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a b s t r a c t

In this paper, motivated by the questions posed by Spinrad in Spinrad (2003) and Golumbic
and Trenk (2004), we investigate those posets that admit a containment model mapping
vertices into paths of a tree and their comparability graphs, named CPT posets and CPT
graphs, respectively. We present a necessary condition to be CPT and prove it is not
sufficient. We provide further examples of CPT posets P whose dual Pd is non CPT . Thus,
we introduce the notion of dually-CPT and strong-CPT posets. We demonstrate that, unlike
what happens with posets admitting a containment model using interval of the line, the
dimension and the interval dimension of CPT posets is unbounded. On the other hand, we
find that the dimension of a CPT poset is at most the number of leaves of the tree used in
the containmentmodel.We give a characterization of CPT ( also dually-CPT and strong-CPT )
split posets by a family of forbidden subposets. We prove that every tree is strong-CPT .

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and previous results

A partially ordered set or poset is a pair P = (X, P) where X is a finite non-empty set, whose elements are called vertices,
and P is a reflexive, antisymmetric and transitive binary relation on X . As usual, we write x ≤ y in P for (x, y) ∈ P; and
x < y in P when (x, y) ∈ P and x ̸= y. If x < y or y < x, we say that x and y are comparable in P and write x ⊥ y. The sets
{x ∈ X : x < z} and {x ∈ X : z < x} are denoted byD(z) andU(z) respectively.We letD[z] = D(z)∪{z} andU[z] = U(z)∪{z}.
When D(z) = ∅, we say that z is a minimal element of P; and z is maximal when U(z) = ∅. Two vertices z and z ′ are twins
(false twins), if D(z) ∪ U(z) = D(z ′) ∪ U(z ′) and z and z ′ are comparable (incomparable).

A chain in P is a subposet whose vertices are pairwise comparable. The height of P is one less than the number of vertices
in its maximum chain.

The restriction of the relation P to a subset Y of X is denoted by P(Y ). We call P(Y ) to the subposet (Y , P(Y )) of P.
A containment model MP of a poset P = (X, P) maps each element x of X into a setMx in such a way that x < y in P if and

only if Mx is a proper subset ofMy, i.e.

x < y in P ⇔ Mx ⊂ My.

We identify the containmentmodelMP with the set family (Mx)x∈X . Notice that a containmentmodel can always be obtained
by mapping each vertex x into the set D[x]. We say that a model is injective when no two vertices are mapped into a same
set.

Many classes of posets, grouped together under the generic name of geometric containment orders, have been defined by
imposing geometric conditions to the sets inwhich the elements of the poset aremapped: for example, theymay be intervals
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Fig. 1. These graphs together with the complements of the graphs in Fig. 2 constitute the family of minimal forbidden induced subgraphs for comparability
graphs.

of the line, angular regions in the plane, d-boxes in the d-Euclidean space, d-spheres in the d-Euclidean space [4,9,16,20].
In [9], it is proved that each poset admits a containment model using subtrees of a star (a tree with a unique vertex with
degree greater than one). As reported in [9], Corneil andGolumbic (see [8]) considered those posets that admit a containment
model mapping vertices into paths of a tree, and their comparability graphs, called CPT posets and CPT graphs, respectively.
They observed that the 8-wheelW8 has one of its transitive orientations being a CPT poset (where the central vertex is a sink,
i.e., its path is contained in each of the other 8 paths), but when reversing the orientations of the edges (the dual, where the
central vertex is a source), it is not a CPT poset. Their same argument applies to every wheel W2k for k ≥ 3. Spinrad in [14]
and Golumbic and Trenk in [10] called for investigating the properties of CPT posets and CPT graphs. In this paper, we have
initiated such a study, presenting new results on the topic.

The comparability graph GP of a poset P = (X, P) is the simple graph with vertex set V (GP) = X and edge set
E(GP) = {xy : x ⊥ y}. We say that two posets are associated if their comparability graphs are isomorphic. A graph G is a
comparability graph if there exists some poset P such that G = GP.

A transitive orientation
−→
E of a graph G = (V , E) is an assignment of one of the two possible directions, −→xy or −→yx , to each

edge xy ∈ E in such a way that if −→xy ∈
−→
E and −→yz ∈

−→
E then −→xz ∈

−→
E . The graphs whose edges can be transitively oriented

are exactly the comparability graphs [6]. Furthermore, given a transitive orientation
−→
E of a graph G = (V , E), we let P−→

E

denote the poset (V , P−→
E ) where u < v in P−→

E if and only if −→uv ∈
−→
E . The comparability graph of P−→

E is G. Thereby, the
transitive orientations of G are put in one-to-one correspondence with the posets whose comparability graphs are G.

Gallai provides the following characterization of comparability graphs by a family of minimal forbidden induced
subgraphs.

Theorem 1 ([5]). A graph is a comparability graph if and only if none of its induced subgraphs is isomorphic to a graph in Fig. 1
or to the complement of a graph in Fig. 2.

For further information on comparability graphs see [2,7,16].
Dushnik andMiller defined the dimension of a poset P, denoted by dim(P), as theminimumnumber of linear orders whose

intersection is P [3]. Trotter et al. proved that if P and P′ are associated posets then dim(P) = dim(P′), leading to the definition
of dimension of a comparability graph [19,16].

The dual of a poset P = (X, P) is the poset Pd
= (X, Pd) where x < y in Pd if and only if y < x in P. Notice that P and Pd

are associated and, obviously, dim(P) = dim(Pd).
In [3], it was proved that dim(P) ≤ 2 if and only if P admits a containment model mapping vertices into intervals of

the line. Therefore, posets with dimension at most 2 also appear in the literature as containment orders of intervals, we will
write CI posets for short. Comparability graphs of interval containment orders, or CI graphs, have been widely studied and
characterized in different ways.

Theorem 2 ([3,13]). The following statements are equivalent.

1. G is a CI graph.
2. G is a comparability graph with dim(G) ≤ 2.
3. G and its complement G are comparability graphs.
4. G is a permutation graph [2].

The previous theorem together with Gallai’s characterization of comparability graphs provides a characterization of CI
graphs by induced forbidden subgraphs. In addition, observe the following simple result:
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Fig. 2. The complements of these graphs together with the graphs in Fig. 1 constitute the family of minimal forbidden induced subgraphs for comparability
graphs.

Remark 1. Let P and P′ be associated posets. Then, P is a CI poset if and only if P′ is a CI poset. In particular, P is a CI poset if
and only if Pd is a CI poset.

We identify paths of a graph with their vertex sets. Consequently, we say that a path W is contained in a path W ′ and
writeW ⊆ W ′ when every vertex ofW is a vertex ofW ′. Also, W ⊂ W ′ meansW ̸= W ′ and W ⊆ W ′.

Definition 3. A poset P = (X, P) is a containment order of paths in a tree, or CPT poset for brevity, if it admits a containment
modelMP = (Wx)x∈X where everyWx is a path of a tree T , which is called the host tree of the model.

Clearly the class of CPT posets contains the class of CI posets.
As we said before, motivated by the questions posed by Spinrad in [14] and Golumbic in [10], we further the study of

CPT posets and their comparability graphs. In Section 2, we work with posets and, in Section 3, with graphs. We present a
necessary condition to be CPT and show it is not sufficient. We show additional examples of a CPT posets P whose dual Pd

is not CPT . Thus, we introduce the notion of dually-CPT and strong-CPT posets. We demonstrate that, unlike what happens
with CI posets, the dimension and the interval dimension of CPT posets is unbounded. On the other hand, we find that the
number of leaves of any host tree is an upper bound of the dimension. We give a characterization of CPT ( also dually-CPT
and strong-CPT ) split posets by a family of forbidden subposets.

2. CPT , dually-CPT and strong-CPT posets

We begin by giving a necessary condition for being a CPT poset.

Lemma 4. If z is a vertex of a CPT poset P then P(D[z]) is a CI poset.
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Fig. 3. A CPT model of Nd . Vertices b1 , b2 , b3 and b are mapped into one-vertex paths.

Proof. Let (Wx)x∈X be a CPT model of P = (X, P). Since x ∈ D(z) implies Wx ⊂ Wz , we have that every Wx with x ∈ D[z] is
an interval ofWz . Thus (Wx)x∈D[z] is an interval containment model of P(D[z]). □

Minimal posets with dimension 3 (any proper subposet has dimension at most 2) are called 3-irreducible, all such posets
were independently determined by Kelly [12] and by Trotter and Moore [17]. A consequence of the previous lemma is that
every 3-irreducible poset plus a least upper bound is a non CPT poset.

In what follows we offer examples of posets that are non CPT , although they satisfy the necessary condition given by
Lemma 4. We also analyze the effect of adding twins or false twins.

We depicted posets using Hasse diagrams. Notice that the Hasse diagram and the comparability graph of a poset with
height one are isomorphic.

Lemma 5. The poset Nd depicted in Fig. 4 is CPT . In every CPT model of Nd, the vertex labeled as b is mapped into a one-vertex
path.

Proof. In Fig. 3, there is a CPT model of Nd; thus it is a CPT poset.
Let T be the host tree of any CPT model of Nd. Notice no two vertices can be mapped into a same path of T . Let

Wa1 : q1, q2, . . . , qk be the path representing the vertex a1 of Nd, where qi are vertices of T . Since b1 < a1, b2 < a1 and
b < a1 in Nd, it follows that Wb1 , Wb2 and Wb are subpaths of Wa1 . For 1 ≤ i ≤ j ≤ k, we will write [qi, qj] to denote the
subpath of Wa1 with vertices qi, qi+1, . . . , qj−1, qj. Since Wa3 is a path of T containing Wb1 and Wb, but not containing Wb2 ;
and Wa2 is a path of T containing Wb2 and Wb, but not containing Wb1 , we can assume that Wb1 : [qib1 , qjb1 ], Wb : [qib , qjb ],
Wb2 : [qib2 , qjb2 ], with ib1 ≤ jb1 < jb < jb2 and ib1 < ib < ib2 ≤ jb2 .

Since Wb3 is not contained in Wa1 there exists a vertex h of T that belongs to (Wa3 ∩ Wa2 ) − Wa1 . Let qih be the vertex of
Wa1 closest to h in T .

Since h is a vertex of Wa3 , and Wb1 and Wb are contained in Wa3 , then ih ≤ ib1 or ih ≥ jb. If ih ≤ ib1 , since h is a vertex of
Wa2 andWb2 is contained inWa2 , we have thatWb1 is contained inWa2 , which contradicts b1 and a2 are incomparable in Nd.
Therefore, jb ≤ ih.

Analogously, since h is a vertex of Wa2 , and Wb2 and Wb are contained in Wa2 , then ih ≤ ib or ih ≥ jb2 . If ih ≥ jb2 , since
h is a vertex of Wa3 and Wb1 is contained in Wa3 , we have that Wb2 is contained in Wa3 , which contradicts a3 and b2 are
incomparable in Nd. Therefore, ih ≤ ib.

We conclude that ib = jb = ih, so Wb is a one-vertex path. □

Lemma 6. Let N andM be the posets depicted in Fig. 4. The following statements hold.

1. N(D[z]) is CI for every vertex z of N andM .
2. M is obtained by adding the vertex b′ (twin of b) to Nd.
3. N is non CPT .
4. M is non CPT .

Proof. It is straightforward to prove 1 and 2.
Item 4 follows by Lemma 5 and the fact that the path Wb′ has to be a proper subpath of Wb. To prove 3 we will use the

following fact.

Fact 1. Given three intervals of a line, there exist two of them such that if I is any interval containing both then I also contains
the remaining third.
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Fig. 4. Poset N is non CPT . Its dual Nd is CPT . The posetM obtained from Nd by adding b′ is non CPT . Notice that b and b′ are twins.

Assume, in order to derive a contradiction, that the poset N depicted in Fig. 4 is CPT . Thus there exist a tree T and a path
Wx of T for each vertex x of N satisfying x < y in N if and only if Wx ⊂ Wy.

Since a1 < b, a2 < b and a3 < b in N, we have that Wa1 , Wa2 and Wa3 are intervals of Wb. Thus, by Fact 1, two of them,
w.l.o.g. say Wa1 and Wa2 , satisfy that every subpath of Wb containing Wa1 and Wa2 also contains Wa3 . Since Wb2 ∩ Wb is a
subpath of Wb containing Wa1 and Wa2 , we have that Wa3 ⊆ Wb2 ∩ Wb, therefore Wa3 ⊆ Wb2 . On the other hand, it is clear
thatWa3 ̸= Wb2 , thusWa3 ⊂ Wb2 , which contradicts the fact that a3 and b2 are incomparable. □

Corollary 7. The property of being a CPT poset is invariant under the operation of adding false twins; but it can be lost adding
twin vertices.

Since any poset and its dual are associated, Lemma 6 also shows that the strong property of CI posets emphasized in
Remark 1 does not hold for CPT posets, as first observed by Corneil and Golumbic [8].

Corollary 8 (In Contrast to Remark 1). The fact that a poset P′ is associated with a CPT poset P does not imply that P′ is CPT .
Moreover, P is CPT does not imply that Pd is CPT .

It motivates the following definitions.

Definition 9. A poset P is dually-CPT if it is CPT and Pd is also CPT .

Definition 10. A poset P is strong-CPT if it is CPT and every other poset associated with P is also CPT .

It is clear that

CI ⊆ strong-CPT ⊆ dually-CPT ⊆ CPT . (1)

Notice that the poset Nd in Lemma 6 is CPT but it is non dually-CPT ; therefore the last inclusion in (1) is strict.
Let B be the poset with seven vertices a, bi and ci for 1 ≤ i ≤ 3, such that bi < ci and a < ci for every i. The comparability

graph of B is a tree and dim(B) = 3 [16]; therefore the class of posets whose comparability graph is a tree is not contained
in the class of CI posets. Next theorem shows that such posets are strong-CPT and, consequently, that the first inclusion in
(1) is strict.

Theorem 11. Every poset whose comparability graph is a tree is strong-CPT .

Proof. Let P be a poset such that GP is a tree. Notice that P has height one and so every vertex of P is a minimal or a maximal
element.

We will built inductively an injective CPT model of P in which every minimal vertex is mapped into a one-vertex path.
Let v0 be a leaf of P and (Wv)v∈V−{v0} be such a CPT model of G−v0 on a host tree T . Let v1 be the only vertex of P comparable
with v0. There are two cases to be considered.

If v0 is minimal in P then v1 is maximal, therefore Wv1 is contained in no path of the model. Let q be an end vertex of
Wv1 . We proceed adding to T a new vertex q′ adjacent to q, replacing Wv1 by Wv1 ∪ {q′

}, doing Wv0 = {q′
} and letting the

remaining paths unchanged.
If v0 is maximal in P then v1 is minimal, thusWv1 is a one-vertex path in T , sayWv1 = {q}. In this case, we proceed adding

to T a new vertex q′ adjacent to q, doingWv0 = {q, q′
} and letting the remaining paths unchanged. □

We do not know if the middle inclusion in (1) is strict, then we let the following problem.

Open problem 12. Is there a dually-CPT poset which is non strong-CPT?
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Notice also that the property of being strong-CPT is not necessarily hereditary by subposet, it may happen that a subposet
P′ of P admits more associated posets than P itself. However we do not know if this is the case for strong-CPT posets.

Open problem 13. Is the property of being strong-CPT hereditary by subposets?

Clearly, a negative answer to Open Problem 12 implies a positive answer to Open Problem 13.
In Section 2.2 we solve both problems in the class of split posets.

2.1. Dimension and interval dimension

In [14], it is askedwhetherCPT posets have boundeddimension. Anegative answer is givenby Theorem14. Following [16],
we let P(1, k; n) denote the poset formed by the 1-element and the k-element subsets of {1, 2, . . . , n} ordered by inclusion.
There it is proved that dim(P(1, n−1; n)) = n. Posets P(1, n−1; n) (also known as Hiraguchi’s posets) are standard examples
of posets with dimension as large as desired, but, by Lemma 6, they are not CPT posets for n ≥ 4. Notice that, for n ≥ 4, the
poset N depicted in Fig. 4 is a subposet of P(1, n − 1; n). The proof of Theorem 14 makes use of the posets P(1, 2; n) which
are CPT .

Theorem 14. For every positive integer d, there exists a CPT poset P with dim(P) > d.

Proof. We will show that, for each n, the poset P(1, 2; n) is CPT , thus the proof follows from the fact that dim(P(1, 2; n)) >
lglg(n) [16].

Let T be the star with center q and leaves q1, q2, . . . , qn. Map every 1-element subset {i} into the path Wi = {qi} of T , and
map every 2-element subset {i, j} into the pathWij = {qi, q, qj}. □

The interval dimension of a poset is defined analogously to dimension but considering interval orders instead of linear
orders [16]. Since linear orders are interval orders, it follows that Idim(P) ≤ dim(P) for every poset P. The difference between
both dimensionsmaybe large; however, ifP is a poset of height one then it is atmost one [15]. Thus, since the posetsP(1, 2; n)
used in the proof of Theorem 14 have height one, we obtain the following corollary.

Corollary 15. For every positive integer d, there exists a CPT poset P with Idim(P) > d.

On the other hand, the dimension of a CPT poset is bounded by the number of leaves (vertices with degree one) of the
host tree.

Theorem 16. If a poset P admits a CPT model in a host tree T with k leaves then dim(P) ≤ k.

Proof. In [18] it is proved that the dimension of the poset formed by the connected subgraphs of a graph G ordered by vertex
inclusion equals the number of non-cut vertices of G. The proof follows taking G = T . □

Next lemma shows that posets used in the proof of Theorem 14 are non dually-CPT , thus the following problem remains
unsolved.

Open problem 17. Determine whether the dimension of dually-CPT posets is bounded above by a constant. The same question
for strong-CPT posets.

Lemma 18. For every n ≥ 4, the dual of the poset P(1, 2; n) is non CPT .

Proof. Notice that P(1, 2; 4) is a subposet of P(1, 2; n) for n ≥ 4; therefore, it is enough to prove that H = P(1, 2; 4)d is
non CPT . Suppose the contrary and take a CPT model of H. For every vertex {i} or {i, j} of H, let Wi, respectively Wi,j, be
the corresponding subpath of a tree T . The path W1 contains the paths W1,2, W1,3 and W1,4. Notice that no two of these
three paths have the same left end-point or the same right end-point. By the symmetry of H, we can assume, without lost
of generality, that the left end-point ofW1,2 is the closest to the left end-point ofW1; and that the right end-point ofW1,3 is
the closest to the right end-point ofW1.

Notice also that W1,2 ⊂ W2, W1,3 ̸⊆ W2; W1,3 ⊆ W3, W1,2 ̸⊆ W3; and, because of the vertex {2, 3}, W2 ∩ W3 ̸⊆ W1.
Therefore, there exist a vertex t of the host tree T between the right end-point r1,2 ofW1,2 and the left end-point l1,3 ofW1,3;
and a vertex s of T adjacent to t such that the pathW2 contains l1,2, t and s; while the pathW3 contains r1,3, t and s. See Fig. 5.

SinceW4 must intersect the three pathsW1,W2 andW3 we have that the vertex t of the host tree also belongs toW4. On
the other hand, because

W1,4 ⊂ W1 ∩ W4,W1,4 ̸⊆ W2, W1,4 ̸⊆ W3; and
W1,2 ̸⊆ W4 and W1,3 ̸⊆ W4,

we have that the left end-point ofW1∩W4 must be between l1,2 and t , while the right end-point ofW1∩W4 must be between
t and r1,3. It implies that bothW4 ∩ W2 andW4 ∩ W3 are contained inW1 in contradiction with the existence of the vertices
{2, 4} and {3, 4}, respectively. □
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Fig. 5. P(1, 2; 4) is non CPT .

Fig. 6. Forbidden induced subgraphs for split comparability graphs.

2.2. Split posets

A graph whose vertex set can be partitioned into a clique and a stable set is called split. The class of split graphs is exactly
the class of {2K2, C4, C5}-free graphs; therefore a graph is split and comparability if and only if none of its induced subgraphs
is isomorphic to a graph in Fig. 6 [2]. A poset whose comparability graph is split is called a split poset [11].

A poset P is split if and only if its Hasse diagram consists of a maximal chain x1 < x2 < · · · < xk < y1 < y2 < · · · < ym,
termedmain chain of P, and any other vertex z of P satisfies one of the following conditions:

• z has a unique neighbor, this neighbor is some of the vertices yj in the main chain of P, and z < yj.
• z has a unique neighbor, this neighbor is some of the vertices xi in the main chain of P, and xi < z.
• z has exactly two neighbors, they are vertices xi and yj in the main chain of P, and xi < z < yj.

The vertex ym of the main chain is called the top vertex of the poset.
In the present section, split posets which are CPT , dually-CPT or strong-CPT are characterized by forbidden subposets.
Although the following lemma can be easily proved usingmodular decomposition [5], we will give a demonstration based

on transitive orientations for the convenience of those readers not familiar with modules. The posets S4 and S are the ones
depicted in Fig. 7. Notice that the comparability graph of S4 is the graph S4 in Fig. 2.

Lemma 19. (i) If S4 is an induced subgraph of a comparability graph GP then the poset S4 is a subposet of P. (ii) If S is a subposet
of a poset P and GP = GP′ then either S or Sd is a subposet of P′.

Proof. To prove (i) notice that S4 admits only two transitive orientations: one corresponding to the poset S4 and its reverse
corresponding to the dual of S4. Since S4 and Sd4 are isomorphic, the proof follows.

In order to prove (ii), call y to the top vertex of S and observe that the subposet of S obtained by removing y is the poset
S4, thus S4 is an induced subgraph of GP, and so of GP′ . Therefore, by (i), S4 is a subposet of P′. To complete the proof, notice
that the vertex y must be comparable with every vertex of S4. This implies y is in the main chain of the split poset P′, and
either y is greater than every vertex of S4 or y is less than every vertex of S4. In the first case S is a subposet of P′ and in the
latter Sd is a subposet of P′. □

Theorem 20. Let P be a split poset. The following conditions are equivalent.

(i) P is CPT .
(ii) P(D[y]) is CI, where y is the top vertex of P.
(iii) P does not contain the poset S depicted in Fig. 7 as a subposet.
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Fig. 7. Examples of split posets. S4 is non CI [16], but we have proved that S4 is CPT . S is non CPT , but Sd is CPT ; so the comparability graph of S is a CPT
graph. The posets R, T, U and V are non CPT ; even more, any poset associated with R, T, U or V is non CPT . Therefore, the comparability graphs of these
posets are non CPT . The symbol ≃ means isomorphic.

Proof. By Lemma 4, (i) implies (ii).
Let P be a split poset satisfying (ii). Denote by Z the set of vertices of P that are not in D[y]. Since P is split, if z ∈ Z then

there exists a unique vertex xz in D[y] adjacent to z; moreover, xz < z in P.
Let T be the host tree of a CI modelM of P(D[y]), w.l.o.g. we can assumeM is injective. We obtain a CPT modelM ′ of P by

adding to T a pendant vertex qz adjacent to one end vertex of the pathWxz ofM , andmapping z into the pathWz = Wxz ∪{qz};
for every z ∈ Z . We have proved that (ii) implies (i).

Now, in order to derive a contradiction, assume that S is a subposet of P. Clearly, the top vertex of S must be a vertex of
the main chain of P, therefore S is a subposet of P(D[y]). Thus the non CI poset S4 depicted in Fig. 7 is a subposet of P(D[y]);
it contradicts the fact that P(D[y]) is CI . This proves (ii) implies (iii).

Finally, let P be a split poset satisfying (iii) and assume that P(D[y]) is non CI . Thus, by Theorems 1 and 2, the comparability
graph of P(D[y]) contains an induced subgraph H that is either the complement of a graph in Fig. 1 or a graph in Fig. 2. On
the other hand, since the comparability graph of P(D[y]) is split, we have that H is split; therefore H does not contain as
induced subgraph any of the graphs in Fig. 6. A simple direct comparison of such graphs shows that H must be the graph
S4 in Fig. 2 (S4 is the only graph between the complements of graphs in Fig. 1 and the graphs in Fig. 2 which does not
contain as induced subgraph a graph in Fig. 6). By (i) of Lemma 19, P(D[y]) contains the poset S4 in Fig. 7 as subposet. Notice
that y cannot be one of the vertices of S4, thus y is greater than every vertex of S4 and so S is a subposet of P(D[y]), which
contradicts (iii). □

Theorem 21. Let P be a split poset. The following conditions are equivalent.

(i) P is strong-CPT .
(ii) P is dually-CPT .
(iii) P contains neither the poset S in Fig. 7 nor Sd as subposet.

Proof. The implication (i) then (ii) holds even for non split posets, and (ii) implies (iii) follows trivially from Theorem 20.
Let P be a split poset satisfying (iii). By Theorem 20, P is CPT . Assume, in order to derive a contradiction, that P is non

strong-CPT ; thus there exists a split poset P′ such that GP′ = GP and P′ is non CPT . By Theorem 20, P′ contains the poset S as
subposet, then, by (ii) of Lemma 19, P contains either S or Sd as subposet, contrary to assumption. □

3. CPT graphs and subclasses

Comparability graphs of CPT posets are called CPT graphs or containment graphs of paths in a tree. Clearly, a graph
G = (V , E) is CPT if and only if there exist a transitive orientation

−→
E of G, a tree T and a family (Wv)v∈V of paths of T

satisfying that
−→uv ∈

−→
E ⇔ Wu ⊂ Wv.

Strong- CPT graphs and dually- CPT graphs are the comparability graphs of the strong-CPT posets and dually-CPT posets,
respectively.

As a corollary of Theorem 11 we have the following result.

Theorem 22. Every tree is a strong-CPT graph.

By just comparing the family of forbidden induced subgraphs for split and CI graphs, it can be established that a split
graph is CI if and only if it does not contain GS4 in Fig. 8 as induced subgraph. We obtain a characterization by forbidden
induced subgraphs of split dually-CPT and split strong-CPT graphs.
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Fig. 8. The comparability graphs of posets S4 , S, R and T, U and V in Fig. 7. Notice that the graph GS4 is the same named S4 in Fig. 2.

Theorem 23. Let G be a comparability split graph. The following statements are equivalent.

(i) G is strong-CPT .
(ii) G is dually-CPT .
(iii) G does not contain GS in Fig. 8 as induced subgraph.

Proof. It is straightforward consequence of Theorem 21 and the fact that a comparability graph GP has an induced subgraph
isomorphic to GS if and only if P has a subposet isomorphic to S or to Sd. □

Notice that although Theorem 20 provides a characterization of split CPT posets by forbidden subposets, we leave open
the problem of characterizing split CPT graphs by induced subgraphs. A trivial corollary of Theorem 20 is that the posets R,
T, U and V in Fig. 7 are non CPT ; even more, it can be proved that any poset P associated with R, T, U or V has a subposet
isomorphic to S, thus P is non CPT . This implies that the comparability graphs of these posets depicted in Fig. 8 are forbidden
induced subgraphs for the class of split CPT graphs. It is also possible to prove that they are minimal (a CPT graph is obtained
by removing any one of their vertices). We conjecture there is no others.

Conjecture 24. A split graph G is CPT if and only if no induced subgraph of G is isomorphic to the graphs GR, GT, GU and GV in
Fig. 8.

Observation: Some results in the present paper were presented at the VIII Latin-American Algorithms, Graphs and
Optimization Symposium, and a summary appeared in the proceedings [1].
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