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Abstract. We prove that the weighted differences of ergodic averages, in-
duced by a Cesàro bounded, strongly continuous, one-parameter group of
positive, invertible, linear operators on Lp, 1 < p < ∞, converge a.e. and
in the Lp norm. We obtain first the boundedness of the ergodic maximal
operator and the convergence of the averages.

1. Introduction and Main Results

Let (X,F , µ) be a σ-finite measure space and let Γ = {T t : t ∈ R} be
a one-parameter group of positive, invertible, linear operators on Lp(µ) =
Lp(X,F , µ), for some fixed p in the range 1 < p < ∞. One of the classical
problems in ergodic theory is to study the convergence of the averages

A+
ε f(x) =

1

ε

∫ ε

0

T tf(x)dt

as ε → 0+ and as ε →∞. If we know that this convergence holds in the almost
everywhere sense or in the Lp-norm then it is reasonable to try to give some
information about how the convergence occurs. In particular, given a lacunary
sequence {εk}k∈Z , i.e., εk > 0 and εk+1

εk
≥ ρ > 1 for all k, we may consider the

series
∞∑

k=−∞

(
1

εk

∫ εk

0

T tf(x)dt− 1

εk−1

∫ εk−1

0

T tf(x)dt

)
which obviously converges. As the cancellation in this series is crucial (see [1]),
it is natural to ask about the convergence properties of

(1.1)
∞∑

k=−∞

υk

(
1

εk

∫ εk

0

T tf(x)dt− 1

εk−1

∫ εk−1

0

T tf(x)dt

)
,

where υk is a bounded sequence of real or complex numbers. Jones and Rosen-
blatt [4] studied this problem in the real line for T tf(x) = f(x+ t) and when Γ
is the group associated to an invertible, ergodic, measure preserving transfor-
mation. Our aim is to study the properties of convergence of (1.1) in a more

2000 Mathematics Subject Classification. Primary: 40A30 ; Secondary: 42C20.
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general setting, that is, assuming that Γ is a strongly continuous, one-parameter
group of positive, invertible, linear operators on Lp(µ) = Lp(X,F , µ). In order
to prove a.e. convergence of the averages, the standard approach is to consider
the maximal operator

M+f(x) = sup
ε>0

|A+
ε f(x)|

and to prove a dominated ergodic estimate, i.e.,∫
X

|M+f |pdµ ≤ C

∫
X

|f |pdµ.

It is clear that for such an inequality to hold, the averagesA+
ε must be uniformly

bounded operators in Lp(µ), i.e.,

sup
ε>0

‖Aεf‖p ≤ C‖f‖p.

In other words, the semigroup Γ+ = {T t : t > 0}, must be Cesàro bounded.
(This is obviously the case if T t is a measure preserving transformation for each
t.) Our first result proves that this condition is sufficient for the boundedness
of the maximal operator.

Theorem 1.1. Let 1 < p < ∞. Let (X,F , µ) be a σ-finite measure space and
let Γ = {T t : t ∈ R} be a strongly continuous one-parameter group of positive,
invertible, linear operators on Lp(µ). The following conditions are equivalent:

(a) There exists C > 0 such that for all f ∈ Lp(µ),∫
X

|M+f |pdµ ≤ C

∫
X

|f |pdµ.

(b) The semigroup Γ+ = {T t : t > 0} is Cesàro bounded in Lp(µ), i.e., there
exists C > 0 such that for all f ∈ Lp(µ),

sup
ε>0

||A+
ε f ||Lp(µ) ≤ C||f ||Lp(µ).

As a consequence of this theorem we obtain that (b) in Theorem 1.1 implies
the convergence of the averages.

Theorem 1.2. Let 1 < p < ∞. Let (X,F , µ) be a σ-finite measure space and
let Γ = {T t : t ∈ R} be a strongly continuous one-parameter group of positive,
invertible, linear operators on Lp(µ). Assume that the semigroup Γ+ = {T t :
t > 0} is Cesàro bounded in Lp(µ). Then the following statements hold for
every f ∈ Lp(µ):

(a) limε→0+ A+
ε f = f a.e. and in Lp(µ).

(b) The averages A+
ε f converge a.e. and in Lp(µ) as ε → +∞.

Once we have the convergence of the averages we may consider the series
(1.1). In order to study it, we need to prove Lp inequalities for a suitable
maximal operator. First, we introduce some definitions.



DIFFERENCES OF ERGODIC AVERAGES FOR CESÀRO BOUNDED OPERATORS 3

Definition 1.3. Assume that Γ = {T t : t ∈ R} is a strongly continuous one-
parameter group of positive, invertible, linear operators on Lp(µ), 1 < p <
∞. Given a lacunary sequence {εk}k∈Z and a bounded sequence {υk}k∈Z of
real numbers, we define, for each N = (N1, N2) ∈ Z2, N1 ≤ N2, the ergodic
truncation operator by

TNf(x) =

N2∑
k=N1

υk

(
1

εk

∫ εk

0

T tf(x)dt− 1

εk−1

∫ εk−1

0

T tf(x)dt

)
and the corresponding maximal operator

T ∗f(x) = sup
N
|TNf(x)| .

The Lp estimate for T ∗ and the convergence of the series (1.1) are contained
in the next theorem.

Theorem 1.4. Let 1 < p < ∞, {εk}k∈Z a lacunary sequence and {υk}k∈Z a
bounded sequence of real numbers. Let (X,F , µ) be a σ-finite measure space and
let Γ = {T t : t ∈ R} be a strongly continuous one-parameter group of positive,
invertible, linear operators on Lp(µ). Assume that the semigroup Γ+ = {T t :
t > 0} is Cesàro bounded in Lp(µ). Then the following statements hold:

(a) There exists C > 0 such that for every f ∈ Lp(µ)∫
X

(T ∗f(x))pdµ(x) ≤ C

∫
X

|f(x)|pdµ(x).

(b) For every f ∈ Lp(µ), lim
N→∞

TNf(x) exists a.e. and in Lp(µ), where

limN→∞ TNf(x) stands for lim
N1→−∞,N2→∞

TNf(x) with N = (N1, N2).

Remark 1.5. Theorem 1.1 is the continuous version of a result of F. J. Mart́ın-
Reyes and A. de la Torre [6]; the two-sided version of Theorem 1.1 is due to T.A.
Gillespie and J.L. Torrea [3]. Theorem 1.4 in the case of a semigroup generated
by an ergodic measure preserving transformation is due to R.L. Jones and J.
Rosenblatt [4].

2. Some previous results

Let Γ = {T t : t ∈ R} be a strongly continuous one-parameter group of
positive, invertible, linear operators on Lp(µ), 1 < p < ∞, where µ is a σ-finite
measure. The group structure of Γ and the positivity of each T t assures that
T t is separation preserving. These properties and some technical facts as the
meaning of T tf(x) as functions of (t, x) can be found in [3]. We list some of
them that will be used in our proofs:

• For all t, there exists a function Ht(x), such that for all f ∈ Lp(µ)

(2.1)

∫
X

|T tf(x)|pHt(x)dµ(x) =

∫
X

|f(x)|pdµ(x).
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(See property (d), page 70, in [6] and (1.7)–(1.8) in [3]; in the notation
in [3], Ht(x) = h−p

t (x)Jt(x).)

• Furthermore, if (T t)∗ denotes de adjoint of T t, then

(2.2) Ht(x) = ((T−t)∗gp)(x)(T tgp′)1−p(x)

for any function g > 0, g ∈ Lpp′(µ). (See property (e), page 70, in [6] or
Remark 1.11 in [3]).

• For all t ∈ R, for all f ∈ Lp(µ) and each compact subset of R we have

(2.3) T t

(∫
K

T sf(x)ds

)
≤

∫
K

T t+sf(x)ds.

The same property holds for the adjoint operators (T t)∗. (See (1.9) in
[3]).

• If 0 ≤ γ ≤ p the one-parameter group Γγ = {St : t ∈ R} defined
by Stf =

(
T tf 1/γ

)γ
for all f ≥ 0 is a strongly continuous group of

positive invertible linear operators on Lp/γ(µ). We notice that if Ht is
the function in (2.1) then

(2.4)

∫
X

|Stf(x)|p/γHt(x)dµ(x) =

∫
X

|f(x)|p/γdµ(x).

for all f ∈ Lp/γ(µ).

We assume that the reader is familiar with the theory of weights for the
one-sided Hardy-Littlewood maximal operator (see [8], [7] and [5]) defined by

M+f(x) = sup
h>0

1

h

∫ x+h

x

|f(t)|dt.

We recall that a weight w belongs to the class A+
p , p > 1, if for any a ∈ R and

any h > 0, ∫ a+h

a

w(t)dt

(∫ a+2h

a+h

w1−p′dt

)p−1

≤ Chp,

where p+p′ = pp′. Condition A+
p is necessary and sufficient for the boundedness

of M+ from Lp(w) into itself. A key fact is that if w belongs to the class A+
p ,

p > 1, then there exists γ > 1, 1 < γ < p, such that w belongs to the class
A+

p/γ, where γ depends only on the constant in the condition A+
p . The following

result from [2] will be used in the proof of Theorem 1.4.

Theorem 2.1. [2] Let {εk} be a lacunary sequence and let {υk} be a bounded
sequence of real numbers. For each N = (N1, N2) ∈ Z2, N1 ≤ N2, we define
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the operator SN acting on locally integrable functions f : R → R, by

SNf(x) =

N2∑
k=N1

υk

(
1

εk

∫ εk

0

f(x + t)dt− 1

εk−1

∫ εk−1

0

f(x + t)dt

)
,

and the corresponding maximal operator

S∗f(x) = sup
N
|SNf(x)|.

If 1 < p < ∞ and w ∈ A+
p then there exists C > 0, depending only only on p

and on the constant in the definition of A+
p , such that∫

R
|S∗f(x)|pw(x) dx ≤ C

∫
R
|f(x)|pw(x) dx.

3. Proof of Theorem 1.1

It is obvious that (a) ⇒ (b). We shall prove that (b) ⇒ (c) ⇒ (a) where (c)
means the following:

(c) For almost every x ∈ X, the function t → Ht(x) belongs to A+
p , with a

constant independent of x.

In order to prove (b) ⇒ (c), we shall use the so called Rubio de Francia algo-
rithm. Let us assume that (b) holds. By hypothesis we have that there exists
a constant C > 0 independent of ε > 0 and f such that∫

X

|A+
2εf |pdµ ≤ C

∫
X

|f |pdµ for all f ∈ Lp(µ)

and ∫
X

|(A+
2ε)

∗f |p′dµ ≤ C

∫
X

|f |p′dµ for all f ∈ Lp′(µ),

where (A+
2ε)

∗ is the adjoint operator of A+
2εf .

For g ∈ Lpp′(µ), we define

Qεg =
(
A+

2ε|g|p
′
)1/p′

and Pεg =
(
(A+

2ε)
∗|g|p

)1/p
.

Then Qε, Pε and Rε = Qε + Pε are bounded from Lpp′(µ) into Lpp′(µ) with
constants independent of ε > 0. Let us fix C > 0 such that ||Rεg||Lpp′ (µ) ≤
C||g||Lpp′ (µ), for all g ∈ Lpp′(µ) and all ε > 0. Now, for fixed g > 0, g ∈ Lpp′(µ)
and ε > 0, let

G(x) =
∞∑

j=0

R
(j)
ε g(x)

(2C)j
,

where R
(j)
ε is the j-th iteration of Rε. Then, G ∈ Lpp′(µ), g ≤ G a.e., RεG ≤

2CG a.e. and, as a consequence, PεG ≤ 2CG a.e. and QεG ≤ 2CG a.e., i.e.,
there exists C > 0 such that,

(3.1) A+
2εG

p′ ≤ CGp′ a.e.
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and

(3.2) (A+
2ε)

∗Gp ≤ CGp a.e.

Since the operators T t are linear and positive, we get from (3.1) and (2.3) that
for s ≤ t ≤ s + ε,

CT tGp′(x) ≥ T t

(
1

2ε

∫ 2ε

0

T sGp′(x)ds

)
=

1

2ε

∫ 2ε

0

T t+sGp′(x)ds

=
1

2ε

∫ 2ε+t

t

T uGp′(x)du ≥ 1

2ε

∫ s+2ε

s+ε

T uGp′(x)du.

Raising to 1 − p < 0, multiplying by (T−t)∗Gp(x), using (2.2) and integrating
from s to s + ε, we get

(3.3) C

∫ s+ε

s

Ht(x)dt ≤
(

1

2ε

∫ s+2ε

s+ε

T uGp′(x)du

)1−p ∫ s+ε

s

(T−t)∗Gp(x)dt.

On the other hand, since the (T−t)∗ are also linear and positive, we get from
(3.2) and (2.3) that for all s + ε ≤ t ≤ s + 2ε,

C(T−t)∗Gp(x) ≥ 1

2ε

∫ 2ε

0

(T s−t)∗Gp(x)ds

=
1

2ε

∫ t

t−2ε

(T−u)∗Gp(x)du ≥ 1

2ε

∫ s+ε

s

(T−u)∗Gp(x)du.

Raising to 1−p′ < 0, multiplying by T tGp′(x), using (2.2) and integrating from
s + ε to s + 2ε we get
(3.4)

C

∫ s+2ε

s+ε

(Ht(x))1−p′dt ≤
(

1

2ε

∫ s+ε

s

(T−u)∗Gp(x)du

)1−p′ ∫ s+2ε

s+ε

T tGp′(x)dt.

From (3.4) and (3.3), using (3.1) and (3.2), we get∫ s+ε

s

Ht(x)dt

(∫ s+2ε

s+ε

(Ht(x))1−p′dt

)p−1

≤ Cεp,

which is (c).
Let us prove (c) ⇒ (a). Since M+f(x) ≤ M+(|f |)(x), we can assume that

f ≥ 0. For each η > 0, let us consider M+
η f(x) = sup0<ε≤ηA+

ε f(x). From the
positivity of T t and (2.3) we have that

T tM+
η f(x) = T tM+

η (T−tT tf)(x) ≤M+
η (T tf)(x).

If we define gx(t) = T tg(x), we have that for all R > 0 and all t ≤ R

(3.5)

M+
η (T tf)(x) = sup

0<ε≤η

1

ε

∫ ε

0

T s+tf(x)ds = sup
0<ε≤η

1

ε

∫ ε

0

fx(s + t)ds

= sup
0<ε≤η

1

ε

∫ ε

0

fxχ[0,R+η](s + t)ds ≤ M+(fxχ[0,R+η])(t),
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where M+ is the one-sided Hardy-Littlewood maximal operator in R. Then,
by (2.1), Fubini’s theorem, (c) and the fact that A+

p implies boundedness of the
one-sided Hardy-Littlewood maximal operator, we get that for each R > 0,

(3.6)

∫
X

(M+
η f(x))pdµ(x) =

1

R

∫ R

0

∫
X

|T tM+
η f(x)|pHt(x)dµ(x)dt

≤
∫

X

1

R

∫ R

0

|M+(fxχ[0,R+η])(t)|pHt(x)dtdµ(x)

≤ C

∫
X

1

R

∫ R+η

0

|fx(t)|pHt(x)dtdµ(x)

= C
1

R

∫ R+η

0

∫
X

|T tf(x)|pHt(x)dµ(x)dt

= C
1

R

∫ R+η

0

∫
X

|f(x)|pdµ(x)dt

= C
R + η

R

∫
X

|f(x)|pdµ(x).

Letting, first R, and then η, go to infinity we obtain∫
X

(M+f(x))pdµ(x) ≤ C

∫
X

|f(x)|pdµ(x),

which is (a).

4. Proof of Theorem 1.2

Proof of (a) in Theorem 1.2. First we shall prove that

(4.1) lim
ε→0+

||A+
ε f − f ||Lp(µ) = 0.

Using the strong continuity of the group Γ we have that for any γ > 0, there
exists δ > 0 such that if |s| < δ then ||T sf − f ||Lp(µ) < γ. Then, by the
Minkowski’s integral inequality, for all ε < δ,

(4.2)

(∫
X

∣∣∣∣1ε
∫ ε

0

T sf(x)ds− f(x)

∣∣∣∣p dµ(x)

)1/p

≤
(∫

X

(
1

ε

∫ ε

0

|T sf(x)− f(x)|ds

)p

dµ(x)

)1/p

≤ 1

ε

∫ ε

0

(∫
X

|T sf(x)− f(x)|pdµ(x)

)1/p

ds ≤ γ.

Now we shall prove that

lim
ε→0+

A+
ε f = f a.e.
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We know by Theorem 1.1 that the ergodic maximal operator is of strong type
(p, p). Therefore, we only need to check the convergence for a dense class. Since
(4.1) holds, we have that

D = {A+
ε g : g ∈ Lp(µ), ε > 0}

is dense in Lp(µ). Let f ∈ D, f = A+
γ g, g ∈ Lp(µ) and γ > 0. Then, for all

ε < γ we have

|A+
ε (f)(x)− f(x)| =

∣∣∣∣1ε
∫ ε

0

(T t(A+
γ g)(x)−A+

γ g(x))dt

∣∣∣∣
≤ 1

ε

∫ ε

0

∣∣T t(A+
γ g)(x)−A+

γ g(x)
∣∣ dt

=
1

ε

∫ ε

0

∣∣∣∣1γ
∫ γ

0

T t+sg(x)ds − 1

γ

∫ γ

0

T sg(x)ds

∣∣∣∣ dt

=
1

ε

∫ ε

0

∣∣∣∣1γ
∫ t+γ

t

T sg(x)ds − 1

γ

∫ γ

0

T sg(x)ds

∣∣∣∣ dt

=
1

ε

∫ ε

0

∣∣∣∣−1

γ

∫ t

0

T sg(x)ds +
1

γ

∫ t+γ

γ

T sg(x)ds

∣∣∣∣ dt

≤ 1

ε

∫ ε

0

1

γ

∫ ε

0

|T sg(x)|ds +
1

γ

∫ ε+γ

γ

|T sg(x)|dsdt

=
ε

γ

1

ε

∫ ε

0

|T sg(x)|ds +
ε

γ

1

ε

∫ ε

0

|T s(T γg(x))|ds

≤ ε

γ
M+g(x) +

ε

γ
M+(T γg(x)).

The last term tends to 0 as ε goes to 0+ since, by Theorem 1.1, we have that
M+g(x) and M+(T γg(x)) are finite a.e.

Proof of (b) in Theorem 1.2. We shall need some results which are interesting
by itself.

Lemma 4.1. Assume that we are in the conditions of Theorem 1.2. If 1 ≤
γ < p let Γγ = {St : t ∈ R} be the strongly continuous, one-parameter group of
positive operators on Lp/γ(µ) such that Stf =

(
T tf 1/γ

)γ
for all f ≥ 0. Then

there exists γ, 1 < γ < p such that the semigroup Γγ,+ = {St : t > 0} is Cesàro
bounded

Proof. We have seen in the proof of Theorem 1.1 that Γ+ is Cesàro bounded
if and only if for almost every x the functions t → Ht(x) belong to A+

p with a
constant independent of x. Then by the properties of A+

p classes, we have that

there exists γ, 1 < γ < p, such that t → Ht(x) belongs to A+
p/γ with a constant

independent of x (see [5]). Again, by the proof of Theorem 1.1, we obtain that
Γγ,+ is Cesàro bounded in Lp/γ(µ). �
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Lemma 4.2. Assume that we are in the conditions of Theorem 1.2. Then, for
all f ∈ Lp(µ) and all s > 0,

(a) limε→∞[A+
ε f(x)− T s(A+

ε f)(x)] = 0, a.e. x.
(b) limε→∞ ||A+

ε f − T s(A+
ε f)||Lp(µ) = 0.

Proof. Let us fix s > 0. For any ε > s > 0 we have

A+
ε f(x)− T s(A+

ε f)(x) =
1

ε

∫ ε

0

T tf(x)dt− 1

ε

∫ s+ε

s

T tf(x)dt

=
1

ε

∫ s

0

T tf(x)dt− 1

ε

∫ s+ε

ε

T tf(x)dt.

It is clear that

lim
ε→∞

1

ε

∫ s

0

T tf(x)dt = 0.

To control the other term we use Lemma 4.1. Let p > γ > 1 and let Γγ = {St :

t ∈ R} be as in that lemma and let M̃+ be the maximal operator associated
to Γγ,+ = {St : t > 0}. By Lemma 4.1 and Theorem 1.1, M̃+ is bounded from

Lp/γ(µ) into Lp/γ(µ). Consequently, M̃+(|f |γ)(x) < ∞ a.e. for f ∈ Lp(µ). It

follows that 1
ε

∫ s+ε

ε
T tf(x)dt tends to 0 a.e. as ε goes to infinity since

1

ε

∫ s+ε

ε

T tf(x)dt ≤ 1

ε

(∫ s+ε

ε

(T tf(x))γdt

)1/γ

s1/γ′

≤ (s + ε)1/γ

ε

(
1

s + ε

∫ s+ε

0

St(|f |γ)(x)dt

)1/γ

s1/γ′

≤ (s + ε)1/γs1/γ′

ε
[M̃+(|f |γ)(x)]1/γ,

This proves (a).
The proof of (b) follows from (a), the dominated convergence theorem, The-

orem 1.1 and the fact that

|A+
ε f(x)− T s(A+

ε f)(x)| ≤ M+f(x) +M+(T sf)(x) ∈ Lp(µ).

�

The next theorem follows from Lemma 4.2 using a standard argument. We
include it for the sake of completeness.

Theorem 4.3. Assume that we are in the conditions of Theorem 1.2. Let

A = {f ∈ Lp(µ) : T sf = f for all s > 0}
and let B be the linear manifold generated by

{f − T sf : f ∈ Lp(µ), s > 0}.
Then, A⊕B̄ = Lp(µ), where B̄ stands for the closure of B and A⊕B̄ = {f +g :
f ∈ A, g ∈ B̄}. In particular A⊕B is dense in Lp(µ).
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Proof. We first prove that {A+
ε f} is weakly convergent as ε goes to infinity for

all f ∈ Lp(µ).
Let f ∈ Lp(µ). By hypothesis, supε>0 ||A+

ε f ||Lp(µ) ≤ C||f ||Lp(µ). This gives
that the set {A+

ε f : ε > 0} is bounded in Lp(µ). Therefore there exists a
sequence {εk} → ∞ such that {A+

εk
f} is weakly convergent. If we suppose

that {A+
ε f} is not weakly convergent as ε goes to infinity, then there exist

another sequence {ηk} → ∞ and g1, g2 ∈ Lp(µ), g1 6= g2, such that {A+
εk

f}
converges weakly to g1 and {A+

ηk
f} converges weakly to g2. The continuity

of T s gives that {A+
εk

f − T s(A+
εk

f)} converges weakly to g1 − T sg1. On the
other hand, by part (b) of Lemma 4.2, {A+

εk
f − T s(A+

εk
f)} converges to 0 in

Lp(µ). Therefore, g1 ∈ A. The same argument gives that g2 ∈ A and, as a
consequence, 0 6= g1 − g2 ∈ A.

We shall prove now that g1 − g2 ∈ B̄. If g1 − g2 /∈ B̄, then there exists a
linear functional Λ : Lp(µ) → R, such that Λ(B̄) = 0 and Λ(g1 − g2) = 1. It
follows that Λg = Λ(T sg) for all g ∈ Lp(µ) and all s > 0. Furthermore, there
exists h ∈ Lp′(µ) such that Λg =

∫
X

gh dµ. Therefore,

Λ(A+
εk

f) =

∫
X

A+
εk

f(x)h(x)dµ(x) =

∫
X

(
1

εk

∫ εk

0

T tf(x) dt

)
h(x)dµ(x)

=
1

εk

∫ εk

0

∫
X

T tf(x)h(x)dµ(x)dt =
1

εk

∫ εk

0

Λ(T tf)dt = Λf.

On the other hand, {Λ(A+
εk

f)} converges to Λg1 in R. Then Λg1 = Λf . In
analogous way we get that Λg2 = Λf . It follows that 1 = Λ(g1 − g2) =
Λg1 − Λg2 = 0, which is a contradiction. This proves that g1 − g2 ∈ B̄.

Let us prove now that ||A+
ε g||Lp(µ) → 0 as ε tends to infinity, for all g ∈ B̄.

If g = g0 − T sg0 for some g0 ∈ Lp(µ) and s > 0, this follows from part (b) of
Lemma 4.2, and therefore it holds for any g ∈ B. Let now fix g ∈ B̄. For any
γ > 0, there exists g0 ∈ B such that ||g − g0||Lp(µ) < γ. As a consequence,

||A+
ε g||Lp(µ) ≤ ||A+

ε g −A+
ε g0||Lp(µ) + ||A+

ε g0||Lp(µ)

= ||A+
ε (g − g0)||Lp(µ) + ||A+

ε g0||Lp(µ) ≤ Cγ + ||A+
ε g0||Lp(µ),

and ||A+
ε g0||Lp(µ) → 0 as ε tends to infinity, since g0 ∈ B.

As we have seen, g1 − g2 ∈ B̄, and then {A+
ε (g1 − g2)} converges to 0 in

Lp(µ). On the other hand, g1− g2 ∈ A which gives that A+
ε (g1− g2) = g1− g2.

Then g1 − g2 = 0, against g1 6= g2 . Therefore, {A+
ε f} is weakly convergent

as ε goes to infinity. (Observe that the preceding argument also proves that
A ∩ B̄ = {0}.)

We shall prove now that A ⊕ B̄ = Lp(µ). Let Pf be the weak limit of
{A+

ε f} as ε tends to infinity. Then f = Pf + (f − Pf). From the continuity
of T s and part (b) of Lemma 4.2, it follows that Pf ∈ A. If we suppose that
f − Pf /∈ B̄, then there exists a linear functional Λ : Lp(µ) → R, such that
Λ(B̄) = 0 and Λ(f − Pf) = 1. But Pf is the weak limit of A+

ε f and therefore
Λ(Pf) = limε→∞ Λ(A+

ε f). However, we have seen above that Λ(A+
ε f) = Λf for
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any Λ such that Λ(B̄) = 0. Therefore Λ(Pf) = Λf , i.e., Λ(f − Pf) = 0, which
is a contradiction. �

Now we can conclude the proof of Theorem 1.2. Since the maximal operator
is bounded in Lp(µ) it is enough to prove the a.e. convergence in the dense
class D1 = A ⊕ B. If f ∈ A it is obvious. For f ∈ B, part (a) of Lemma 4.2
proves that {A+

ε f} converges to 0 a.e. as ε tends to infinity.

5. Proof of Theorem 1.4

Proof of (a) in Theorem 1.4. For each natural N , we consider the set

QN = {M ∈ Z2 : M = (M1, M2), M1 ≤ M2, |M1| ≤ N, |M2| ≤ N}

and the operator

T ∗Nf(x) = sup
M∈QN

|TMf(x)| .

For each R > 0 we have by (2.1)

(5.1)

∫
X

(T ∗Nf(x))pdµ(x) =
1

R

∫ R

0

∫
X

|T t(T ∗Nf(x))|pHt(x)dµ(x)dt

=

∫
X

1

R

∫ R

0

|T t(T ∗Nf(x))|pHt(x)dtdµ(x).

Observe that since T t is positive we have for each M ∈ QN ,

|TM(T tf)(x)| = |T tTMf(x)| ≤ T tT ∗Nf(x)

and therefore

T ∗N(T tf(x)) ≤ T tT ∗Nf(x).

Consequently,

T tT ∗Nf(x) = T tT ∗N(T−tT t)f(x) ≤ T ∗N(T tf)(x).

Now for any t, 0 < t < R,

T ∗N(T tf)(x) = sup
M∈QN

∣∣∣∣∣
M2∑

k=M1

υk

(
1

εk

∫ εk

0

T t+sf(x)ds− 1

εk−1

∫ εk−1

0

T t+sf(x)ds

)∣∣∣∣∣
= sup

M∈QN

∣∣∣∣∣
M2∑

k=M1

υk

(
1

εk

∫ εk

0

fx(t + s)ds− 1

εk−1

∫ εk−1

0

fx(t + s)ds

)∣∣∣∣∣
≤ S∗

(
fxχ(0,εN+R)

)
(t).

Therefore, using that for almost every x the functions t → Ht(x) belong to A+
p

with a constant independent of x and Theorem 2.1 we can dominate the last
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term in inequality (5.1) by∫
X

1

R

∫ R

0

∣∣S∗ (
fxχ(0,εN+R)

)
(t)

∣∣p Ht(x)dtdµ(x)

≤ C

∫
X

1

R

∫ εN+R

0

|fx(t)|pHt(x)dtdµ(x)

= C
1

R

∫ εN+R

0

∫
X

|T tf(x)|pHt(x)dµ(x)dt

= C
εN + R

R

∫
X

|f(x)|pdµ(x).

Letting R go to infinity, we obtain∫
X

(T ∗Nf(x))pdµ(x) ≤ C

∫
X

|f(x)|pdµ(x),

with constant independent of N . Letting N →∞ we are done.

Proof of (b) in Theorem 1.4. It suffices to prove that there exist the limits
lim

N→∞
T 1

Nf(x) and lim
N→∞

T 2
Nf(x) a.e., where

T 1
Nf(x) =

0∑
k=−N

υk

(
A+

εk
f(x)−A+

εk−1
f(x)

)
and

T 2
Nf(x) =

N∑
k=1

υk

(
A+

εk
f(x)−A+

εk−1
f(x)

)
.

(Here N stands for a natural number.) We start with the convergence of
T 1

Nf(x). Since T ∗ is of strong type (p, p) (Theorem 1.4) it suffices to prove
the a.e. convergence for f in the set D = {A+

ε g : g ∈ Lp(µ), ε > 0} which is
dense in Lp(µ) by (a) in Theorem 1.2. Assume that f ∈ D, i.e., f = A+

γ g, for
some g ∈ Lp(µ) and some γ > 0. In this case,

|υk|
∣∣∣A+

εk
f(x)−A+

εk−1
f(x)

∣∣∣ ≤ C
∣∣A+

εk
(A+

γ g)(x)−A+
γ g(x)

∣∣
+ C

∣∣∣A+
γ g(x)−A+

εk−1
(A+

γ g)(x)
∣∣∣ .

We can deal with both terms in the same way. We only write the details for
the first one.
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Since εk → 0 as k → −∞, there exists k0 such that εk < γ for all k ≤ k0.
Therefore, for almost every x,

k0∑
k=−∞

∣∣A+
εk

(A+
γ g)(x)−A+

γ g(x)
∣∣

≤
k0∑

k=−∞

1

γ

(∫ εk

0

|T sg(x)|ds +

∫ εk+γ

γ

|T sg(x)|ds

)

≤ 1

γ

k0∑
k=−∞

εk(M+g(x) +M+(T γg)(x))

≤ εk0

γ
(M+g(x) +M+(T γg)(x))

∞∑
k=−k0

1

ρk
< ∞.

To prove the convergence of T 2
Nf(x), it is enough to establish it for functions

f ∈ A ⊕ B, where A and B are the sets in Theorem 4.3. If f ∈ A there is
nothing to prove. Suppose f = g − T sg, for some g ∈ Lp(µ) and some s > 0.
Then

|υk|
∣∣∣A+

εk
f(x)−A+

εk−1
f(x)

∣∣∣ ≤ C
∣∣A+

εk
(g − T sg)(x)

∣∣
+ C

∣∣∣A+
εk−1

(g − T sg)(x)
∣∣∣ .

Again, we can deal with both terms in the same way. Since εk →∞ as k →∞,
there exists k0 such that for all k ≥ k0 we have that εk > s. Therefore, for
k ≥ k0,

∣∣A+
εk

(g − T sg)(x)
∣∣ =

∣∣∣∣ 1

εk

∫ εk

0

T tg(x)dt− 1

εk

∫ s+εk

s

T tg(x)dt

∣∣∣∣
≤ 1

εk

∫ s

0

|T tg(x)|dt +
1

εk

∫ s+εk

εk

|T tg(x)|dt.

It is clear that

∞∑
k=k0

1

εk

∫ s

0

|T tg(x)|dt ≤ εk0

∫ s

0

|T tg(x)|dt

∞∑
k=k0

1

ρk
< ∞.

On the other hand, if p > γ > 1, Γγ = {St : t ∈ R} is the group in Lemma 4.1

and M̃+ is the maximal operator associated to Γγ,+ = {St : t > 0} we have, by

Lemma 4.1 and Theorem 1.1, that M̃+ is bounded from Lp/γ(µ) into Lp/γ(µ)
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and

1

εk

∫ s+εk

εk

|T tg(x)|dt ≤ 1

εk

(∫ s+εk

εk

|T tg(x)|γdt

)1/γ

s1/γ′

≤ 1

εk

(∫ s+εk

εk

|St(|g|γ)(x)|dt

)1/γ

s1/γ′

≤ (s + εk)
1/γs1/γ′

εk

(
M̃+(|g|γ)(x)

)1/γ

.

Therefore,

∞∑
k=k0

1

εk

∫ s+εk

εk

|T tg(x)|dt ≤
(
M̃+(|g|γ)(x)

)1/γ
∞∑

k=k0

(s + εk)
1/γs1/γ′

εk

.

The last term is finite a.e. since M̃+ is bounded in Lp/γ(µ) and the sum

∞∑
k=k0

(s + εk)
1/γs1/γ′

εk

is essentially dominated by
∑∞

k=k0

1

(ρ
1− 1

γ )k
.
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