
ON THE UNIFORM DOUBLING OF HUTCHINSON ORBITS OF

CONTRACTIVE MAPPINGS

HUGO AIMAR, MARILINA CARENA, AND BIBIANA IAFFEI

Abstract. We are interested in the preservation of doubling properties along
the Hutchinson orbit generated by successive applications of contraction map-
pings on a metric measure space. We construct some elementary examples,
built on Muckenhoupt weights, showing that even when the initial and the
limit points of the orbit are doubling, no iteration of the IFS remains dou-
bling. We also obtain positive results under some quantitative assumptions
on the separation of the images through the IFS. We also explore the com-
pleteness, in the Hausdorff-Kantorovich metric, of a version of the doubling
property which is suitable for the application of Hutchinson type contractions.

Introduction

The basic scheme of the Banach fixed point theorem applied by Hutchinson in
[7] to contractions acting on the Hausdorff metric space (the set K of all compact
sets equipped with the Hausdorff distance), relies deeply on the completeness of
this space. In [1] the authors consider the complete space K × P , where K is the
Hausdorff space of compact subsets of the fixed underlying compact metric space
(X, d), and P is the set of probability measures on X with the Kantorovich distance
for the weak star convergence. From the real analytical point of view (see [3]) we
are specially interested in the subset of those pairs in K × P which are spaces of
homogeneous type. It easy to see that this subset it is not complete. We provide
a simple example in Section 2. So that the Banach fixed point theorem can not be
directly applied to this family.

The results in [9] show that typically the limit fractal provided by the Hutchinson
iteration scheme and equipped with the invariant measure, is a (normal) space of
homogeneous type. In this note we construct examples showing that no point in
the orbit has the doubling property even when the starting point, and the limit
point, have both the doubling property. These examples show that the loose of
the doubling property by iteration is related to the distance of the images of the
starting set under the given family of contractions. We also prove the completeness
of a version of the doubling property which, under the assumption of finite metric
(Assouad) dimension, coincides with the classical doubling property. Moreover,
we obtain sufficient conditions on an iterated function system (IFS) in such a way
that this complete doubling classes are preserved by Hutchinson’s algorithm. As a
corollary we obtain uniform doubling orbits associated to such IFS.

In the first section we introduce the basic notation and definitions. Section 2 is
devoted to prove, under the assumption of finiteness of metric dimension, that the
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doubling property is equivalent to a control by neighboring balls. We also prove in
Section 2 that this version of the doubling property is closed as a subset of K × P
and hence complete. Section 3 contains, for two classical IFS in dimensions one and
two, examples showing that it may happen, for some starting doubling measures,
that no point of the orbit is a space of homogeneous type. In Section 4 we prove
our positive result and we illustrate it with Cantor and Sierpinski type sets.

1. Basic definitions and notation

Throughout this paper (X, d) shall be a compact metric space. We shall use
Bd(x, r) to denote the ball {y ∈ X : d(x, y) < r}, r > 0. With Bd(x, r) we shall
denote the “closed” ball {y ∈ X : d(x, y) ≤ r}.

Let K = {K ⊆ X : K 6= ∅, K compact}. With [A]ε we shall denote the ε-
enlargement of the set A ⊂ X ; i.e. [A]ε =

⋃
x∈A Bd(x, ε) = {y ∈ X : d(y, A) < ε}.

Here d(x, A) = inf{d(x, y) : y ∈ A}. Given A and B two sets in K the Hausdorff
distance from A to B is given by

dH(A, B) = inf{ε > 0 : A ⊆ [B]ε and B ⊆ [A]ε}.

Let us now introduce the Kantorovich-Hutchinson distance on the set of all Borel
regular probability measures on the quasi-metric space (X, d). Let

P(X) = {µ : µ is a positive Borel measure on X and µ(X) = 1},

and let C(X) be the space of continuous real valued functions on X . Let Lip1 be
the space of all Lipschitz continuous functions defined on X with Lipschitz constant
less than or equal to one, i.e. f ∈ Lip1 if and only if |f(x) − f(y)| ≤ d(x, y) for
every x and y ∈ X .

Since (X, d) is compact, dK (µ, ν) = sup
{∣∣∫ f dµ −

∫
f dν

∣∣ : f ∈ Lip1

}
gives a

distance on P(X) such that the dK -convergence of a sequence is equivalent to its
weak star convergence to the same limit (see [5]).

We are now in position to describe the basic metric space introduced in [1] whose
structure is of our interest. Let X = K × P . Given two elements (Yi, µi) of X ,
i = 1, 2, define

δ ((Y1, µ1), (Y2, µ2)) = dH(Y1, Y2) + dK(µ1, µ2) ,

so that (X , δ) becomes a complete metric space. Let

E = {(Y, µ) ∈ X : supp(µ) ⊆ Y }
The basic result regarding the completeness of (E , δ) is given in the following state-
ment.

Theorem 1.1. The set E is closed in (X , δ). Hence (E , δ) is a complete quasi-

metric subspace of (X , δ).

The basic tool in Hutchinson method for the construction of self-similar fractals
is the Banach fixed point theorem.

Corollary 1.2. If T : E → E is a contraction mapping and (Y0, µ0) ∈ E, then

(Y∞, µ∞) = limn→∞ T n((Y0, µ0)) belongs to E, and it is the unique point in E
which satisfies T ((Y∞, µ∞)) = (Y∞, µ∞).
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Like in the now classical theory of Hutchinson, the basic examples of application
of Corollary 1.2 are induced by iterated function systems (IFS) Φ = {φ1, . . . , φM}
of contractions on (X, d). This means that there exist a1, a2, . . . , aM > 1 such that

d(φi(x), φi(y)) ≤ 1

ai
d(x, y)

for every x, y ∈ X . Given an IFS Φ, let T : X → X the application defined by
T (Y, µ) = (T1Y, T2µ) = (Y ′, µ′), where

Y ′ =

M⋃

i=1

φi(Y ),

and

µ′(B) =

M∑

i=1

piµ
(
φ−1

i (B ∩ φi(Y ))
)
,

for some probabilistic sequence 0 < pi < 1,
∑M

i=1 pi = 1 and every Borel subset
B of Y ′. This transformation T is called the transformation induced by Φ associ-
ated with the probabilities {pi}. As usual, it is easy to see that T is contractive on
(X , δ) with contractivity factor λ = 1/a, where a = mini ai, and that E is invariant
under T .

With our notation we have that T1 is a contraction on K and hence we obtain,
as in Theorem 2.6 in [5], a fixed point Y∞ for T1 which is the only compact set in
X satisfying

Y∞ =
M⋃

i=1

φi(Y∞).

On the other hand T2 is a contraction on P and we obtain , as in Theorem 2.8 in
[5], a fixed point µ∞ for T2 which is the only probabilistic Borel measure such that

µ∞(B) =
M∑

i=1

piµ∞
(
φ−1

i (B)
)
,

for every Borel set B.

2. Subspaces of E: the doubling property

Given (Y, µ) ∈ E , we say that (Y, µ) is a space of homogeneous type (s.h.t.), or
that µ is a doubling measure on Y if the inequalities

0 < µ(Bd(y, αr)) ≤ Aµ(Bd(y, r))

hold for every y ∈ Y and r > 0 and some constants A ≥ 1 and α > 1. We
shall write (Y, µ) ∈ D(α, A) to keep record of the quantitative parameters of this
doubling property.

Notice also that if (Y, µ) ∈ E is a space of homogeneous type, then supp(µ) = Y .
In fact, from the very definition of E , we have that supp(µ) ⊆ Y . On the other
hand, if y /∈ supp(µ) then there exists an open set G containing y with µ(G) = 0.
So that for some ball B in Y we should have µ(B) = 0, which is impossible.
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We shall introduce the doubling property of a measure on a metric space in an-
other way. In Euclidean spaces the doubling property can be detected through the
behavior of the measures of neighboring balls of similar size. This property is no
longer true in general metric spaces. The basic property of R

n which makes this
possible is the finiteness of its (metric) dimension.

Given constants A ≥ 1 and α > 1, we shall say that (Y, µ) ∈ D̃(α, A) if (Y, µ) ∈ E
and for every choice of y1, y2 ∈ Y and r > 0 with d(y1, y2) < αr, we have that

µ(Bd(y1, r)) ≤ Aµ(Bd(y2, r)).

A metric space (X, d) satisfies the weak homogeneity property, or it has finite
metric (or Assouad) dimension, if there exists a constant N ∈ N such that no ball
of radius r > 0 contains more than N points of any r/2-disperse (or separated)
subset of X (see [4] and [2]). Let us point out that the expression “finite metric
dimension” corresponds to the finiteness of the following concept of dimension. The
metric dimension of X is the infimum of all those positive numbers s such that the
inequality

card (B(x, λr) ∩ A) ≤ Cλs

holds for some constant C, every λ ≥ 1, every x ∈ X , every r-disperse subset A of
X and every r > 0.

The next result shows that D̃ can be regarded as a different way of describing a
space of homogeneous type when (X, d) has finite metric dimension.

Theorem 2.1. Let α > 1 and A ≥ 1 be given constants. Then

(1) D(α, A) ⊆ D̃(α, Ã) for some constant Ã ;

(2) if (X, d) has finite metric dimension, then D̃(α, A) ⊆ D(α, A′), for some

constant A′ depending only on A and N .

Proof. Suppose that (Y, µ) belongs to D(α, A) for some constants α > 1 and A ≥ 1,
and take y1, y2 ∈ Y and r > 0 satisfies d(y1, y2) < αr. Then for every positive
integer n ≥ logα(1 + α) we have

µ
(
Bd(y1, r)

)
≤ µ

(
Bd(y2, (α + 1)r)

)
≤ Anµ

(
Bd(y2, r)

)
.

Hence (Y, µ) ∈ D̃(α, An).

For the converse, suppose that (Y, µ) ∈ D̃(α, A). For fixed y ∈ Y and r > 0, we
define

C(y, r) = Bd(y, αr) − Bd(y, r) .

Let E be a fixed maximal r-disperse subset of C(y, r). By the finiteness of the
Assouad dimension of X , there exists a natural number N0 which does not depend
on y and r such that N = card(E) ≤ N0, let us say E = {y1, y2, . . . , yN}. We claim
that

C(y, r) ⊆
N⋃

ℓ=1

B(yℓ, r) .

In fact, is not, for some z ∈ C(y, r) we would have that d(z, yl) ≥ r for all ℓ =
1, 2 . . . , N . But it can not be possible since E is a maximal r-disperse set. Since
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d(y, yℓ) < αr for each ℓ = 1, 2, . . . , N , we have µ(Bd(yℓ, r)) ≤ Aµ(Bd(y, r)). Then

µ(Bd(y, αr)) ≤ µ (Bd(y, r)) +

N∑

l=1

µ(Bd(yl, r))

≤ (1 + AN0)µ(Bd(y, r))

≤ (1 + AN0)µ(Bd(y, θr)),

for every 1 < θ < α. In other words, (Y, µ) belongs to D(α/θ, 1 + AN0), and
the results holds taking A′ = (1 + AN0)

p, where p is a positive integer such that
α ≤ (θ/α)p. �

We are interested in the subspace of E of all those (Y, µ) ∈ E which are spaces of
homogeneous type. This subspace of E is not closed in E in general, and this fact
does not allow the application of the Banach fixed point theorem. In fact the set
D(α,∞) =

⋃
A≥1 D(α, A) is not closed in E . For example, consider X = [0, 1] with

d the usual distance. Take Yn = [0, 1] for each n and µn the measure with density
fn(t) = n − 1 + 1/n on [0, 1/n] and fn(t) = 1/n on (1/n, 1]. It is easy to see that

µn
δK→ δ0, and that each (Yn, µn) ∈ D(2, An), with An = 2n(n−1+1/n) as a possible

doubling constant. Actually it is also easy to show that An can not be bounded

above, since by taking the balls B(x, r) = B(2/n, 1/n) we see that An ≥ n2−n+4
2 .

Since in each space of homogeneous type atoms are isolated (see [8]), the space
([0, 1], | · |, δ0) can not be a space of homogeneous type.

Nevertheless if α and A are fixed, then the class D̃(α, A) is complete with the
distance δ.

Theorem 2.2. For every constants A ≥ 1 and α > 1 given, the space D̃(α, A) is

a closed subset of (X , δ).

Proof. Notice that after Theorem 1.1, to check that D̃(α, A) is closed we only

have to prove that given a sequence {(Yn, µn) : n ∈ N} in D̃(α, A) such that

(Yn, µn)
δ−→ (Y, µ), we have that

µ(Bd(y, r)) ≤ Aµ(Bd(z, r + ε))

for every y, z ∈ Y and r > 0 with d(y, z) < αr and ε > 0.
Now, for every natural number m let ϕm be the continuous function defined

on R
+ ∪ {0} such that ϕm ≡ 1 on [0, 1], ϕm ≡ 0 out of [0, 1 + 1/m) and ϕm is

linear on [1, 1 + 1/m]. Then for each s > 0 we have that ϕm (d(y, x)/s) = 1 for
every x ∈ Bd(y, s) and that the set where ϕm (d(y, ·)/s) is not zero is contained in
Bd(y, s + s/m).

Fix y, z ∈ Y and r > 0 with d(y, z) < αr, ε > 0 and η > 0. Let ε0 =

min{αr−d(y,z)
2 , η} > 0. Since Yn

dH−−→ Y , there exists N = N(ε0) such that Y ⊆
[Yn]ε0

if n ≥ N , and from compacity for every n ≥ N we can choose yn, zn ∈ Yn

such that d(yn, y) < ε0 and d(zn, z) < ε0. Then d(yn, zn) < αr for every n ≥ N .
Also we have that d(yn, y) < η and d(zn, z) < η for every s > 0 and n ≥ N , then
Bd(yn, s) ⊆ Bd(y, s + η), Bd(y, s) ⊆ Bd(yn, s + η), Bd(zn, s) ⊆ Bd(z, s + η) and
Bd(z, s) ⊆ Bd(zn, s + η). Hence for m ≥ 1 we have

µ (Bd(y, r)) ≤
∫

ϕm

(
d(y, x)

r

)
dµ(x)
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= lim
n→∞

∫
ϕm

(
d(y, x)

r

)
dµn(x)

≤ lim inf
n→∞

µn

(
Bd

(
y, r(1 + 1/m)

))

≤ lim inf
n→∞

µn

(
Bd

(
yn, r(1 + 1/m) + η

))

≤ A lim inf
n→∞

µn

(
Bd

(
zn, r(1 + 1/m) + 2η

))

≤ A lim inf
n→∞

µn

(
Bd

(
z, r(1 + 1/m) + 3η

))

≤ A lim inf
n→∞

∫
ϕm

(
d(z, x)

r(1 + 1/m) + 3η

)
dµn(x)

= A

∫
ϕm

(
d(z, x)

r(1 + 1/m) + 3η

)
dµ(x)

≤ Aµ
(
Bd

(
z, (1 + 1/m)[r(1 + 1/m) + 3η]

))
.

The desired inequality is obtained by taking m ≥ 3(r+3)
ε and η = 1

m . �

3. Non-doubling orbits starting at doubling spaces

As we have already mentioned, the results in [9] show that the usual self-similar
fractals, constructed from the iteration and fixed point technique introduced by
Hutchinson in [7], are typically spaces of homogeneous type.

Let us show now that it may happen that the only point in the orbit satisfying
the doubling property is (Y0, µ0) and of course the limit space (Y∞, µ∞) but no
other T n(Y0, µ0), n ∈ N, is a space of homogeneous type. In these constructions we
shall use Muckenhoupt type weights. Let us review the basic properties of the Ap

classes (see [6]). Let (X, d, µ) be a space of homogeneous type and let 1 < p < ∞.
We say that a non-negative locally integrable function w defined on X belongs to
Ap = Ap(X, d, µ) if there exists a constant C for which the inequality

(∫

B

w dµ

)(∫

B

w− 1

p−1 dµ

)p−1

≤ C (µ(B))p

holds for every d-ball B of X . We have that if w ∈ Ap, then (X, d, wdµ) is also a
space of homogeneous type. In fact, denote dν = wdµ en let x ∈ X and r > 0 be
given. From Hölder inequality and Muckenhoupt condition we have

µ(Bd(x, r)) =

∫

Bd(x,r)

w
1

p w− 1

p dµ

≤
(∫

Bd(x,r)

w dµ

) 1

p
(∫

Bd(x,2r)

w− 1

p−1 dµ

) p−1

p

≤ ν(Bd(x, r))
1

p

(
C∫

Bd(x,2r) w dµ

) 1

p

µ(Bd(x, 2r))

=

(
C

ν(Bd(x, r))

ν(Bd(x, 2r))

) 1

p

µ(Bd(x, 2r)).
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Then
ν(Bd(x, r))

ν(Bd(x, 2r))
≥ 1

C

(
µ(Bd(x, r))

µ(Bd(x, 2r))

)p

≥ 1

CAp
,

where A is the doubling constant for µ. Then ν is doubling with constant CAp. A
particular case is obtained by taking (X, d, µ) = (Rn, | · |, dx). If w is any weight in
Ap, then (Rn, | · |, wdx) is a space of homogeneous type.

We shall consider the Cantor type IFS

(3.1) φ1(x) =
1

k
x, φ2(x) =

1

k
x +

k − 1

k
.

defined on X = [0, 1] with the usual distance d(x, y) = |x − y|, where k a fixed
positive number. Let Tc be the application induced on X by this IFS with p1 =
p2 = 1/2.

For the case k = 2 we have Φ = {φ1, φ2} with φ1(x) = x/2 and φ2(x) = x/2+1/2,
and the application Tc is given by Tc(Y, µ) = (Y ′, µ′), where

Y ′ = φ1(Y ) ∪ φ2(Y ),

and

µ′(B) =
1

2
µ
(
φ−1

1 (B ∩ φ1(Y ))
)

+
1

2
µ
(
φ−1

2 (B ∩ φ2(Y ))
)
.

Let µ0 be the absolutely continuous measure given by dµ0 = 1
2w(x)dx, with

w(x) = x−1/2. It is not hard to check that it is a doubling measure on [0, 1]
with respect to the standard Euclidean distance. Actually w is a Muckenhoupt A2

weight. In fact, let 0 ≤ a < b ≤ 1. If b − a ≤ a
2 , then

(∫ b

a

w(x) dx

)(∫ b

a

w−1(x) dx

)
=

(∫ b

a

x−1/2 dx

)(∫ b

a

x1/2 dx

)

≤
(

b

a

)1/2

(b − a)2

≤
(

3

2

)1/2

(b − a)2.

On the other hand, if b − a ≥ a
2 we have

(∫ b

a

w(x) dx

)(∫ b

a

w−1(x) dx

)
≤

(∫ b

0

x−1/2 dx

)(∫ b

0

x1/2 dx

)

=
4

3
b2

≤ 12(b − a)2.

Notice now that even when (Y0, µ0) = ([0, 1], 1
2w(x)dx) is a space of homogeneous

type, Tc((Y0, µ0)) is not. In order to show the above statement, take 0 < ε < 1/4,
Eε = [12 − ε, 1

2 ] and Fε = [12 , 1
2 + ε]. Notice that Y ′

0 = Y0 = [0, 1] and that

dµ′
0 =

√
2

4 v(x)dx with

v(x) =

{
x−1/2 if 0 < x < 1/2,(
x − 1

2

)−1/2
if 1/2 < x < 1.
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x11

2

w1(x) =
√

2
4 v(x)

√

2

4

x11

2

1

4

3

2

w2(x)

1

4

Figure 1: T n
c ([0, 1], 1

2wdx) = ([0, 1], wndx)

(see Figure 1). Hence µ′
0 (Eε) = 1

2

(
1 −

√
1 − 2ε

)
and µ′

0 (Fε) =
√

2ε/2. Since Eε

and Fε are balls with the same radii and non empty intersection, by taking ε → 0
we realize the impossibility of the doubling for µ′

0. For the further iterations of Tc

acting on ([0, 1], 1
2wdx), let us say T n

c ([0, 1], 1
2wdx), the same situation appears at

each point of the form j/2n, j = 1, 2, . . . , 2n − 1. Hence no T n
c ([0, 1], 1

2wdx) is a
space of homogeneous type for n ∈ N. But from uniqueness in the Banach fixed
point theorem

lim
n→∞

T n
c

(
[0, 1],

1

2
wdx

)
= ([0, 1], dx),

which is, perhaps, the most elementary example of space of homogeneous type.

Notice that in the above example we have that d (φ1([0, 1], φ2([0, 1]) = 0, and
also the attractor of the IFS is the initial set [0, 1]. The second example is given
by a similar construction associated to the classical Sierpinski contraction Ts, and
shows that the difficulty for the doubling is in the contact and not in the invariance
of the original set. In this case let X be the triangle in R

2 with vertices at (0, 0),
(1, 0) and (0, 1), and take d((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|} as the
distance on X . Let

φ1(x, y) = (x/2, y/2) ,

φ2(x, y) = φ1(x, y) + (0, 1/2) ,

φ3(x, y) = φ1(x, y) + (1/2, 0) .

Define Ts on X by Ts(Y, µ) = (Y ′, µ′) with

Y ′ = φ1(Y ) ∪ φ2(Y ) ∪ φ3(Y ) := Y ′
1 ∪ Y ′

2 ∪ Y ′
3 ,

and

µ′(B) =
1

3

(
µ
(
φ−1

1 (B ∩ Y ′
1)
)

+ µ
(
φ−1

2 (B ∩ Y ′
2)
)

+ µ
(
φ−1

3 (B ∩ Y ′
3)
))

,

for every Borel subset B of Y ′.
Let us define a weight function w̃(x, y) on the basic triangle X , given by w̃(x, y) =

1
2w(y) where w is the weight function defined on [0, 1] by w(y) = y−1/2. Notice that
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for (x, y) ∈ X and r > 0, Bd((x, y), r
2 ) = (I1 × I2) ∩ X , where I1 = (x − r

2 , x + r
2 )

and I2 = (y − r
2 , y + r

2 ). Hence
∫

Bd((x,y), r
2 )

w̃(x, y) dxdy ≤ r

∫

I2

w(y) dy,

∫

Bd((x,y), r
2 )

w̃−1(x, y) dxdy ≤ r

∫

I2

w−1(y) dy.

After multiplying term by term the above inequalities and using the fact that
w ∈ A2([0, 1], dy), we obtain the A2(X, d, dxdy) condition for w̃:

(∫

Bd((x,y), r
2 )

w̃(x, y) dxdy

)(∫

Bd((x,y), r
2 )

w̃−1(x, y) dxdy

)

≤ r2

∫

I2

w(y) dy

∫

I2

w−1(y) dy

≤ Ĉr4

≤ C̃µ2
(
Bd

(
(x, y),

r

2

))
.

So that, in particular, (X, d, w̃ dxdy) is a space of homogeneous type. Notice that
d(φi(X), φj(X)) = 0 for every i, j = 1, 2, 3, and taking Y0 = X again Ts(Y0, w̃ dxdy)
is not a space of homogeneous type since precisely at each contact point of φi(X) and
φj(X) for i 6= j, we have a singularity of w̃ in one of these sets and boundedness on
the other (see Figure 2). In fact, for 0 < ε ≤ 1

4 , Eε =
(
[0, ε] × [12 − ε, 1

2 ]
)
∩φ1(X) and

y

x

z

(a) w̃1(x, y) defined on Y1

y

x

z

(b) w̃2(x, y) defined on Y2

Figure 2: T n
s (Y0, w̃ dxdy) =: (Yn, w̃ndxdy)

Fε = [0, ε] × [12 , 1
2 + ε], with dµ0 = w̃ dxdy, we have µ′

0 (Eε) = 1
6ε
(
1 − (1 − 2ε)3/2

)

and µ′
0 (Fε) =

√
2ε3/2/2. These formulas show that Ts(X, w̃ dxdy) is not a space of

homogeneous type, since Eε and Fε are two neighboring balls with the same radii
and µ′

0(Fε)/µ′
0(Eε) tends to infinity when ε tend to zero. Again no T n

s (X, w̃ dxdy)
is a space of homogeneous type and the limit space (Y∞, µ∞) is the Sierpinski tri-
angle with the restriction of the Hausdorff measure of dimension log 3/ log 2, which
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is doubling.

Our third example shows that even when some separation of the sets {φi(X) : i =
1, . . . , M} holds, no uniform doubling property for the whole orbit can be expected.
In fact, let us consider now the application Tc induced by the IFS of Cantor type
taking k = 5/2 in (3.1), and with p1 = p2 = 1/2. In other words, φ1(x) = 2x/5 and
φ2(x) = 2x/5 + 3/5. Take again w(x) = x−1/2 and (Y0, µ0) = ([0, 1], 1

2w(x)dx) as

the starting space. Notice that for any fixed α > 1, the space (Y0, µ0) ∈ D̃(α, A).

We claim that if T n
c (Y0, µ0) belongs to D̃(α, An) for some constant An ≥ 1, then

An ≥ 2n/2, for each natural number n. If fact, let us write (Yn, µn) to denote

T n
c (Y0, µ0). For a fixed n, take y1 =

(
2
5

)n
, y2 = 3

2

(
2
5

)n
, and r = d(y1, y2) = 1

2

(
2
5

)n
.

Notice that y1 and y2 belong to Yn and they are the extreme points of the first “gap”

of Yn. It is easy to see that µn(Bd(y1, r)) = C5−n/2 and µn(Bd(y2, r)) = C
(

2
5

)n/2
,

where C is a constant which does not depend on n. Then

µn(Bd(y2, r))

µn(Bd(y1, r))
= 2n/2.

Hence D̃(α, A) can not be invariant under Tc.

4. A positive result

As a corollary of Theorem 2.2 and the Banach fixed point theorem, we have
immediately the following result.

Corollary 4.1. Let T : E → E be a contraction mapping. Then if T : D̃(α, A) →
D̃(α, A) for some α > 1 and A ≥ 1, there exists a unique fixed point (Y, µ) for T

in D̃(α, A).

Let us next present an application of the above result to the special case of a
finite family of contractive similitudes on a metric space which strictly separate
images.

Proposition 4.2. Let (X, d) be a compact metric space and let {φ1, . . . , φM} be a

finite sequence of contractive similitudes on X:

d (φi(x), φi(y)) =
1

ai
d(x, y)

for every x, y ∈ X, where ai > 1 for i = 1, . . . , M . Let T be the mapping on X

defined by T (Y, µ) = (Y ′, µ′), where

Y ′ =

M⋃

i=1

φi(Y ),

µ′(B) =

M∑

i=1

piµ
(
φ−1

i (B ∩ φi(Y ))
)
,

for some probabilistic sequence 0 < pi < 1,
∑M

i=1 pi = 1 and every Borel subset B
of Y ′. If diam(X) ≤ 1 and

(4.1) max
i=1,...,M

a−1
i ≤ min

1≤i,j≤M
i6=j

{d(φi(X), φj(X))} =: D,

then T : D̃(2, A) → D̃(2, A) for every A ≥ P := max{p−1
i : i = 1, . . . , M}.



UNIFORM DOUBLING OF HUTCHINSON ORBITS 11

Proof. Set Y ′
i = φi(Y ) and µ′

i(B) = piµ(φ−1
i (B ∩ Y ′

i )) for i = 1, 2, . . . , M . Let
us first prove that, for A ≥ P and every i = 1, 2, . . . , M , the space (Y ′

i , µ′
i) ∈

D̃(2, A) provided that (Y, µ) ∈ D̃(2, A). In fact, for (Y, d, µ) ∈ D̃(2, A), take
y, z ∈ Y ′

i and r > 0 such that d(y, z) < 2r. Since each φi is one to one we
have that d(φ−1

i (y), φ−1
i (z)) = aid(y, z) < 2air, and that φ−1

i (Bd(x, r) ∩ Y ′
i ) =

Bd(φ
−1
i (x), air) ∩ Y for every x ∈ X . Then, for every ε > 0,

p−1
i µ′

i (Bd(y, r)) = µ
(
φ−1

i (Bd(y, r) ∩ Y ′
i )
)

= µ
(
Bd(φ

−1
i (y), air)

)

≤ Aµ
(
Bd(φ

−1
i (z), air + aiε)

)

= Aµ
(
φ−1

i (Bd(z, r + ε) ∩ Y ′
i )
)

= p−1
i Aµ′

i (Bd(z, r + ε)) .

To prove that (Y ′, µ′) belongs to D̃(2, A), take now y, z ∈ Y ′ and r > 0 such that
d(x′, y′) < 2r, and ε > 0. Let us consider two cases:

1) y and z belong to the same Y ′
i ;

2) y ∈ Y ′
i and z ∈ Y ′

j with i 6= j.

Case 1: If Bd(y, r) and Bd(z, r + ε) do not intersect any other Y ′
j for j 6= i, we can

use the fact that (Y ′
i , µ′

i) ∈ D̃(2, A) to obtain the desired estimate. On the other
hand, if Bd(y, r) or Bd(z, r + ε) intersect Y ′

j for some j 6= i, necessarily r + ε ≥ D.

Since we are assuming that diam(X) ≤ 1 we have that diam(Y ′
i ) ≤ a−1

i ≤ D, so
that Y ′

i ⊆ Bd(z, r + ε) and µ′(Bd(z, r + ε)) ≥ pi. Hence

µ′(Bd(y, r)) ≤ 1 ≤ p−1
i µ′(Bd(z, r + ε)) ≤ Pµ′(Bd(z, r + ε)) ≤ Aµ′(Bd(z, r + ε)),

which is the desired inequality.

Case 2: We may assume that ai ≤ aj . Since D ≤ d(y, z) < 2r, we have r ≥ D/2.
If r + ε ≥ D we easily have that

µ′(Bd(y, r)) ≤ 1 = p−1
j µ′(Y ′

j ) ≤ Aµ′(Bd(z, r + ε)).

If, instead, r + ε ≤ D we have

µ′(Bd(y, r)) = µ′
i(Bd(y, r)) = µ(Bd(φ

−1
i (y), air))/M,

µ′(Bd(z, r + ε)) = µ′
j(Bd(z, r + ε)) = µ(Bd(φ

−1
j (z), aj(r + ε)))/M.

So that, since d(y, z) ≤ 1 ≤ 2r/D ≤ 2air,

µ′ (Bd(y, r)) = piµ(Bd(φ
−1
i (y), air))

≤ Apiµ(Bd(φ
−1
j (z), ai(r + ε)))

≤ A
pj

P
µ(Bd(φ

−1
j (z), aj(r + ε)))

≤ Aµ′(Bd(z, r + ε)).

�

Notice that the hypothesis diam(X) ≤ 1 is not restrictive in the sense that the
results holds if now D ≥ diam(X)/ai for every i = 1, . . . , M .
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Hence, under the hypotheses of the above theorem, any starting point (Y0, µ0)
generates an orbit

OT (Y0, µ0) = {T n(Y0, µ0) : n ∈ N0}
which is completely contained in D̃(2, P ). So that, in these cases, we obtain again
the result of Mosco ([9], see also [10]). And actually T n(Y0, µ0) are good approxi-
mations of the limit space (Y∞, µ∞), in the sense that each approximating space is
a space of homogeneous type, with bounded doubling constant.

As a family of examples to which Proposition 4.2 applies, consider the Cantor
type IFS defined in (3.1), with k ≥ 3. The classical Cantor set C is obtained when
k = 3 and p1 = p2 = 1/2, and actually the invariant measure µ∞ is the restriction

to C of Hs with s = log 2
log 3 . Then for every A ≥ 2 and every (Y0, µ0) ∈ D̃(2, A), the

whole orbit {T n
s (Y0, µ0) : n ∈ N} is a uniform sequence of spaces of homogeneous

type.

To give a higher dimensional example of application of Proposition 4.2, let us
consider a Sierpinski type family of contractions. For each k ≥ 1, let

φ1(x, y) = (x/k, y/k) ,

φ2(x, y) = φ1(x, y) + (0, 1 − 1/k) ,

φ3(x, y) = φ1(x, y) + (1 − 1/k, 0) .

Let X be the triangle in R
2 with vertices at (0, 0), (1, 0) and (0, 1). Taking

d((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|} as the distance on X , we define
Ts on X by Ts(Y, µ) = (Y ′, µ′) with

Y ′ = φ1(Y ) ∪ φ2(Y ) ∪ φ3(Y ) := Y ′
1 ∪ Y ′

2 ∪ Y ′
3 ,

and

µ′(B) =
1

3

(
µ
(
φ−1

1 (B ∩ Y ′
1)
)

+ µ
(
φ−1

2 (B ∩ Y ′
2)
)

+ µ
(
φ−1

3 (B ∩ Y ′
3)
))

,

for every Borel subset B of Y ′. Hence from Proposition 4.2, for k ≥ 3 and A ≥ 3

we have that Ts : D̃(2, A) → D̃(2, A). So that the whole orbit {T n
s (Y0, µ0) : n ∈ N}

is a uniform sequence of spaces of homogeneous type for every (Y0, µ0) ∈ D̃(2, A).
We can take for example Y0 = X and µ0 to be twice the area Lebesgue measure on
X . And of course also the limit (Y∞, µ∞) is a space of homogeneous type.
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espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin, 1971,
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