DIFFERENCES OF ERGODIC AVERAGES FOR CESÀRO BOUNDED OPERATORS

A.L. BERNARDIS, M. LORENTE, F.J. MARTÍN-REYES, M.T. MARTÍNEZ, A. DE LA TORRE, AND J.L. TORREA

Abstract

We prove that the weighted differences of ergodic averages, induced by a Cesàro bounded, strongly continuous, one-parameter group of positive, invertible, linear operators on $L_{p}, 1<p<\infty$, converge a.e. and in the L^{p} norm. We obtain first the boundedness of the ergodic maximal operator and the convergence of the averages.

1. Introduction and Main Results

Let (X, \mathcal{F}, μ) be a σ-finite measure space and let $\Gamma=\left\{T^{t}: t \in \mathbb{R}\right\}$ be a one-parameter group of positive, invertible, linear operators on $L^{p}(\mu)=$ $L^{p}(X, \mathcal{F}, \mu)$, for some fixed p in the range $1<p<\infty$. One of the classical problems in ergodic theory is to study the convergence of the averages

$$
\mathcal{A}_{\varepsilon}^{+} f(x)=\frac{1}{\varepsilon} \int_{0}^{\varepsilon} T^{t} f(x) d t
$$

as $\varepsilon \rightarrow 0^{+}$and as $\varepsilon \rightarrow \infty$. If we know that this convergence holds in the almost everywhere sense or in the L^{p}-norm then it is reasonable to try to give some information about how the convergence occurs. In particular, given a lacunary sequence $\left\{\varepsilon_{k}\right\}_{k \in \mathbb{Z}}$, i.e., $\varepsilon_{k}>0$ and $\frac{\varepsilon_{k+1}}{\varepsilon_{k}} \geq \rho>1$ for all k, we may consider the series

$$
\sum_{k=-\infty}^{\infty}\left(\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} T^{t} f(x) d t-\frac{1}{\varepsilon_{k-1}} \int_{0}^{\varepsilon_{k-1}} T^{t} f(x) d t\right)
$$

which obviously converges. As the cancellation in this series is crucial (see [1]), it is natural to ask about the convergence properties of

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} v_{k}\left(\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} T^{t} f(x) d t-\frac{1}{\varepsilon_{k-1}} \int_{0}^{\varepsilon_{k-1}} T^{t} f(x) d t\right) \tag{1.1}
\end{equation*}
$$

where v_{k} is a bounded sequence of real or complex numbers. Jones and Rosenblatt [4] studied this problem in the real line for $T^{t} f(x)=f(x+t)$ and when Γ is the group associated to an invertible, ergodic, measure preserving transformation. Our aim is to study the properties of convergence of (1.1) in a more

[^0]general setting, that is, assuming that Γ is a strongly continuous, one-parameter group of positive, invertible, linear operators on $L^{p}(\mu)=L^{p}(X, \mathcal{F}, \mu)$. In order to prove a.e. convergence of the averages, the standard approach is to consider the maximal operator
$$
\mathcal{M}^{+} f(x)=\sup _{\varepsilon>0}\left|\mathcal{A}_{\varepsilon}^{+} f(x)\right|
$$
and to prove a dominated ergodic estimate, i.e.,
$$
\int_{X}\left|\mathcal{M}^{+} f\right|^{p} d \mu \leq C \int_{X}|f|^{p} d \mu
$$

It is clear that for such an inequality to hold, the averages $\mathcal{A}_{\varepsilon}^{+}$must be uniformly bounded operators in $L^{p}(\mu)$, i.e.,

$$
\sup _{\varepsilon>0}\left\|\mathcal{A}_{\varepsilon} f\right\|_{p} \leq C\|f\|_{p} .
$$

In other words, the semigroup $\Gamma_{+}=\left\{T^{t}: t>0\right\}$, must be Cesàro bounded. (This is obviously the case if T^{t} is a measure preserving transformation for each t.) Our first result proves that this condition is sufficient for the boundedness of the maximal operator.

Theorem 1.1. Let $1<p<\infty$. Let (X, \mathcal{F}, μ) be a σ-finite measure space and let $\Gamma=\left\{T^{t}: t \in \mathbb{R}\right\}$ be a strongly continuous one-parameter group of positive, invertible, linear operators on $L^{p}(\mu)$. The following conditions are equivalent:
(a) There exists $C>0$ such that for all $f \in L^{p}(\mu)$,

$$
\int_{X}\left|\mathcal{M}^{+} f\right|^{p} d \mu \leq C \int_{X}|f|^{p} d \mu
$$

(b) The semigroup $\Gamma_{+}=\left\{T^{t}: t>0\right\}$ is Cesàro bounded in $L^{p}(\mu)$, i.e., there exists $C>0$ such that for all $f \in L^{p}(\mu)$,

$$
\sup _{\varepsilon>0}\left\|\mathcal{A}_{\varepsilon}^{+} f\right\|_{L^{p}(\mu)} \leq C\|f\|_{L^{p}(\mu)} .
$$

As a consequence of this theorem we obtain that (b) in Theorem 1.1 implies the convergence of the averages.

Theorem 1.2. Let $1<p<\infty$. Let (X, \mathcal{F}, μ) be a σ-finite measure space and let $\Gamma=\left\{T^{t}: t \in \mathbb{R}\right\}$ be a strongly continuous one-parameter group of positive, invertible, linear operators on $L^{p}(\mu)$. Assume that the semigroup $\Gamma_{+}=\left\{T^{t}\right.$: $t>0\}$ is Cesàro bounded in $L^{p}(\mu)$. Then the following statements hold for every $f \in L^{p}(\mu)$:
(a) $\lim _{\varepsilon \rightarrow 0^{+}} \mathcal{A}_{\varepsilon}^{+} f=f$ a.e. and in $L^{p}(\mu)$.
(b) The averages $\mathcal{A}_{\varepsilon}^{+} f$ converge a.e. and in $L^{p}(\mu)$ as $\varepsilon \rightarrow+\infty$.

Once we have the convergence of the averages we may consider the series (1.1). In order to study it, we need to prove L^{p} inequalities for a suitable maximal operator. First, we introduce some definitions.

Definition 1.3. Assume that $\Gamma=\left\{T^{t}: t \in \mathbb{R}\right\}$ is a strongly continuous oneparameter group of positive, invertible, linear operators on $L^{p}(\mu), 1<p<$ ∞. Given a lacunary sequence $\left\{\varepsilon_{k}\right\}_{k \in \mathbb{Z}}$ and a bounded sequence $\left\{v_{k}\right\}_{k \in \mathbb{Z}}$ of real numbers, we define, for each $N=\left(N_{1}, N_{2}\right) \in \mathbb{Z}^{2}, N_{1} \leq N_{2}$, the ergodic truncation operator by

$$
\mathcal{I}_{N} f(x)=\sum_{k=N_{1}}^{N_{2}} v_{k}\left(\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} T^{t} f(x) d t-\frac{1}{\varepsilon_{k-1}} \int_{0}^{\varepsilon_{k-1}} T^{t} f(x) d t\right)
$$

and the corresponding maximal operator

$$
\mathcal{T}^{*} f(x)=\sup _{N}\left|\mathcal{T}_{N} f(x)\right|
$$

The L^{p} estimate for \mathcal{T}^{*} and the convergence of the series (1.1) are contained in the next theorem.

Theorem 1.4. Let $1<p<\infty,\left\{\varepsilon_{k}\right\}_{k \in \mathbb{Z}}$ a lacunary sequence and $\left\{v_{k}\right\}_{k \in \mathbb{Z}} a$ bounded sequence of real numbers. Let (X, \mathcal{F}, μ) be a σ-finite measure space and let $\Gamma=\left\{T^{t}: t \in \mathbb{R}\right\}$ be a strongly continuous one-parameter group of positive, invertible, linear operators on $L^{p}(\mu)$. Assume that the semigroup $\Gamma_{+}=\left\{T^{t}\right.$: $t>0\}$ is Cesàro bounded in $L^{p}(\mu)$. Then the following statements hold:
(a) There exists $C>0$ such that for every $f \in L^{p}(\mu)$

$$
\int_{X}\left(\mathcal{T}^{*} f(x)\right)^{p} d \mu(x) \leq C \int_{X}|f(x)|^{p} d \mu(x) .
$$

(b) For every $f \in L^{p}(\mu), \lim _{N \rightarrow \infty} \mathcal{T}_{N} f(x)$ exists a.e. and in $L^{p}(\mu)$, where $\lim _{N \rightarrow \infty} \mathcal{I}_{N} f(x)$ stands for $\lim _{N_{1} \rightarrow-\infty, N_{2} \rightarrow \infty} \mathcal{T}_{N} f(x)$ with $N=\left(N_{1}, N_{2}\right)$.

Remark 1.5. Theorem 1.1 is the continuous version of a result of F. J. MartinReyes and A. de la Torre [6]; the two-sided version of Theorem 1.1 is due to T.A. Gillespie and J.L. Torrea [3]. Theorem 1.4 in the case of a semigroup generated by an ergodic measure preserving transformation is due to R.L. Jones and J. Rosenblatt [4].

2. Some previous results

Let $\Gamma=\left\{T^{t}: t \in \mathbb{R}\right\}$ be a strongly continuous one-parameter group of positive, invertible, linear operators on $L^{p}(\mu), 1<p<\infty$, where μ is a σ-finite measure. The group structure of Γ and the positivity of each T^{t} assures that T^{t} is separation preserving. These properties and some technical facts as the meaning of $T^{t} f(x)$ as functions of (t, x) can be found in [3]. We list some of them that will be used in our proofs:

- For all t, there exists a function $H_{t}(x)$, such that for all $f \in L^{p}(\mu)$

$$
\begin{equation*}
\int_{X}\left|T^{t} f(x)\right|^{p} H_{t}(x) d \mu(x)=\int_{X}|f(x)|^{p} d \mu(x) . \tag{2.1}
\end{equation*}
$$

(See property (d), page 70, in [6] and (1.7)-(1.8) in [3]; in the notation in [3], $H_{t}(x)=h_{t}^{-p}(x) J_{t}(x)$.)

- Furthermore, if $\left(T^{t}\right)^{*}$ denotes de adjoint of T^{t}, then

$$
\begin{equation*}
H_{t}(x)=\left(\left(T^{-t}\right)^{*} g^{p}\right)(x)\left(T^{t} g^{p^{\prime}}\right)^{1-p}(x) \tag{2.2}
\end{equation*}
$$

for any function $g>0, g \in L^{p p^{\prime}}(\mu)$. (See property (e), page 70, in [6] or Remark 1.11 in [3]).

- For all $t \in \mathbb{R}$, for all $f \in L^{p}(\mu)$ and each compact subset of \mathbb{R} we have

$$
\begin{equation*}
T^{t}\left(\int_{K} T^{s} f(x) d s\right) \leq \int_{K} T^{t+s} f(x) d s \tag{2.3}
\end{equation*}
$$

The same property holds for the adjoint operators $\left(T^{t}\right)^{*}$. (See (1.9) in [3]).

- If $0 \leq \gamma \leq p$ the one-parameter group $\Gamma_{\gamma}=\left\{S^{t}: t \in \mathbb{R}\right\}$ defined by $S^{t} f=\left(T^{t} f^{1 / \gamma}\right)^{\gamma}$ for all $f \geq 0$ is a strongly continuous group of positive invertible linear operators on $L^{p / \gamma}(\mu)$. We notice that if H_{t} is the function in (2.1) then

$$
\begin{equation*}
\int_{X}\left|S^{t} f(x)\right|^{p / \gamma} H_{t}(x) d \mu(x)=\int_{X}|f(x)|^{p / \gamma} d \mu(x) \tag{2.4}
\end{equation*}
$$

for all $f \in L^{p / \gamma}(\mu)$.
We assume that the reader is familiar with the theory of weights for the one-sided Hardy-Littlewood maximal operator (see [8], [7] and [5]) defined by

$$
M^{+} f(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}|f(t)| d t
$$

We recall that a weight w belongs to the class $A_{p}^{+}, p>1$, if for any $a \in \mathbb{R}$ and any $h>0$,

$$
\int_{a}^{a+h} w(t) d t\left(\int_{a+h}^{a+2 h} w^{1-p^{\prime}} d t\right)^{p-1} \leq C h^{p}
$$

where $p+p^{\prime}=p p^{\prime}$. Condition A_{p}^{+}is necessary and sufficient for the boundedness of M^{+}from $L^{p}(w)$ into itself. A key fact is that if w belongs to the class A_{p}^{+}, $p>1$, then there exists $\gamma>1,1<\gamma<p$, such that w belongs to the class $A_{p / \gamma}^{+}$, where γ depends only on the constant in the condition A_{p}^{+}. The following result from [2] will be used in the proof of Theorem 1.4.

Theorem 2.1. [2] Let $\left\{\varepsilon_{k}\right\}$ be a lacunary sequence and let $\left\{v_{k}\right\}$ be a bounded sequence of real numbers. For each $N=\left(N_{1}, N_{2}\right) \in \mathbb{Z}^{2}, N_{1} \leq N_{2}$, we define
the operator S_{N} acting on locally integrable functions $f: \mathbb{R} \rightarrow \mathbb{R}$, by

$$
S_{N} f(x)=\sum_{k=N_{1}}^{N_{2}} v_{k}\left(\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} f(x+t) d t-\frac{1}{\varepsilon_{k-1}} \int_{0}^{\varepsilon_{k-1}} f(x+t) d t\right)
$$

and the corresponding maximal operator

$$
S^{*} f(x)=\sup _{N}\left|S_{N} f(x)\right| .
$$

If $1<p<\infty$ and $w \in A_{p}^{+}$then there exists $C>0$, depending only only on p and on the constant in the definition of A_{p}^{+}, such that

$$
\int_{\mathbb{R}}\left|S^{*} f(x)\right|^{p} w(x) d x \leq C \int_{\mathbb{R}}|f(x)|^{p} w(x) d x
$$

3. Proof of Theorem 1.1

It is obvious that $(a) \Rightarrow(b)$. We shall prove that $(b) \Rightarrow(c) \Rightarrow(a)$ where (c) means the following:
(c) For almost every $x \in X$, the function $t \rightarrow H_{t}(x)$ belongs to A_{p}^{+}, with a constant independent of x.
In order to prove $(b) \Rightarrow(c)$, we shall use the so called Rubio de Francia algorithm. Let us assume that (b) holds. By hypothesis we have that there exists a constant $C>0$ independent of $\varepsilon>0$ and f such that

$$
\int_{X}\left|\mathcal{A}_{2 \varepsilon}^{+} f\right|^{p} d \mu \leq C \int_{X}|f|^{p} d \mu \quad \text { for all } f \in L^{p}(\mu)
$$

and

$$
\int_{X}\left|\left(\mathcal{A}_{2 \varepsilon}^{+}\right)^{*} f\right|^{p^{\prime}} d \mu \leq C \int_{X}|f|^{p^{\prime}} d \mu \quad \text { for all } f \in L^{p^{\prime}}(\mu)
$$

where $\left(\mathcal{A}_{2 \varepsilon}^{+}\right)^{*}$ is the adjoint operator of $\mathcal{A}_{2 \varepsilon}^{+} f$.
For $g \in L^{p p^{\prime}}(\mu)$, we define

$$
Q_{\varepsilon} g=\left(\mathcal{A}_{2 \varepsilon}^{+}|g|^{p^{\prime}}\right)^{1 / p^{\prime}} \quad \text { and } \quad P_{\varepsilon} g=\left(\left(\mathcal{A}_{2 \varepsilon}^{+}\right)^{*}|g|^{p}\right)^{1 / p}
$$

Then $Q_{\varepsilon}, P_{\varepsilon}$ and $R_{\varepsilon}=Q_{\varepsilon}+P_{\varepsilon}$ are bounded from $L^{p p^{\prime}}(\mu)$ into $L^{p p^{\prime}}(\mu)$ with constants independent of $\varepsilon>0$. Let us fix $C>0$ such that $\left\|R_{\varepsilon} g\right\|_{L^{p p^{\prime}}(\mu)} \leq$ $C\|g\|_{L^{p p^{\prime}}(\mu)}$, for all $g \in L^{p p^{\prime}}(\mu)$ and all $\varepsilon>0$. Now, for fixed $g>0, g \in L^{p p^{\prime}}(\mu)$ and $\varepsilon>0$, let

$$
G(x)=\sum_{j=0}^{\infty} \frac{R_{\varepsilon}^{(j)} g(x)}{(2 C)^{j}},
$$

where $R_{\varepsilon}^{(j)}$ is the j-th iteration of R_{ε}. Then, $G \in L^{p p^{\prime}}(\mu), g \leq G$ a.e., $R_{\varepsilon} G \leq$ $2 C G$ a.e. and, as a consequence, $P_{\varepsilon} G \leq 2 C G$ a.e. and $Q_{\varepsilon} G \leq 2 C G$ a.e., i.e., there exists $C>0$ such that,

$$
\begin{equation*}
\mathcal{A}_{2 \varepsilon}^{+} G^{p^{\prime}} \leq C G^{p^{\prime}} \quad \text { a.e. } \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathcal{A}_{2 \varepsilon}^{+}\right)^{*} G^{p} \leq C G^{p} \quad \text { a.e. } \tag{3.2}
\end{equation*}
$$

Since the operators T^{t} are linear and positive, we get from (3.1) and (2.3) that for $s \leq t \leq s+\varepsilon$,

$$
\begin{aligned}
C T^{t} G^{p^{\prime}}(x) & \geq T^{t}\left(\frac{1}{2 \varepsilon} \int_{0}^{2 \varepsilon} T^{s} G^{p^{\prime}}(x) d s\right)=\frac{1}{2 \varepsilon} \int_{0}^{2 \varepsilon} T^{t+s} G^{p^{\prime}}(x) d s \\
& =\frac{1}{2 \varepsilon} \int_{t}^{2 \varepsilon+t} T^{u} G^{p^{\prime}}(x) d u \geq \frac{1}{2 \varepsilon} \int_{s+\varepsilon}^{s+2 \varepsilon} T^{u} G^{p^{\prime}}(x) d u .
\end{aligned}
$$

Raising to $1-p<0$, multiplying by $\left(T^{-t}\right)^{*} G^{p}(x)$, using (2.2) and integrating from s to $s+\varepsilon$, we get

$$
\begin{equation*}
C \int_{s}^{s+\varepsilon} H_{t}(x) d t \leq\left(\frac{1}{2 \varepsilon} \int_{s+\varepsilon}^{s+2 \varepsilon} T^{u} G^{p^{\prime}}(x) d u\right)^{1-p} \int_{s}^{s+\varepsilon}\left(T^{-t}\right)^{*} G^{p}(x) d t \tag{3.3}
\end{equation*}
$$

On the other hand, since the $\left(T^{-t}\right)^{*}$ are also linear and positive, we get from (3.2) and (2.3) that for all $s+\varepsilon \leq t \leq s+2 \varepsilon$,

$$
\begin{aligned}
C\left(T^{-t}\right)^{*} G^{p}(x) & \geq \frac{1}{2 \varepsilon} \int_{0}^{2 \varepsilon}\left(T^{s-t}\right)^{*} G^{p}(x) d s \\
& =\frac{1}{2 \varepsilon} \int_{t-2 \varepsilon}^{t}\left(T^{-u}\right)^{*} G^{p}(x) d u \geq \frac{1}{2 \varepsilon} \int_{s}^{s+\varepsilon}\left(T^{-u}\right)^{*} G^{p}(x) d u
\end{aligned}
$$

Raising to $1-p^{\prime}<0$, multiplying by $T^{t} G^{p^{\prime}}(x)$, using (2.2) and integrating from $s+\varepsilon$ to $s+2 \varepsilon$ we get

$$
\begin{equation*}
C \int_{s+\varepsilon}^{s+2 \varepsilon}\left(H_{t}(x)\right)^{1-p^{\prime}} d t \leq\left(\frac{1}{2 \varepsilon} \int_{s}^{s+\varepsilon}\left(T^{-u}\right)^{*} G^{p}(x) d u\right)^{1-p^{\prime}} \int_{s+\varepsilon}^{s+2 \varepsilon} T^{t} G^{p^{\prime}}(x) d t \tag{3.4}
\end{equation*}
$$

From (3.4) and (3.3), using (3.1) and (3.2), we get

$$
\int_{s}^{s+\varepsilon} H_{t}(x) d t\left(\int_{s+\varepsilon}^{s+2 \varepsilon}\left(H_{t}(x)\right)^{1-p^{\prime}} d t\right)^{p-1} \leq C \varepsilon^{p}
$$

which is (c).
Let us prove $(c) \Rightarrow(a)$. Since $\mathcal{M}^{+} f(x) \leq \mathcal{M}^{+}(|f|)(x)$, we can assume that $f \geq 0$. For each $\eta>0$, let us consider $\mathcal{M}_{\eta}^{+} f(x)=\sup _{0<\varepsilon \leq \eta} \mathcal{A}_{\varepsilon}^{+} f(x)$. From the positivity of T^{t} and (2.3) we have that

$$
T^{t} \mathcal{M}_{\eta}^{+} f(x)=T^{t} \mathcal{M}_{\eta}^{+}\left(T^{-t} T^{t} f\right)(x) \leq \mathcal{M}_{\eta}^{+}\left(T^{t} f\right)(x)
$$

If we define $g^{x}(t)=T^{t} g(x)$, we have that for all $R>0$ and all $t \leq R$

$$
\begin{align*}
\mathcal{M}_{\eta}^{+}\left(T^{t} f\right)(x) & =\sup _{0<\varepsilon \leq \eta} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} T^{s+t} f(x) d s=\sup _{0<\varepsilon \leq \eta} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} f^{x}(s+t) d s \\
& =\sup _{0<\varepsilon \leq \eta} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} f^{x} \chi_{[0, R+\eta]}(s+t) d s \leq M^{+}\left(f^{x} \chi_{[0, R+\eta]}\right)(t), \tag{3.5}
\end{align*}
$$

where M^{+}is the one-sided Hardy-Littlewood maximal operator in \mathbb{R}. Then, by (2.1), Fubini's theorem, (c) and the fact that A_{p}^{+}implies boundedness of the one-sided Hardy-Littlewood maximal operator, we get that for each $R>0$,

$$
\begin{align*}
\int_{X}\left(\mathcal{M}_{\eta}^{+} f(x)\right)^{p} d \mu(x) & =\frac{1}{R} \int_{0}^{R} \int_{X}\left|T^{t} \mathcal{M}_{\eta}^{+} f(x)\right|^{p} H_{t}(x) d \mu(x) d t \\
& \leq \int_{X} \frac{1}{R} \int_{0}^{R}\left|M^{+}\left(f^{x} \chi_{[0, R+\eta]}\right)(t)\right|^{p} H_{t}(x) d t d \mu(x) \\
& \leq C \int_{X} \frac{1}{R} \int_{0}^{R+\eta}\left|f^{x}(t)\right|^{p} H_{t}(x) d t d \mu(x) \tag{3.6}\\
& =C \frac{1}{R} \int_{0}^{R+\eta} \int_{X}\left|T^{t} f(x)\right|^{p} H_{t}(x) d \mu(x) d t \\
& =C \frac{1}{R} \int_{0}^{R+\eta} \int_{X}|f(x)|^{p} d \mu(x) d t \\
& =C \frac{R+\eta}{R} \int_{X}|f(x)|^{p} d \mu(x)
\end{align*}
$$

Letting, first R, and then η, go to infinity we obtain

$$
\int_{X}\left(\mathcal{M}^{+} f(x)\right)^{p} d \mu(x) \leq C \int_{X}|f(x)|^{p} d \mu(x)
$$

which is (a).

4. Proof of Theorem 1.2

Proof of (a) in Theorem 1.2. First we shall prove that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}}\left\|\mathcal{A}_{\varepsilon}^{+} f-f\right\|_{L^{p}(\mu)}=0 \tag{4.1}
\end{equation*}
$$

Using the strong continuity of the group Γ we have that for any $\gamma>0$, there exists $\delta>0$ such that if $|s|<\delta$ then $\left\|T^{s} f-f\right\|_{L^{p}(\mu)}<\gamma$. Then, by the Minkowski's integral inequality, for all $\varepsilon<\delta$,

$$
\begin{align*}
\left(\int_{X} \left\lvert\, \frac{1}{\varepsilon}\right.\right. & \left.\int_{0}^{\varepsilon} T^{s} f(x) d s-\left.f(x)\right|^{p} d \mu(x)\right)^{1 / p} \\
& \leq\left(\int_{X}\left(\frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left|T^{s} f(x)-f(x)\right| d s\right)^{p} d \mu(x)\right)^{1 / p} \tag{4.2}\\
& \leq \frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left(\int_{X}\left|T^{s} f(x)-f(x)\right|^{p} d \mu(x)\right)^{1 / p} d s \leq \gamma
\end{align*}
$$

Now we shall prove that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \mathcal{A}_{\varepsilon}^{+} f=f \quad \text { a.e. }
$$

We know by Theorem 1.1 that the ergodic maximal operator is of strong type (p, p). Therefore, we only need to check the convergence for a dense class. Since (4.1) holds, we have that

$$
D=\left\{\mathcal{A}_{\varepsilon}^{+} g: g \in L^{p}(\mu), \varepsilon>0\right\}
$$

is dense in $L^{p}(\mu)$. Let $f \in D, f=\mathcal{A}_{\gamma}^{+} g, g \in L^{p}(\mu)$ and $\gamma>0$. Then, for all $\varepsilon<\gamma$ we have

$$
\begin{aligned}
\left|\mathcal{A}_{\varepsilon}^{+}(f)(x)-f(x)\right| & =\left|\frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left(T^{t}\left(\mathcal{A}_{\gamma}^{+} g\right)(x)-\mathcal{A}_{\gamma}^{+} g(x)\right) d t\right| \\
& \leq \frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left|T^{t}\left(\mathcal{A}_{\gamma}^{+} g\right)(x)-\mathcal{A}_{\gamma}^{+} g(x)\right| d t \\
& =\frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left|\frac{1}{\gamma} \int_{0}^{\gamma} T^{t+s} g(x) d s-\frac{1}{\gamma} \int_{0}^{\gamma} T^{s} g(x) d s\right| d t \\
& =\frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left|\frac{1}{\gamma} \int_{t}^{t+\gamma} T^{s} g(x) d s-\frac{1}{\gamma} \int_{0}^{\gamma} T^{s} g(x) d s\right| d t \\
& =\frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left|-\frac{1}{\gamma} \int_{0}^{t} T^{s} g(x) d s+\frac{1}{\gamma} \int_{\gamma}^{t+\gamma} T^{s} g(x) d s\right| d t \\
& \leq \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \frac{1}{\gamma} \int_{0}^{\varepsilon}\left|T^{s} g(x)\right| d s+\frac{1}{\gamma} \int_{\gamma}^{\varepsilon+\gamma}\left|T^{s} g(x)\right| d s d t \\
& =\frac{\varepsilon}{\gamma} \frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left|T^{s} g(x)\right| d s+\frac{\varepsilon}{\gamma} \frac{1}{\varepsilon} \int_{0}^{\varepsilon}\left|T^{s}\left(T^{\gamma} g(x)\right)\right| d s \\
& \leq \frac{\varepsilon}{\gamma} \mathcal{M}^{+} g(x)+\frac{\varepsilon}{\gamma} \mathcal{M}^{+}\left(T^{\gamma} g(x)\right) .
\end{aligned}
$$

The last term tends to 0 as ε goes to 0^{+}since, by Theorem 1.1, we have that $\mathcal{M}^{+} g(x)$ and $\mathcal{M}^{+}\left(T^{\gamma} g(x)\right)$ are finite a.e.

Proof of (b) in Theorem 1.2. We shall need some results which are interesting by itself.

Lemma 4.1. Assume that we are in the conditions of Theorem 1.2. If $1 \leq$ $\gamma<p$ let $\Gamma_{\gamma}=\left\{S^{t}: t \in \mathbb{R}\right\}$ be the strongly continuous, one-parameter group of positive operators on $L^{p / \gamma}(\mu)$ such that $S^{t} f=\left(T^{t} f^{1 / \gamma}\right)^{\gamma}$ for all $f \geq 0$. Then there exists $\gamma, 1<\gamma<p$ such that the semigroup $\Gamma_{\gamma,+}=\left\{S^{t}: t>0\right\}$ is Cesàro bounded

Proof. We have seen in the proof of Theorem 1.1 that Γ_{+}is Cesàro bounded if and only if for almost every x the functions $t \rightarrow H_{t}(x)$ belong to A_{p}^{+}with a constant independent of x. Then by the properties of A_{p}^{+}classes, we have that there exists $\gamma, 1<\gamma<p$, such that $t \rightarrow H_{t}(x)$ belongs to $A_{p / \gamma}^{+}$with a constant independent of x (see [5]). Again, by the proof of Theorem 1.1, we obtain that $\Gamma_{\gamma,+}$ is Cesàro bounded in $L^{p / \gamma}(\mu)$.

Lemma 4.2. Assume that we are in the conditions of Theorem 1.2. Then, for all $f \in L^{p}(\mu)$ and all $s>0$,
(a) $\lim _{\varepsilon \rightarrow \infty}\left[\mathcal{A}_{\varepsilon}^{+} f(x)-T^{s}\left(\mathcal{A}_{\varepsilon}^{+} f\right)(x)\right]=0$, a.e. x.
(b) $\lim _{\varepsilon \rightarrow \infty}\left\|\mathcal{A}_{\varepsilon}^{+} f-T^{s}\left(\mathcal{A}_{\varepsilon}^{+} f\right)\right\|_{L^{p}(\mu)}=0$.

Proof. Let us fix $s>0$. For any $\varepsilon>s>0$ we have

$$
\begin{aligned}
\mathcal{A}_{\varepsilon}^{+} f(x)-T^{s}\left(\mathcal{A}_{\varepsilon}^{+} f\right)(x) & =\frac{1}{\varepsilon} \int_{0}^{\varepsilon} T^{t} f(x) d t-\frac{1}{\varepsilon} \int_{s}^{s+\varepsilon} T^{t} f(x) d t \\
& =\frac{1}{\varepsilon} \int_{0}^{s} T^{t} f(x) d t-\frac{1}{\varepsilon} \int_{\varepsilon}^{s+\varepsilon} T^{t} f(x) d t
\end{aligned}
$$

It is clear that

$$
\lim _{\varepsilon \rightarrow \infty} \frac{1}{\varepsilon} \int_{0}^{s} T^{t} f(x) d t=0
$$

To control the other term we use Lemma 4.1. Let $p>\gamma>1$ and let $\Gamma_{\gamma}=\left\{S^{t}\right.$: $t \in \mathbb{R}\}$ be as in that lemma and let $\tilde{\mathcal{M}}^{+}$be the maximal operator associated to $\Gamma_{\gamma,+}=\left\{S^{t}: t>0\right\}$. By Lemma 4.1 and Theorem 1.1, $\tilde{\mathcal{M}}^{+}$is bounded from $L^{p / \gamma}(\mu)$ into $L^{p / \gamma}(\mu)$. Consequently, $\tilde{\mathcal{M}}^{+}\left(|f|^{\gamma}\right)(x)<\infty$ a.e. for $f \in L^{p}(\mu)$. It follows that $\frac{1}{\varepsilon} \int_{\varepsilon}^{s+\varepsilon} T^{t} f(x) d t$ tends to 0 a.e. as ε goes to infinity since

$$
\begin{aligned}
\frac{1}{\varepsilon} \int_{\varepsilon}^{s+\varepsilon} T^{t} f(x) d t & \leq \frac{1}{\varepsilon}\left(\int_{\varepsilon}^{s+\varepsilon}\left(T^{t} f(x)\right)^{\gamma} d t\right)^{1 / \gamma} s^{1 / \gamma^{\prime}} \\
& \leq \frac{(s+\varepsilon)^{1 / \gamma}}{\varepsilon}\left(\frac{1}{s+\varepsilon} \int_{0}^{s+\varepsilon} S^{t}\left(|f|^{\gamma}\right)(x) d t\right)^{1 / \gamma} s^{1 / \gamma^{\prime}} \\
& \leq \frac{(s+\varepsilon)^{1 / \gamma} s^{1 / \gamma^{\prime}}}{\varepsilon}\left[\tilde{\mathcal{M}}^{+}\left(|f|^{\gamma}\right)(x)\right]^{1 / \gamma}
\end{aligned}
$$

This proves (a).
The proof of (b) follows from (a), the dominated convergence theorem, Theorem 1.1 and the fact that

$$
\left|\mathcal{A}_{\varepsilon}^{+} f(x)-T^{s}\left(\mathcal{A}_{\varepsilon}^{+} f\right)(x)\right| \leq \mathcal{M}^{+} f(x)+\mathcal{M}^{+}\left(T^{s} f\right)(x) \in L^{p}(\mu) .
$$

The next theorem follows from Lemma 4.2 using a standard argument. We include it for the sake of completeness.

Theorem 4.3. Assume that we are in the conditions of Theorem 1.2. Let

$$
A=\left\{f \in L^{p}(\mu): T^{s} f=f \text { for all } s>0\right\}
$$

and let B be the linear manifold generated by

$$
\left\{f-T^{s} f: f \in L^{p}(\mu), s>0\right\}
$$

Then, $A \oplus \bar{B}=L^{p}(\mu)$, where \bar{B} stands for the closure of B and $A \oplus \bar{B}=\{f+g$: $f \in A, g \in \bar{B}\}$. In particular $A \oplus B$ is dense in $L^{p}(\mu)$.

Proof. We first prove that $\left\{\mathcal{A}_{\varepsilon}^{+} f\right\}$ is weakly convergent as ε goes to infinity for all $f \in L^{p}(\mu)$.

Let $f \in L^{p}(\mu)$. By hypothesis, $\sup _{\varepsilon>0}\left\|\mathcal{A}_{\varepsilon}^{+} f\right\|_{L^{p}(\mu)} \leq C\|f\|_{L^{p}(\mu)}$. This gives that the set $\left\{\mathcal{A}_{\varepsilon}^{+} f: \varepsilon>0\right\}$ is bounded in $L^{p}(\mu)$. Therefore there exists a sequence $\left\{\varepsilon_{k}\right\} \rightarrow \infty$ such that $\left\{\mathcal{A}_{\varepsilon_{k}}^{+} f\right\}$ is weakly convergent. If we suppose that $\left\{\mathcal{A}_{\varepsilon}^{+} f\right\}$ is not weakly convergent as ε goes to infinity, then there exist another sequence $\left\{\eta_{k}\right\} \rightarrow \infty$ and $g_{1}, g_{2} \in L^{p}(\mu), g_{1} \neq g_{2}$, such that $\left\{\mathcal{A}_{\varepsilon_{k}}^{+} f\right\}$ converges weakly to g_{1} and $\left\{\mathcal{A}_{\eta_{k}}^{+} f\right\}$ converges weakly to g_{2}. The continuity of T^{s} gives that $\left\{\mathcal{A}_{\varepsilon_{k}}^{+} f-T^{s}\left(\mathcal{A}_{\varepsilon_{k}}^{+} f\right)\right\}$ converges weakly to $g_{1}-T^{s} g_{1}$. On the other hand, by part (b) of Lemma 4.2, $\left\{\mathcal{A}_{\varepsilon_{k}}^{+} f-T^{s}\left(\mathcal{A}_{\varepsilon_{k}}^{+} f\right)\right\}$ converges to 0 in $L^{p}(\mu)$. Therefore, $g_{1} \in A$. The same argument gives that $g_{2} \in A$ and, as a consequence, $0 \neq g_{1}-g_{2} \in A$.

We shall prove now that $g_{1}-g_{2} \in \bar{B}$. If $g_{1}-g_{2} \notin \bar{B}$, then there exists a linear functional $\Lambda: L^{p}(\mu) \rightarrow \mathbb{R}$, such that $\Lambda(\bar{B})=0$ and $\Lambda\left(g_{1}-g_{2}\right)=1$. It follows that $\Lambda g=\Lambda\left(T^{s} g\right)$ for all $g \in L^{p}(\mu)$ and all $s>0$. Furthermore, there exists $h \in L^{p^{\prime}}(\mu)$ such that $\Lambda g=\int_{X} g h d \mu$. Therefore,

$$
\begin{aligned}
\Lambda\left(\mathcal{A}_{\varepsilon_{k}}^{+} f\right) & =\int_{X} \mathcal{A}_{\varepsilon_{k}}^{+} f(x) h(x) d \mu(x)=\int_{X}\left(\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} T^{t} f(x) d t\right) h(x) d \mu(x) \\
& =\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} \int_{X} T^{t} f(x) h(x) d \mu(x) d t=\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} \Lambda\left(T^{t} f\right) d t=\Lambda f .
\end{aligned}
$$

On the other hand, $\left\{\Lambda\left(\mathcal{A}_{\varepsilon_{k}}^{+} f\right)\right\}$ converges to Λg_{1} in \mathbb{R}. Then $\Lambda g_{1}=\Lambda f$. In analogous way we get that $\Lambda g_{2}=\Lambda f$. It follows that $1=\Lambda\left(g_{1}-g_{2}\right)=$ $\Lambda g_{1}-\Lambda g_{2}=0$, which is a contradiction. This proves that $g_{1}-g_{2} \in \bar{B}$.

Let us prove now that $\left\|\mathcal{A}_{\varepsilon}^{+} g\right\|_{L^{p}(\mu)} \rightarrow 0$ as ε tends to infinity, for all $g \in \bar{B}$. If $g=g_{0}-T^{s} g_{0}$ for some $g_{0} \in L^{p}(\mu)$ and $s>0$, this follows from part (b) of Lemma 4.2, and therefore it holds for any $g \in B$. Let now fix $g \in \bar{B}$. For any $\gamma>0$, there exists $g_{0} \in B$ such that $\left\|g-g_{0}\right\|_{L^{p}(\mu)}<\gamma$. As a consequence,

$$
\begin{aligned}
\left\|\mathcal{A}_{\varepsilon}^{+} g\right\|_{L^{p}(\mu)} & \leq\left\|\mathcal{A}_{\varepsilon}^{+} g-\mathcal{A}_{\varepsilon}^{+} g_{0}\right\|_{L^{p}(\mu)}+\left\|\mathcal{A}_{\varepsilon}^{+} g_{0}\right\|_{L^{p}(\mu)} \\
& =\left\|\mathcal{A}_{\varepsilon}^{+}\left(g-g_{0}\right)\right\|_{L^{p}(\mu)}+\left\|\mathcal{A}_{\varepsilon}^{+} g_{0}\right\|_{L^{p}(\mu)} \leq C \gamma+\left\|\mathcal{A}_{\varepsilon}^{+} g_{0}\right\|_{L^{p}(\mu)}
\end{aligned}
$$

and $\left\|\mathcal{A}_{\varepsilon}^{+} g_{0}\right\|_{L^{p}(\mu)} \rightarrow 0$ as ε tends to infinity, since $g_{0} \in B$.
As we have seen, $g_{1}-g_{2} \in \bar{B}$, and then $\left\{\mathcal{A}_{\varepsilon}^{+}\left(g_{1}-g_{2}\right)\right\}$ converges to 0 in $L^{p}(\mu)$. On the other hand, $g_{1}-g_{2} \in A$ which gives that $\mathcal{A}_{\varepsilon}^{+}\left(g_{1}-g_{2}\right)=g_{1}-g_{2}$. Then $g_{1}-g_{2}=0$, against $g_{1} \neq g_{2}$. Therefore, $\left\{\mathcal{A}_{\varepsilon}^{+} f\right\}$ is weakly convergent as ε goes to infinity. (Observe that the preceding argument also proves that $A \cap \bar{B}=\{0\}$.)

We shall prove now that $A \oplus \bar{B}=L^{p}(\mu)$. Let $P f$ be the weak limit of $\left\{\mathcal{A}_{\varepsilon}^{+} f\right\}$ as ε tends to infinity. Then $f=P f+(f-P f)$. From the continuity of T^{s} and part (b) of Lemma 4.2, it follows that $P f \in A$. If we suppose that $f-P f \notin \bar{B}$, then there exists a linear functional $\Lambda: L^{p}(\mu) \rightarrow \mathbb{R}$, such that $\Lambda(\bar{B})=0$ and $\Lambda(f-P f)=1$. But Pf is the weak limit of $\mathcal{A}_{\varepsilon}^{+} f$ and therefore $\Lambda(P f)=\lim _{\varepsilon \rightarrow \infty} \Lambda\left(\mathcal{A}_{\varepsilon}^{+} f\right)$. However, we have seen above that $\Lambda\left(\mathcal{A}_{\varepsilon}^{+} f\right)=\Lambda f$ for
any Λ such that $\Lambda(\bar{B})=0$. Therefore $\Lambda(P f)=\Lambda f$, i.e., $\Lambda(f-P f)=0$, which is a contradiction.

Now we can conclude the proof of Theorem 1.2. Since the maximal operator is bounded in $L^{p}(\mu)$ it is enough to prove the a.e. convergence in the dense class $D_{1}=A \oplus B$. If $f \in A$ it is obvious. For $f \in B$, part (a) of Lemma 4.2 proves that $\left\{\mathcal{A}_{\varepsilon}^{+} f\right\}$ converges to 0 a.e. as ε tends to infinity.

5. Proof of Theorem 1.4

Proof of (a) in Theorem 1.4. For each natural N, we consider the set

$$
Q_{N}=\left\{M \in \mathbb{Z}^{2}: M=\left(M_{1}, M_{2}\right), M_{1} \leq M_{2},\left|M_{1}\right| \leq N,\left|M_{2}\right| \leq N\right\}
$$

and the operator

$$
\mathcal{T}_{N}^{*} f(x)=\sup _{M \in Q_{N}}\left|\mathcal{T}_{M} f(x)\right|
$$

For each $R>0$ we have by (2.1)

$$
\begin{align*}
\int_{X}\left(\mathcal{T}_{N}^{*} f(x)\right)^{p} d \mu(x) & =\frac{1}{R} \int_{0}^{R} \int_{X}\left|T^{t}\left(\mathcal{T}_{N}^{*} f(x)\right)\right|^{p} H_{t}(x) d \mu(x) d t \tag{5.1}\\
& =\int_{X} \frac{1}{R} \int_{0}^{R}\left|T^{t}\left(\mathcal{T}_{N}^{*} f(x)\right)\right|^{p} H_{t}(x) d t d \mu(x) .
\end{align*}
$$

Observe that since T^{t} is positive we have for each $M \in Q_{N}$,

$$
\left|\mathcal{T}_{M}\left(T^{t} f\right)(x)\right|=\left|T^{t} \mathcal{T}_{M} f(x)\right| \leq T^{t} \mathcal{T}_{N}^{*} f(x)
$$

and therefore

$$
\mathcal{T}_{N}^{*}\left(T^{t} f(x)\right) \leq T^{t} \mathcal{T}_{N}^{*} f(x)
$$

Consequently,

$$
T^{t} \mathcal{T}_{N}^{*} f(x)=T^{t} \mathcal{T}_{N}^{*}\left(T^{-t} T^{t}\right) f(x) \leq \mathcal{T}_{N}^{*}\left(T^{t} f\right)(x)
$$

Now for any $t, 0<t<R$,

$$
\begin{aligned}
\mathcal{T}_{N}^{*}\left(T^{t} f\right)(x) & =\sup _{M \in Q_{N}}\left|\sum_{k=M_{1}}^{M_{2}} v_{k}\left(\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} T^{t+s} f(x) d s-\frac{1}{\varepsilon_{k-1}} \int_{0}^{\varepsilon_{k-1}} T^{t+s} f(x) d s\right)\right| \\
& =\sup _{M \in Q_{N}}\left|\sum_{k=M_{1}}^{M_{2}} v_{k}\left(\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} f^{x}(t+s) d s-\frac{1}{\varepsilon_{k-1}} \int_{0}^{\varepsilon_{k-1}} f^{x}(t+s) d s\right)\right| \\
& \leq S^{*}\left(f^{x} \chi_{\left(0, \varepsilon_{N}+R\right)}\right)(t) .
\end{aligned}
$$

Therefore, using that for almost every x the functions $t \rightarrow H_{t}(x)$ belong to A_{p}^{+} with a constant independent of x and Theorem 2.1 we can dominate the last
term in inequality (5.1) by

$$
\begin{aligned}
& \int_{X} \frac{1}{R} \int_{0}^{R}\left|S^{*}\left(f^{x} \chi_{\left(0, \varepsilon_{N}+R\right)}\right)(t)\right|^{p} H_{t}(x) d t d \mu(x) \\
& \leq C \int_{X} \frac{1}{R} \int_{0}^{\varepsilon_{N}+R}\left|f^{x}(t)\right|^{p} H_{t}(x) d t d \mu(x) \\
& =C \frac{1}{R} \int_{0}^{\varepsilon_{N}+R} \int_{X}\left|T^{t} f(x)\right|^{p} H_{t}(x) d \mu(x) d t \\
& =C \frac{\varepsilon_{N}+R}{R} \int_{X}|f(x)|^{p} d \mu(x) .
\end{aligned}
$$

Letting R go to infinity, we obtain

$$
\int_{X}\left(\mathcal{T}_{N}^{*} f(x)\right)^{p} d \mu(x) \leq C \int_{X}|f(x)|^{p} d \mu(x),
$$

with constant independent of N. Letting $N \rightarrow \infty$ we are done.
Proof of (b) in Theorem 1.4. It suffices to prove that there exist the limits $\lim _{N \rightarrow \infty} \mathcal{T}_{N}^{1} f(x)$ and $\lim _{N \rightarrow \infty} \mathcal{T}_{N}^{2} f(x)$ a.e., where

$$
\mathcal{T}_{N}^{1} f(x)=\sum_{k=-N}^{0} v_{k}\left(\mathcal{A}_{\varepsilon_{k}}^{+} f(x)-\mathcal{A}_{\varepsilon_{k-1}}^{+} f(x)\right)
$$

and

$$
\mathcal{T}_{N}^{2} f(x)=\sum_{k=1}^{N} v_{k}\left(\mathcal{A}_{\varepsilon_{k}}^{+} f(x)-\mathcal{A}_{\varepsilon_{k-1}}^{+} f(x)\right)
$$

(Here N stands for a natural number.) We start with the convergence of $\mathcal{T}_{N}^{1} f(x)$. Since \mathcal{T}^{*} is of strong type (p, p) (Theorem 1.4) it suffices to prove the a.e. convergence for f in the set $D=\left\{\mathcal{A}_{\varepsilon}^{+} g: g \in L^{p}(\mu), \varepsilon>0\right\}$ which is dense in $L^{p}(\mu)$ by (a) in Theorem 1.2. Assume that $f \in D$, i.e., $f=\mathcal{A}_{\gamma}^{+} g$, for some $g \in L^{p}(\mu)$ and some $\gamma>0$. In this case,

$$
\begin{aligned}
\left|v_{k}\right|\left|\mathcal{A}_{\varepsilon_{k}}^{+} f(x)-\mathcal{A}_{\varepsilon_{k-1}}^{+} f(x)\right| & \leq C\left|\mathcal{A}_{\varepsilon_{k}}^{+}\left(\mathcal{A}_{\gamma}^{+} g\right)(x)-\mathcal{A}_{\gamma}^{+} g(x)\right| \\
& +C\left|\mathcal{A}_{\gamma}^{+} g(x)-\mathcal{A}_{\varepsilon_{k-1}}^{+}\left(\mathcal{A}_{\gamma}^{+} g\right)(x)\right| .
\end{aligned}
$$

We can deal with both terms in the same way. We only write the details for the first one.

Since $\varepsilon_{k} \rightarrow 0$ as $k \rightarrow-\infty$, there exists k_{0} such that $\varepsilon_{k}<\gamma$ for all $k \leq k_{0}$. Therefore, for almost every x,

$$
\begin{aligned}
\sum_{k=-\infty}^{k_{0}} & \left|\mathcal{A}_{\varepsilon_{k}}^{+}\left(\mathcal{A}_{\gamma}^{+} g\right)(x)-\mathcal{A}_{\gamma}^{+} g(x)\right| \\
& \leq \sum_{k=-\infty}^{k_{0}} \frac{1}{\gamma}\left(\int_{0}^{\varepsilon_{k}}\left|T^{s} g(x)\right| d s+\int_{\gamma}^{\varepsilon_{k}+\gamma}\left|T^{s} g(x)\right| d s\right) \\
& \leq \frac{1}{\gamma} \sum_{k=-\infty}^{k_{0}} \varepsilon_{k}\left(\mathcal{M}^{+} g(x)+\mathcal{M}^{+}\left(T^{\gamma} g\right)(x)\right) \\
& \leq \frac{\varepsilon_{k_{0}}}{\gamma}\left(\mathcal{M}^{+} g(x)+\mathcal{M}^{+}\left(T^{\gamma} g\right)(x)\right) \sum_{k=-k_{0}}^{\infty} \frac{1}{\rho^{k}}<\infty
\end{aligned}
$$

To prove the convergence of $\mathcal{T}_{N}^{2} f(x)$, it is enough to establish it for functions $f \in A \oplus B$, where A and B are the sets in Theorem 4.3. If $f \in A$ there is nothing to prove. Suppose $f=g-T^{s} g$, for some $g \in L^{p}(\mu)$ and some $s>0$. Then

$$
\begin{aligned}
\left|v_{k}\right|\left|\mathcal{A}_{\varepsilon_{k}}^{+} f(x)-\mathcal{A}_{\varepsilon_{k-1}}^{+} f(x)\right| & \leq C\left|\mathcal{A}_{\varepsilon_{k}}^{+}\left(g-T^{s} g\right)(x)\right| \\
& +C\left|\mathcal{A}_{\varepsilon_{k-1}}^{+}\left(g-T^{s} g\right)(x)\right|
\end{aligned}
$$

Again, we can deal with both terms in the same way. Since $\varepsilon_{k} \rightarrow \infty$ as $k \rightarrow \infty$, there exists k_{0} such that for all $k \geq k_{0}$ we have that $\varepsilon_{k}>s$. Therefore, for $k \geq k_{0}$,

$$
\begin{aligned}
\left|\mathcal{A}_{\varepsilon_{k}}^{+}\left(g-T^{s} g\right)(x)\right| & =\left|\frac{1}{\varepsilon_{k}} \int_{0}^{\varepsilon_{k}} T^{t} g(x) d t-\frac{1}{\varepsilon_{k}} \int_{s}^{s+\varepsilon_{k}} T^{t} g(x) d t\right| \\
& \leq \frac{1}{\varepsilon_{k}} \int_{0}^{s}\left|T^{t} g(x)\right| d t+\frac{1}{\varepsilon_{k}} \int_{\varepsilon_{k}}^{s+\varepsilon_{k}}\left|T^{t} g(x)\right| d t .
\end{aligned}
$$

It is clear that

$$
\sum_{k=k_{0}}^{\infty} \frac{1}{\varepsilon_{k}} \int_{0}^{s}\left|T^{t} g(x)\right| d t \leq \varepsilon_{k_{0}} \int_{0}^{s}\left|T^{t} g(x)\right| d t \sum_{k=k_{0}}^{\infty} \frac{1}{\rho^{k}}<\infty
$$

On the other hand, if $p>\gamma>1, \Gamma_{\gamma}=\left\{S^{t}: t \in \mathbb{R}\right\}$ is the group in Lemma 4.1 and $\tilde{\mathcal{M}}^{+}$is the maximal operator associated to $\Gamma_{\gamma,+}=\left\{S^{t}: t>0\right\}$ we have, by Lemma 4.1 and Theorem 1.1, that $\tilde{\mathcal{M}}^{+}$is bounded from $L^{p / \gamma}(\mu)$ into $L^{p / \gamma}(\mu)$
and

$$
\begin{aligned}
\frac{1}{\varepsilon_{k}} \int_{\varepsilon_{k}}^{s+\varepsilon_{k}}\left|T^{t} g(x)\right| d t & \leq \frac{1}{\varepsilon_{k}}\left(\int_{\varepsilon_{k}}^{s+\varepsilon_{k}}\left|T^{t} g(x)\right|^{\gamma} d t\right)^{1 / \gamma} s^{1 / \gamma^{\prime}} \\
& \leq \frac{1}{\varepsilon_{k}}\left(\int_{\varepsilon_{k}}^{s+\varepsilon_{k}}\left|S^{t}\left(|g|^{\gamma}\right)(x)\right| d t\right)^{1 / \gamma} s^{1 / \gamma^{\prime}} \\
& \leq \frac{\left(s+\varepsilon_{k}\right)^{1 / \gamma} s^{1 / \gamma^{\prime}}}{\varepsilon_{k}}\left(\tilde{\mathcal{M}}^{+}\left(|g|^{\gamma}\right)(x)\right)^{1 / \gamma} .
\end{aligned}
$$

Therefore,

$$
\sum_{k=k_{0}}^{\infty} \frac{1}{\varepsilon_{k}} \int_{\varepsilon_{k}}^{s+\varepsilon_{k}}\left|T^{t} g(x)\right| d t \leq\left(\tilde{\mathcal{M}}^{+}\left(|g|^{\gamma}\right)(x)\right)^{1 / \gamma} \sum_{k=k_{0}}^{\infty} \frac{\left(s+\varepsilon_{k}\right)^{1 / \gamma} s^{1 / \gamma^{\prime}}}{\varepsilon_{k}} .
$$

The last term is finite a.e. since $\tilde{\mathcal{M}}^{+}$is bounded in $L^{p / \gamma}(\mu)$ and the sum

$$
\sum_{k=k_{0}}^{\infty} \frac{\left(s+\varepsilon_{k}\right)^{1 / \gamma} s^{1 / \gamma^{\prime}}}{\varepsilon_{k}}
$$

is essentially dominated by $\sum_{k=k_{0}}^{\infty} \frac{1}{\left(\rho^{1-\frac{1}{\gamma}}\right)^{k}}$.

References

[1] M. Ackoglu, R.L. Jones, and P.Schwartz, Variation in probability, ergodic theory and analysis, Il. J. Math. 42 (1998), 154-177.
[2] A.L. Bernardis, M. Lorente,F.J. Martín-Reyes, M.T. Martínez, A. de la Torre and J.L. Torrea, Differential transforms in weighted spaces. Preprint.
[3] T.A. Gillespie and J.L. Torrea, Weighted ergodic theory and dimension free estimates, J. London Math. Soc. 2 (49) (1994), 529-542.
[4] R.L. Jones, and J. Rosenblatt, Differential and ergodic transforms, Math. Ann. 323 (2002), 525-546.
[5] F.J. Martín-Reyes New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Am. Math. Soc. 117 (1993), no. 3, 691-698.
[6] F.J. Martín-Reyes and A. de la Torre, The dominated ergodic estimate for mean bounded, invertible, positive operators, Proc. Am. Math. Soc. 104 (1988), 69-75.
[7] F.J. Martín-Reyes, P. Ortega and A. de la Torre, Weighted inequalities for one-sided maximal functions, Trans. Amer. Math. Soc. 319 (2), (1990), 517-534.
[8] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Trans. Amer. Math. Soc. 297 (1986), 53-61.

DIFFERENCES OF ERGODIC AVERAGES FOR CESÀRO BOUNDED OPERATORS
IMAL-CONICET, Güemes 3450, (3000) Santa Fe, Argentina
E-mail address: bernard@ceride.gov.ar
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de MÁLAGA, 29071 MÁLAGA, SPAIN

E-mail address: lorente@anamat.cie.uma.es
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de MÁLAGA, 29071 MÁlaga, SPAIN

E-mail address: martin_reyes@uma.es
Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, SPAIN

E-mail address: teresa.martinez@uam.es
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de MÁlaga, 29071 MÁlaga, SPAIN

E-mail address: torre@anamat.cie.uma.es
Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, SPAIN

E-mail address: joseluis.torrea@uam.es

[^0]: 2000 Mathematics Subject Classification. Primary: 40A30 ; Secondary: 42C20.
 Key words and phrases. Cesàro Bounded Operators, Ergodic Averages .
 This research has been partially supported by CAI+D-UNL, CONICET, Junta de Andalucía and M.C.Y.T grants BFM2001-1638 and BFM2002-04013-C02-02.

