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Abstract. We characterize the pairs of weights (v, w) for which the operator

Tf(x) = g(x)
∫ h(x)

s(x)
f with s and h increasing and continuous functions is of

strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case

0 < q < p and 1 < p <∞. The result for the weak type is new while the char-

acterizations for the strong type improve the ones given by H. P. Heinig and
G. Sinnamon. In particular, we do not assume differentiability properties on s

and h and we obtain that the strong type inequality (p, q), q < p, is character-

ized by the fact that the function Φ(x) = sup
(∫ d

c gqw
)1/p (∫ h(c)

s(d)
v1−p′

)1/p′

belongs to Lr(gqw), where 1/r = 1/q − 1/p and the supremum is taken over
all c and d such that c ≤ x ≤ d and s(d) ≤ h(c).

1. Introduction and results

Let us consider the Hardy-Steklov operator defined by

Tf(x) = g(x)
∫ h(x)

s(x)

f, f ≥ 0,

where g is a positive measurable function and s and h are functions defined on
an interval (a, b) such that s(x) ≤ h(x) for all x ∈ (a, b). Particular cases of
this operator are the Hardy operator Tf(x) =

∫ x

0
f , the Hardy averaging operators

Tf(x) = xη
∫ x

0
f and the Steklov operator Tf(x) =

∫ x+1

x−1
f which have been studied

intensively (see [5] and the references given there).
Weighted weak and strong type (p, q) inequalities for the operator T were studied

for several authors. In the case 1 < p ≤ q <∞ and considering the functions s and
h strictly increasing and differentiable, Heining and Sinnamon [4] have characterized
the weighted strong type inequality

(1.1)

(∫ b

a

[Tf ]qw

) 1
q

≤ C

(∫ h(b)

s(a)

fpv

) 1
p

, (f ≥ 0),

where s(a) = limx→a+ s(x) and h(b) = limx→b− h(x) (analogously we write s(b) =
limx→b− s(x) and h(a) = limx→a+ h(x)) by means of the condition

(1.2) sup
(∫ x

t

gqw

)1/q
(∫ h(t)

s(x)

v1−p′

)1/p′

<∞,
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where the supremum is taken over all x and t such that t ≤ x and s(x) ≤ h(t). In
[3], Gogatishvili and Lang obtained the same result but assuming weaker hypothesis
on the functions s and h. They only assume that these functions are increasing
(x < y ⇒ s(x) ≤ s(y), h(x) ≤ h(y)). The result in [3] is proved in the more general
setting of the Banach function spaces (see Theorem 3.2 in [3]).

The case 0 < q < p and 1 < p < ∞ is different. Heinig and Sinnamon [4]
obtained the following result.

Theorem 1.3. Let s and h be strictly increasing differentiable functions defined on
(0,∞) satisfying s(0) = h(0) = 0, s(x) < h(x) for x ∈ (0,∞) and s(∞) = h(∞) =
∞. Let g be a positive measurable function. Let 0 < q < p, 1 < p < ∞, 1/r =
1/q − 1/p, and let w and v be nonnegative measurable functions defined on (0,∞).
Let (h−1 ◦ s)k be the k times repeated composition and let {Mk}k∈Z be a sequence
defined by M0 = h−1(1), Mk+1 = s−1(h(Mk)), if k ≥ 0 and Mk = (h−1(s(Mk+1)),
if k < 0. Then there is a constant C such that (1.1) holds if and only if∫ ∞

0

∫ t

h−1(s(t))

(∫ h(x)

s(t)

v1−p′

)r/p′ (∫ t

x

gqw

)r/p

gq(x)w(x) dxσ(t) dt

1/r

<∞

and∫ ∞

0

∫ s−1(h(t))

t

(∫ h(t)

s(x)

v1−p′

)r/p′ (∫ x

t

gqw

)r/p

gq(x)w(x) dxσ(t) dt

1/r

<∞,

where the “normalizing function” σ is defined by

σ(t) =
∑
k∈Z

χ(Mk,Mk+1)(t)
d

dt
(h−1 ◦ s)k(t).

The results in [4] are stated for g(x) = 1 and not for general g. However, we
notice that if g(x) 6= 1 then the characterizations of the strong type inequalities
follow easily from the case g(x) = 1.

Characterizations of the weighted strong type inequality for the case 1 < p ≤ q <
∞ and the case 0 < q < p, 1 < p < ∞ were obtained also by Chen and Sinnamon
[2] under the hypothesis of the existence of a “discrete normalizing measure” for s
and h. A measure ξ on the real line is called a normalizing measure for s and h
provided there exist positive constants C1 and C2 such that

C1 ≤ ξ([s(t), h(t)]) ≤ C2,

for all t. If ξ is a counting measure on a subset of the real line then ξ is called a
discrete normalizing measure (see [2]).

We point out that the existence of the discrete normalizing measure is a hypoth-
esis weaker than the monotonicity of the functions s and h. We remark also that
the measure ξ is not involved in the characterizing conditions given in [2] for the
case 1 < p ≤ q < ∞. However, in the case 0 < q < p, 1 < p < ∞ the normalizing
measure appears explicitly in the conditions playing the role of σ in Theorem 1.3.
Furthermore, the construction of a discrete normalizing measure can be somewhat
complicated (see [2]).

The first goal of this paper is to improve Theorem 1.3 by providing new charac-
terizing conditions which do not involve neither the normalizing measure, nor the
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double integral. We will suppose that the functions s and h are increasing and
continuous. This level of generality allows us to obtain easily a convenient decom-
position of Ω = {x ∈ (a, b) : s(x) < h(x)} which we need to state the result. The
decomposition appears in the next lemma.

Lemma 1.4. Let s, h : (a, b) → R be increasing and continuous functions such that
s(x) ≤ h(x) for all x ∈ (a, b). Let {(aj , bj)}j be the connected components of the
open set Ω = {x ∈ (a, b) : s(x) < h(x)}. Then

(a) (s(aj), h(bj)) ∩ (s(ai), h(bi)) = ∅ for all j 6= i.

(b) For every j there exists a (finite or infinite) sequence {mj
k} of real numbers such

that:

(i) aj ≤ mj
k < mj

k+1 ≤ bj for all k and j;

(ii) (aj , bj) = ∪k(mj
k,m

j
k+1) a. e. for all j;

(iii) s(mj
k+1) ≤ h(mj

k) for all k and j and s(mj
k+1) = h(mj

k) if aj < mj
k <

mj
k+1 < bj.

Now we are prepared to state our first theorem.

Theorem 1.5. Let s and h be increasing and continuous functions defined on an
interval (a, b) satisfying s(x) ≤ h(x) for x ∈ (a, b). Let g be a positive measurable
function on (a, b). Let w and v be nonnegative measurable functions defined on (a, b)
and (s(a), h(b)) respectively. Let q, p and r be such that 0 < q < p, 1 < p <∞ and
1/r = 1/q − 1/p. The following statements are equivalent.

(i) There exists a positive constant C such that (1.1) holds, i.e.,(∫ b

a

[Tf ]qw dx

)1/q

≤ C

(∫ h(b)

s(a)

fpv

)1/p

for all f ≥ 0.
(ii) There exists a positive constant C such that

∑
i

(∫ di

ci

gqw

)r/q (∫ h(ci)

s(di)

v1−p′

)r/p′

≤ C,

for every sequence {(ci, di)} of disjoint intervals of (a, b) such that s(di) ≤
h(ci).

(iii) For every connected component (aj , bj) of the set Ω = {x ∈ (a, b) : s(x) <
h(x)}, there exists a sequence {mj

k} in the conditions of Lemma 1.4 (b)
such that the functions

ψ1(x) =
∑
j,k

(∫ x

mj
k

gqw

) 1
p
(∫ h(mj

k)

s(x)

v1−p′

) 1
p′

χ(mj
k,mj

k+1)
(x)
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and

ψ2(x) =
∑
j,k

(∫ mj
k+1

x

gqw

) 1
p
(∫ h(x)

s(mj
k+1)

v1−p′

) 1
p′

χ(mj
k,mj

k+1)
(x)

belong to Lr(gqw).
(iv) The function

Φ(x) = sup

(∫ d

c

gqw

)1/p(∫ h(c)

s(d)

v1−p′

)1/p′

belongs to Lr(gqw), where the supremum is taken over all c and d such that
a < c ≤ x ≤ d < b and s(d) ≤ h(c).

Notice that condition (iv) in this theorem is the natural one if we compare it
with condition (1.2). In fact, if p = q then (1.2) can be written as the function Φ
belongs to L∞; observe that if p = q and 1/r = 1/q − 1/p then r should be ∞.
We remark also that condition (iv) is independent of the possible decompositions
{mj

k} of the set Ω.
Let us point out that condition (ii) is analogous to the one in [9], while the char-

acterizing condition (iii) is inspired in Mazja’s condition for the Hardy operator
[8]. In fact, if we consider the particular case of the Hardy operator we have the
following result (a direct proof appears in [1]).

Corollary 1.6. Let Tf(x) =
∫ x

0
f , x > 0. Let w and v be nonnegative measurable

functions defined on (0,∞). Let q, p and r be such that 0 < q < p, 1 < p <∞ and
1/r = 1/q − 1/p. The following statements are equivalent.

(i) There exists a positive constant C such that (1.1) holds, i.e.,(∫ ∞

0

[Tf ]qw
)1/q

≤ C

(∫ ∞

0

fpv

)1/p

for all f ≥ 0.
(ii) The function

Ψ(x) =
(∫ ∞

x

w

)1/p(∫ x

0

v1−p′
)1/p′

belongs to Lr(w).
(iii) The function

Φ(x) = sup
(∫ ∞

c

w

)1/p(∫ c

0

v1−p′
)1/p′

belongs to Lr(w), where the supremum is taken over all c such that 0 < c ≤
x.

Observe that condition (ii) is Mazja’s condition, so we recover the well known
condition, while (iii) is a new characterizing condition. In the next corollary we
shall consider another particular case.
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Corollary 1.7. Let 0 < A < B <∞ and λ = B/A. Let us define

Tf(x) =
∫ Bx

Ax

f, x > 0.

Let w and v be nonnegative measurable functions defined on (0,∞). Let q, p and r
be such that 0 < q < p, 1 < p <∞ and 1/r = 1/q − 1/p. The following statements
are equivalent.

(i) There exists a positive constant C such that (1.1) holds, i.e.,(∫ ∞

0

[Tf ]qw
)1/q

≤ C

(∫ ∞

0

fpv

)1/p

for all f ≥ 0.
(ii) max{K1,K2} <∞, where

K1 =

∫ ∞

0

1
t

∫ t

A
B t

(∫ Bx

At

v1−p′

)r/p′ (∫ t

x

w

)r/p

w(x) dx dt

1/r

and

K2 =

∫ ∞

0

1
t

∫ B
A t

t

(∫ Bt

Ax

v1−p′

)r/p′ (∫ x

t

w

)r/p

w(x) dx dt

1/r

.

(iii) There exists t > 0 such that the functions

Ψ1(x) =
∑
k∈Z

(∫ x

λkt

w

)1/p
(∫ Bλkt

Ax

v1−p′

)1/p′

χ(λkt,λk+1t)(x)

and

Ψ2(x) =
∑
k∈Z

(∫ λk+1t

x

w

)1/p(∫ Bx

Aλk+1t

v1−p′

)1/p′

χ(λkt,λk+1t)(x)

belong to Lr(w).
(iv) The function

Φ(x) = sup

(∫ d

c

w

)1/p(∫ Bc

Ad

v1−p′

)1/p′

belongs to Lr(w), where the supremum is taken over all c and d such that
c ≤ x ≤ d ≤ λc.

We notice that the equivalence between (ii) and (i) was obtained in [4] as a
corollary of Theorem 1.3 (Theorem 2.5 in [4]).

The last goal of this paper is to search the weighted weak type inequalities. In
this case the results can not be deduced from the corresponding for g(x) = 1. In
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[3], for the case 1 < p ≤ q < ∞ and for s and h increasing functions, the authors
characterize the weighted weak-type inequality

(1.8) [w({x ∈ (a, b) : Tf(x) > λ})]
1
q ≤ C

λ

(∫ h(b)

s(a)

fpv

) 1
p

for all λ > 0 and all f ≥ 0 by means of the following condition: there exists C > 0
such that

‖gχ(x,y)‖q,∞;w

(∫ h(x)

s(y)

v1−p′

) 1
p′

< C,

for all a < x < y < b such that s(y) ≤ h(x). Here ‖f‖q,∞;w denotes the norm
in the space Lq,∞(w) defined by ‖f‖q,∞;w = supλ>0 λ (w({x : |f(x)| > λ}))

1
q and

w(E) stands for
∫

E
w. This result can be obtained as a particular case of Theorem

3.2 in [3].
We shall study this problem in the case q < p by assuming that the function g

is monotone. The result is the next one.

Theorem 1.9. Let s and h be increasing continuous functions defined on an in-
terval (a, b) satisfying s(x) ≤ h(x) for x ∈ (a, b). Let g be a positive monotone
function defined on (a, b). Let q, p and r be such that 0 < q < p, 1 < p < ∞ and
1/r = 1/q−1/p. Let w and v be nonnegative measurable functions defined on (a, b)
and (s(a), h(b)), respectively. The following statements are equivalent.

(i) There exists a positive constant C such that (1.8) holds, i.e.,

[w({x ∈ (a, b) : Tf(x) > λ})]1/q ≤ C

λ

(∫ h(b)

s(a)

fpv

)1/p

for all f ≥ 0 and all positive real number λ.
(ii) The function

Φ(x) = sup

( inf
y∈(c,d)

g(y))

(∫ d

c

w

)1/p(∫ h(c)

s(d)

v1−p′

)1/p′


belongs to Lr,∞(w), where the supremum is taken over the numbers c and
d such that a < c ≤ x ≤ d < b and s(d) ≤ h(c).

Observe that condition (iv) in Theorem 1.5 and condition (ii) in the above the-
orem are given in terms of, essentially, the same function. In fact, if g(x) = 1
then the functions Φ in both theorems are the same and the weighted strong type
inequality is characterized by Φ ∈ Lr(w) while the weighted weak type inequality
is characterized by Φ ∈ Lr,∞(w). For the case of the modified Hardy operator
Tf(x) = g(x)

∫ x

0
f , x > 0, this theorem was obtained in [7].

The organization of the paper is as follows. In section 2 we shall prove Lemma 1.4
and the relationships among some functions that we need in the proof of Theorem
1.5. Section 3 is devoted to prove Theorem 1.5. In section 4 we shall prove the
Corollaries 1.6 and 1.7, while Theorem 1.9 is proved in Section 5.
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2. Technical results

Proof of Lemma 1.4. In order to prove (a) let us observe first that the continuity
of s and h imply that if aj > a then s(aj) = h(aj) and if bj < b then s(bj) = h(bj).
Now, notice that (aj , bj) ∩ (ai, bi) = ∅ and therefore aj < bj ≤ ai < bi or
ai < bi ≤ aj < bj . We may assume without lost of generality that aj < bj ≤ ai < bi.
Then ai > a and bj < b. By the monotonicity of s we have h(bj) = s(bj) ≤ s(ai)
and (a) follows.

Now, we shall prove (b). We may suppose that there is only one connected
component, i.e., Ω = (a, b).

If s(b) ≤ h(a), we choose m0 = a, m1 = b. The finite sequence {mk}k=0,1

satisfies conditions (i), (ii) and (iii).
Let us suppose now that h(a) < s(b). By the continuity of the functions s and

h, there exist m0, m1 such that a < m0 < m1 < b and s(m1) = h(m0). If m0,
m1,...,mk (k ≥ 1) have been chosen in such a way that m0 < m1 < ... < mk < b
and s(mi) = h(mi−1) for 1 ≤ i ≤ k, we select mk+1 as follows:

If s(b) ≤ h(mk)) then mk+1 = b and the process of selection of mk, k ≥ 1,
finishes.

If h(mk) < s(b), then we choose mk+1 such that mk < mk+1 < b and s(mk+1) =
h(mk). This number mk+1 can be chosen since s(mk) < h(mk) < s(b).

In this way, we have got {mk}k≥0 such that (m0, b) = ∪k≥0(mk,mk+1) a.e. This
is obvious if the sequence {mk}k≥0 is finite. If it is infinite and c = limk→∞mk,
the fact that s(mk+1) = h(mk) and the continuity of s and h imply s(c) = h(c),
which is possible only if c = b.

In an analogous way, we choosemk for k < 0 verifying (a,m0) = ∪k<0(mk,mk+1)
a.e. So, we have (a, b) = ∪k(mk,mk+1) a.e. and we are done.

�

In the rest of this section we state and prove some results that we shall use in
the proof of Theorem 1.5. Taking into account the partition given in Lemma 1.4
and calling Ij,k = (mj

k,m
j
k+1), I

−
j,k(x) = (mj

k, x) and I+
j,k(x) = (x,mj

k+1), we define
the following functions:

G1(x) =
∑
j,k

sup
d∈I+

j,k(x)

(∫ d

x

w

) 1
p
(∫ h(mj

k)

s(d)

v1−p′

) 1
p′

χIj,k
(x);

G2(x) =
∑
j,k

sup
c∈I−j,k(x)

(∫ x

c

w

) 1
p

(∫ h(c)

s(mj
k+1)

v1−p′

) 1
p′

χIj,k
(x);

H1(x) =
∑
j,k

sup
d∈I+

j,k(x)

(∫ d

mj
k

w

) 1
p
(∫ h(mj

k)

s(d)

v1−p′

) 1
p′

χIj,k
(x);

H2(x) =
∑
j,k

sup
c∈I−j,k(x)

(∫ mj
k+1

c

w

) 1
p
(∫ h(c)

s(mj
k+1)

v1−p′

) 1
p′

χIj,k
(x).
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If K1(j) = {k : aj < mj
k} and K2(j) = {k : mj

k+1 < bj}, we also define:

U1(x) =
∑

j

∑
k∈K1(j)

sup
t∈Ij,k−1

(∫ mj
k

t

w

)1/p(∫ h(t)

s(x)

v1−p′

)1/p′

χIj,k
(x)

and

U2(x) =
∑

j

∑
k∈K2(j)

sup
t∈Ij,k+1

(∫ t

mj
k+1

w

)1/p(∫ h(x)

s(t)

v1−p′

)1/p′

χIj,k
(x).

The next lemmas establish some relationships among these functions.

Lemma 2.1. For all λ > 0 and i = 1, 2

w({x ∈ (a, b) : Gi(x) > λ}) ≤ 2w({x ∈ (a, b) : ψi(x) > λ}),

where ψ1 and ψ2 are the functions defined in Theorem 1.5 with g(x) = 1.

Proof. We only prove the case i = 1, the other one follows in a similar way. Notice
that

w({x : G1(x) > λ}) = w({x : G1(x) > λ,ψ1(x) > λ}) +
∑
k,j

w(Ek,j),

where Ek,j = {x ∈ Ij,k : G1(x) > λ,ψ1(x) ≤ λ}. Clearly, we only have to show
that

w(Ek,j) ≤ w({x ∈ Ij,k : ψ1(x) > λ}).
To prove this inequality it suffices to establish that

(2.2)
∫ z

mj
k

w ≤ w({x ∈ Ij,k : ψ1(x) > λ})

for all z ∈ Ek,j . Let z ∈ Ek,j . Then there exists d, z < d < mj
k+1, such that(∫ z

mj
k

w

)1/p(∫ h(mj
k)

s(z)

v1−p′

)1/p′

≤ λ <

(∫ d

z

w

)1/p(∫ h(mj
k)

s(d)

v1−p′

)1/p′

,

and since d > z we get that ∫ z

mj
k

w ≤
∫ d

z

w.

If (z, d) ⊂ {x ∈ Ij,k : ψ1(x) > λ} then (2.2) follows immediately. Assume now that
the set F = {t ∈ (z, d) : ψ1(t) ≤ λ} is non empty and let α = supF . If t ∈ F then(∫ t

mj
k

w

)1/p(∫ h(mj
k)

s(t)

v1−p′

)1/p′

≤ λ <

(∫ d

z

w

)1/p(∫ h(mj
k)

s(d)

v1−p′

)1/p′

.

Since t < d we obtain
∫ t

mj
k
w ≤

∫ d

z
w and consequently∫ z

mj
k

w ≤
∫ d

t

w.
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Letting t tend to α we get that ∫ z

mj
k

w ≤
∫ d

α

w.

This inequality implies (2.2) since (α, d) ⊂ {x ∈ Ij,k : ψ1(x) > λ}. �

The following lemma follows easily from the definitions.

Lemma 2.3. For all x ∈ (a, b) and i = 1, 2

Hi(x) ≤ ψi(x) +Gi(x),

where ψ1 and ψ2 are the functions defined in Theorem 1.5 with g(x) = 1.

Lemma 2.4. For all λ > 0 and i = 1, 2

w({x : Ui(x) > λ}) ≤
2∑

i=1

w({x : Hi(x) > λ}).

Proof. We shall prove it only for i = 1. Observe that

w({x : U1(x) > λ}) ≤ w({x : H1(x) > λ}) +
∑
j,k

w(Ej,k),

where Ej,k = {x ∈ Ij,k : U1(x) > λ,H1(x) ≤ λ}. It will suffice to show that

w(Ej,k) ≤ w({x ∈ Ij,k−1 : H2(x) > λ})

If Ej,k = ∅ there is nothing to prove. Assume that Ej,k 6= ∅ and let z ∈ Ej,k. Notice
that k ∈ K1(j), since U1(z) > λ. Then there exists t ∈ Ij,k−1 with s(z) < h(t) such
that(∫ z

mj
k

w

)1/p(∫ h(mj
k)

s(z)

v1−p′

)1/p′

≤ λ <

(∫ mj
k

t

w

)1/p(∫ h(t)

s(z)

v1−p′

)1/p′

.

Since h(t) ≤ h(mj
k) we get that

∫ z

mj
k
w ≤

∫mj
k

t
w. Observe that from the second

inequality above we get that (t,mj
k) ⊂ {x ∈ Ij,k−1 : H2(x) > λ} and therefore∫ z

mj
k

w ≤
∫
{x∈Ij,k−1:H2(x)>λ}

w,

for all z ∈ Ej,k. Then if z ↗ supEj,k we get that w(Ej,k) ≤ w({x ∈ Ij,k−1 :
H2(x) > λ}) and we are done.

�

Lemma 2.5. For almost every x ∈ (a, b)

Φ(x) ≤ 2
2∑

i=1

[ψi(x) +Hi(x) + Ui(x)],

where Φ, ψ1 and ψ2 are the functions defined in Theorem 1.5 with g(x) = 1.
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Proof. It is clear that Φ(x) ≤ Φ1(x) + Φ2(x), where

Φ1(x) = sup
c≤x:s(x)≤h(c)

(∫ x

c

w

)1/p
(∫ h(c)

s(x)

v1−p′

)1/p′

and

Φ2(x) = sup
x≤d:s(d)≤h(x)

(∫ d

x

w

)1/p(∫ h(x)

s(d)

v1−p′

)1/p′

.

We can prove that Φ1(x) ≤ ψ1(x) +H2(x) + U1(x) and Φ2(x) ≤ ψ2(x) +H1(x) +
U2(x). As in the above lemmas we only prove the first case since the other one
follows in a similar way. Notice that Φ1(x) = Φ2(x) = 0 if x /∈ Ω = {x ∈ (a, b) :
s(x) < h(x)}. Let us suppose that x ∈ (mj

k,m
j
k+1). If c < x is such that s(x) < h(c)

and mj
k ∈ (aj , bj), then we get that c > mj

k−1. In such a case, if mj
k < c < x then(∫ x

c

w

)1/p
(∫ h(c)

s(x)

v1−p′

)1/p′

≤ ψ1(x) +H2(x),

and if mj
k−1 < c ≤ mj

k(∫ x

c

w

)1/p
(∫ h(c)

s(x)

v1−p′

)1/p′

≤ ψ1(x) + U1(x),

obtaining Φ1(x) ≤ ψ1(x) + H2(x) + U1(x). If mj
k = aj , then we only have the

possibility mj
k < c < x which, as we have just seen, gives the desired inequality.

�

3. Proofs of Theorem 1.5

It is enough to prove the theorem for g(x) = 1.

(i) ⇒ (ii): Let {(ci, di)} be a sequence of disjoint intervals such that s(di) ≤
h(ci). Using standard approximation arguments we may assume that∫ di

ci

w <∞ and
∫ h(ci)

s(di)

v1−p′ <∞.

Then (ii) follows easily from (i) applied to the function

f(x) =

∑
i

(∫ di

ci

w

)r/q (∫ h(ci)

s(di)

v1−p′

)r/q′

v−p′(x)χ(s(di),h(ci))(x)

1/p

Since

Tf(x) ≥
∫ h(ci)

s(di)

f ≥

(∫ di

ci

w

)r/pq (∫ h(ci)

s(di)

v1−p′

)r/pq′+1

,

for all x ∈ (ci, di).
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(ii) ⇒ (iii): First, notice that (ii) and Lemma 1.4 (b) imply that there exists
C > 0 such that for every connected component (aj , bj) of the set Ω, there exists a
sequence {mj

k} in the required conditions such that

(3.1)
∑

j

∑
k

(∫ mj
k+1

mj
k

w

)r/q (∫ h(mj
k)

s(mj
k+1)

v1−p′

)r/p′

≤ C.

Now, let us see that ψ2 ∈ Lr(w); the proof of ψ1 ∈ Lr(w) is very similar. We have∫ b

a

[ψ2(x)]rw(x) dx =
∑
j,k

∫ mj
k+1

mj
k

[ψ2(x)]rw(x) dx

≤C
∑
j,k

∫ mj
k+1

mj
k

(∫ mj
k+1

x

w

)r/p(∫ h(mj
k)

s(mj
k+1)

v1−p′

)r/p′

w(x) dx

+ C
∑
j,k

∫ mj
k+1

mj
k

(∫ mj
k+1

x

w

)r/p(∫ h(x)

h(mj
k)

v1−p′

)r/p′

w(x) dx

=I + II.

Performing the integral in I and using (3.1) we see that I is finite. In order to
estimate II we shall use a suitable partition of each interval (mj

k,m
j
k+1) (this idea

is taken from Lemma 1 in [6]). Since we wish to estimate II, it is clear that we only

have to consider intervals (mj
k,m

j
k+1) such that

∫mj
k+1

mj
k

w > 0 and
∫ h(mj

k+1)

h(mj
k)

v1−p′ >

0. By using approximation arguments we may assume that

αj,k =
∫ mj

k+1

mj
k

w <∞ and βj,k =
∫ h(mj

k+1)

h(mj
k)

v1−p′ <∞.

On one hand, we define an increasing sequence {xi} such that x0 = mj
k and∫ mj

k+1

xi

w = 2−iαj,k.

On the other hand, we define a decreasing sequence {u′s} such that u′0 = mj
k+1 and∫ h(u′s)

h(mj
k)

v1−p′ = 2−sβj,k.

Notice that both sequences depend on j, k. Now, we shall select a finite subsequence
{un} of {u′s} by the following principle: if [u′s+1, u

′
s)∩ {xi} = ∅, delete the element

u′s+1 from the sequence {u′s}. Denote the subsequence by {un}. Observe that if

N = min{s : mj
k < u′s < x1},

then u′N is the last term that we can choose. Let M be such that uM−1 = u′N and
define uM = mj

k. Then uM = mj
k < uM−1 < · · · < u0 = mj

k+1 is a partition of the
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interval [mj
k,m

j
k+1]. Let I(n) = {i : un+1 ≤ xi+1 < un}. Now, we write

IIj,k =
∫ mj

k+1

mj
k

(∫ mj
k+1

x

w

)r/p(∫ h(x)

h(mj
k)

v1−p′

)r/p′

w(x) dx

=
M−2∑
n=0

∑
i∈I(n)

∫ xi+1

xi

(∫ mj
k+1

x

w

)r/p(∫ h(x)

h(mj
k)

v1−p′

)r/p′

w(x) dx.

For fixed n ≤M−2 there exists s such that u′s+1 = un+1. If un+1 ≤ xi+1 < un then
it follows by the definition of the subsequence that xi+1 < u′s and un+2 ≤ u′s+2.
Furthermore, by the definition of the sequence {u′s} we get∫ h(xi+1)

h(mj
k)

v1−p′ ≤
∫ h(u′s)

h(mj
k)

v1−p′ = 4
∫ h(u′s+1)

h(u′s+2)

v1−p′ ≤ 4
∫ h(un+1)

h(un+2)

v1−p′ .

From these inequalities we get that

IIj,k ≤ 4r/p′
M−2∑
n=0

(∫ h(un+1)

h(un+2)

v1−p′

)r/p′ ∑
i∈I(n)

∫ xi+1

xi

(∫ mj
k+1

x

w

)r/p

w(x) dx.

By the definition of the sequence {xi} we get that

IIj,k ≤ C

M−2∑
n=0

(∫ h(un+1)

h(un+2)

v1−p′

)r/p′ ∑
i∈I(n)

(∫ xi+2

xi+1

w

)r/q

.

Since

∑
i∈I(n)

(∫ xi+2

xi+1

w

)r/q

≤

 ∑
i∈I(n)

∫ xi+2

xi+1

w

r/q

and ∪i∈I(n)(xi+1, xi+2) ⊂ (un+1, un−1), where u−1 = u0, we get that

IIj,k ≤ C
M−2∑
n=0

(∫ h(un+1)

h(un+2)

v1−p′

)r/p′ (∫ un−1

un+1

w

)r/q

.

Now, since s(un−1) ≤ s(mj
k+1) ≤ h(mj

k) ≤ h(un+2) for all 0 ≤ n ≤ M − 2 we get
that

IIj,k ≤C
M−2∑
n=0

(∫ h(un+1)

s(un−1)

v1−p′

)r/p′ (∫ un−1

un+1

w

)r/q

=C

( ∑
n=2m

(·) +
∑

n=2m+1

(·)

)
.

Now, summing up in j, k and using (ii) we see that II is finite.

(iii) ⇒ (iv): It is an easy consequence of Lemmas 2.1, 2.3, 2.4 and 2.5.
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(iv) ⇒ (i): Taking into account the decomposition given in Lemma 1.4 we get
that ∫ bj

aj

[Tf ]qw =
∑

k

∫ mj
k+1

mj
k

[Tf ]qw

≤C
∑

k

∫ mj
k+1

mj
k

[∫ s(mj
k+1)

s(x)

f

]q

w + C
∑

k

∫ mj
k+1

mj
k

[∫ h(x)

h(mj
k)

f

]q

w

+ C
∑

k

(∫ h(mj
k)

s(mj
k+1)

f

)q (∫ mj
k+1

mj
k

w

)
= I + II + III.

In order to estimate I, we fix k and select an increasing sequence {xi}i, xi ∈
[mj

k,m
j
k+1] such that x0 = mj

k and∫ s(mj
k+1)

s(xi)

f =
∫ s(xi)

s(xi−1)

f.

Then, by the properties of the sequence {xi}i and applying Hölder’s inequality we
get ∫ mj

k+1

mj
k

[∫ s(mj
k+1)

s(x)

f

]q

w =
∑

i

∫ xi+1

xi

[∫ s(mj
k+1)

s(x)

f

]q

w

≤
∑

i

(∫ s(mj
k+1)

s(xi)

f

)q (∫ xi+1

xi

w

)

≤ 4q
∑

i

(∫ s(xi+2)

s(xi+1)

f

)q (∫ xi+1

xi

w

)

≤ 4q
∑

i

(∫ s(xi+2)

s(xi+1)

fpv

)q/p(∫ s(xi+2)

s(xi+1)

v1−p′

)q/p′ (∫ xi+1

xi

w

)
.

Then, since s(xi+2) ≤ s(mj
k+1) ≤ h(mj

k) ≤ h(xi), applying the Hölder inequality
we get that

I ≤ C
∑
k,i

(∫ s(xi+2)

s(xi+1)

fpv

)q/p(∫ s(xi+2)

s(xi+1)

v1−p′

)q/p′ (∫ xi+1

xi

w

)

≤ C

∑
k,i

∫ s(xi+2)

s(xi+1)

fpv

q/p ∑
k,i

(∫ h(xi)

s(xi+1)

v1−p′

)r/p′ (∫ xi+1

xi

w

)r/q
q/r

≤ C

(∫ s(bj)

s(aj)

fpv

)q/p
∑

k,i

(∫ h(xi)

s(xi+1)

v1−p′

)r/p′ (∫ xi+1

xi

w

)r/q
q/r

.

By applying the identity(∫ b

a

f

)t

= t

∫ b

a

(∫ x

a

f

)t−1

f(x) dx, if t ≥ 1,
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we get that(∫ xi+1

xi

w

)r/q
(∫ h(xi)

s(xi+1)

v1−p′

)r/p′

= r/q

(∫ xi+1

xi

(∫ x

xi

w

)r/p

w(x) dx

)(∫ h(xi)

s(xi+1)

v1−p′

)r/p′

≤ r/q

∫ xi+1

xi

(∫ x

xi

w

)r/p
(∫ h(xi)

s(x)

v1−p′

)r/p′

w(x) dx

≤ r/q

∫ xi+1

xi

Φr(x)w(x) dx.

Then

I ≤ C

(∫ s(bj)

s(aj)

fpv

)q/p [∑
k

∑
i

∫ xi+1

xi

Φr(x)w(x) dx

]q/r

≤

(∫ h(bj)

s(aj)

fpv

)q/p(∫ bj

aj

Φr(x)w(x) dx

)q/r

.

In a similar way, we can prove that

II ≤ C

(∫ h(bj)

s(aj)

fpv

)q/p(∫ bj

aj

Φr(x)w(x) dx

)q/r

.

On the other hand, using Hölder’s inequality we get that

III ≤ C

(∑
k

∫ h(mj
k)

s(mj
k+1)

fpv

)q/p
∑

k

(∫ h(mj
k)

s(mj
k+1)

v1−p′

)r/p′ (∫ mj
k+1

mj
k

w

)r/q
q/r

≤ C

(∫ h(bj)

s(aj)

fpv

)q/p(∫ bj

aj

Φr(x)w(x) dx

)q/r

.

Now, putting together the estimates of I, II and III, summing up in j and applying
Hölder’s inequality we get that

∫ b

a

[Tf ]qw ≤ C

∑
j

∫ h(bj)

s(aj)

fpv

q/p(∫ b

a

Φrw

)q/r

.

Finally, taking into account that the intervals (s(aj), h(bj)) are disjoint (see Lemma
1.4(a)) we have that∫ b

a

[Tf ]qw ≤ C

(∫ h(b)

s(a)

fpv

)q/p(∫ b

a

Φrw

)q/r

,

and we are done.
�
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4. Proof of Corollaries 1.6 and 1.7

Proof of Corollary 1.6. Observe that the equivalence (i) ⇔ (iii) is given
directly by Theorem 1.5. Since Ψ ≤ Φ then (iii) ⇒ (ii). To prove the converse,
we only have to realize that {mk}1k=0, with m0 = 0 and m1 = ∞, is a sequence
satisfying the conditions in Lemma 1.4 for the functions s(x) = 0 and h(x) = x.
The associated functions ψ1 and ψ2 in Theorem 1.5 are 0 and Ψ, respectively.
Therefore, (ii) in Corollary 1.6 means that (iii) in Theorem 1.5 holds. Then (iv)
(in Theorem 1.5) holds, but that is the same as (iii) in Corollary 1.6 and we are
done.

�

Proof of Corollary 1.7. We first observe that (iv) in Corollary 1.7 is ex-
actly the same as (iv) in Theorem 1.5 for s(x) = Ax, h(x) = Bx and g(x) = 1. So
we already have that (i) ⇔ (iv). In what follows, we shall prove (iv) ⇔ (ii) ⇔ (iii).

(iv) ⇒ (ii) By Fubini’s Theorem

K1 =

∫ ∞

0

w(x)
∫ B

A x

x

1
t

(∫ Bx

At

v1−p′

)r/p′ (∫ t

x

w

)r/p

dt dx

1/r

≤

(∫ ∞

0

w(x)
∫ B

A x

x

1
t
Φr(x) dt dx

)1/r

= (log(B/A))1/r

(∫ ∞

0

Φr(x)w(x) dx(x)
)1/r

.

The same estimate holds for K2. Therefore (iv) implies (ii).

(ii) ⇒ (iii) Clearly

Kr
1 =

∞∑
k=−∞

∫ λk+1

λk

1
t

∫ t

t/λ

(∫ Bx

At

v1−p′

)r/p′ (∫ t

x

w

)r/p

w(x) dx dt.

Changing the variable (t = λk+1s),

Kr
1 =

∫ 1

1/λ

∞∑
k=−∞

1
s

∫ λk+1s

λks

(∫ Bx

Aλk+1s

v1−p′

)r/p′ (∫ λk+1s

x

w

)r/p

w(x) dx ds.

Since Kr
1 <∞ we deduce that for almost every s ∈ (1/λ, 1)

(4.1)
∞∑

k=−∞

∫ λk+1s

λks

(∫ Bx

Aλk+1s

v1−p′

)r/p′ (∫ λk+1s

x

w

)r/p

w(x) dx <∞.

Analogously, from Kr
2 <∞ we obtain that for almost every s ∈ (1/λ, 1)

(4.2)
∞∑

k=−∞

∫ λk+1s

λks

(∫ Bλks

Ax

v1−p′

)r/p′ (∫ x

λks

w

)r/p

w(x) dx <∞.
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Consequently, there exists s ∈ (1/λ, 1) such that (4.1) and (4.2) holds simultane-
ously, i.e., (iii) holds.

(iii) ⇒ (iv) Given t > 0, the sequence mk = λkt satisfies the conditions in
Lemma 1.4 for the functions s(x) = Ax, h(x) = Bx and the unique connected
component of Ω = {x : s(x) < h(x)} = (0,∞). Then (iii) is nothing but condition
(iii) in Theorem 1.5. It follows that (iv) (in Theorem 1.5) holds, but, as we have
already said, that is exactly the same as (iv) in Corollary 1.7.

�

5. Proof of Theorem 1.9

(ii) ⇒ (i): We shall prove the weighted weak type inequality for nonnegative
functions such that

∫ h(b)

s(a)
fpv = 1. The general case follows easily. Observe that if

U = {x ∈ (a, b) : Tf(x) > λ,Φ(x) ≤ λq/r} then

w({x ∈ (a, b) : Tf(x) > λ} ≤ w({x ∈ (a, b) : Φ(x) > λq/r}) + w(U)

≤
‖Φ‖r

r,∞,w

λq
+ w(U).

Therefore the implication will be proved if we establish that w(U) ≤ C
λq . Let Ω,

(aj , bj) and {mj
k} be as in Lemma 1.4. Then, for fixed j,

(5.1) w(U ∩ (aj , bj)) =
∑

k

w(U ∩ (mj
k,m

j
k+1)).

If x ∈ (mj
k,m

j
k+1), since s(mj

k+1) ≤ h(mj
k), we get that

Tf(x) = g(x)
∫ s(mj

k+1)

s(x)

f + g(x)
∫ h(mj

k)

s(mj
k+1)

f + g(x)
∫ h(x)

h(mj
k)

f.

It is clear that
w(U ∩ (mj

k,m
j
k+1))

≤ w
({
x ∈ (mj

k,m
j
k+1) : g(x)

∫ s(mj
k+1)

s(x)

f > λ/3,Φ(x) ≤ λq/r
})

+ w
({
x ∈ (mj

k,m
j
k+1) : g(x)

∫ h(mj
k)

s(mj
k+1)

f > λ/3,Φ(x) ≤ λq/r
})

+ w
({
x ∈ (mj

k,m
j
k+1) : g(x)

∫ h(x)

h(mj
k)

f > λ/3,Φ(x) ≤ λq/r
})

= I + II + III.

To estimate II we write E = {x ∈ (mj
k,m

j
k+1) : g(x)

∫ h(mj
k)

s(mj
k+1)

f > λ/3,Φ(x) ≤

λq/r}, α = inf E, β = supE, and we choose a sequence {zl}l ↓ α such that zl ∈
E. We have for every x ∈ E that λ/3 < g(x)

∫ h(mk)

s(mj
k+1)

f and therefore by the

monotonicity of g

λ/3 ≤ inf
z∈(zl,β)

g(z)
∫ h(mj

k)

s(mj
k+1)

f.



HARDY-STEKLOV OPERATORS 17

Applying the Hölder inequality and multiplying by
(∫ β

zl
w
)1/p

we have

λ

(∫ β

zl

w

)1/p

≤ inf
z∈(zl,β)

g(z)

(∫ β

zl

w

)1/p(∫ h(mj
k)

s(mj
k+1)

v1−p′

)1/p′ (∫ h(mj
k)

s(mj
k+1)

fpv

)1/p

.

Now, since s and h are increasing functions, the last term is dominated by

inf
z∈(zl,β)

g(z)

(∫ β

zl

w

)1/p(∫ h(zl)

s(β)

v1−p′

)1/p′ (∫ h(mj
k)

s(mj
k+1)

fpv

)1/p

≤ Φ(zl)

(∫ h(mj
k)

s(mj
k+1)

fpv

)1/p

≤ λq/r

(∫ h(mj
k)

s(mj
k+1)

fpv

)1/p

.

Therefore,

II =
∫

E

w ≤ lim
zl→α

∫ β

zl

w ≤ 1
λq

∫ h(mj
k)

s(mj
k+1)

fpv.

In order to estimate I, we select an increasing sequence {xi}i, xi ∈ (mj
k,m

j
k+1),

such that x0 = mj
k and ∫ s(mj

k+1)

s(xi)

f =
∫ s(xi)

s(xi−1)

f.

Let Ei = {x ∈ (xi, xi+1) : g(x)
∫ s(mj

k+1)

s(x) f > λ/3,Φ(x) ≤ λq/r}, αi = inf Ei and
βi = supEi. Let us choose a sequence {zl}l ↑ βi. Using the monotonicity of g and
the property of the sequence {xi}i we have

λ/3 ≤ 4 inf
z∈(αi,zl)

g(z)
∫ s(xi+2)

s(xi+1)

f.

Applying the Hölder inequality and multiplying by
(∫ zl

αi
w
)1/p

we have

λ/3
(∫ zl

αi

w

)1/p

≤ 4 inf
z∈(αi,zl)

g(z)
(∫ zl

αi

w

)1/p
(∫ s(xi+2)

s(xi+1)

v1−p′

)1/p′ (∫ s(xi+2)

s(xi+1)

fpv

)1/p

.

Now since s and h are increasing functions and s(mj
k+1) ≤ h(mj

k) the last term is
dominated by

4 inf
z∈(αi,zl)

g(z)
(∫ zl

αi

w

)1/p
(∫ s(mj

k+1)

s(zl)

v1−p′

)1/p′ (∫ s(xi+2)

s(xi+1)

fpv

)1/p

≤ 4 inf
z∈(αi,zl)

g(z)
(∫ zl

αi

w

)1/p
(∫ h(αi)

s(zl)

v1−p′

)1/p′ (∫ s(xi+2)

s(xi+1)

fpv

)1/p

≤ Φ(zl)

(∫ s(xi+2)

s(xi+1)

fpv

)1/p

≤ λq/r

(∫ s(xi+2)

s(xi+1)

fpv

)1/p

.
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Therefore, ∫
Ei

w ≤ lim
zl→βi

∫ zl

αi

w ≤ C

λq

∫ s(xi+2)

s(xi+1)

fpv.

Now summing up in i we obtain

I ≤ C

λq

∫ s(mj
k+1)

s(mj
k)

fpv.

In a similar way it is proved that

III ≤ C

λq

∫ h(mj
k+1)

h(mj
k)

fpv.

Putting together the estimates for I, II and III we have

w(U ∩ (mj
k,m

j
k+1)) ≤

C

λq

∫ h(mj
k+1)

s(mj
k)

fpv.

Summing in k in the above inequality and putting together with (5.1) we get that

w(U ∩ (aj , bj)) ≤
C

λq

∫ h(bj)

s(aj)

fpv.

Keeping in mind Lemma 1.4 and summing up in j we obtain the desired inequality.
Therefore (ii) ⇒ (i) is completely proved.

(i) ⇒ (ii): We have to prove that

sup
λ>0

λ

(∫
{x∈(a,b):Φ(x)>λ}

w

)1/r

<∞.

Let λ > 0 and Sλ = {x ∈ (a, b) : Φ(x) > λ}. For every z ∈ Sλ there exist az and bz
with a < az < z < bz < b such that s(bz) < h(az) and

λ < inf
y∈(az,bz)

g(y)

(∫ bz

az

w

)1/p(∫ h(az)

s(bz)

v1−p′

)1/p′

.

Let K ⊂ Sλ be a compact set. Then there exist (az1 , bz1), . . . , (azk
, bzk

) which cover
K. We may assume without lost of generality that

∑k
j=1 χ(azj

,bzj
) ≤ 2χ∪k

j=1(azj
,bzj

).
Let f : (s(a), h(b)) → R defined by

f(x) =

 k∑
j=1

 1

infy∈(azj
,bzj

) g(y)
∫ h(azj

)

s(bzj
) v1−p′


p

v−p′(x)χ(s(bzj
),h(azj

))(x)


1/p

.



HARDY-STEKLOV OPERATORS 19

If z ∈ (azj
, bzj

) then we have Tf(z) = g(z)
∫ h(z)

s(z)
f ≥ 1. Therefore, ∪k

j=1(azj
, bzj

) ⊂
{x ∈ (a, b) : Tf(x) ≥ 1}. Applying the weighted weak type inequality we obtain

∫
∪k

j=1(azj
,bzj

)

w ≤ C

 k∑
j=1

 1

infy∈(azj
,bzj

) g(y)
∫ h(azj

)

s(bzj
) v1−p′


p ∫ h(azj

)

s(bzj
)

v1−p′


q/p

= C

 k∑
j=1

1

(infy∈(azj
,bzj

) g(y))p(
∫ h(azj

)

s(bzj
) v1−p′)p−1


q/p

≤ C

λq

 k∑
j=1

∫ bzj

azj

w

q/p

≤ C

λq

(∫
∪k

j=1(azj
,bzj

)

w

)q/p

.

The last inequality implies that λ
(∫

K
w
)1/r ≤ C for any compact set K ⊂ Sλ and

we are done.
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