WEIGHTED INEQUALITIES FOR HARDY-STEKLOV
OPERATORS

A.L. BERNARDIS, F.J. MARTIN-REYES, AND P. ORTEGA SALVADOR

ABSTRACT. We characterize the pairs of weights (v, w) for which the operator
Tf(z) = g(x) f:z;a;) f with s and h increasing and continuous functions is of

strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case
0<g<pandl<p< oo. The result for the weak type is new while the char-
acterizations for the strong type improve the ones given by H. P. Heinig and
G. Sinnamon. In particular, we do not assume differentiability properties on s
and h and we obtain that the strong type inequality (p,q), ¢ < p, is character-
R R - d P h(e) 1—yp 1/p
ized by the fact that the function ®(z) = sup (fc ng) (fs(d) pl=P )
belongs to L"(g%w), where 1/r = 1/q — 1/p and the supremum is taken over
all ¢ and d such that ¢ <z < d and s(d) < h(c).

1. INTRODUCTION AND RESULTS

Let us consider the Hardy-Steklov operator defined by

h(z)
i@ =g [ 5 1z
where ¢ is a positive measurable function and s and & are functions defined on
an interval (a,b) such that s(z) < h(x) for all z € (a,b). Particular cases of

this operator are the Hardy operator T'f (z) = fox f, the Hardy averaging operators

Tf(z) =a" [ f and the Steklov operator T'f(z) = f;jll f which have been studied

intensively (see [5] and the references given there).

Weighted weak and strong type (p, q) inequalities for the operator T were studied
for several authors. In the case 1 < p < g < oo and considering the functions s and
h strictly increasing and differentiable, Heining and Sinnamon [4] have characterized
the weighted strong type inequality

b a h(b) »
(1.1) [rnm) <c([ ") gz
a s(a)
where s(a) = lim,_, .+ s(x) and h(b) = lim,_,;— h(x) (analogously we write s(b) =
lim,_,- s(z) and h(a) = lim,_ .+ h(x)) by means of the condition
1/p’

z 1/q h(t) )
(1.2) sup (/ ng) / v P < 00,
t s(z)
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where the supremum is taken over all z and ¢ such that ¢t < z and s(z) < h(t). In
[3], Gogatishvili and Lang obtained the same result but assuming weaker hypothesis
on the functions s and h. They only assume that these functions are increasing
(x <y=s(x) <s(y),h(xz) < h(y)). The result in [3] is proved in the more general
setting of the Banach function spaces (see Theorem 3.2 in [3]).

The case 0 < ¢ < p and 1 < p < oo is different. Heinig and Sinnamon [4]
obtained the following result.

Theorem 1.3. Let s and h be strictly increasing differentiable functions defined on
(0,00) satisfying s(0) = h(0) =0, s(z) < h(z) for z € (0,00) and s(o0) = h(c0) =
oo. Let g be a positive measurable function. Let 0 < ¢ < p, 1 < p < o0, 1/r =
1/g—1/p, and let w and v be nonnegative measurable functions defined on (0, 00).
Let (h™' 0 s)F be the k times repeated composition and let { My }rez be a sequence
defined by Mo = h=1(1), Mysr = 5~ ((My), if k> 0 and My = (= (s(Mis)),
if k < 0. Then there is a constant C' such that (1.1) holds if and only if
1/r

oo pt h(z) , /v t r/p
/ / / v!™P </ ng) g1(z)w(z)dzo(t)dt < 00
0 h=1(s(t)) s(t) z
and
1/r

o s (h(E) [ ph(D) N e r/p
/ / / VP (/ ng> gl (x)w(z) dzo(t)dt < o0,
0 t s(x) t

where the “normalizing function” o is defined by

d  _
o(0) = 3 X(at bty () 3 (7 0 9 (1).
kEZ

The results in [4] are stated for g(z) = 1 and not for general g. However, we
notice that if g(z) # 1 then the characterizations of the strong type inequalities
follow easily from the case g(z) = 1.

Characterizations of the weighted strong type inequality for the case 1 < p < ¢ <
oo and the case 0 < ¢ < p, 1 < p < co were obtained also by Chen and Sinnamon
[2] under the hypothesis of the existence of a “discrete normalizing measure” for s
and h. A measure £ on the real line is called a normalizing measure for s and h
provided there exist positive constants C'; and Cs such that

Cr < &([s(t), h(1)]) < Ca,

for all t. If £ is a counting measure on a subset of the real line then & is called a
discrete normalizing measure (see [2]).

We point out that the existence of the discrete normalizing measure is a hypoth-
esis weaker than the monotonicity of the functions s and h. We remark also that
the measure £ is not involved in the characterizing conditions given in [2] for the
case 1 < p < g < co. However, in the case 0 < ¢ < p, 1 < p < oo the normalizing
measure appears explicitly in the conditions playing the role of ¢ in Theorem 1.3.
Furthermore, the construction of a discrete normalizing measure can be somewhat
complicated (see [2]).

The first goal of this paper is to improve Theorem 1.3 by providing new charac-
terizing conditions which do not involve neither the normalizing measure, nor the
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double integral. We will suppose that the functions s and h are increasing and
continuous. This level of generality allows us to obtain easily a convenient decom-
position of Q = {x € (a,b) : s(z) < h(z)} which we need to state the result. The
decomposition appears in the next lemma.

Lemma 1.4. Let s,h: (a,b) — R be increasing and continuous functions such that
s(x) < h(zx) for all x € (a,b). Let {(aj;,b;)}; be the connected components of the
open set Q@ = {x € (a,b) : s(x) < h(x)}. Then

(a) (s(ay), h(b;)) N (s(ai), h(b;)) = B for all j # .

(b) For every j there exists a (finite or infinite) sequence {m{c} of real numbers such
that:

(i) a; < m{c < mi_ﬂ < bj for allk and j;
(i) (aj,b;) = Uk(mi,miﬂ) a. e. forall j;

) s(mfcﬂ) < h(ml) for all k and j and s(miﬂ) = h(ml) if a; < mj <
mi_,'_l < bj.

Now we are prepared to state our first theorem.

Theorem 1.5. Let s and h be increasing and continuous functions defined on an
interval (a,b) satisfying s(x) < h(z) for x € (a,b). Let g be a positive measurable
function on (a,b). Letw and v be nonnegative measurable functions defined on (a,b)
and (s(a), h(b)) respectively. Let q, p and r be such that 0 < ¢ <p, 1 < p < oo and
1/r=1/q— 1/p. The following statements are equivalent.

(i) There exists a positive constant C such that (1.1) holds, i.e.,

b 1/q h(b) 1/p
(/ [Tf]%uda:) <C (/ fpv>
a s(a)

for all f > 0.
(i) There exists a positive constant C' such that

d; r/a h(cs) r/p’
Z </ ng) </ Ulp/) S 07
C; S(d,,)

for every sequence {(c;,d;)} of disjoint intervals of (a,b) such that s(d;) <
h(ci).

(iti) For every connected component (aj,b;) of the set Q = {x € (a,b) : s(z) <
h(z)}, there exists a sequence {mj]} in the conditions of Lemma 1.4 (b)
such that the functions

z
[
mi

1

h(mi) o »’
~/s($) o X(m£77n.£+1)(x)

S
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and

belong to L"(g%w).
(iv) The function

d 1/p h(c) 1/p’
®(x) = sup / glw / T
c s(d)

belongs to L"(g%w), where the supremum is taken over all ¢ and d such that
a<c<x<d<bands(d) < h(c).

Notice that condition (iv) in this theorem is the natural one if we compare it
with condition (1.2). In fact, if p = ¢ then (1.2) can be written as the function ®
belongs to L°°; observe that if p = ¢ and 1/r = 1/q — 1/p then r should be occ.
We remark also that condition (7v) is independent of the possible decompositions
{mfc} of the set Q.

Let us point out that condition (i¢) is analogous to the one in [9], while the char-
acterizing condition (#i7) is inspired in Mazja’s condition for the Hardy operator
[8]. In fact, if we consider the particular case of the Hardy operator we have the
following result (a direct proof appears in [1]).

Corollary 1.6. Let Tf(x) = fO‘T f, x>0. Let w and v be nonnegative measurable
functions defined on (0,00). Let q, p and r be such that 0 < ¢ <p, 1 < p < oo and
1/r=1/q—1/p. The following statements are equivalent.

(i) There exists a positive constant C such that (1.1) holds, i.e.,

(o) se([ )"

for all f > 0.
(ii) The function

belongs to L"(w).
(i4i) The function

oor-en([" )" ([ 4)"

belongs to L™ (w), where the supremum is taken over all ¢ such that 0 < ¢ <
x.

Observe that condition (i7) is Mazja’s condition, so we recover the well known
condition, while (4#i7) is a new characterizing condition. In the next corollary we
shall consider another particular case.
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Corollary 1.7. Let 0 < A< B < oo and A = B/A. Let us define

Bz

Tf(z) = : £, x>0.

Let w and v be nonnegative measurable functions defined on (0,00). Let q, p and r
be such that 0 < g <p, 1 <p<oo and 1/r =1/q—1/p. The following statements
are equivalent.

(i) There exists a positive constant C such that (1.1) holds, i.e.,

(o) s ([ )"

for all f > 0.
(i) max{K;, K>} < 0o, where
o q t Bz , /v’ t r/p U
K, = / —/ / vt (/ w) w(z) dx dt
o tJar\Jae z
and
1/r

o q it Bt ) /v z \7/P
Ky = / 7/ / VP </ w) w(z) dx dt
o tJi Az t

(i1i) There exists t > 0 such that the functions

e N\1/p [ Bt AP
Uy (x) = Z (/k w) (/ vl P ) X (ke ak+11) ()
keZ Akt Az

and

e \ VP /g 7
w= S ([0) (foa) ot

kEZ

belong to L"(w).
(iv) The function

Bs) — sup </de>l/p (/j%l—p’)l/p,

belongs to L™ (w), where the supremum is taken over all ¢ and d such that
c<x<d< e

We notice that the equivalence between (ii) and (i) was obtained in [4] as a
corollary of Theorem 1.3 (Theorem 2.5 in [4]).

The last goal of this paper is to search the weighted weak type inequalities. In
this case the results can not be deduced from the corresponding for g(z) = 1. In
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[3], for the case 1 < p < ¢ < oo and for s and h increasing functions, the authors
characterize the weighted weak-type inequality
1
h(b) v
Lo
s(a)

for all A > 0 and all f > 0 by means of the following condition: there exists C' > 0
such that

(1.8) [w({z € (a.b) : Tf(z) > AN)]7 <

> Q

1

h(x) - o’
19X (2,9) llg,005w / v P <C,
s(y)

for all @ < z < y < b such that s(y) < h(z). Here ||f|g,00:w denotes the norm

in the space L% (w) defined by || f|lg,00:w = supyso A (w({z : |f(z)| > )\}))% and
w(E) stands for [, w. This result can be obtained as a particular case of Theorem
3.2 in [3)].

We shall study this problem in the case ¢ < p by assuming that the function g
is monotone. The result is the next one.

Theorem 1.9. Let s and h be increasing continuous functions defined on an in-
terval (a,b) satisfying s(x) < h(x) for x € (a,b). Let g be a positive monotone
function defined on (a,b). Let q, p and r be such that 0 < ¢ < p, 1 < p < o0 and
1/r=1/q—1/p. Let w and v be nonnegative measurable functions defined on (a,b)

and (s(a), h(b)), respectively. The following statements are equivalent.
(i) There exists a positive constant C' such that (1.8) holds, i.e.,

w({z € (a,b) : T e . C " Py 1/p
[w({e € (a,0) : TH() > )] <A<L®f

for all f >0 and all positive real number \.
(i) The function

d 1/p h(c) 1/p’
®(x) =sup | ( inf g(y)) / w / i
yG(C,d) e G(d)

belongs to L™ (w), where the supremum is taken over the numbers ¢ and
d such that a < ¢ < x < d <b and s(d) < h(c).

Observe that condition (iv) in Theorem 1.5 and condition (i¢) in the above the-
orem are given in terms of, essentially, the same function. In fact, if g(z) = 1
then the functions @ in both theorems are the same and the weighted strong type
inequality is characterized by ® € L"(w) while the weighted weak type inequality
is characterized by ® € L™ (w). For the case of the modified Hardy operator
Tf(z) =g(z) [y f, x>0, this theorem was obtained in [7].

The organization of the paper is as follows. In section 2 we shall prove Lemma 1.4
and the relationships among some functions that we need in the proof of Theorem
1.5. Section 3 is devoted to prove Theorem 1.5. In section 4 we shall prove the
Corollaries 1.6 and 1.7, while Theorem 1.9 is proved in Section 5.
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2. TECHNICAL RESULTS

PrOOF OF LEMMA 1.4. In order to prove (a) let us observe first that the continuity
of s and h imply that if a; > a then s(a;) = h(a;) and if b; < b then s(b;) = h(b;).
Now, notice that (aj,b;) N (a;,b;) = 0 and therefore a; < b; < a; < b; or
a; < b; < a; < bj. We may assume without lost of generality that a; < b; < a; < b;.
Then a; > a and b; < b. By the monotonicity of s we have h(b;) = s(b;) < s(a;)
and (a) follows.

Now, we shall prove (b). We may suppose that there is only one connected
component, i.e., = (a,b).

If s(b) < h(a), we choose mg = a, m; = b. The finite sequence {my}r=01
satisfies conditions (7), (i7) and (ii).

Let us suppose now that h(a) < s(b). By the continuity of the functions s and
h, there exist mg, mq such that a < mg < m; < b and s(mq1) = h(mg). If my,
mi,...,my (k > 1) have been chosen in such a way that mg < my < ... < my <b
and s(m;) = h(m;_1) for 1 < i <k, we select my11 as follows:

If s(b) < h(myg)) then myii; = b and the process of selection of my, k > 1,
finishes.

If h(my) < s(b), then we choose my.y1 such that my < mgy1 < band s(mgy1) =
h(my). This number my1 can be chosen since s(my) < h(mg) < s(b).

In this way, we have got {my, }x>0 such that (mg,b) = Ug>o(mk, mi4+1) a.e. This
is obvious if the sequence {my }r>0 is finite. If it is infinite and ¢ = limy_ o My,
the fact that s(mgy1) = h(my) and the continuity of s and h imply s(c) = h(c),
which is possible only if ¢ = b.

In an analogous way, we choose my, for k < 0 verifying (a,mg) = Ug<o(mg, me+1)
a.e. So, we have (a,b) = Ug(my, mi41) a.e. and we are done.

|

In the rest of this section we state and prove some results that we shall use in
the proof of Theorem 1.5. Taking into account the partition given in Lemma 1.4
and calling I; = (my, my,,,), I; () = (my, x) and I]Tfk(x) = (x,my,), we define
the following functions:

d % h(nzf;) A\ P
=3 (1) (7)o
gk dEIIk(:r) z s(d)
> h(c) A\ P
/ ) Ulip XIj,k(x);
s(mchrl)

1
Ga(x) = Z sup (/ w)p
1 .
d P h(m3,) N\ P
Hy(z) = Z sup / w / vt X1, (2);
ik de[;k(a:) m;, s(d)

gk cEI;k (x)
k

. 1
m) P h(c) P
k+1 ’
Hy(z) = E sup </ w) (/ _ vlp> le,k($)~
gk CEI;,C(.”I:) c S(m‘ljg«‘»l)
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() =1{k:0a; < mfc} and Ko(5) = {k : miﬂ < b;}, we also define:

mi 1/p h(t) 1/p’
w22 e ([7+) (L) e
) Jk—1 t S‘(’E)

j keKi(
and
+ 1/p h(z) 1/p'
Ug(l‘)zz Z sup (/ w) </ vl_p/> X1, ().
J keKa(y) Skt \Imig, s(t)

The next lemmas establish some relationships among these functions.

Lemma 2.1. For all A >0 andi=1,2
w({z € (a,b) : Gi(z) > A}) < 2w({z € (a,b) : Yi(z) > A}),
where 11 and o are the functions defined in Theorem 1.5 with g(xz) = 1.

PROOF. We only prove the case ¢ = 1, the other one follows in a similar way. Notice
that

w{z: Gi(z) > A}) = w({z : G1(z) > N\, ¥1(z) > A}) + Zw(Ek,j)>

k,j

where Ey ; = {z € I;; : Gi(z) > A\, ¢1(x) < A}. Clearly, we only have to show
that

w(Ey ;) <w({x € Ik vi(z) > A}).
To prove this inequality it suffices to establish that

(2.2) /ZA w<w{z € Lk :Yi(x) > A})

J
’I’)’L,c

for all z € Ej, ;. Let z € E) ;. Then there exists d, z < d < miﬂ, such that

P 1/p h(mi) 1/1’, d 1/p h(mi) 1/pl
) () e ) ()
mi s(z) z s(d)
z d
/_wg/ w.
my, z

If (2,d) C {z € I : 1(z) > A} then (2.2) follows immediately. Assume now that
the set F' = {t € (2,d) : ¥1(t) < A} is non empty and let « = sup F'. If t € F then

¢ 1/p h(m) / 1/p’ 4 \ /P h(mi) / 1/p'
/ w / 1P <A< / w / 7P .
m; s(t) z s(d)

Since t < d we obtain f:n] w < fzd w and consequently
k

z d
/vwg/ w.
my, t

and since d > z we get that
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z d
/_wg/w.
mj, el

This inequality implies (2.2) since (a,d) C {z € I : ¢1(x) > A} O

Letting t tend to a we get that

The following lemma follows easily from the definitions.

Lemma 2.3. For all x € (a,b) andi=1,2

Hi(z) < ¢i(z) + Gi(2),
where 1 and o are the functions defined in Theorem 1.5 with g(x) = 1.

Lemma 2.4. For all A >0 andi=1,2

w({z : Ui(z) > A\}) < Zw{xH ) > A}).

PRrROOF. We shall prove it only for ¢ = 1. Observe that

w({z : Uy(z) > A} <w({z : Hi(z) > A}) +Z

where E; ,, = {z € I; 1, : Ui(x) > A\, Hi(z) < A}. Tt will suffice to show that
w(Ej ) < w({z € Ijs-1: Ha(z) > A})

If E; ;. = () there is nothing to prove. Assume that F;; # 0 and let z € E} ;. Notice
that k € K1(j), since Uz(2z) > A. Then there exists ¢t € I; ;1 with s(z) < h(t) such

that
z 1/p h(mi) , 1r mi p h(t) , 1/p’
/ w / P <A< / w / 7P .
mJ s(z) t s(z)

k

Since h(t) < h(m}) we get that fzj w < fm’“ w. Observe that from the second
inequality above we get that (¢, mk C{z € Ij x—1 : Ha(x) > A} and therefore

L= g
m’ {z€l; k_1:Hz(x)>A}

for all z € Ej. Then if z / sup Ej, we get that w(E; ) < w{z € Ljr-1 :
Hy(x) > A}) and we are done.
O

Lemma 2.5. For almost every x € (a,b)

2

®(z) <2 [bi(e) + Hi(z) + Ui(w)],

=1

where @, 11 and Y9 are the functions defined in Theorem 1.5 with g(z) = 1.
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PROOF. It is clear that ®(x) < ®;(x) + P2(x), where

s \N1/p [ rhe) s
D (z) = sup </ w) / v!™P
c<z:s(xz)<h(c) c s(x)
d 1/p h(z) 1/p’
Dy(x) = sup / w / i .
2<d:s(d)<h(x) T s(d)

We can prove that ®;(x) < 91(z) + Ha(x) + Ur(x) and Po(x) < o(x) + Hi(x) +
Us(z). As in the above lemmas we only prove the first case since the other one
follows in a similar way. Notice that ®1(z) = ®o(x) =0if 2 ¢ Q = {z € (a,b) :
s(z) < h(z)}. Let us suppose that z € (m, miﬂ). If ¢ < x is such that s(x) < h(c)
and mfc € (aj,b;), then we get that ¢ > mi_l. In such a case, if mi < ¢ < x then

z 1/p h(c) , 1/p’
(/ w) (/ o' ) < (@) + Ha (o),
c s(z)

: J J
and if my_; <c<my,

T 1/p h(c) , 1/p’
([ ) (/ ) <wi(@) + V(@)
c s(z)

obtaining ®;(z) < ¢1(x) + Ha(z) + Ui(x). If mi = aj, then we only have the
possibility mj, < ¢ < x which, as we have just seen, gives the desired inequality.

and

(I
3. PROOFS OoF THEOREM 1.5
It is enough to prove the theorem for g(x) = 1.

(i) = (it): Let {(c;,d;)} be a sequence of disjoint intervals such that s(d;) <
h(c;). Using standard approximation arguments we may assume that

di h(Cl) ,
/ w < oo and / P < .
¢ s(di)

i

Then (it) follows easily from (i) applied to the function

a \" [ phie r/d
fl@)y=1> (/ w) (/(d) Ul_p) VP ()X (s(ds ) (i) (%)

1/p

4 i

h(ci) d; r/pq h(cq,) , T/pq/+1
O B U I 7
s(d;) [¢5) s(d;)

for all x € (¢;,d;).
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(#4) = (i4i): First, notice that (i¢) and Lemma 1.4 (b) imply that there exists

C > 0 such that for every connected component (a;,b;) of the set €, there exists a
sequence {mj } in the required conditions such that

mi+1 r/q h(mi) T/pl
(3.1) ZZ (/ , w> (/ v vlp/> <C.
j & m{c s(midrl)

Now, let us see that 19 € L"(w); the proof of ¢, € L"(w) is very similar. We have

b mi+1
[ e@rutde =3 [ ale) i) o
a Gk
m{c+1 mi+1 r/p h(mi) , r/p
<C _ / w / o opl? w(z) dz
Gk mfc T s(meJrl)
mi+1 mi+1 r/p h(z) , /v
+C / w / v!TP w(z) dz
ik m{c x h(mi)
=I+1I

Performing the integral in I and using (3.1) we see that I is finite. In order to
estimate I1 we shall use a suitable partition of each interval (mj,, mj ) (this idea
is taken from Lemma 1 in [6]). Since we wish to estimate 11, it is clear that we only

fh(m£+1) BEES

Aor Jooi mi,
have to consider intervals (mjy,m;_ ;) such that fmi *w > 0and hmd )

0. By using approximation arguments we may assume that
m{e+1 h(mi+1) -
aj,kz/_ w < oo and Bj7k=/ v TP <oo.
On one hand, we define an increasing sequence {z;} such that z¢ = mi and

m;c+1 i
w=2 Q5 k-
-

On the other hand, we define a decreasing sequence {u/} such that uf, = mfc 41 and
h(uf) ,
h(my,)

Notice that both sequences depend on j, k. Now, we shall select a finite subsequence
{un} of {u} by the following principle: if [u} ;,u}) N {x;} = 0, delete the element
u,; from the sequence {u}}. Denote the subsequence by {u,}. Observe that if

N =min{s:m], <u, <1},

then u/y is the last term that we can choose. Let M be such that up;—1 = uy and
define ups = mj,. Then upr =mj, <up—1 < -+ <wug = mfﬁ_l is a partition of the
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interval [mi,miﬂ]. Let Z(n) = {i : up+1 < 41 < un}. Now, we write

mi ml r/p h(x) v/’
k41 k41 1o
IIj’k:/ v (/ w) </ v p) w(z) dz
Tt m,;+1 T/P h(x) ) T/p/
Z Z / / w /h( . v!P w(z) de.
’H’Lk

n=0 {€Z(n)

For fixed n < M —2 there exists s such that u;+1 = Upt1- Lupyr < 2iq1 < uy then
it follows by the definition of the subsequence that x;41 < u} and up42 < vl .
Furthermore, by the definition of the sequence {u,} we get

/h(mi+1) - h(uy) - h(ugyy) - h(un+1) _
U—Pg/ v_p:4/ v_p§4/ v P
h(m?) h(mi) h(ul o) Pt 2)

k

From these inequalities we get that

, M—-2 h(un41) , /v’ Tit1 karl r/p
II, <477 Z (/ vl_p> Z (/ w w(z) d.
n=0 h(un+2) i€Z(n) v Tl

By the definition of the sequence {x;} we get that

h(un+1) , v/’ Tt r/a
I, <C Z / 1P > / wl| .
h(uny2) ; Tit1

n=0 1€Z(n)
Since
r/q
Tit2 Ti+2
> () <2
i€Z(n) Tit1 i€Z(n) Y Titl

and Ujer(n) (Zit1, Tiv2) C (Unt1,Un—1), Where u_; = ug, we get that

h(un+1) 1 / r/p' wns T/q
I, <C Z / - / w )
h(tn+2) Un+1

Now, since s(up—1) < s(miﬂ) < h(m ) < h(tupye) for all 0 <n < M — 2 we get

that
h(un41) , v/’ Up—1 r/a
I1;, <C Z / P / w
(tn—1) Unt1

=c(z<.>+ > (~>>.

n=2m n=2m+1

Now, summing up in j, k and using (i7) we see that II is finite.

(#3i) = (iv): It is an easy consequence of Lemmas 2.1, 2.3, 2.4 and 2.5.
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(iv) = (1): Taking into account the decomposition given in Lemma 1.4 we get

that
mi+l
[

J
’I’I’Lk

/ =y

3 k

h(z) 1
I f] w
h(my)

h(mk) a m“}c 1
+CZ</ ) (/‘+w>:I+H+HI.
(mk_H) m?

k

In order to estimate I, we ﬁx k and select an increasing sequence {x;};, x; €
[mk,mkH] such that zg = mj, and

s('rrzf;+l) s(xy)
Loy 1=t
s(xs) s(xi—1)

Then, by the properties of the sequence {z;}; and applying Holder’s inequality we

get
m? s(mj_ ) g Tit1 S(mj ) 1
k+1 k41 k+1
T T S A T
my, s(x) P s(x)
smk+1 q Ti41
(L) ()
s(Tit2) q Tit1
(L) ()
(zit1)
S(£i+2) $($z+2) a/v’ Tit1
s (L) (L) )
: s(@it1) s(ziv1) P

3

Then, since $(x;y2) < s(mk_H) < h(my,) < h(z;), applying the Holder inequality
we get that

S(%+2) a/p s(zit2) , a/v’ Tit1
reex(f foor ) (L)
(Tit1) s(@iy1) T

q/p

Tiy2) h(x;) , /e’ Tit1 r/q
(=) (o) (L)
(®it1) ; s(zit1) @

k,i

s(bj) q/p I;) ” T/p/ Tig1 r/q
<C / fPu / (/ w)
s(aj) ki (CE»+1) T

By applying the identity

(/ubf>t:t/ab (/:f>t1f($)dx, it ot>1,

q/r

q/r
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we get that
Tit1 T/q h(zL
(L)
@ S 901+1)
Tip1 en ) r/p’
=r/q (/ w) (z) dx / vl P
s(wit1)
Tit1 11) 7"/])/
< r/q/ (/ w) (/ vlp/> w(z) dx
()

< r/q/ " O"(z)w(x) dx.

i

el ) T ]
(L) ()

J

Then

In a similar way, we can prove that

h(b;) a/p b q/r
I11<C (/( ) fm;) </ D" (z)w(x) dx) .

J

On the other hand, using Holder’s inequality we get that

/p j /p’ j r/q
h(?nk) g h(mJ,) , 7nf€+1
Z Z 1—
(mk+1) S ) my

k (M g1

h(b;) qa/p b; a/r
<C (/S(aj) fpv> (/a Q" (x)w(x) d;v) .

J

q/r

Now, putting together the estimates of I, I and 11, summing up in j and applying
Holder’s inequality we get that

b h(b;) o a/r
[wpwze(s [ m ( / ¢rw> |
a P s(aj) a

Finally, taking into account that the intervals (s(a;), h(b;)) are disjoint (see Lemma
1.4(a)) we have that

/ab[Tf}qw <0 </S:)b) f%) a/p (/ab qﬂw> Q/T7

and we are done.
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4. PROOF OF COROLLARIES 1.6 AND 1.7

PROOF OF COROLLARY 1.6. Observe that the equivalence (i) < (ii) is given
directly by Theorem 1.5. Since ¥ < & then (i44) = (#). To prove the converse,
we only have to realize that {mk}kzo, with mg = 0 and m; = o0, is a sequence
satisfying the conditions in Lemma 1.4 for the functions s(x) = 0 and h(z) = =.
The associated functions ¢; and 3 in Theorem 1.5 are 0 and V¥, respectively.
Therefore, (ii) in Corollary 1.6 means that (i4¢) in Theorem 1.5 holds. Then (iv)
(in Theorem 1.5) holds, but that is the same as (#i7) in Corollary 1.6 and we are
done.

(]

PROOF OF COROLLARY 1.7. We first observe that (iv) in Corollary 1.7 is ex-
actly the same as (iv) in Theorem 1.5 for s(z) = Az, h(x) = Bz and g(z) = 1. So
we already have that (i) < (iv). In what follows, we shall prove (iv) < (i) < (ii4).

(iv) = (i¢) By Fubini’s Theorem
/ 1/7”

oo By z , r/p t r/p
K, = /O w(x)/x 1(/: vlp> (/zw>/dtdz
(/000 w(z) /fz %@T(m) dt dx) "

tox(B /)" ([ @ (@)t deto)) "

The same estimate holds for K. Therefore (iv) implies (ii).

IN

(73) = (dit) Clearly

’
>\k+1

oo 1 [t Bz - r/p t r/p
K, = / 7/ / v P (/ w) w(x) dx dt.
! k:Z_OO A ga \Jae P (=)

Changing the variable (t = \Ftls),

1 > 1 Aty Bx /v AFFlg r/p
K| = / —/ / o' / w w(z) dx ds.
! 1/ k:z—:oo S Jaks < ANktlg z

Since K] < oo we deduce that for almost every s € (1/A,1)

oo AR Bx r/p’ = r/p
(4.1) / / T / w w(z) dr < oo.
k:;oo Aks ANk+1g T

Analogously, from K} < oo we obtain that for almost every s € (1/A,1)

o Aot BAFs r/v T r/p
(4.2) / / o7 </ w> w(z) dr < co.
k;m Aks Az Aks
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Consequently, there exists s € (1/A,1) such that (4.1) and (4.2) holds simultane-
ously, i.e., (éi7) holds.

(43) = (iv) Given t > 0, the sequence mj = At satisfies the conditions in
Lemma 1.4 for the functions s(x) = Az, h(x) = Bz and the unique connected
component of Q@ = {x : s(z) < h(z)} = (0,00). Then (ii7) is nothing but condition
(#41) in Theorem 1.5. It follows that (iv) (in Theorem 1.5) holds, but, as we have
already said, that is exactly the same as (iv) in Corollary 1.7.

O

5. PROOF OF THEOREM 1.9

(#4) = (i): We shall prove the weighted weak type inequality for nonnegative

functions such that fs}zib)) fPv = 1. The general case follows easily. Observe that if

U={xc(ab):Tf(x) >\ &(x) <A/} then
w{z € (a,b) : Tf(x) > A} <w({z € (a,b): ®(z) > X"}) +w(U)
LSS
_— Aq .
Therefore the implication will be proved if we establish that w(U) < )\% Let ,
(aj,b;) and {m]} be as in Lemma 1.4. Then, for fixed j,

(5.1) w(U N (az,b;)) = Y w(U N (mj,mi,)).
k

Ifx € (mi,miﬂ), since s(miﬂ) < h(m]), we get that

s(mf 1) h(mi) h(z)
ri@ =g [ rvew [ peaw [ 8

(z) s(mj, 4 (mi)
It is clear that
w(U N (my, my, )

. . S(TYL{C+1) )
<w({z € (mj,m},,): g(z) /( o1 A/3,®(x) < AT

. h(mi) )
+w({x € (my,mi ) : g(x) /( ) )f > A/3,®(z) < AV}

S(My 11

C h(z) y
+w({x € (my,mi ) : g(z) /h( . f>X/3,8(x) <AV}
— [+ I1+1II. |

. . m?
To estimate [I we write E = {z € (mj,m],,) : g(z) fsﬁin-;i)l)

f >3 <

)\‘1/’"}, a = inf E, f = sup E, and we choose a sequence {z}; | « such that z €

E. We have for every z € F that A/3 < g(x) fh(m-’“) ) f and therefore by the
+1

s(m;,
monotonicity of g

h(my)
A/3 < inf g(z)/ f-

z€(z1,8) (miJrl)
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1/p
Applying the Holder inequality and multiplying by ( f j w) we have

3 1/p 8 1/p h(m;) , 1/17/ h(ﬁL')i) 1/p
A / w < inf g¢g(z2) / w / v!P / fPu .
z 2€(21,8) 2 s(mi ) s(ml )

Now, since s and h are increasing functions, the last term is dominated by

B NYP [ o pney NP himd) 1/p
inf g(2) / w / v!™?P /  fPo
z€(z1,0) 2 s(B) s(mi )
h(m';) 1/17 h(m;) 1/1’
< ®(z) /  fPv < N7 / - fPu .
s(m'17c+1) s(m'17C+1)

B 1 h(mk)
II:/wglim w< — fPu.
E

-\
Z]—Q 2 )\ (m +1)

Therefore,

In order to estimate I, we select an increasing sequence {z;};, z; € (mj,m; ),

S(m£+1) 5(17)
Loy Tl
s(xs) s(xi—1)

Let E; = {z € (zi,zi41) : fs(mk“ f > )\/3,®(x) < X/}, a; = inf E; and
B; = sup E;. Let us choose a sequence {z;}; T B;. Using the monotonicity of g and
the property of the sequence {z;}; we have

s(zit2)
A3 <4 inf g(z)/ f

z€(ai,z1) s(zig1)

such that z¢g = mi and

2 1/p
Applying the Hélder inequality and multiplying by ( I w) we have

21 1/p
([
&7
Z 1/p 3($i+2) 9($z+2) Yp
<4 inf g(z)(/ w) (/ ) ( > .
z€(ai,z1) a; s(zit1) s(wit1)

Now since s and h are increasing functions and s(mk 41) < h(m ) the last term is
dominated by

2 1/p s(m{;Jrl) , v s(xit2) 1/p
g
z2€(a,21) a; s(21) s(is1)
21 1/p h(as) , 1/ s(zit2) 1/p
<4 inf g(z) </ w> / v!P / fPo
z€(ai,z1) o s(z1) s(is1)
s(zit2) L/p s(Tiy2) p
<o) ([ ) s ([T )
s(wit1) s(@iq1)
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Therefore,

zZ] C S(l’¢+2)
/ w < lim w < —/ fPu.
E; 2B J o, Al )

s(xit1

Now summing up in 7 we obtain

In a similar way it is proved that

c [hmig)
ar<— [ g
A Jn(m])
Putting together the estimates for I, I1 and 111 we have
o C phmiy)
WUy < g [ e
Al s(mf;)
Summing in k in the above inequality and putting together with (5.1) we get that
c i)
w(U N (aj,by)) < )\q/s(a;) fPo.

Keeping in mind Lemma 1.4 and summing up in j we obtain the desired inequality.
Therefore (ii) = (i) is completely proved.

(7) = (i1): We have to prove that

1/r
sup A / w < 00.
A>0 {z€(a,b):®(z)>\}

Let A > 0 and Sy = {z € (a,b) : ®(z) > A}. For every z € Sy there exist a, and b,
with @ < a, < z < b, < b such that s(b,) < h(a,) and

b, 1/1’ h(az) 1/17/
A< inf  g(y) / w / o .
y€(az,bz) a. s(b2)

Let K C Sy be a compact set. Then there exist (az,, bz, ), - ., (az,, bz, ) which cover
K. We may assume without lost of generality that Z?Zl X(az, b)) < 2XUk_ (a.. b )"

AN J=1NTEG 0Ty
Let f: (s(a),h(b)) — R defined by

J

P 1/p

1 o
f(.’E) = Z ) h(as,) ] v (x)X(s(sz),h(azj))(‘r)
Jj=1 lnfye(azj ibz;) g(y) fs(szj) vl=p
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If z € (a.,,b,) then we have T'f(2) = g(=) fs}E(ZZ)) f > 1. Therefore, U_, (a.,,b.,) C

{z € (a,b) : Tf(x) > 1}. Applying the weighted weak type inequality we obtain

P q/p
k h(az,)
1 J ’
/ w<C g / P
- . h(az. ,
Ule(azj ’sz) Jj=1 lnfye(azj 7sz) g(y) fs(g;])) vi=p S(sz)
q/p
k 1
=C Z h(a-,)

Jj=1 (infye(azj bs.) g(y))p(fs(sz) vl=p")p=1

INA
xla
M-
m\@

S

q/p

Sg/ w
AT\ Uk (az, b))

j=1 3

The last inequality implies that A ( f ® w)l/r < C for any compact set K C Sy and
we are done.
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