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SUMMARY

We introduce covariance reducing models for studying the sample covariance matrices of a
random vector observed in different populations. The models are based on reducing the sample
covariance matrices to an informational core that is sufficient to characterize the variance hetero-
geneity among the populations. They possess useful equivariance properties and provide a clear
alternative to spectral models for covariance matrices.
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1. INTRODUCTION

We consider the problem of characterizing the behaviour of positive definite covariance matrices
�g = cov(X | g) (g = 1, . . . , h), of a random vector X ∈ R

p observed in each of h populations
identified by the index g. Testing for equality or proportionality (Muirhead, 1982, Ch. 8; Flury,
1987, Ch. 5; Jensen & Madsen, 2004) may be useful first steps, but lacking such a relatively
simple characterization there arises a need for more flexible methodology. Perhaps the best-
known methods for studying covariance matrices stem from Flury’s (1987) spectral model of
partial common principal components,

�g = ��1,g�
T + �g�2,g�

T
g , (1)

where �1,g > 0 and �2,g > 0 are diagonal matrices and (�, �g) is an orthogonal matrix with
� ∈ R

p×q , q � p − 1 (g = 1, . . . , h). The linear combinations �T X are then the q principal
components that are common to all populations. This model reduces to Flury’s (1984) common
principal component model when q = p − 1.

Situations can arise where the �gs have no common eigenvectors, but have cardinality equal
sets of eigenvectors that span the same subspace. This possibility is covered by subspace models.
Flury’s (1987) common space models do not require the eigenvector sets to have the largest
eigenvalues, while the common principal component subspace models studied by Schott (1991)
do have this requirement. Schott’s rationale was to find a method for reducing dimensionality
while preserving variability in each of the h populations. Schott (1999, 2003) developed an
extension to partial common principal component subspaces that targets the sum of the subspaces
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spanned by the first few eigenvector of the �gs. Boik (2002) proposed a comprehensive spectral
model for covariance matrices that allows the �gs to share multiple eigenspaces without sharing
eigenvectors and permits sets of homogeneous eigenvalues.

Houle et al. (2002) and Mezey & Houle (2003) considered the suitability of spectral methods
for studying covariance matrices that arise in evolutionary biology. They concluded that Flury’s
principal component models perform as might be expected from a statistical perspective, but
they were not encouraging about their merits as an aid to evolutionary studies. Judging from
their simulations, their misgivings may stem partly from the fact that spectral methods are
not generally invariant or equivariant. For a nonsingular matrix A ∈ R

p×p, the transformation
�g → A�g AT can result in new spectral decompositions that are not usefully linked to the
original decompositions. For example, common principal components may not be the same or of
the same cardinality after transformation.

We propose in § 1 a class of new covariance reducing models as an alternative to spectral models
for studying a collection of covariance matrices. Their relationship with some spectral models is
discussed in § 2·3. Estimation is considered in § 3. Inference methods for an underlying dimension
and for contributing variables are considered in §§ 5 and 6. Section 7 contains illustrations of
how the proposed methodology might be employed in practice. Proofs of key results are given in
the Appendix.

The following notation will be used in our exposition. For positive integers p and q, Rp×q stands
for the class of real matrices of dimension p × q, and S

p×p denotes the class of symmetric p × p
positive definite matrices. For A ∈ R

p×p and a vector subspace S ⊆ R
p, AS ≡ {Ax : x ∈ S}. A

basis matrix for a subspace S is any semi-orthogonal matrix whose columns are a basis for S. For
a semi-orthogonal matrix A ∈ R

p×q , q � p, the matrix A0 denotes any completion of A so that
(A, A0) ∈ R

p×p is an orthogonal matrix. For B ∈ R
p×q , SB ≡ span(B) denotes the subspace of

R
p spanned by the columns of B. If B ∈ R

p×q with rank q and � ∈ S
p×p, then the projection onto

SB relative to � has the matrix representation PB(�) ≡ B(BT �B)−1 BT �. We use PS to indicate
the projection onto the subspace S in the usual inner product. The orthogonal complement S⊥ of
a subspace S is constructed with respect to the usual inner product, unless indicated otherwise. To
describe the distribution of a normal matrix Z ∈ R

p×q , we follow Muirhead (1982, p. 79) and use
the notation Z ∼ N (M, V ) to mean vec(Z T ) ∼ N { vec(MT ), V }, where “ vec” is the operator
that maps a matrix to a vector by stacking its columns. The product of the nonzero eigenvalues
of a positive semidefinite symmetric matrix A is indicated by |A|0.

2. POPULATION RESULTS

2·1. Covariance reductions

For samples of size ng + 1 with ng � p, let �̃g denote the sample covariance matrix from
population g computed with divisor ng and let Sg = ng�̃g (g = 1, . . . , h). Random sampling
may or may not be stratified by population, but in either case, we condition on the observed
sample sizes. Our general goal is to find a semi-orthogonal matrix α ∈ R

p×q , q < p, with the
property that for any two populations j and k

S j | (αT S jα = B, n j = m) ∼ Sk | (αT Skα = B, nk = m). (2)

In other words, given αT Sgα and ng, the conditional distribution of Sg must not depend on g. In
this way, we may reasonably say that, apart from differences due to sample size, the quadratic
reduction R(S) = αT Sα : S

p×p → S
q×q is sufficient to account for the heterogeneity among the

population covariance matrices. Recalling that α0 denotes a completion of α, (2) does not require
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Covariance reducing models: an alternative to spectral modelling 801

αT
0 Sgα0 to be constant stochastically, but this must be so conditionally given the sample size and

αT Sgα. The matrix α is not identified since, for any full rank A ∈ R
q×q , (2) holds for α if and only

if it holds for αA. Consequently, (2) is a requirement on the subspace Sα rather than on its basis
α. Our restriction to orthonormal bases is for convenience only. For any α satisfying (2), we will
call Sα a dimension reduction subspace for the sample covariance matrices �̃g (g = 1, . . . , h).
The smallest dimension reduction subspace can be identified and estimated, as discussed in §§ 2·2
and 3. This formulation does not appeal to variability preservation or spectral decompositions for
its motivation. Since it requires the conditional distribution of Sg | (αT Sgα, ng) to be independent
of g, it seems more demanding than approaches like (1) that model just the population covariance
matrices �g.

To make (2) operational, we assume that the Sgs are independently distributed as Wishart
random matrices, Sg ∼ W (�g, p, ng), which is a common assumption in spectral modelling (see,
for example, Flury, 1987; Boik, 2002). The sum of squares matrices Sg can then be characterized
as Sg = Z T

g Zg, with Zg ∈ R
ng×p and Zg ∼ N (0, Ing ⊗ �g). Therefore, we have the following

two results: For g = 1, . . . , h,

Zg | (Zgα, ng) ∼ N
[
Zg Pα(�g), Ing ⊗ �g{Ip − Pα(�g)}

]
,

Sg | (Zgα, ng) ∼ W
[
�g{Ip − Pα(�g)}, p, ng; PT

α(�g) Z T
g Zg Pα(�g)

]
, (3)

where W with four arguments describes a noncentral Wishart distribution (Eaton, 1983, p.
316). From (3), we see that the distribution of Sg | (Zgα, ng) depends on Zgα only through
αT Z T

g Zgα = αT Sgα. It follows that the conditional distribution of Sg | (αT Sgα, ng) is as given
in (3), and thus Sα is a dimension reduction subspace if and only if, in addition to ng

(a) Pα(�g), (b) �g
{

Ip − Pα(�g)
}

(4)

are constant in g. With normal populations, cov(X | αT X, g) = �g{Ip − Pα(�g)} (Cook, 1998,
p. 131). Thus, condition (4b) requires that cov(X | αT X, g) be nonrandom and constant in g. The
conditional means E(X | αT X, g) = E(X | g) + PT

α(�g){X − E(X | g)} need not be constant in g,

but condition (4a) says that the centered means E(X | αT X, g) − E(X | g) must all lie in the same
subspace S�α.

The following proposition, which does not require Wishart distributions, gives conditions on
Sα that are equivalent to (4). Let � = ∑h

g=1 fg�g, where fg = ng/n and n = ∑h
g=1 ng.

PROPOSITION 1. Let α ∈ R
p×q , q � p, be any basis matrix for S ⊆ R

p. Condition (4) and the
following four statements are equivalent. For g = 1, . . . , h,

(i) �−1
g α0 = �−1α0;

(ii) the following two conditions hold Pα(�g) = Pα(�), �g{Ip − Pα(�g)} = �{Ip − Pα(�)};
(iii) �g = � + PT

α(�)(�g − �)Pα(�);

(iv) �−1
g = �−1 + α{(αT �gα)−1 − (αT �α)−1}αT .

Proposition 1 characterizes subspaces rather than particular bases since it holds for α if and
only if it holds for any basis matrix for Sα . Its first conclusion implies that �−1/2S⊥

α is an
eigenspace with unit eigenvalue of each of the standardized covariance matrices �−1/2�g�

−1/2.
This provides a connection with Flury’s models of common principal components, but the link is
in terms of the standardized variables �−1/2 X rather than the original variables X . When h = 2,
conclusion (i) of Proposition 1 is equivalent to �2�

−1
1 α0 = α0, which is related to Flury’s (1983)

proposal to use the eigenvectors of �−1
1 �2 to study the differences between two covariance
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matrices. A broader relationship with Flury’s models in the scale of X is provided in § 2·3. The
second conclusion gives the constant values of the matrices in condition (4) and the final two
conclusions give representations for �−1

g and �g.

2·2. Central subspaces

There may be many dimension reduction subspaces and one with minimal dimension is of
special interest. When the intersection of all dimension reduction subspaces is itself a dimension
reduction subspace, we call it the central subspace (Cook, 1998, 1994) and denote it by C, with d =
dim(C). If the Sgs are independent Wishart matrices then Sα is a dimension reduction subspace if
and only if it satisfies Proposition 1. This equivalence together with the next proposition implies
the existence of C when the Sgs are Wishart.

PROPOSITION 2. If S and T are subspaces that satisfy Proposition 1, then S ∩ T also satisfies
Proposition 1.

The central subspace serves to characterize the minimal reduction. It is equivariant under
linear transformations: if C is the central subspace for �̃g then A−TC is the central subspace for
A�̃g AT , where A ∈ R

p×p is nonsingular. This distinguishes the proposed approach from spectral
methods, which do not have a similar property. The parameter space for C is a d-dimensional
Grassmann manifold G(d,p) in R

p; a single subspace in G(d,p) is uniquely determined by choosing
d(p − d) real numbers (Chikuse, 2003).

We will refer to models characterized by the conditions of Proposition 1 as covariance reducing
models. Part (iii) of Proposition 1 shows that �g depends only on �, C and the coordinate matrices
αT �gα for g = 1, . . . , h − 1, with the parameter space being the Cartesian product of S

p×p,
Gd,p and h − 1 repeats of S

d×d . Consequently, the total number of reals needed to fully specify an
instance of the model is p(p + 1)/2 + d(p − d) + (h − 1)d(d + 1)/2. This count will be used
later when determining degrees of freedom for likelihood-based inference.

2·3. Relationships with spectral models

Let �∗ ∈ R
p×(p−q) be a basis matrix for span(�g) in model (1). Then �T X and �T

∗ X
are independent within each population, but the conditional covariance cov(�T X | �T

∗ X, g) =
cov(�T X | g) = �T �g� need not be constant in g. In the covariance reducing model, αT

0 X and
αT X may be dependent but the conditional covariance cov(αT

0 X | αT X, g) must be constant in g.
Because of this fundamental difference in structure, it seems difficult to find direct connections
between the methods. However, a relationship can be found by using the reducing subspaces of
�. Since � ∈ S

p×p, a subspace S of R
p is a reducing subspace of � if and only if �S = S

(Conway, 1990, p. 36). For example, the subspace spanned by any set of eigenvectors of � is a
reducing subspace of �.

Let E�(C) denote the intersection of all reducing subspaces of � that contain C and let
u = dim{E�(C)}, p � u � d. The subspace E�(C), which is called the �-envelope of C (Cook
et al., 2007), provides a unique upper bound on C based on the reducing subspaces of �. Since
E�(C) is itself a reducing subspace of �, we have the general form � = γ 0V0γ

T
0 + γ V γ T ,

where V0 ∈ S
(p−u)×(p−u), V ∈ S

u×u and γ ∈ R
p×u is a basis matrix for E�(C). Substituting

this relationship into identity (iii) of Proposition 1 and simplifying we find that �g can be
parameterized in terms of the envelope E�(C) as

�g = γ 0 M0γ
T
0 + γ Mgγ

T , (5)

for some M0 ∈ S
(p−u)×(p−u) and Mg ∈ S

u×u (g = 1, . . . , h). The spectral properties of this
envelope model (5) can be represented explicitly by using the spectral decompositions
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Covariance reducing models: an alternative to spectral modelling 803

M0 = v0 D0v
T
0 and Mg = vg Dgv

T
g , where v0 and vg are orthogonal matrices, and D0 and Dg are

diagonal matrices. Let η0 = γ 0v0 and ηg = γ gvg. Then (η0, ηg) is an orthogonal matrix and

�g = η0 D0η
T
0 + ηg Dgη

T
g . (6)

This relationship shows that all eigenvectors of �g can be constructed to be in either E�(C)
or E⊥

� (C). The envelope model (5) is parameterized in terms of E�(C) ∈ G(u,p), and it uses a
total of u(p − u) + (p − u)(p − u + 1)/2 + u(u + 1)h/2 real parameters. Representation (6) is
a reparameterization in terms of the eigenvectors of �g and their parameter space is a Steifel
manifold. More importantly, (6) can be seen as an instance of Flury’s (1987) partial common
principal components model (1), while (5) is an instance of his common space model. The full
versions of Flury’s models allow M0 and D0 to depend on g, while the present formulation does
not because of the sufficiency requirement (2). Additionally, (6) requires no relationship between
D0 and Dg so the common components ηT

0 X can be associated with the largest or smallest
eigenvalues of �g. This discussion leads to the conclusion that spectral models can be structured
to provide an upper bound on C.

For example, consider the structure

�g = Ip + σ 2
g ααT (g = 1, . . . , h), (7)

where α ∈ R
p, αT α = 1, the σgs are distinct, and E�(C) = C = Sα. This setting can also

be described by Flury’s common principal component model, or his common space model.
If the σ 2

g s are sufficiently large, then αT X may serve as a variance preserving reduction in
the sense of Schott (1991). If we perform a nonsingular transform A ∈ R

p×p and work in the
scale of �∗

g = A�g AT , then the corresponding central subspace is C∗ = A−TC, which is still
one dimensional. However, depending on the choice of A, the �∗ = ∑h

g=1 fg�
∗
g envelope of C∗

may be R
p, and the �∗

gs may share no eigenspaces other than R
p.

If we modify (7) to obtain �∗
g = A + σ 2

g ααT , where A ∈ S
p×p, then C∗ = A−1C is still one-

dimensional, but again the �∗
gs may share no eigenspaces other than R

p, depending on A. In
short, covariance reducing models and the various spectral approaches can target the same or
very different population quantities.

3. ESTIMATION OF C WITH d SPECIFIED

The following proposition summarizes maximum likelihood estimation when the Sgs are
Wishart matrices and d = dim(C) is specified. The choice of d is considered in § 5.

PROPOSITION 3. The maximum likelihood estimator of � is its sample version �̂ = ∑h
g=1 fg�̃g.

The maximum likelihood estimator Ĉ of C maximizes over S ∈ G(d,p) the loglikelihood function

Ld (S) = c − n

2
log | �̂ | + n

2
log | PS�̂PS | 0 −

h∑
g=1

ng

2
log | PS�̃g PS | 0, (8)

where c is a constant depending only on p, ng and �̃g (g = 1, . . . , h). The maximum likelihood
estimator �̂g of �g is constructed by substituting a basis matrix α̂ for Ĉ, �̃g and �̂ for the
corresponding quantities on the right of the equation in part (iii) of Proposition 1.

If C = R
p (d = p), then the loglikelihood (8) reduces to the usual loglikelihood for fitting

separate covariance matrices to the h populations. If C is equal to the origin (d = 0), then
(8) becomes the loglikelihood for fitting a common covariance matrix to all populations. This
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Fig. 1. (a) The lower, middle and upper curves represent the lower quartile, median and upper quartile of the
cosine of the angle between α̂ and C with normal errors. (b) Median of the cosine of the angle between M̂ and
M for normal, t5, χ 2

5 and uniform (0, 1) errors. Circles mark the curve for normal errors. The other errors match
so well that their curves were not marked.

corresponds to deleting the two terms of (8) that depend on S. The following corollary confirms
the invariance of the estimated reduction R̂ under full-rank quadratic transformations.

COROLLARY 1. If A ∈ R
p×p is full rank and R̂(S) = α̂T Sα̂, then R̂(AS AT ) = γ̂ T AS AT γ̂ ,

with Sγ̂ = A−TS α̂.

To illustrate basic properties of estimation, we simulated observations from model (7) with
p = 6, α = (0, . . . , 0, 1)T , h = 3, σ1 = 1, σ2 = 4 and σ3 = 8. The use of the identity matrix Ip

in the construction of �g was for convenience only since the results are invariant under full-rank
transformations, as indicated in Corollary 1. The �̃gs were constructed using observed vectors
X = ε + σgαε generated from independent vectors (εT , ε) of independent standard normal vari-
ates, with ε ∈ R

p and ε ∈ R
1. The ε term in X represents the component that is stochastically

the same in all populations and the other term represents the population-specific component.
Maximization of the loglikelihood (8) was carried out using computer code developed from Liu,
et al. (2004). Figure 1(a) shows the sample quartiles from 400 replications of the cosine of the
angle between Ĉ and C for several sample sizes and normal errors. The method seems to respond
reasonably to increasing sample size.

4. CENTRAL MEAN SUBSPACES

As represented in Proposition 1, the assumption of Wishart distributions for the Sgs implies
informative and rather elegant equivariant characterizations of the covariance matrices �g in terms
of a basis matrix α for C. While a straightforward connection between C and Proposition 1 may
be problematic without Wishart distributions, its equivalences can be used without distributional
assumptions as a model for the population covariance matrices �g, just as spectral decompositions
like (1) have been used. Let M denote the intersection of all subspaces that satisfy Proposition 1.
It follows from Proposition 2 that M also satisfies Proposition 1 and, consequently, it is a well-
defined parameter that can be used as an inferential target. We refer to M as the central mean
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Covariance reducing models: an alternative to spectral modelling 805

subspace since its role is to characterize the structure of the conditional means E(�̃g) = �g. If
the Sgs are Wishart matrices, then C = M.

The following proposition shows that without Wishart distributions, the likelihood (8) still
provides a Fisher consistent estimator of M. Consequently, (8) can be used as a distribution-free
objective function with the goal of modelling �g in terms of the equivalences of Proposition 1.

PROPOSITION 4. Let d = dim(M). Then for S ∈ G(d,p), Ld (S)/n converges to

Kd (S) = c + (1/2) log | PS�PS |0 −
h∑

g=1

( fg/2) log | PS�g PS |0 (9)

and M = arg max Kd (S), where c is a constant not depending on S.

Figure 1(b) shows the median over 400 replications of the cosine of the angle between M̂ and
M = Sα for normal, t5, χ2

5 and uniform (0, 1) error (εT , ε) distributions with simulation model
(7) and parameter values stated in § 3. The results in Fig. 1(b) match so well that the individual
curves were not marked. This, along with other unreported simulations, suggests that a normal
error distribution is not essential for the likelihood-based objective function (8) to give good
results for the estimation of M.

In §§ 5 and 6, we consider methods for inference about d and tests for active predictors. These
methods are developed assuming Wishart distributions, and then applied in simulations with
non-Wishart distributions to gain insights into their behaviour in such cases.

5. CHOICE OF d

In this section, we consider ways in which d = dim(C) can be chosen in practice, distinguishing
the true value d from value d0 used in fitting.

The hypothesis d = d0 can be tested by using the likelihood ratio statistic �(d0) = 2{L̂ p −
L̂d0}, where L̂ p denotes the value of the maximized loglikelihood for the full model with d0 = p
and L̂d0 is the maximum value of the loglikelihood (8). Following standard likelihood theory, under
the null hypothesis �(d0) is distributed asymptotically as a chi-squared random variable with
degrees of freedom (p − d){(h − 1)(p + 1) + (h − 3)d}/2, for h � 2 and d < p. The statistic
�(d0) can be used in a sequential testing scheme to choose d. Using a common test level and
starting with d0 = 0, choose the estimate d̂ of d as the first hypothesized value that is not rejected.
The test for d = 0 is the same as Bartlett’s test for equality of the �gs, but without his proportional
correction of �(0) (Muirhead, 1982, Ch. 8). This method for dimension selection is common in
the dimension reduction literature (Cook, 1998, p. 205).

A second approach is to use, for instance, the Akaike or Bayesian information crite-
rion. The Bayesian information criterion is consistent while Akaike’s is minimax-rate optimal
(Burnham & Anderson, 2002). In this approach, d̂ is selected to minimize over d0 the information
criterion I C(d0) = −2 L̂d0 + h(n)g(d0), where g(d0) is the number of parameters to be estimated,
and h(n) is equal to log n for the Bayesian criterion and 2 for Akaike’s.

We use the sequential testing method to illustrate that useful inference for d is possible,
without recommending a particular method. There are many methods that could be used to
select d and a comprehensive comparison is outside the scope of this article. Table 1 gives the
empirical distribution of d̂ from 200 replications from the simulation model described in § 3. The
first column labelled “Law” gives the distribution of the error (εT , ε). For normal distributions
d = dim(C) = dim(M), while for the nonnormal distributions d = dim(M). The second column
gives the common intra-population sample size. All tests were performed with constant nominal
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806 R. D. COOK AND L. FORZANI

Table 1. Empirical distribution of d̂ in percent

d̂
Law ng 0 1 2 3 4
N 15 13·0 75·5 8·0 3·0 0·5
N 20 2·5 94·0 3·0 0 0
N 30 0·5 95·0 2·0 1·5 0·5
N 40 0 99·0 1·0 0 0
U 40 0 100 0 0 0
χ2

5 40 0 88·5 9·5 2 0
t10 40 0 94·0 5·5 0·5 0
t7 40 0 82·0 15·0 2·5 0·5

N , standard normal; U , uniform (0, 1).

level 0·01. The relatively poor showing at ng = 15 with normal errors seems to be due to the
power of Barlett’s test at this small sample size. The method responded well to increasing sample
size and the expected asymptotic results were observed at ng = 40 with normal errors. Uniform
errors did not have a notable impact on the results, but skewed and heavy-tailed errors resulted
in more overestimation than expected with normal errors. On balance, we regard the sequential
method as useful, although the development of robust methods for dim(M) might mitigate
overestimation due to skewed and heavy-tailed errors.

6. TESTING VARIATES

With d specified a priori or after estimation, it may be of interest in some applications to
test the hypothesis that a selected subspace H of dimension k � p − d is orthogonal to C in the
usual inner product. The restriction on k is to ensure that the dimension of C is still d under
the hypothesis. The hypothesis PHC = 0 can be tested using a standard likelihood test. The test
statistic is �d (H) = 2(L̂d − L̂d,H), where L̂d is the maximum value of the loglikelihood (8), and
L̂d,H is the maximum value of (8) with C constrained by the hypothesis. Under the hypothesis
PHC = 0, the statistic �d (H) is distributed asymptotically as a chi-squared random variable with
dk degrees of freedom.

The maximized loglikelihood L̂d,H can be obtained by maximizing over S ∈ G(d,p−k) the
constrained loglikelihood

Ld (S) = c − n

2
log |�̂| + n

2
log |PS H T

1 �̂H1 PS |0 −
h∑

g=1

ng

2
log |PS H T

1 �̃g H1 PS |0, (10)

where H1 ∈ R
p×(p−k) is a basis matrix for H⊥. When testing that a specific subset of k variables

is not directly involved in the reduction, the role of H1 in (10) is to select the parts of �̂ and �̃g

that correspond to the other variables.
Table 2 shows the empirical levels based on 1000 simulations of nominal 1, 5 and 10% tests

of the hypothesis that the first variate does not contribute directly to the reduction in model
(7) with α = (0, . . . , 0, 1)T , H = span{(1, 0, . . . , 0)T }. For the three nonnormal distributions,
the hypothesis tested is PHM = 0. The agreement seems quite good for large samples, but
otherwise there is a clear tendency for the actual level to be larger than the nominal, a tendency
that is made worse by skewness or heavy tails. Use of this test may be problematic when the
sample size is not large and very accurate test levels are required. However, in some settings it
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Table 2. Simulation results on the level of the variate test using the likelihood
ratio statistic �d(H)

Law p ng 1% 5% 10%
N 6 20 3·0 8·6 15·2
N 6 40 1·5 5·8 10·9
N 10 50 2·2 8·9 14·6
N 10 70 1·4 5·4 11·2
N 15 80 1·3 6·5 13·6
N 15 120 1·2 5·6 10·7
U 10 70 1·6 5·9 13·0
χ 2

5 10 70 1·6 6·8 12·3
t7 10 70 1·8 7·3 13·0

N , standard normal; U , uniform (0, 1).

may be sufficient to have the actual level between 1 and 5%, and our results indicate that this can
be achieved by testing at the nominal 1% level.

7. GARTER SNAKES EXAMPLE

Phillips & Arnold (1999) used Flury’s hierarchy of principal component models to study ge-
netic covariance matrices for six traits of female garter snakes in coastal and inland populations of
northern California. We illustrate aspects of the proposed methodology using the same covariance
matrices. The sample sizes for the coastal and inland populations are 90 and 139, so we expect the
large-sample methods proposed here to be reasonable. Conclusion (iii) of Proposition 1 implies
that the difference �g − � will be of rank d (g = 1, . . . , h). The eigenvalues of �̃g − �̂ for the
inland population are (0·69, 0·14, 0·09, 0·041, −0·10, −0·82). The magnitude of these values
suggests that d = 2 is plausible. The tests of d = 0, d = 1 and d = 2 resulted in the nominal
p-values 4·3 × 10−9, 0·007 and 0·12, yielding the sequential estimate d̂ = 2. The estimates
based on the Bayesian and Akaike information criteria were d̂ = 1 and d̂ = 3. The estimate
d̂ = 2 is also reasonable under Akaike’s criterion since the values of its objective function for
d0 = 2 and d0 = 3 were quite close.

Phillips & Arnold (1999) concluded that the partial common principal component model (1)
with q = 4 common components is likely the best. We use the envelope (5) to contrast this
finding with that based on the covariance reducing model. Using the notation of Proposition 3
and adapting the derivation of (8), it can be shown that the maximum likelihood estimator Ê of
E�(C) maximizes over S ∈ G(u,p) the loglikelihood function

Lu(S) = c − n

2
log |�̂| − n

2
log | PS�̂

−1
PS | 0 −

h∑
g=1

ng

2
log | PS�̃g PS | 0, (11)

where u = dim{E�(C)}. The maximum likelihood estimators of M0 and Mg are M̂ = γ̂ T
0 �̂γ̂ 0

and M̂g = γ̂ T �̃gγ̂ , where γ̂ is a basis matrix for Ê (g = 1, . . . , h). The tests of u = 1, u = 2
and u = 3 based on (11) gave the nominal p-values 0·0088, 0·03 and 0·17. Accordingly, it
seems reasonable to conclude that u is either 2 or 3. At u = 2 Flury’s spectral model (1), the
covariance reducing model and the envelope model (5) can all agree with u = d = p − q = 2,
span(�) = span(α0) = span(γ 0) and �1,g a constant in g. At u = 3 and d = 2 the models can
no longer agree since the envelope model requires that we condition on an additional linear
combination.
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To emphasize the potential differences due to invariance properties, we re-estimated the di-
mensions d and u after transforming each sample covariance matrix as �g �−→ A�g AT , where
A ∈ R

6×6 was generated as a matrix of standard normal variates. As the theory predicted, the
transformation had no effect on the estimated dimension d̂ of the covariance reducing model, but
the estimated dimension of the envelope model was û = 6.

We continue this illustration using the covariance reducing model with d = 2, so two linear
combinations of the traits are needed to explain differences in variation. In units of the observed
trait standard deviations, the estimated direction vectors that span Ĉ are α̂1 = (0·13, 0·31,

−0·17, −0·91, 0·04, 0·17)T and α̂2 = (0·07, −0·13, −0·86, 0·33, −0·13, 0·34)T , where
the trait order is as given by Phillips & Arnold (1999, Table 1). These results suggest that the third
and fourth traits are largely responsible for the differences in the covariance matrices. The variate
test of § 6 applied to each trait individually resulted in the p-values (0·39, 0·24, 1·6 × 10−6, 2·
4 × 10−9, 0·52, 0·01), which agrees with the qualitative impression from the standardized span-
ning vectors. Testing the joint hypothesis that only the third and fourth traits are involved in the con-
ditioning resulted in a p-value of 0·04. These and other unreported results indicate that the third
and fourth traits are largely responsible for the differences between the genetic covariance matrices
at the two locations. The sixth trait may also contribute to the differences but its relevance is not as
clear. The overall indication then is that only the third and fourth rows of α are nonzero. We have
illustrated estimation of a basis matrix α for C since that is needed prior to determining all other pa-
rameter estimates, as shown in Proposition 3. The analysis could now continue in a variety of ways.

8. DISCUSSION

We proposed a new point of view for the study of covariance matrices, gave first Wishart
methodology and included some results on the behaviour of that methodology in non-Wishart
settings. Our most ambitious goal is to reduce the sample covariance matrices to an informational
core αT �̃gα that is sufficient to characterize the variance heterogeneity among the populations.
The invariant and equivariant properties of covariance reducing models seem particularly appeal-
ing. Nevertheless, if substantive questions in application directly involve the spectral structures
of the covariance matrices, then spectral modelling would of course be appropriate. On the other
hand, if such questions are not spectral specific, then covariance reducing models may be a useful
alternative. Both approaches could be helpful in exploratory analyses.

There are many open questions and directions for future study. Of immediate interest is the
development of methodology for estimating C that does not require Wishart distributions, but
perhaps constrains some of the conditional moments of Sg | (αT Sgα, ng). Standard errors of
identified functions of the parameters can be determined from the limiting distributions of the
estimates. With b ∈ R

p and Pα(�)b = 0, quantities of the form �gb are constant in g and may
be of interest in some studies. In such cases, it might be worthwhile to consider inferences
conditional on αT Sgα = B (g = 1, . . . , g). There may be new ideas and methodology for the
study of correlation matrices that parallels those expressed here for covariance matrices. For
instance, the equivalences of Proposition 1 still hold if we reinterpret �g as a correlation matrix
and the likelihood function (8) will still give a Fisher consistent estimator of the central mean
subspace for correlation matrices.
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APPENDIX

Proofs

The first of the following two preliminary propositions was given by (Rao, 1973, p. 77).

PROPOSITION A1. Let B ∈ S
p×p and let α ∈ R

p×d be a semi-orthogonal matrix. Then

α(αT Bα)−1αT + B−1α0

(
αT

0 B−1α0

)−1
αT

0 B−1 = B−1. (A1)

As a consequence, we have
(
αT

0 B−1α0

)−1 = αT
0 Bα0 − αT

0 Bα(αT Bα)−1αT Bα0, (A2)

Ip − PT
α(B) = Pα0(B−1), (A3)

−(
αT

0 B−1α0

)−1(
αT

0 B−1α
) = (

αT
0 Bα

)
(αT Bα)−1. (A4)

PROPOSITION A2. Suppose that B ∈ S
p×p and α ∈ R

p×d is a semi-orthogonal matrix. Then |αT
0 Bα0| =

|B||αT B−1α|.
Proof of Proposition A2. Let K ∈ R

p×p with first block of rows (Id , α
T Bα0) and second block of

rows (0, αT
0 Bα0). Since (α, α0) is an orthogonal matrix,∣∣αT

0 Bα0

∣∣ = |(α, α0)K (α, α0)T | = |ααT + ααT Bα0α
T
0 + α0α

T
0 Bα0α

T
0 |

= |B − (B − Ip)ααT | = |B||Id − αT (Ip − B−1)α| = |B||αT B−1α|. �

Proof of Proposition 1. We will show that (i) ⇒ (4) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i). We begin by showing
that condition (i) ⇒ (4). By applying (A3) with B = �g

Ip − PT
α(�g) = α0

(
αT

0 �−1
g α0

)−1
αT

0 �−1
g = C1 (A5)

{
Ip − PT

α(�g)

}
�g = α0

(
αT

0 �−1
g α0

)−1
αT

0 = C2, (A6)

where C1 and C2 are constant matrices since αT
0 �−1

g is constant by hypothesis (i).

If (4) is true, then (A5) and (A6) must hold. This implies that αT
0 �−1

g is constant and, thus, equal to

αT
0 �−1. Conclusion (ii) follows from (4) by application of (A3) with B = �.
Conclusion (iii) follows from (ii) by replacing Pα(�g) with Pα(�) in the second condition of (ii) and

rearranging terms �g − � = (�g − �)Pα(�) = PT
α(�)(�g − �)Pα(�)·

Conclusion (iv) follows from (iii) by direct multiplication. Finally, multiplying (iv) on the right by α0

immediately gives condition (i). �

Proof of Proposition 2. Let α and β be two semi-orthogonal matrices that satisfy (4). Then αT
0 �−1

g

and βT
0 �−1

g are constant, and consequently (α0, β0)T �−1
g is constant. This implies that (S⊥

α + S⊥
β )⊥ is

a dimension reduction subspace. The conclusion follows since S⊥
α + S⊥

β = (Sα ∩ Sβ)⊥ (Greub, 1981,
p. 74). �

The following characterization facilitates finding the maximum likelihood estimators for the parameters
when α satisfies (4a) and (4b).

PROPOSITION A3. R(S) = αT Sα is a sufficient reduction if and only if the following three conditions
are satisfied for g = 1, . . . , h:

 at N
anyang T

echnological U
niversity on June 16, 2015

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


810 R. D. COOK AND L. FORZANI

1. (αT
0 S−1

g α0)−1 ∼ W {(αT
0 �−1α0)−1, p − d, ng − d};

2. αT Sgα0 | αT Sgα ∼ N {−αT Sgα(αT �−1α0)(αT
0 �−1α0)−1, αT Sgα ⊗ (α0�

−1α0)−1};
3. αT Sgα ∼ W (αT �gα, d, ng)

and (αT
0 S−1

g α0)−1 and (αT Sgα0, α
T Sgα) are stochastically independent.

Proof of Proposition A3. Using (A2), it follows that (Eaton, 1983, Propositions 8·1 and 8·7),

(
αT

0 S−1
g α0

)−1 ∼ W
{(

αT
0 �−1

g α0

)−1
, p − d, ng − d

}
αT Sgα0 | αT Sgα ∼ N

{
αT Sg Pα(�g)α0, α

T Sgα ⊗ (
α0�

−1
g α0

)−1}
αT Sgα ∼ W (αT �gα, d, ng),

and that (αT
0 S−1

g α0)−1 and (αT Sgα0, α
T Sgα) are stochastically independent. From Proposition 1,

αT
0 �−1

g = αT
0 �−1 and Pα(�g) = Pα(�). The conditions of the proposition follow by using (A4) to re-express

Pα(�)α0. �

Proof of Proposition 3. Transforming Sg to (α, α0)T Sg(α, α0), we have from Proposition A3 that the
loglikelihood is the sum of the loglikelihoods arising from the densities of (αT

0 S−1
g α0)−1, αT Sgα0 | αT Sgα

and αT Sgα. Let D = (αT
0 �−1α0)−1 and H = D(αT

0 �−1α).
For any semi-orthogonal matrix α ∈ R

p×d , the transformation of � ∈ S
p×p to (α, α0)T �(α, α0) is

a one to one and onto. The transformation from S
p×p to S

d×d × S
p−d×p−d × R

(p−d)×d given by αT �α,
D = αT

0 �α0 − α0�α(αT �α)−1αT �α0 and H = −(αT
0 �α)(αT �α)−1 is also one to one and onto (Eaton,

1983, Proposition 5·8). Proposition 1, (A2) and (A4) imply that fixing α for each g the dimension reduction
subspace model places no constraints on D, H or αT �gα, which are the parameters we used for the
likelihood.

The likelihood Lg for population g can be expressed prior to notable simplification as

Lg = cg − ng − d

2
log |D| − ng − p − 1

2
log

∣∣αT
0 S−1

g α0

∣∣ − 1

2
tr
{

D−1
(
αT

0 S−1
g α0

)−1}

− ng

2
log |αT �gα| + ng − d − 1

2
log |αT Sgα| − 1

2
tr{(αT �gα)−1(αT Sgα)}

− p − d

2
log |αT Sgα| − d

2
log |D|

− 1

2
tr
{

(αT Sgα)−1(αT Sgα0 + αT SgαH T )D−1
(
αT

0 Sgα + HαT Sgα
)}

,

where cg is a constant depending only on ng and p. Using (A2) and Proposition A2, simplifying and
absorbing the term (ng − p − 1)/2 log |Sg| into cg , we have

Lg = cg − ng

2
log |D| − ng

2
log |αT �gα| − ng

2
tr{(αT �gα)−1(αT �̃gα)}

− 1

2
tr
(

D−1αT
0 Sgα0

) − tr(αT Sgα0 D−1 H ) − 1

2
tr(αT SgαH T D−1 H ).

With α fixed, Lg is maximized over αT �gα by αT �̃gα. Plugging this into Lg , we obtain the partially
maximized form

L (1)
g = cg − ng

2
d − ng

2
log |αT �̃gα| − ng

2
log |D|

− 1

2
tr
(

D−1αT
0 Sgα0

) − tr(αT Sgα0 D−1 H ) − 1

2
tr(αT SgαH T D−1 H ).
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Let L (1) = ∑h
g=1 L (1)

g . Then

∂L (1)

∂ H
= −

h∑
g=1

ng D−1αT
0 �̃gα −

h∑
g=1

ng D−1 HαT �̃gα

giving the maximum at Ĥ = −αT
0 �̂α(αT �̂α)−1, where �̂ = ∑h

g=1 fg�̃g . Substituting this into L (1), we
obtain a second partially maximized loglikelihood

L (2) =
h∑

g=1

cg − n

2
d −

h∑
g=1

ng

2
log |αT �̃gα|

−n

2
log |D| − n

2
tr
{(

αT
0 �̂α0 + 2αT

0 �̂α Ĥ T + ĤαT �̂α Ĥ T
)

D−1
}

.

This is maximized over D at D̂ = αT
0 �̂α0 + 2αT

0 �̂α Ĥ T + ĤαT �̂α Ĥ T = (αT
0 �̂

−1
α0)−1, where the sec-

ond equality follows from the definition of Ĥ and Proposition A1. Using Proposition A2, the loglikelihood
maximized over all parameters except α can now be written as

L (3) = c − (n/2) log |�̂| + n

2
log | αT �̂α| −

h∑
g=1

ng

2
log |αT �̃gα|,

where c = ∑h
g=1 cg − np/2. The partially maximized loglikelihood (8) now follows since |PSα �̂PSα |0 =

|αT �̂α|. Finally, since α, αT �α, H and D uniquely determine �, it follows that the maximum likelihood
estimator of � is �̂. �

Proof of Corollary 1. Let L A denote the loglikelihood that depends on covariance matrices A�̃g AT .
Then

arg max
Sα

L A(Sα) = arg max
Sα

⎛
⎝−

h∑
g=1

ng

2
log |αT A�̃g AT α| + n

2
log |αT A�̂ AT α|

⎞
⎠

= arg max
A−T Sβ

L(Sβ).

And, therefore, arg max L A(Sα) = A−T arg max L(Sα). �
Proof of Proposition 4. Equation (9) is immediate. To show the second conclusion M = arg max

Kd (S), let B0 be a basis matrix for M⊥ and use Proposition A2 to write

Kb(S) = c + 1

2
log |BT

0 �−1 B0| −
h∑

g=1

fg

2
log |BT

0 �−1
g B0| − 1

2
log |�| +

h∑
g=1

fg

2
log |�g|

� c − 1

2
log |�| +

h∑
g=1

fg

2
log |�g|,

where the inequality follows since log |BT
0 �−1 B0| is a convex function of �. Using Proposition 1(i), we

see that the upper bound is attained when B0 is a basis matrix for M⊥. �
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