ a.e., $R_{\varepsilon}G \leq 2CG$ a.e. and, as a consequence, $P_{\varepsilon}G \leq 2CG$ a.e. and $Q_{\varepsilon}G \leq 2CG$ a.e., i.e., there exists C > 0 such that,

(3.1)
$$\mathcal{A}_{2\varepsilon}^+ G^{p'} \le C G^{p'} \quad \text{a.e.}$$

and

(3.2)
$$(\mathcal{A}_{2\varepsilon}^+)^* G^p \le C G^p \quad \text{a.e.}$$

Since the operators T^t are linear and positive, we get from (3.1) and (2.3) that for $s \leq t \leq s + \varepsilon$,

$$CT^{t}G^{p'}(x) \ge T^{t}\left(\frac{1}{2\varepsilon}\int_{0}^{2\varepsilon}T^{s}G^{p'}(x)ds\right) = \frac{1}{2\varepsilon}\int_{0}^{2\varepsilon}T^{t+s}G^{p'}(x)ds$$
$$= \frac{1}{2\varepsilon}\int_{t}^{2\varepsilon+t}T^{u}G^{p'}(x)du \ge \frac{1}{2\varepsilon}\int_{s+\varepsilon}^{s+2\varepsilon}T^{u}G^{p'}(x)du.$$

Raising to 1 - p < 0, multiplying by $(T^{-t})^* G^p(x)$, using (2.2) and integrating from s to $s + \varepsilon$, we get

$$(3.3) \qquad C\int_{s}^{s+\varepsilon}H_{t}(x)dt \leq \left(\frac{1}{2\varepsilon}\int_{s+\varepsilon}^{s+2\varepsilon}T^{u}G^{p'}(x)du\right)^{1-p}\int_{s}^{s+\varepsilon}(T^{-t})^{*}G^{p}(x)dt.$$

On the other hand, since the $(T^{-t})^*$ are also linear and positive, we get from (3.2) and (2.3) that for all $s + \varepsilon \leq t \leq s + 2\varepsilon$,

$$C(T^{-t})^* G^p(x) \ge \frac{1}{2\varepsilon} \int_0^{2\varepsilon} (T^{s-t})^* G^p(x) ds$$
$$= \frac{1}{2\varepsilon} \int_{t-2\varepsilon}^t (T^{-u})^* G^p(x) du \ge \frac{1}{2\varepsilon} \int_s^{s+\varepsilon} (T^{-u})^* G^p(x) du$$

Raising to 1 - p' < 0, multiplying by $T^t G^{p'}(x)$, using (2.2) and integrating from $s + \varepsilon$ to $s + 2\varepsilon$ we get (3.4)

$$C\int_{s+\varepsilon}^{s+2\varepsilon} (H_t(x))^{1-p'}dt \le \left(\frac{1}{2\varepsilon}\int_s^{s+\varepsilon} (T^{-u})^* G^p(x)du\right)^{1-p'}\int_{s+\varepsilon}^{s+2\varepsilon} T^t G^{p'}(x)dt.$$

From (3.4) and (3.3), using (3.1) and (3.2), we get

$$\int_{s}^{s+\varepsilon} H_t(x) dt \left(\int_{s+\varepsilon}^{s+2\varepsilon} (H_t(x))^{1-p'} dt \right)^{p-1} \le C\varepsilon^p,$$

which is (c).

Let us prove $(c) \Rightarrow (a)$. Since $\mathcal{M}^+ f(x) \leq \mathcal{M}^+(|f|)(x)$, we can assume that $f \geq 0$. For each $\eta > 0$, let us consider $\mathcal{M}^+_{\eta} f(x) = \sup_{0 < \varepsilon \leq \eta} \mathcal{A}^+_{\varepsilon} f(x)$. From the positivity of T^t and (2.3) we have that

$$T^{t}\mathcal{M}_{\eta}^{+}f(x) = T^{t}\mathcal{M}_{\eta}^{+}(T^{-t}T^{t}f)(x) \le \mathcal{M}_{\eta}^{+}(T^{t}f)(x)$$

If we define $g^{x}(t) = T^{t}g(x)$, we have that for all R > 0 and all $t \leq R$

(3.5)
$$\mathcal{M}^{+}_{\eta}(T^{t}f)(x) = \sup_{0 < \varepsilon \leq \eta} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} T^{s+t}f(x)ds = \sup_{0 < \varepsilon \leq \eta} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} f^{x}(s+t)ds$$
$$= \sup_{0 < \varepsilon \leq \eta} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} f^{x}\chi_{[0,R+\eta]}(s+t)ds \leq M^{+}(f^{x}\chi_{[0,R+\eta]})(t),$$

6

where M^+ is the one-sided Hardy-Littlewood maximal operator in \mathbb{R} . Then, by (2.1), Fubini's theorem, (c) and the fact that A_p^+ implies boundedness of the one-sided Hardy-Littlewood maximal operator, we get that for each R > 0,

(3.6)

$$\int_{X} (\mathcal{M}_{\eta}^{+} f(x))^{p} d\mu(x) = \frac{1}{R} \int_{0}^{R} \int_{X} |T^{t} \mathcal{M}_{\eta}^{+} f(x)|^{p} H_{t}(x) d\mu(x) dt$$

$$\leq \int_{X} \frac{1}{R} \int_{0}^{R} |M^{+} (f^{x} \chi_{[0,R+\eta]})(t)|^{p} H_{t}(x) dt d\mu(x)$$

$$\leq C \int_{X} \frac{1}{R} \int_{0}^{R+\eta} \int_{X} |f^{x}(t)|^{p} H_{t}(x) dt d\mu(x)$$

$$= C \frac{1}{R} \int_{0}^{R+\eta} \int_{X} |T^{t} f(x)|^{p} H_{t}(x) d\mu(x) dt$$

$$= C \frac{1}{R} \int_{0}^{R+\eta} \int_{X} |f(x)|^{p} d\mu(x) dt$$

$$= C \frac{R+\eta}{R} \int_{X} |f(x)|^{p} d\mu(x).$$

Letting, first R, and then η , go to infinity we obtain

$$\int_X (\mathcal{M}^+ f(x))^p d\mu(x) \le C \int_X |f(x)|^p d\mu(x),$$

which is (a).

4. Proof of Theorem 1.2

Proof of (a) in Theorem 1.2. First we shall prove that

(4.1)
$$\lim_{\varepsilon \to 0^+} ||\mathcal{A}_{\varepsilon}^+ f - f||_{L^p(\mu)} = 0.$$

Using the strong continuity of the group Γ we have that for any $\gamma > 0$, there exists $\delta > 0$ such that if $|s| < \delta$ then $||T^s f - f||_{L^p(\mu)} < \gamma$. Then, by the Minkowski's integral inequality, for all $\varepsilon < \delta$,

(4.2)

$$\left(\int_{X} \left|\frac{1}{\varepsilon} \int_{0}^{\varepsilon} T^{s} f(x) ds - f(x)\right|^{p} d\mu(x)\right)^{1/p}$$

$$\leq \left(\int_{X} \left(\frac{1}{\varepsilon} \int_{0}^{\varepsilon} |T^{s} f(x) - f(x)| ds\right)^{p} d\mu(x)\right)^{1/p}$$

$$\leq \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \left(\int_{X} |T^{s} f(x) - f(x)|^{p} d\mu(x)\right)^{1/p} ds \leq \gamma.$$

Now we shall prove that

$$\lim_{\varepsilon \to 0^+} \mathcal{A}_{\varepsilon}^+ f = f \quad \text{a.e.}$$

BERNARDIS ET AL.

We know by Theorem 1.1 that the ergodic maximal operator is of strong type (p, p). Therefore, we only need to check the convergence for a dense class. Since (4.1) holds, we have that

$$D = \{\mathcal{A}_{\varepsilon}^+ g : g \in L^p(\mu), \varepsilon > 0\}$$

is dense in $L^p(\mu)$. Let $f \in D$, $f = \mathcal{A}^+_{\gamma}g$, $g \in L^p(\mu)$ and $\gamma > 0$. Then, for all $\varepsilon < \gamma$ we have

$$\begin{aligned} |\mathcal{A}_{\varepsilon}^{+}(f)(x) - f(x)| &= \left| \frac{1}{\varepsilon} \int_{0}^{\varepsilon} (T^{t}(\mathcal{A}_{\gamma}^{+}g)(x) - \mathcal{A}_{\gamma}^{+}g(x))dt \right| \\ &\leq \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \left| T^{t}(\mathcal{A}_{\gamma}^{+}g)(x) - \mathcal{A}_{\gamma}^{+}g(x) \right| dt \\ &= \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \left| \frac{1}{\gamma} \int_{0}^{\gamma} T^{t+s}g(x)ds - \frac{1}{\gamma} \int_{0}^{\gamma} T^{s}g(x)ds \right| dt \\ &= \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \left| \frac{1}{\gamma} \int_{t}^{t+\gamma} T^{s}g(x)ds - \frac{1}{\gamma} \int_{0}^{\gamma} T^{s}g(x)ds \right| dt \\ &= \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \left| -\frac{1}{\gamma} \int_{0}^{t} T^{s}g(x)ds + \frac{1}{\gamma} \int_{\gamma}^{\varepsilon+\gamma} T^{s}g(x)ds \right| dt \\ &\leq \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \frac{1}{\gamma} \int_{0}^{\varepsilon} |T^{s}g(x)|ds + \frac{1}{\gamma} \int_{\gamma}^{\varepsilon+\gamma} |T^{s}g(x)|dsdt \\ &= \frac{\varepsilon}{\gamma} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} |T^{s}g(x)|ds + \frac{\varepsilon}{\gamma} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} |T^{s}(T^{\gamma}g(x))|ds \\ &\leq \frac{\varepsilon}{\gamma} \mathcal{M}^{+}g(x) + \frac{\varepsilon}{\gamma} \mathcal{M}^{+}(T^{\gamma}g(x)). \end{aligned}$$

The last term tends to 0 as ε goes to 0^+ since, by Theorem 1.1, we have that $\mathcal{M}^+g(x)$ and $\mathcal{M}^+(T^{\gamma}g(x))$ are finite a.e.

Proof of (b) *in Theorem 1.2.* We shall need some results which are interesting by itself.

Lemma 4.1. Assume that we are in the conditions of Theorem 1.2. If $1 \leq \gamma < p$ let $\Gamma_{\gamma} = \{S^t : t \in \mathbb{R}\}$ be the strongly continuous, one-parameter group of positive operators on $L^{p/\gamma}(\mu)$ such that $S^t f = (T^t f^{1/\gamma})^{\gamma}$ for all $f \geq 0$. Then there exists γ , $1 < \gamma < p$ such that the semigroup $\Gamma_{\gamma,+} = \{S^t : t > 0\}$ is Cesàro bounded

Proof. We have seen in the proof of Theorem 1.1 that Γ_+ is Cesàro bounded if and only if for almost every x the functions $t \to H_t(x)$ belong to A_p^+ with a constant independent of x. Then by the properties of A_p^+ classes, we have that there exists γ , $1 < \gamma < p$, such that $t \to H_t(x)$ belongs to $A_{p/\gamma}^+$ with a constant independent of x (see [5]). Again, by the proof of Theorem 1.1, we obtain that $\Gamma_{\gamma,+}$ is Cesàro bounded in $L^{p/\gamma}(\mu)$. **Lemma 4.2.** Assume that we are in the conditions of Theorem 1.2. Then, for all $f \in L^p(\mu)$ and all s > 0,

(a)
$$\lim_{\varepsilon \to \infty} [\mathcal{A}^+_{\varepsilon} f(x) - T^s(\mathcal{A}^+_{\varepsilon} f)(x)] = 0$$
, a.e. x
(b) $\lim_{\varepsilon \to \infty} ||\mathcal{A}^+_{\varepsilon} f - T^s(\mathcal{A}^+_{\varepsilon} f)||_{L^p(\mu)} = 0$.

Proof. Let us fix s > 0. For any $\varepsilon > s > 0$ we have

$$\mathcal{A}_{\varepsilon}^{+}f(x) - T^{s}(\mathcal{A}_{\varepsilon}^{+}f)(x) = \frac{1}{\varepsilon} \int_{0}^{\varepsilon} T^{t}f(x)dt - \frac{1}{\varepsilon} \int_{s}^{s+\varepsilon} T^{t}f(x)dt$$
$$= \frac{1}{\varepsilon} \int_{0}^{s} T^{t}f(x)dt - \frac{1}{\varepsilon} \int_{\varepsilon}^{s+\varepsilon} T^{t}f(x)dt.$$

It is clear that

$$\lim_{\varepsilon \to \infty} \frac{1}{\varepsilon} \int_0^s T^t f(x) dt = 0.$$

To control the other term we use Lemma 4.1. Let $p > \gamma > 1$ and let $\Gamma_{\gamma} = \{S^t : t \in \mathbb{R}\}$ be as in that lemma and let $\tilde{\mathcal{M}}^+$ be the maximal operator associated to $\Gamma_{\gamma,+} = \{S^t : t > 0\}$. By Lemma 4.1 and Theorem 1.1, $\tilde{\mathcal{M}}^+$ is bounded from $L^{p/\gamma}(\mu)$ into $L^{p/\gamma}(\mu)$. Consequently, $\tilde{\mathcal{M}}^+(|f|^{\gamma})(x) < \infty$ a.e. for $f \in L^p(\mu)$. It follows that $\frac{1}{\varepsilon} \int_{\varepsilon}^{s+\varepsilon} T^t f(x) dt$ tends to 0 a.e. as ε goes to infinity since

$$\begin{split} \frac{1}{\varepsilon} \int_{\varepsilon}^{s+\varepsilon} T^t f(x) dt &\leq \frac{1}{\varepsilon} \left(\int_{\varepsilon}^{s+\varepsilon} (T^t f(x))^{\gamma} dt \right)^{1/\gamma} s^{1/\gamma'} \\ &\leq \frac{(s+\varepsilon)^{1/\gamma}}{\varepsilon} \left(\frac{1}{s+\varepsilon} \int_{0}^{s+\varepsilon} S^t (|f|^{\gamma})(x) dt \right)^{1/\gamma} s^{1/\gamma'} \\ &\leq \frac{(s+\varepsilon)^{1/\gamma} s^{1/\gamma'}}{\varepsilon} [\tilde{\mathcal{M}}^+(|f|^{\gamma})(x)]^{1/\gamma}, \end{split}$$

This proves (a).

The proof of (b) follows from (a), the dominated convergence theorem, Theorem 1.1 and the fact that

$$|\mathcal{A}_{\varepsilon}^{+}f(x) - T^{s}(\mathcal{A}_{\varepsilon}^{+}f)(x)| \leq \mathcal{M}^{+}f(x) + \mathcal{M}^{+}(T^{s}f)(x) \in L^{p}(\mu).$$

The next theorem follows from Lemma 4.2 using a standard argument. We include it for the sake of completeness.

Theorem 4.3. Assume that we are in the conditions of Theorem 1.2. Let

 $A = \{ f \in L^p(\mu) : T^s f = f \text{ for all } s > 0 \}$

and let B be the linear manifold generated by

$${f - T^s f : f \in L^p(\mu), s > 0}.$$

Then, $A \oplus \overline{B} = L^p(\mu)$, where \overline{B} stands for the closure of B and $A \oplus \overline{B} = \{f + g : f \in A, g \in \overline{B}\}$. In particular $A \oplus B$ is dense in $L^p(\mu)$.

Proof. We first prove that $\{\mathcal{A}_{\varepsilon}^+ f\}$ is weakly convergent as ε goes to infinity for all $f \in L^p(\mu)$.

Let $f \in L^p(\mu)$. By hypothesis, $\sup_{\varepsilon>0} ||\mathcal{A}_{\varepsilon}^+ f||_{L^p(\mu)} \leq C||f||_{L^p(\mu)}$. This gives that the set $\{\mathcal{A}_{\varepsilon}^+ f : \varepsilon > 0\}$ is bounded in $L^p(\mu)$. Therefore there exists a sequence $\{\varepsilon_k\} \to \infty$ such that $\{\mathcal{A}_{\varepsilon_k}^+ f\}$ is weakly convergent. If we suppose that $\{\mathcal{A}_{\varepsilon}^+ f\}$ is not weakly convergent as ε goes to infinity, then there exist another sequence $\{\eta_k\} \to \infty$ and $g_1, g_2 \in L^p(\mu), g_1 \neq g_2$, such that $\{\mathcal{A}_{\varepsilon_k}^+ f\}$ converges weakly to g_1 and $\{\mathcal{A}_{\eta_k}^+ f\}$ converges weakly to g_2 . The continuity of T^s gives that $\{\mathcal{A}_{\varepsilon_k}^+ f - T^s(\mathcal{A}_{\varepsilon_k}^+ f)\}$ converges weakly to $g_1 - T^s g_1$. On the other hand, by part (b) of Lemma 4.2, $\{\mathcal{A}_{\varepsilon_k}^+ f - T^s(\mathcal{A}_{\varepsilon_k}^+ f)\}$ converges to 0 in $L^p(\mu)$. Therefore, $g_1 \in A$. The same argument gives that $g_2 \in A$ and, as a consequence, $0 \neq g_1 - g_2 \in A$.

We shall prove now that $g_1 - g_2 \in \overline{B}$. If $g_1 - g_2 \notin \overline{B}$, then there exists a linear functional $\Lambda : L^p(\mu) \to \mathbb{R}$, such that $\Lambda(\overline{B}) = 0$ and $\Lambda(g_1 - g_2) = 1$. It follows that $\Lambda g = \Lambda(T^s g)$ for all $g \in L^p(\mu)$ and all s > 0. Furthermore, there exists $h \in L^{p'}(\mu)$ such that $\Lambda g = \int_X gh \, d\mu$. Therefore,

$$\Lambda(\mathcal{A}_{\varepsilon_{k}}^{+}f) = \int_{X} \mathcal{A}_{\varepsilon_{k}}^{+}f(x)h(x)d\mu(x) = \int_{X} \left(\frac{1}{\varepsilon_{k}}\int_{0}^{\varepsilon_{k}}T^{t}f(x)dt\right)h(x)d\mu(x)$$
$$= \frac{1}{\varepsilon_{k}}\int_{0}^{\varepsilon_{k}}\int_{X}T^{t}f(x)h(x)d\mu(x)dt = \frac{1}{\varepsilon_{k}}\int_{0}^{\varepsilon_{k}}\Lambda(T^{t}f)dt = \Lambda f.$$

On the other hand, $\{\Lambda(\mathcal{A}_{\varepsilon_k}^+ f)\}$ converges to Λg_1 in \mathbb{R} . Then $\Lambda g_1 = \Lambda f$. In analogous way we get that $\Lambda g_2 = \Lambda f$. It follows that $1 = \Lambda(g_1 - g_2) = \Lambda g_1 - \Lambda g_2 = 0$, which is a contradiction. This proves that $g_1 - g_2 \in \overline{B}$.

Let us prove now that $||\mathcal{A}_{\varepsilon}^{+}g||_{L^{p}(\mu)} \to 0$ as ε tends to infinity, for all $g \in \overline{B}$. If $g = g_{0} - T^{s}g_{0}$ for some $g_{0} \in L^{p}(\mu)$ and s > 0, this follows from part (b) of Lemma 4.2, and therefore it holds for any $g \in B$. Let now fix $g \in \overline{B}$. For any $\gamma > 0$, there exists $g_{0} \in B$ such that $||g - g_{0}||_{L^{p}(\mu)} < \gamma$. As a consequence,

$$\begin{aligned} ||\mathcal{A}_{\varepsilon}^{+}g||_{L^{p}(\mu)} &\leq ||\mathcal{A}_{\varepsilon}^{+}g - \mathcal{A}_{\varepsilon}^{+}g_{0}||_{L^{p}(\mu)} + ||\mathcal{A}_{\varepsilon}^{+}g_{0}||_{L^{p}(\mu)} \\ &= ||\mathcal{A}_{\varepsilon}^{+}(g - g_{0})||_{L^{p}(\mu)} + ||\mathcal{A}_{\varepsilon}^{+}g_{0}||_{L^{p}(\mu)} \leq C\gamma + ||\mathcal{A}_{\varepsilon}^{+}g_{0}||_{L^{p}(\mu)}, \end{aligned}$$

and $||\mathcal{A}_{\varepsilon}^+g_0||_{L^p(\mu)} \to 0$ as ε tends to infinity, since $g_0 \in B$.

As we have seen, $g_1 - g_2 \in B$, and then $\{\mathcal{A}_{\varepsilon}^+(g_1 - g_2)\}$ converges to 0 in $L^p(\mu)$. On the other hand, $g_1 - g_2 \in A$ which gives that $\mathcal{A}_{\varepsilon}^+(g_1 - g_2) = g_1 - g_2$. Then $g_1 - g_2 = 0$, against $g_1 \neq g_2$. Therefore, $\{\mathcal{A}_{\varepsilon}^+f\}$ is weakly convergent as ε goes to infinity. (Observe that the preceding argument also proves that $A \cap \overline{B} = \{0\}$.)

We shall prove now that $A \oplus \overline{B} = L^p(\mu)$. Let Pf be the weak limit of $\{\mathcal{A}_{\varepsilon}^+ f\}$ as ε tends to infinity. Then f = Pf + (f - Pf). From the continuity of T^s and part (b) of Lemma 4.2, it follows that $Pf \in A$. If we suppose that $f - Pf \notin \overline{B}$, then there exists a linear functional $\Lambda : L^p(\mu) \to \mathbb{R}$, such that $\Lambda(\overline{B}) = 0$ and $\Lambda(f - Pf) = 1$. But Pf is the weak limit of $\mathcal{A}_{\varepsilon}^+ f$ and therefore $\Lambda(Pf) = \lim_{\varepsilon \to \infty} \Lambda(\mathcal{A}_{\varepsilon}^+ f)$. However, we have seen above that $\Lambda(\mathcal{A}_{\varepsilon}^+ f) = \Lambda f$ for

any Λ such that $\Lambda(\overline{B}) = 0$. Therefore $\Lambda(Pf) = \Lambda f$, i.e., $\Lambda(f - Pf) = 0$, which is a contradiction.

Now we can conclude the proof of Theorem 1.2. Since the maximal operator is bounded in $L^p(\mu)$ it is enough to prove the a.e. convergence in the dense class $D_1 = A \oplus B$. If $f \in A$ it is obvious. For $f \in B$, part (a) of Lemma 4.2 proves that $\{\mathcal{A}_{\varepsilon}^+ f\}$ converges to 0 a.e. as ε tends to infinity.

5. Proof of Theorem 1.4

Proof of (a) in Theorem 1.4. For each natural N, we consider the set

$$Q_N = \{ M \in \mathbb{Z}^2 : M = (M_1, M_2), M_1 \le M_2, |M_1| \le N, |M_2| \le N \}$$

and the operator

$$\mathcal{T}_N^* f(x) = \sup_{M \in Q_N} \left| \mathcal{T}_M f(x) \right|.$$

For each R > 0 we have by (2.1)

(5.1)
$$\int_{X} (\mathcal{T}_{N}^{*}f(x))^{p} d\mu(x) = \frac{1}{R} \int_{0}^{R} \int_{X} |T^{t}(\mathcal{T}_{N}^{*}f(x))|^{p} H_{t}(x) d\mu(x) dt$$
$$= \int_{X} \frac{1}{R} \int_{0}^{R} |T^{t}(\mathcal{T}_{N}^{*}f(x))|^{p} H_{t}(x) dt d\mu(x).$$

Observe that since T^t is positive we have for each $M \in Q_N$,

$$|\mathcal{T}_M(T^t f)(x)| = |T^t \mathcal{T}_M f(x)| \le T^t \mathcal{T}_N^* f(x)$$

and therefore

$$\mathcal{T}_N^*(T^t f(x)) \le T^t \mathcal{T}_N^* f(x).$$

Consequently,

$$T^{t}\mathcal{T}_{N}^{*}f(x) = T^{t}\mathcal{T}_{N}^{*}(T^{-t}T^{t})f(x) \le \mathcal{T}_{N}^{*}(T^{t}f)(x).$$

Now for any t, 0 < t < R,

$$\begin{aligned} \mathcal{T}_{N}^{*}(T^{t}f)(x) &= \sup_{M \in Q_{N}} \left| \sum_{k=M_{1}}^{M_{2}} \upsilon_{k} \left(\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} T^{t+s}f(x)ds - \frac{1}{\varepsilon_{k-1}} \int_{0}^{\varepsilon_{k-1}} T^{t+s}f(x)ds \right) \right| \\ &= \sup_{M \in Q_{N}} \left| \sum_{k=M_{1}}^{M_{2}} \upsilon_{k} \left(\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} f^{x}(t+s)ds - \frac{1}{\varepsilon_{k-1}} \int_{0}^{\varepsilon_{k-1}} f^{x}(t+s)ds \right) \right| \\ &\leq S^{*} \left(f^{x}\chi_{(0,\varepsilon_{N}+R)} \right) (t). \end{aligned}$$

Therefore, using that for almost every x the functions $t \to H_t(x)$ belong to A_p^+ with a constant independent of x and Theorem 2.1 we can dominate the last

term in inequality (5.1) by

$$\begin{split} &\int_X \frac{1}{R} \int_0^R \left| S^* \left(f^x \chi_{(0,\varepsilon_N+R)} \right) (t) \right|^p H_t(x) dt d\mu(x) \\ &\leq C \int_X \frac{1}{R} \int_0^{\varepsilon_N+R} |f^x(t)|^p H_t(x) dt d\mu(x) \\ &= C \frac{1}{R} \int_0^{\varepsilon_N+R} \int_X |T^t f(x)|^p H_t(x) d\mu(x) dt \\ &= C \frac{\varepsilon_N+R}{R} \int_X |f(x)|^p d\mu(x). \end{split}$$

Letting R go to infinity, we obtain

$$\int_X (\mathcal{T}_N^* f(x))^p d\mu(x) \le C \int_X |f(x)|^p d\mu(x),$$

with constant independent of N. Letting $N \to \infty$ we are done.

Proof of (b) in Theorem 1.4. It suffices to prove that there exist the limits $\lim_{N\to\infty} \mathcal{T}_N^1 f(x)$ and $\lim_{N\to\infty} \mathcal{T}_N^2 f(x)$ a.e., where

$$\mathcal{T}_N^1 f(x) = \sum_{k=-N}^0 \upsilon_k \left(\mathcal{A}_{\varepsilon_k}^+ f(x) - \mathcal{A}_{\varepsilon_{k-1}}^+ f(x) \right)$$

and

$$\mathcal{T}_N^2 f(x) = \sum_{k=1}^N \upsilon_k \left(\mathcal{A}_{\varepsilon_k}^+ f(x) - \mathcal{A}_{\varepsilon_{k-1}}^+ f(x) \right).$$

(Here N stands for a natural number.) We start with the convergence of $\mathcal{T}_N^1 f(x)$. Since \mathcal{T}^* is of strong type (p, p) (Theorem 1.4) it suffices to prove the a.e. convergence for f in the set $D = \{\mathcal{A}_{\varepsilon}^+ g : g \in L^p(\mu), \varepsilon > 0\}$ which is dense in $L^p(\mu)$ by (a) in Theorem 1.2. Assume that $f \in D$, i.e., $f = \mathcal{A}_{\gamma}^+ g$, for some $g \in L^p(\mu)$ and some $\gamma > 0$. In this case,

$$\begin{aligned} |v_k| \left| \mathcal{A}_{\varepsilon_k}^+ f(x) - \mathcal{A}_{\varepsilon_{k-1}}^+ f(x) \right| &\leq C \left| \mathcal{A}_{\varepsilon_k}^+ (\mathcal{A}_{\gamma}^+ g)(x) - \mathcal{A}_{\gamma}^+ g(x) \right| \\ &+ C \left| \mathcal{A}_{\gamma}^+ g(x) - \mathcal{A}_{\varepsilon_{k-1}}^+ (\mathcal{A}_{\gamma}^+ g)(x) \right|. \end{aligned}$$

We can deal with both terms in the same way. We only write the details for the first one. Since $\varepsilon_k \to 0$ as $k \to -\infty$, there exists k_0 such that $\varepsilon_k < \gamma$ for all $k \le k_0$. Therefore, for almost every x,

$$\begin{split} \sum_{k=-\infty}^{k_0} \left| \mathcal{A}_{\varepsilon_k}^+(\mathcal{A}_{\gamma}^+g)(x) - \mathcal{A}_{\gamma}^+g(x) \right| \\ &\leq \sum_{k=-\infty}^{k_0} \frac{1}{\gamma} \left(\int_0^{\varepsilon_k} |T^s g(x)| ds + \int_{\gamma}^{\varepsilon_k + \gamma} |T^s g(x)| ds \right) \\ &\leq \frac{1}{\gamma} \sum_{k=-\infty}^{k_0} \varepsilon_k (\mathcal{M}^+g(x) + \mathcal{M}^+(T^{\gamma}g)(x)) \\ &\leq \frac{\varepsilon_{k_0}}{\gamma} (\mathcal{M}^+g(x) + \mathcal{M}^+(T^{\gamma}g)(x)) \sum_{k=-k_0}^{\infty} \frac{1}{\rho^k} < \infty. \end{split}$$

To prove the convergence of $\mathcal{T}_N^2 f(x)$, it is enough to establish it for functions $f \in A \oplus B$, where A and B are the sets in Theorem 4.3. If $f \in A$ there is nothing to prove. Suppose $f = g - T^s g$, for some $g \in L^p(\mu)$ and some s > 0. Then

$$|v_k| \left| \mathcal{A}_{\varepsilon_k}^+ f(x) - \mathcal{A}_{\varepsilon_{k-1}}^+ f(x) \right| \le C \left| \mathcal{A}_{\varepsilon_k}^+ (g - T^s g)(x) \right| \\ + C \left| \mathcal{A}_{\varepsilon_{k-1}}^+ (g - T^s g)(x) \right|$$

Again, we can deal with both terms in the same way. Since $\varepsilon_k \to \infty$ as $k \to \infty$, there exists k_0 such that for all $k \ge k_0$ we have that $\varepsilon_k > s$. Therefore, for $k \ge k_0$,

$$\begin{aligned} \left| \mathcal{A}_{\varepsilon_k}^+(g - T^s g)(x) \right| &= \left| \frac{1}{\varepsilon_k} \int_0^{\varepsilon_k} T^t g(x) dt - \frac{1}{\varepsilon_k} \int_s^{s + \varepsilon_k} T^t g(x) dt \right| \\ &\leq \frac{1}{\varepsilon_k} \int_0^s |T^t g(x)| dt + \frac{1}{\varepsilon_k} \int_{\varepsilon_k}^{s + \varepsilon_k} |T^t g(x)| dt. \end{aligned}$$

It is clear that

$$\sum_{k=k_0}^{\infty} \frac{1}{\varepsilon_k} \int_0^s |T^t g(x)| dt \le \varepsilon_{k_0} \int_0^s |T^t g(x)| dt \sum_{k=k_0}^{\infty} \frac{1}{\rho^k} < \infty.$$

On the other hand, if $p > \gamma > 1$, $\Gamma_{\gamma} = \{S^t : t \in \mathbb{R}\}$ is the group in Lemma 4.1 and $\tilde{\mathcal{M}}^+$ is the maximal operator associated to $\Gamma_{\gamma,+} = \{S^t : t > 0\}$ we have, by Lemma 4.1 and Theorem 1.1, that $\tilde{\mathcal{M}}^+$ is bounded from $L^{p/\gamma}(\mu)$ into $L^{p/\gamma}(\mu)$ and

$$\frac{1}{\varepsilon_k} \int_{\varepsilon_k}^{s+\varepsilon_k} |T^t g(x)| dt \leq \frac{1}{\varepsilon_k} \left(\int_{\varepsilon_k}^{s+\varepsilon_k} |T^t g(x)|^{\gamma} dt \right)^{1/\gamma} s^{1/\gamma'} \\
\leq \frac{1}{\varepsilon_k} \left(\int_{\varepsilon_k}^{s+\varepsilon_k} |S^t (|g|^{\gamma})(x)| dt \right)^{1/\gamma} s^{1/\gamma'} \\
\leq \frac{(s+\varepsilon_k)^{1/\gamma} s^{1/\gamma'}}{\varepsilon_k} \left(\tilde{\mathcal{M}}^+ (|g|^{\gamma})(x) \right)^{1/\gamma}$$

Therefore,

$$\sum_{k=k_0}^{\infty} \frac{1}{\varepsilon_k} \int_{\varepsilon_k}^{s+\varepsilon_k} |T^t g(x)| dt \le \left(\tilde{\mathcal{M}}^+(|g|^{\gamma})(x)\right)^{1/\gamma} \sum_{k=k_0}^{\infty} \frac{(s+\varepsilon_k)^{1/\gamma} s^{1/\gamma'}}{\varepsilon_k}$$

The last term is finite a.e. since $\tilde{\mathcal{M}}^+$ is bounded in $L^{p/\gamma}(\mu)$ and the sum

$$\sum_{k=k_0}^{\infty} \frac{(s+\varepsilon_k)^{1/\gamma} s^{1/\gamma'}}{\varepsilon_k}$$

is essentially dominated by $\sum_{k=k_0}^{\infty} \frac{1}{(\rho^{1-\frac{1}{\gamma}})^k}$.

References

- M. Ackoglu, R.L. Jones, and P.Schwartz, Variation in probability, ergodic theory and analysis, Il. J. Math. 42 (1998), 154-177.
- [2] A.L. Bernardis, M. Lorente, F.J. Martín-Reyes, M.T. Martínez, A. de la Torre and J.L. Torrea, *Differential transforms in weighted spaces*. Preprint.
- [3] T.A. Gillespie and J.L. Torrea, Weighted ergodic theory and dimension free estimates, J. London Math. Soc. 2 (49) (1994), 529-542.
- [4] R.L. Jones, and J. Rosenblatt, Differential and ergodic transforms, Math. Ann. 323 (2002), 525-546.
- [5] F.J. Martín-Reyes New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Am. Math. Soc. 117 (1993), no. 3, 691–698.
- [6] F.J. Martín-Reyes and A. de la Torre, The dominated ergodic estimate for mean bounded, invertible, positive operators, Proc. Am. Math. Soc. 104 (1988), 69-75.
- [7] F.J. Martín-Reyes, P. Ortega and A. de la Torre, Weighted inequalities for one-sided maximal functions, Trans. Amer. Math. Soc. 319 (2), (1990), 517-534.
- [8] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Trans. Amer. Math. Soc. 297 (1986), 53-61.

14

IMAL-CONICET, GÜEMES 3450, (3000) SANTA FE, ARGENTINA *E-mail address*: bernard@ceride.gov.ar

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE CIENCIAS, UNIVERSIDAD DE MÁLAGA, 29071 MÁLAGA, SPAIN *E-mail address*: lorente@anamat.cie.uma.es

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, FACULTAD DE CIENCIAS, UNIVERSIDAD DE MÁLAGA, 29071 MÁLAGA, SPAIN *E-mail address*: martin_reyes@uma.es

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, SPAIN

E-mail address: teresa.martinez@uam.es

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, SPAIN

E-mail address: torre@anamat.cie.uma.es

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, SPAIN

E-mail address: joseluis.torrea@uam.es