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Abstract. Let b be a BMO function, 0 < α < 1 and I+,k
α,b the commutator of

order k for the Weyl fractional integral. In this paper we prove weighted strong
type (p, p) inequalities (p > 1) and weighted endpoint estimates (p = 1) for

the operator I+,k
α,b and for the pairs of weights of the type (w,Mw), where w

is any weight and M is a suitable one-sided maximal operator. We also prove
that, for A+

∞ weights, the operator I+,k
α,b is controlled in the Lp(w) norm by a

composition of the one-sided fractional maximal operator and the one-sided
Hardy-Littlewood maximal operator iterated k times. These results improve
those obtained by an immediate application of the corresponding two-sided
results and provide a different way to obtain known results about the operators
I+,k

α,b . The same results can be obtained for the commutator of order k for the

Riemann-Liouville fractional integral I−,k
α,b .
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1. Introduction

We are interested in two weight inequalities of the type∫
|Tf |pw ≤ C

∫
|f |pMT w, 1 < p < ∞, (1.1)

with no a priori assumption on the weight w and where MT is some maximal
operator associated with the operator T .
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This type of inequalities have been studied by several authors. For example, if
T is a Calderón-Zygmund singular integral operator, C. Pérez ([16]) proved (1.1)
with MT = M [p]+1, where Mk is the Hardy-Littlewood maximal operator M
iterated k times and [p] is the integer part of p. Later on, Pérez ([20]) generalized
the result in [16] obtaining (1.1) for T equal to the commutator of the Calderón-
Zygmund singular integral of order k and in this case MT = M [(k+1)p]+1.

For the one-sided singular integrals, i.e., singular integrals operators with
kernels supported in (−∞, 0) or (0,∞), inequalities like (1.1) were proved in [25].
In this case, if the kernel has support in (−∞, 0), (1.1) can be obtained withMT =
(M−)[p]+1, where M− is the one-sided Hardy-Littlewood maximal operator. This
result was generalized in [8] for the commutator of the one-sided singular integral
of order k with MT = (M−)[(k+1)p]+1.

In the case where T is the fractional integral operator, C. Pérez ([19]) proved
(1.1) with MT = Mαp(M [p]), where Mαp is the fractional maximal operator. This
result was generalized in [2] to the commutator of the fractional integral of order k,
obtaining in this case that MT = Mαp(M [(k+1)p]). The result in [2] was obtained
in the general context of the spaces of homogeneous type.

The first purpose of this paper is to prove an inequality like (1.1) for the
commutators of the one-sided fractional integrals (Riemann-Liouville and Weyl
fractional integrals). For 0 < α < 1, b ∈ BMO and k = 0, 1, . . . , the k-th order
commutators of the one-sided fractional integrals are defined by

I−,k
α,b f(x) =

∫ x

−∞
(b(x)− b(y))k f(y)

(x− y)1−α
dy

and

I+,k
α,b f(x) =

∫ ∞

x

(b(x)− b(y))k f(y)
(y − x)1−α

dy.

Let us notice that when k = 0 the above operators are the Riemann-Liouville and
Weyl fractional integral operators, respectively.

Applying Theorem 1.2 in [2] with X = R, d(x, y) = |x−y| and µ the Lebesgue
measure, we obtain (1.1) for T = I−,k

α,b and T = I+,k
α,b with MT = Mαp(M [(k+1)p]).

On the other hand, inequality (1.1) was proved in [24] for T equal to the one-sided
fractional integral I+

α and MT = M−
αp(M

[p]), where M−
αp is the one-sided maximal

fractional operator (see Theorem 1.4 in [24]). Our result improves these because
we obtain a smaller operator MT in the right hand side of (1.1). Precisely, we
shall prove the following theorem.

Theorem 1.1. Let w be any weight, 0 < α < 1, 1 < p < ∞ and k ∈ N ∪ {0}. If
b ∈ BMO then there exists a positive constant C such that∫

R
|I+,k

α,b f(x)|pw(x)dx ≤ C‖b‖kp
BMO

∫

R
|f(x)|pM−

αp((M
−)[(k+1)p]w)(x)dx. (1.2)

In this paper, every one-sided result has a corresponding one reversing the
orientation of the real line.

Let us observe that from Theorem 1.1 with k = 0, we also improve Theorem
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1.3 in [24]. In fact, from (1.2) for k = 0, by using duality and the trivial bound-
edness M−

α f(x) ≤ I−α f(x) we get the following dual inequality for the non linear
operator M−

α∫

R
[M−

α f(x)]p
′
[M−

αp((M
−)[p]w)(x)]1−p′ dx ≤ C

∫

R
|f(x)|pw(x)1−p′ dx.

In a similar way as [20], we can show that (1.2) is sharp, in the sense that we
cannot replace [(k + 1)p] by [(k + 1)p] − 1. In fact, as in [20], we can construct a
counterexample by taking f = w = χ(0,1) and b(x) = log |x|.

One of the main results for proving the above theorem is a pointwise equiva-
lence between two type of maximal operators: the composition of one-sided max-
imal operators M−

α ((M−)k) and a one-sided fractional maximal operator associ-
ated with the mean Luxemburg norm in the Orlicz spaces, M−

α,φk
, with φk(t) =

t[log(e + t)]k (see Section 2 for the corresponding definitions). This equivalence
was previously proved in [25] for the case α = 0, and in [2] for 0 < α < 1 but
in the two-sided case. The proof for 0 < α < 1 in the one-sided case is not an
obvious generalization of the case α = 0 not even in the two-sided case. Section 3
is devoted to show how to adapt the two-sided argument to the one-sided context.
From now on, we shall denote φr(t) = t[log(e + t)]r, for r > 0.

As a consequence of the above mentioned equivalence we can obtain the in-
equality in Theorem 1.1 with M−

αp,φ[(k+1)p]
w instead of M−

αp((M
−)[(k+1)p]w). On

the other hand, from the proof of Theorem 1.1 it is easy to see that we can obtain
a sharper estimate, namely∫

R
|I+,k

α,b f(x)|pw(x)dx ≤ C‖b‖kp
BMO

∫

R
|f(x)|pM−

αp,φ(k+1)p−1+δ
w(x)dx, (1.3)

for any δ > 0 and with C depending on δ.
The arguments used to prove Theorem 1.1 are similar to the ones used in [20]

and later on in [2]. As in those articles we need to prove previously a one-sided
version of the weighted norm inequality between the commutator and a suitable
maximal operator. Concretely, we shall prove the following result.

Theorem 1.2. Let 0 < p < ∞, 0 < α < 1 and k ∈ N ∪ {0}. If w ∈ A+
∞ and

b ∈ BMO then there exists a constant C depending on k and on the A+
∞ constant

of w, such that∫

R
|I+,k

α,b f(x)|pw(x)dx ≤ C‖b‖kp
BMO

∫

R
[M+

α,φk
f(x)]pw(x)dx,

for all f such that the left hand side of the previous inequality is finite.

Just reversing the orientation of R in the proof of the equivalence between
M−

α,φk
and M−

α ((M−)k) we get that M+
α,φk

≈ M+
α ((M+)k). Then, we can write

the inequality in the above theorem as∫

R
|I+,k

α,b f(x)|pw(x)dx ≤ C‖b‖kp
BMO

∫

R
[M+

α ((M+)kf)(x)]pw(x)dx. (1.4)
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The case k = 0 of (1.4) was proved by F.J. Mart́ın-Reyes, L. Pick and A. de
la Torre in [11]. Let us observe that Theorem 1.2 also improves the result obtained
as a consequence of the results in [2] for the one-sided commutators (see also [4]
for the case k = 1) in two ways: putting in the right hand side a smaller operator
and allowing a wider class of weights.

On the other hand, Theorem 1.2 implies another proof of the weighted strong
(p, q) inequality for the commutators I+,k

α,b obtained in [9] (see Theorem 2.9 in [9]).
In fact, we can obtain the following corollary.

Corollary 1.3. Let 0 < α < 1, 1 < p < q < ∞ such that 1
p − 1

q = α, b ∈ BMO,
and k ∈ N ∪ {0}. Let w be a weight such that w ∈ A+(p, q), that is, there exists
C > 0 such that

(
1
h

∫ x

x−h

wq

)1/q
(

1
h

∫ x+h

x

w−p′
)1/p′

≤ C,

for all h > 0 and x ∈ R. Then the operator I+,k
α,b satisfies the strong (p, q) inequality

(∫

R
|I+,k

α,b f |qwq

)1/q

≤ C

(∫

R
|f |pwp

)1/p

.

The proof of the corollary follows easily from (1.4), the strong (p, q) inequal-
ity for M+

α (see [1]) and the weighted Lp boundedness of the maximal operator
M+ for A+

p weights. In fact, notice that w ∈ A+(p, q) is equivalent to wq ∈ A+
β ,

β = 1 + q/p′ (therefore wq ∈ A+
∞) and that w ∈ A+(p, q) implies wp ∈ A+

p .

Now we turn our attention to the case p = 1 of the inequality (1.1). In
particular we shall study the following endpoint inequality

∫

{|Tf |>λ}
w ≤ C

∫
ψ

( |f |
λ

)
MT w, λ > 0, (1.5)

where ψ is a Young function.
When T is the commutator of the Calderón-Zygmund singular integral of

order k, (1.5) was proved in [21] with ψ(t) = φk(t) and MT = Mφk+ε
for any

ε > 0 and with a constant depending on ε. The case k = 0 was previously proved
in [16].

When T is the fractional integral, two different versions of (1.5) were obtained
in [3]. Both with ψ(t) = t but in one of them MT = Mα(Mφε) for any ε > 0 and
in the other one MT w(x) = Mαw(x) + |x|αMw(x).

The second purpose of this paper is to obtain an inequality like (1.5) for the
commutators of the one-sided fractional integral operator. In the following theorem
we state our result.
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Theorem 1.4. Let 0 < α < 1, b ∈ BMO, and k = 0, 1, . . . . Then
∫

{x∈R:|I+,k
α,b f(x)|>λ}

w ≤ C

∫

R
φk

( ||b||kBMO|f(x)|
λ

)
(M−

φk
w(x) + M−

αp,φk+ε
w(x)) dx,

for any weight w, λ > 0, ε > 0, 1 < p < 1+ ε
k+1 and where the constant C depends

on ε and p.

We shall prove the above theorem following the arguments in [21], that is, by
using a Calderón-Zygmund decomposition and an induction argument. It is easy
to see that from the above theorem and the corresponding one for the commutator
I−,k
α,b we obtain a similar result for the two-sided commutators Ik

α,b in one dimen-
sion. In this case the weight in the right hand side will be Mφk

w + Mαp,φk+ε
w.

From Theorem 1.2 in [2], applying the same type of Calderón-Zygmund decompo-
sition as in [21] and following the same steps that in the proof of Theorem 1.4 we
can prove the following result in dimension greater than one (the details are left
to the reader).

Theorem 1.5. Let 0 < α < 1, b ∈ BMO, and k = 0, 1, . . . . Then
∫

{x:|Ik
α,bf(x)|>λ}

w ≤ C

∫

Rn

φk

( ||b||kBMO|f(x)|
λ

)
(Mφk

w(x) + Mαp,φk+ε
w(x)) dx,

for any weight w, λ > 0, ε > 0, 1 < p < 1+ ε
k+1 and where the constant C depends

on ε and p.

Let us notice that when we formally consider α = 0 in the above theorem
we recover the corresponding result in [21] for the commutators of the Calderón-
Zygmund singular integral. On the other hand, the above theorem in the case
k = 0 gives (1.5) with ψ(t) = t and MT = M +Mαp,φε . This result is an endpoint
inequality different than the ones in [3]. As far as we know, our results are not
comparable with those in [3].

The article is organized in the following way: in Section 2 we give some defi-
nitions and preliminaries. Section 3 is devoted to prove the pointwise equivalence
between the one-sided maximal operators previously mentioned in this introduc-
tion. In Section 4 we shall prove Theorems 1.1 and 1.2, while Theorem 1.4 will be
proved in Section 5.

2. Definitions and preliminaries

The one-sided fractional maximal operators M+
α and M−

α , 0 ≤ α < 1 are defined
for locally integrable functions f by

M+
α f(x) = sup

h>0

1
h1−α

∫ x+h

x

|f(y)| dy and M−
α f(x) = sup

h>0

1
h1−α

∫ x

x−h

|f(y)| dy.
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When α = 0 in the above operators we get the one-sided Hardy-Littlewood maxi-
mal operators and we denote them simply with M+ and M−.

The good weights for M+ and M− are the one-sided weights A+
p and A−p

introduced by E. Sawyer [26]: w ∈ A+
p if there exists a constant Cp < ∞ such that

for all a < b < c

1
(c− a)p

(∫ b

a

w(x) dx

) (∫ c

b

w(x)1−p′ dx

)p−1

≤ Cp.

In the case p = 1, w ∈ A+
1 if M−w(x) ≤ C1 w(x). The class A+

∞ is defined as the
union of all the A+

p classes, A+
∞ = ∪p≥1A

+
p . The classes A−p are defined in a similar

way. (See [26], [10], [12] for more definitions and results.)

We shall use two results of the one-sided weights. It is not difficult to see that
(M−

α f)δ ∈ A+
1 for any 0 ≤ α, δ < 1 and all locally integrable functions f such that

M−
α f < ∞ a.e. (see [15] for the two-sided case). The other result is the following:

if w ∈ A+
1 then w1−r ∈ A−r , for all r > 1 (see [26] or [10]).

Let us recall some of the needed background on Orlicz spaces. The reader
is referred to [23] and [13] for a complete account of this topic. A function φ :
[0,∞) → [0,∞) is a Young function if it is continuous, convex and increasing sat-
isfying φ(0) = 0 and φ(t) →∞ as t →∞.

Given a Young function φ, we define the φ-mean Luxemburg norm of a func-
tion f on I by

||f ||φ,I = inf
{

λ > 0 :
1
|I|

∫

I

φ

( |f |
λ

)
≤ 1

}
. (2.1)

It is well known that if φ(t) ≤ Cψ(t) for all t ≥ t0 then ||f ||φ,I ≤ C||f ||ψ,I ,
for all intervals I and functions f . Thus, the behavior of φ(t) for t ≤ t0 is
not important. If φ ≈ ψ, that is there are constants t0, c1, c2 > 0 such that
c1φ(t) ≤ ψ(t) ≤ c2φ(t) for t ≥ t0, the latter estimate implies that ||f ||φ,I ≈ ||f ||ψ,I .

Each Young function φ has an associated complementary Young function φ̃
satisfying

t ≤ φ−1(t)φ̃−1(t) ≤ 2t,

for all t > 0. There is a generalization of Hölder’s inequality
1
|I|

∫

I

|fg| ≤ ||f ||φ,I ||g||φ̃,I . (2.2)

A further generalization of Hölder’s inequality (see [13]) that will be useful later
is the following: If φ, ψ and ϕ are Young functions and

φ−1(t)ψ−1(t) ≤ ϕ−1(t)

then
‖fg‖ϕ,I ≤ 2‖f‖φ,I‖g‖ψ,I . (2.3)
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A generalization of Young inequality states that if φ−1(t)ψ−1(t) ≤ ϕ−1(t) for t > 0,
then

ϕ(st) ≤ φ(s) + ψ(t), (2.4)
for all s, t > 0.

For each locally integrable function f and 0 ≤ α < 1, the one-sided fractional
maximal operators associated to the Young function φ are defined by

M+
α,φf(x) = sup

x<b
(b− x)α‖f‖φ,(x,b) and M−

α,φf(x) = sup
a<x

(x− a)α‖f‖φ,(a,x).

When α = 0 we use the notation M+
φ instead of M+

0,φ (M−
φ instead of M−

0,φ).

We shall need the following results about these maximal operators. First,
notice that if φ(t) = t then ||f ||φ,I = 1

|I|
∫

I
|f | and let us recall that φr(t) =

t[log(e + t)]r. For every 0 ≤ α < 1 and every l ≤ s, we get that

M−
α f(x) = M−

α,φ0
f(x) ≤ M−

α,φl
f(x) ≤ M−

α,φs
f(x). (2.5)

Splitting the family of intervals in the definition of M−
α,φ in two families, those

intervals with measure smaller than one and the rest, we can easily prove that, for
any Young function φ and for every p > 1,

M−
α,φf(x) ≤ M−

αp,φf(x) + M−
φ f(x). (2.6)

On the other hand, if I = (a, b) and I− = (c, a) with |I| = |I−|, for any Young
function φ and nonnegative function f with M−

α,φf(x) < ∞ a.e., we get that

|I|αM−
φ (fχR\(I−∪I))(y) ≤ CM−

α,φ(fχR\(I−∪I))(b), a.e y ∈ I, (2.7)

and

M−
α,φ(fχR\(I−∪I))(y) ≈ inf

z∈I
M−

α,φ(fχR\(I−∪I))(z), a.e y ∈ I. (2.8)

These results follow easily from the definition of the maximal functions M−
α,φ and

keepping in mind which is the support of fχR\(I−∪I).

Let us recall that a locally integrable function b belongs to BMO = BMO(R)
if

‖b‖BMO = sup
I

1
|I|

∫

I

|b(x)− bI | dx < ∞,

where the supremum runs over all intervals I ⊂ R and where bI stands for the
average of b over I. It is easy to prove that a function b is in BMO if for each
interval I there exists a constant c(I) such that

sup
I

1
|I|

∫

I

|b(x)− c(I)| dx < ∞.

Further, this supremum is comparable to ||b||BMO.
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We state some results about BMO functions that we shall use in the article
(for the proofs see for example [27]). If b ∈ BMO then there exists an absolute
constant C such that, for any interval I = (x, x + h) and j ≥ 0,

|bIj − bI | ≤ C(j + 1)||b||BMO, (2.9)

where Ij = (x + 2jh, x + 2j+1h). Obviously, the same holds if I = (x − h, x) and
Ij = (x− 2j+1h, x− 2jh).
By applying the John-Nirenberg inequality we get the following facts:

(i) For each p, 1 < p < ∞, there exists a constant Cp such that

sup
I

(
1
|I|

∫

I

|b(x)− bI |p dx

)1/p

≤ Cp||b||BMO. (2.10)

(ii) If b ∈ BMO then there exists a constant C such that for every interval I,

1
|I|

∫

I

exp
( |b(x)− bI |

C||b||BMO

)
dx < ∞. (2.11)

As a consequence of (2.11) we get that for φ̃(t) = exp(t)

||b− bI ||φ̃,I ≤ C||b||BMO. (2.12)

For a locally integrable funtion f we define the one-sided sharp maximal
function as

M+,#f(x) = sup
h>0

1
h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f

)+

dy,

where z+ = max(z, 0). It is proved in [12] that

M+,#f(x) ≤ sup
h>0

inf
a∈R

{
1
h

∫ x+h

x

(f(y)− a)+ dy

+
1
h

∫ x+2h

x+h

(a− f(y))+ dy

}
.

(2.13)

Given an operator T , we use the notation T(δ)(f), 0 < δ < 1, for the operator
[T (|f |δ)]1/δ.

3. Equivalence between two maximal operators

This section is devoted to prove the following equivalence between two one-sided
maximal operators.

Theorem 3.1. Let 0 ≤ α < 1, k ∈ N and φk(t) = t[log(e + t)]k. Then, there exist
constants C1, C2 > 0 such that

M−
α ((M−)kf)(x) ≤ C1M

−
α,φk

f(x) (3.1)
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and

M−
α,φk

f(x) ≤ C2M
−
α ((M−)kf)(x), (3.2)

for every x ∈ R.

To adapt the two-sided arguments in the proof of (3.2) we shall need the
following two lemmas.

Lemma 3.2. Let 0 ≤ α < 1 and k ∈ N. For each interval I = (a, x) let us
consider the decomposition I = I−k ∪ I+

k such that I−k = (a, a + 2−k|I|) and I+
k =

(a + 2−k|I|, x), and let us define the maximal operator

N−
α,φk

f(x) = sup
I=(a,x)

|I−k |α||f ||φk,I−k
.

Then, there exists a constant C depending on k such that

M−
α,φk

f(x) ≤ C

k∑

j=0

N−
α,φj

f(x),

where N−
α,φ0

simply denotes M−
α,φ0

.

Proof. First, notice that for every γ > 1 there exists a constant Cγ,k depending
on γ and k such that

φk(γt) ≤ Cγ,k

k−1∑

j=0

φj(t) + γφk(t). (3.3)

In fact,

φk(γt) = γt[log(e + γt)]k ≤ γt[log γ + log(e + t)]k

≤ γt

k∑

j=0

cj,k[log γ]k−j [log(e + t)]j

≤ max
0≤j≤k−1

{γcj,k[log γ]k−j}
k−1∑

j=0

φj(t) + γφk(t),

where cj,k are constants proceeding from the Newton’s formula. Now, by using
(3.3) with γ = γk = 2k/(2k − 1) we shall prove that

γk||f ||φk,I ≤ C




k−1∑

j=0

||f ||φj ,I + ||f ||φk,I−k


 + ||f ||φk,I+

k
, (3.4)

with C = max{Cγk,k, 1}. In fact, if we denote by µ the right hand side of (3.4),
using (3.3) with γ = γk, the convexity of the functions φj , j = 1, · · · , k and (2.1)
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we have

1
|I|

∫

I

φk

(
γk|f |

µ

)

≤Cγk,k

|I|
k−1∑

j=0

∫

I

φj

( |f |
µ

)
+

γk

|I|
∫

I−k

φk

( |f |
µ

)
+

γk

|I|
∫

I+
k

φk

( |f |
µ

)

≤Cγk,k

µ

k−1∑

j=0

||f ||φj ,I

[
1
|I|

∫

I

φj

( |f |
||f ||φj ,I

)]

+
γk||f ||φk,I−k

2kµ

[
1
|I−k |

∫

I−k

φk

(
|f |

||f ||φk,I−k

)]

+
||f ||φk,I+

k

µ

[
1
|I+

k |
∫

I+
k

φk

(
|f |

||f ||φk,I+
k

)]

≤
Cγk,k

∑k−1
j=0 ||f ||φj ,I + γk2−k||f ||φk,I−k

+ ||f ||φk,I+
k

µ
≤ 1.

Then, using again (2.1) we get (3.4). Now, let us observe that by (3.4)

|I|α||f ||φk,I ≤ C

γk

k−1∑

j=0

|I|α||f ||φj ,I +
C

γk
|I|α||f ||φk,I−k

+
|I|α
γk

||f ||φk,I+
k

≤ C

γk

k−1∑

j=0

M−
α,φj

f(x) +
C2kα

γk
N−

α,φk
f(x) + γα−1

k M−
α,φk

f(x).

Taking supremum on I = (a, x) and using that γk > 1 we get that

M−
α,φk

f(x) ≤ C




k−1∑

j=0

M−
α,φj

f(x) + N−
α,φk

f(x)


 .

To finish the proof of the lemma notice that, by definition, N−
α,φ0

is equal to
M−

α,φ0
and that M−

α,φ0
is pointwise equivalent to the one-sided fractional maximal

operator M−
α . Then, clearly, the lemma holds for k = 1. For general k ∈ N the

lemma follows by applying an induction argument over k. ¤

Lemma 3.3. Let I = (a, b) be a fix interval and let I− = (a, (a+ b)/2). Then, there
exists a constant C such that

1
λ

∫

{x∈I−:f(x)>λ}
f ≤ C|{x ∈ I : M−(fχI−)(x) > λ}|, (3.5)

for any λ ≥ 1
|I−|

∫
I− f and all nonnegative integrable functions f .
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Proof. It is well known (see for example [6], pp. 423) that

1
λ

∫

{x:f(x)>λ}
f ≤ 1

λ

∫

{x:M−f(x)>λ}
f = |{x : M−f(x) > λ}|.

Applying the above result to fχI− we get that
1
λ

∫

{x∈I−:f(x)>λ}
f ≤ C|{x : M−(fχI−)(x) > λ}|.

Now, the lemma follows since if x < a then M−(fχI−)(x) = 0 and if x > b then
M−(fχI−)(x) ≤ 1

|I−|
∫

I− f ≤ λ.
¤

Proof of Theorem 3.1. Without loss of generality we may assume that f ≥ 0. To
prove (3.1) let us consider an interval I = (a, x). Notice that by inequality (4.4)
in [2]

1
|I|

∫

I

(M−)kf(y) dy ≤ 1
|I|

∫

I

Mkf(y) dy 6 C||f ||φk,I , (3.6)

for any f such that supp(f) ⊂ I. Now, writting f = f1 + f2 where f1 = fχ2I with
2I = (2a− x, x) we get that

|I|α−1

∫

I

(M−)kf ≤ |I|α−1

∫

I

(M−)kf1 + |I|α−1

∫

I

(M−)kf2 = A + B.

By (3.6)

A ≤ C|2I|α−1

∫

2I

(M−)kf1(y) dy ≤ C|2I|α||f ||φk,2I ≤ CM−
α,φk

f(x).

Using the equivalence for α = 0 (see Proposition 1 in [25]) and (2.7) we get that

B ≤ |I|α−1

∫

I

M−
φk−1

f2(y) dy ≤ CM−
α,φk−1

f2(x) ≤ CM−
α,φk

f(x).

Then (3.1) follows taking supremum on a < x.

To prove (3.2) we proceed as in [22] (see also [2]). By Lemma 3.2 it suffices
to show that

N−
α,φk

f(x) ≤ CM−
α ((M−)kf)(x),

for any k ∈ Z. Let I = (a, x) be any interval. Notice that it is enough to show that
there is a constant Ck such that

‖f‖φk,I−k
≤ Ck

|I|
∫

I

(M−)kf(y) dy. (3.7)

Let λk = λk(f) = 1
|I|

∫
I
(M−)kf. To prove (3.7) we shall show that there is a

constant Ck > 1 such that
1
|I−k |

∫

I−k

φk(
f

Ckλk
) ≤ 1. (3.8)



12 A. L. Bernardis and M. Lorente

To prove (3.8) we shall use induction on k and the formula
∫

I

Φ(|f |) dν =
∫ ∞

a

Φ′(λ)ν({x ∈ I : |f(x)| > λ}) dλ,

which holds for any increasing continuously differentiable function Φ and where a
is such that Φ(a) = 0. In fact, for k = 1 and g = f

C1λ1
we have

1
|I−1 |

∫

I−1

φ1

(
f

C1λ1

)
=

1
|I−1 |

∫

I−1

g[log(e + g)]

=
1
|I−1 |

∫ ∞

1−e

1
e + λ

g({x ∈ I−1 : g(x) > λ}) dλ

=
1
|I−1 |

(∫ 1

1−e

+
∫ ∞

1

)
1

e + λ

∫

{x∈I−1 :g(x)>λ}
g(x) dx dλ

= I + II.

Since f(y) ≤ M−f(y) a.e.,

I ≤ log(1 + e)g(I−1 )
|I−1 |

=
log(1 + e)
|I−1 |C1λ1

∫

I−1

f(y) dy

=
2 log(1 + e)

∫
I−1

f(y) dy

C1

∫
I
M−f(y) dy

≤ 2 log(1 + e)
C1

< 1,

if we choose C1 > 2 log(1 + e). On the other hand, by Lemma 3.3, since λ > 1 >
1
|I−1 |

∫
I−1

g there exists a constant C such that

II =
1
|I−1 |

∫ ∞

1

1
e + λ

∫

{x∈I−1 :g(x)>λ}
g(x) dx dλ

≤ C

|I−1 |
∫ ∞

1

λ

e + λ
|{x ∈ I : M−g(x) > λ}| dλ

≤ C

|I−1 |
∫ ∞

0

|{x ∈ I : M−g(x) > λ}| dλ

≤ 2C

|I|
∫

I

M−g(x) dx =
2C

λ1C1|I|
∫

I

M−f(x) dx =
2C

C1
< 1,

provided that C1 > 2C. Thus we have proved the case k = 1. Suppose that k > 1
and the result holds for k − 1. If g = f

Ckλk
then

1
|I−k |

∫

I−k

φk

(
f

Ckλk

)
=

1
|I−k |

∫

I−k

g[log(e + g)]k

=
k

|I−k |
∫ ∞

1−e

[log(e + λ)]k−1

e + λ
g({x ∈ I−k : g(x) > λ}) dλ

=
k

|I−k |

(∫ 1

1−e

+
∫ ∞

1

)
= I + II.
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Notice that,

I ≤ [log(1 + e)]k

|I−k |
g(I−k ) =

2k[log(1 + e)]k

Ck

∫
I
(M−)kf

∫

I−k

f ≤ 2k[log(1 + e)]k

Ck
< 1,

if we choose Ck > 2k[log(1+e)]k. Notice that by this election of Ck, 1
|I−k |

∫
I−k

g ≤ 1.
Then, applying Lemma 3.3 we get

II =
k

|I−k |
∫ ∞

1

[log(e + λ)]k−1

e + λ

∫

{x∈I−k :g(x)>λ}
g(x) dx dλ

≤ kC

|I−k |
∫ ∞

1

λ[log(e + λ)]k−1

e + λ
|{x ∈ I−k−1 : M−g(x) > λ}|dλ

≤ kC

|I−k |
∫ ∞

1

[log(e + λ)]k−1|{x ∈ I−k−1 : M−g(x) > λ}|dλ

≤ kC

|I−k |
∫ ∞

0

φ′k−1(λ)|{x ∈ I−k−1 : M−g(x) > λ}|dλ

≤ kC

|I−k |
∫

I−k−1

φk−1(M−g)

≤ 2kC

|I−k−1|
∫

I−k−1

φk−1

(
M−f

Ckλk(f)

)
.

Let us observe that λk(f) = λk−1(M−f). Then, choosing Ck > 2kCCk−1, using
that the function φk−1 is convex and the induction hypothesis we obtain that

II ≤ 2kC
Ck−1

Ck

1
|I−k−1|

∫

I−k−1

φk−1

(
M−f

Ck−1λk−1(M−f)

)

≤ 2kC
Ck−1

Ck
< 1.

In this way, inequality (3.8) is proved and so is inequality (3.2).
¤

4. Proof of Theorems 1.1 and 1.2

We begin by proving the following pointwise estimate.

Lemma 4.1. Let 0 < α < 1, b ∈ BMO, k ∈ N and 0 < δ < ε < 1. Then there
exists a constant C such that

M+,#
(δ) (I+,k

α,b f)(x) ≤ C

(
k−1∑
m=0

‖b‖k−m
BMOM+

(ε)(I
+,m
α,b f)(x) + ‖b‖k

BMOM+
α,φk

f(x)

)
,

for x ∈ R and f ≥ 0.
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Proof. As in [5] (see also [19]), writing b(x)− b(y) = (b(x)−λ)− (b(y)−λ), where
λ is an arbitrary constant, we can obtain the following decomposition

I+,k
α,b f(x) = I+

α ((b− λ)kf)(x) +
k−1∑
m=0

Cm,k(b(x)− λ)k−mI+,m
α,b f(x). (4.1)

Observe that 0 < δ < 1 implies ||a|δ − |c|δ| ≤ |a − c|δ for a, c ∈ R. Then, given
x ∈ R and h > 0 and taking into account (2.13), it is enough to show that for
some constant a depending on x and h, there exists C > 0 such that

(
1
h

∫ x+2h

x

|I+,k
α,b f(y)− a|δdy

)1/δ

≤ C

(
k−1∑
m=0

‖b‖k−m
BMOM+

(ε)(I
+,m
α,b f)(x) + ‖b‖k

BMOM+
α,φk

f(x)

)
. (4.2)

Now, let us fix x and h > 0 and let J = [x, x + 4h]. Then we write f = f1 + f2,
where f1 = fχJ . Taking λ = bJ = 1

4h

∫ x+4h

x
b, a = I+

α ((b − bJ )kf2)(x + 2h) and
using (4.1) we have that

(
1
h

∫ x+2h

x

|I+,k
α,b f(y)− a|δdy

)1/δ

≤ I1 + I2 + I3, (4.3)

where

I1 = C

k−1∑
m=0

(
1
h

∫ x+2h

x

|b(y)− bJ |(k−m)δ|I+,m
α,b f(y)|δdy

)1/δ

,

I2 = C

(
1
h

∫ x+2h

x

|I+
α ((b− bJ)kf1)(y)|δdy

)1/δ

and

I3 =

(
1
h

∫ x+2h

x

|I+
α ((b− bJ )kf2)(y)− I+

α ((b− bJ)kf2)(x + 2h)|δdy

)1/δ

.

Choosing 1 < r < ε/δ, using Hölder’s inequality and (2.10), it follows that

I1 ≤ C

k−1∑
m=0

(
1
h

∫ x+2h

x

|b− bJ |(k−m)δr′
)1/δr′ (

1
h

∫ x+2h

x

|I+,m
α,b f |δr

)1/δr

≤ C

k−1∑
m=0

‖b‖k−m
BMOM+

(δr)(I
+,m
α,b f)(x)

≤ C

k−1∑
m=0

‖b‖k−m
BMOM+

(ε)(I
+,m
α,b f)(x).
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Now, we estimate I2. Since I+
α is of weak type (1, (1 − α)−1), Kolmogorov’s in-

equality and (2.2) with φk(t) = t[log(e + t)]k and φ̃k(t) = exp(t1/k) yield

I2 ≤ C

h1−α

∫ x+4h

x

|b− bJ |kf(y)dy

≤ Chα‖|b− bJ |k‖φ̃k,J‖f‖φk,J .

Then, by (2.12) we get that

I2 ≤ C‖b− bJ‖k
φ̃,J

M+
α,φk

f(x) ≤ C‖b‖k
BMOM+

α,φk
f(x).

Notice that, by Jensen’s inequality

I3 ≤ 1
h

∫ x+2h

x

∣∣∣∣
∫ ∞

x+4h

(b(t)− bJ )kf(t)
(
(t− y)α−1 − (t− (x + 2h))α−1

)
dt

∣∣∣∣ dy

≤ 1
h

∫ x+2h

x

∞∑

j=2

∫ x+2j+1h

x+2jh

|b(t)− bJ |k|f(t)|
∣∣(t− y)α−1 − (t− (x + 2h))α−1

∣∣ dtdy.

Now, by using the mean value theorem we have that

I3 ≤ Chα−1
∞∑

j=2

2j(α−2)

∫ x+2j+1h

x+2jh

|b(t)− bJ |k|f(t)| dt.

Let Jj = [x + 2jh, x + 2j+1h]. Then

I3 ≤ Chα−1
∞∑

j=2

2j(α−2)

∫ x+2j+1h

x+2jh

|b(t)− bJj |k|f(t)| dt

+Chα−1
∞∑

j=2

2j(α−2)|bJj − bJ |k
∫ x+2j+1h

x+2jh

|f(t)| dt = I + II.

Observe that from the generalized Hölder’s inequality and (2.12) we obtain

I ≤ Chα
∞∑

j=2

2j(α−1)||b− bJj ||kφ̃,Jj
||f ||φk,Jj

≤ C||b||kBMO

∞∑

j=2

2−j(2jh)α||f ||φk,Jj ≤ C||b||kBMOM+
α,φk

f(x).

On the other hand, using (2.9) it is easy to see that

II ≤ Chα−1
∞∑

j=2

2j(α−2)

(∫ x+2j+1h

x+2jh

|f(t)| dt

)
(j + 1)k||b||kBMO

≤ C||b||kBMOM+
α f(x).

Putting together the above estimates we are done. ¤
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Proof of Theorem 1.2. We shall prove the theorem proceeding by induction on k.
As we mentioned in the introduction, the case k = 0 was proved in [11]. So let us
assume that the theorem is true for all j ≤ k − 1 and let us prove the case j = k.
Applying Theorem 4 in [12] and Lemma 4.1 we have that, for every δ small enough
and any ε with δ < ε < 1,

||I+,k
α,b f ||p,w ≤ ||M+

(δ)(I
+,k
α,b f)||p,w ≤ C||M+,#

(δ) (I+,k
α,b f)||p,w

≤ C

k−1∑

j=0

||b||k−j
BMO||M+

(ε)(I
+,j
α,b f)||p,w + C||b||kBMO||M+

α,φk
f ||p,w.

Notice that the condition M+
(δ)(I

+,k
α,b f) ∈ Lp(w) in Theorem 4 ([12]) is satisfied. In

fact, observe that we work with functions f such that I+,k
α,b f ∈ Lp(w). On the other

hand, since w ∈ A+
∞, there exists r > 1 such that w ∈ A+

r . Then, for all δ > 0 small
enough we have that r < p

δ and thus, w ∈ A+
p
δ
. Therefore M+

(δ)(I
+,k
α,b f) ∈ Lp(w).

Now, we choose ε > δ such that r < p
ε . So that w ∈ A+

p
ε

and we get

||M+
(ε)(I

+,j
α,b f)||pp,w =

∫

R
[M+(|I+,j

α,b f |ε] p
ε w ≤ C

∫

R
[|I+,j

α,b f |ε] p
ε w = C||I+,j

α,b f ||pp,w.

Then, by recurrence and taking into account (2.5),

||I+,k
α,b f ||p,w ≤ C

k−1∑

j=0

||b||k−j
BMO||I+,j

α,b f ||p,w + C||b||kBMO||M+
α,φk

f ||p,w

≤ C

k−1∑

j=0

||b||k−j
BMO||b||jBMO||M+

α,φj
f ||p,w + C||b||kBMO||M+

α,φk
f ||p,w

≤ C||b||kBMO||M+
α,φk

f ||p,w.

¤

Proof of Theorem 1.1. The proof of this theorem is similar to the corresponding
one in [2] and follows the lines of Pérez’s articles (see for example [20]), but we
include it for the sake of completeness. First, let us observe that we only need to
consider the case αp < 1 (see, for example, the beginning of the proof of Theorem
1.2 in [2]). By a duality argument, it is enough to show that

∫

R
|I−,k

α,b f |p′(M−
αp(M

−)[(k+1)p]w)1−p′ ≤ C

∫

R
|f |p′w1−p′ . (4.4)

As mentioned in Section 2, for 0 < α < 1 and 0 ≤ δ < 1 the function (M−
α g)δ

belongs to A+
1 . Thus, choosing r > p′ and δ = (p′ − 1)/(r − 1),

[M−
αp((M

−)[(k+1)p]w)(x)]1−p′ =
{

[M−
αp((M

−)[(k+1)p]w)(x)]
p′−1
r−1

}1−r

∈ A−r ⊂ A−∞.
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Applying Theorem 1.2 with the orientation reversed we get∫
|I−,k

α,b f(x)|p′ [M−
αp((M

−)[(k+1)p]w)(x)]1−p′dx

≤ C

∫
[M−

α,φk
f(x)]p

′
[M−

αp((M
−)[(k+1)p]w)(x)]1−p′dx, (4.5)

and then, by Theorem 3.1, it is enough to show that∫
[M−

α,φk
f(x)]p

′
[M−

αp,φ[(k+1)p]
w(x)]1−p′dx ≤ C

∫
|f(x)|p′w(x)1−p′dx.

Defining g = fw−1/p, the above inequality may be stated as∫
[M−

α,φk
(gw1/p)(x)]p

′
[M−

αp,φ[(k+1)p]
w(x)]1−p′dx ≤ C

∫
|g(x)|p′dx.

Now, we shall use that, for large t,

φ−1
k (t) ≈

t

[log(e + t)]k
=

t1/p

[log(e + t)]k+(p−1+ε)/p
× t1/p′ [log(e + t)](p−1+ε)/p

= ψ−1
k (t)× ϕ−1(t),

where ψk(t) ≈ tp[log(e + t)](k+1)p−1+ε and ϕ(t) ≈ tp
′
[log(e + t)]−(1+(p′−1)ε) (see

[14]). Thus, by (2.3),

(x− a)α‖gw1/p‖φk,(a,x) ≤ C(x− a)α‖g‖ϕ,(a,x)‖w1/p‖ψk,(a,x).

Choosing ε > 0 so that (k + 1)p− 1 + ε = [(k + 1)p] we have that

(x− a)α‖gw1/p‖φk,(a,x) ≤ C‖g‖ϕ,(a,x)

(
(x− a)αp‖w‖φ[(k+1)p],(a,x)

)1/p

.

Therefore

M−
α,φk

(gw1/p)(x) ≤ CM−
ϕ g(x)[M−

αp,φ[(k+1)p]
w(x)]1/p.

Moreover, since ϕ satisfies condition Bp′ (that is, there is a positive constant c

such that
∫∞

c
ϕ(t)

tp′+1 dt < ∞), applying Theorem 1.7 in [17] we get that
∫

[M−
α,φk

(gw1/p)(x)]p
′
[M−

αp,φ[(k+1)p]
w(x)]1−p′dx ≤ C

∫
|M−

ϕ g(x)|p′dx

≤ C

∫
|Mϕg(x)|p′dx

≤ C

∫
|g(x)|p′dx,

where Mϕg(x) = supx∈I ||g||ϕ,I . This concludes the proof of the theorem. ¤

Remark 4.2. Observe that from the proof of Theorem 1.1 we can obtain the fol-
lowing sharper inequality∫

R
|I+,k

α,b f(x)|pw(x)dx ≤ C‖b‖kp
BMO

∫

R
|f(x)|pM−

αp,φη
w(x)dx,
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with η = (k + 1)p− 1 + ε, ε > 0, and where the constant C depends on ε. In fact,
to see this we only need to show that (M−

αp,φη
w)1−p′ ∈ A−∞. Let us sketch the proof.

First, notice that M−
αp,φη

w ≈ [M−
α,ψη

(w1/p)]p, where ψη(t) = tp[log(e+ t)]η ≈
φη(tp). Then, if we prove that [M−

α,ψη
(w1/p)]δ ∈ A+

1 for any δ ∈ (0, 1), we will get

that [M−
αp,φη

w]1−p′ ≈ [M−
α,ψη

(w1/p)]−p′ ∈ A−∞ since

[M−
α,ψη

(w1/p)]−p′ = {[M−
α,ψη

(w1/p)]δ}1−(1+p′/δ) ∈ A−1+p′/δ ⊂ A−∞.

Observe that, the fact [M−
α,ψη

(w1/p)]δ ∈ A+
1 follows trivially from the inequalities

C1M
−
α,ψη

w(x) ≤ M−
α (M−

ψη
w)(x) ≤ C2M

−
α,ψη

w(x). (4.6)

To prove the first inequality of (4.6) we define the maximal operator

N−
α,ψη

w(x) = sup
I=(a,x)

|I−|α||w||ψη,I− ,

where I− = (a, x − |I|/2p). As in Lemma 3.2 we can prove that there exists a
constant C such that

M−
α,ψη

w(x) ≤ CN−
α,ψη

w(x). (4.7)

In fact, notice that ψp
0(2t) = 2pψp

0(t), ψη(2t) ≤ 2p(log 2)ηψ0(t) + 2pψη(t) for 0 <
η ≤ 1, and, in general, if k < η ≤ k + 1, with k ∈ N,

ψη(2t) ≤ C





k∑

j=0

ψj(t) +
k−1∑

j=0

ψη+j−k(t)



 + 2pψη(t).

Then, following the arguments in the proof of Lemma 3.2 with γk = 2 and using
that αp ∈ (0, 1) we get (4.7). Now, let I+ = I \ I−. Then

|I−|α||w||ψη,I− ≤ |I−|α|I+|−1

∫

I+
||w||ψη,(a,y) dy

≤ 2p|I|α−1

∫

I

M−
ψη

w(y) dy ≤ 2pM−
α (M−

ψη
w)(x).

Putting together the above inequalities and (4.7) we get the desired inequality.
The second inequality in (4.6) follows as in the proof of (3.1). In fact, taking into
account (2.7), we only need to show that

1
|I|

∫

I

M−
ψη

w ≤ 1
|I|

∫

I

Mψηw ≤ C||w||ψη,I ,

for any function w with support in I. The last inequality follows, with standard
arguments, by using a weak type inequality of Mψη (see for example [2]).
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5. Proof of Theorem 1.4

Proof. Without loss of generality we may assume that f ≥ 0, f ∈ L1(R) and
||b||BMO = 1. Let λ > 0 and let Ij = (aj , bj) be the connected components of
Ω = {x ∈ R : M+f(x) > λ}. Then

Ω = ∪jIj and
1
|Ij |

∫

Ij

f = λ (5.1)

(see for example [6] p. 423). If x /∈ Ω, then 1
h

∫ x+h

x
f ≤ λ for all h > 0, and

therefore f(x) ≤ λ a.e x ∈ R \ Ω. Let us write f = g + h, with g defined by

g(x) =
{

f(x), x ∈ R \ Ω
fIj

, x ∈ Ij

where fI = 1
|I|

∫
I
f and h(x) =

∑
j hj(x), with hj(x) = (f(x)− fIj )χIj (x).

Observe that g(x) ≤ λ, a.e.. Let us define

Ω̃ = ∪j(I−j ∪ Ij) = ∪j Ĩj ,

where I−j = (cj , aj) and |I−j | = |Ij |. We will use the notation

w∗(x) = w(x)χR\Ω̃ and wj(x) = w(x)χR\Ĩj
.

Now, we prove the theorem proceeding by induction on k. We start by proving the
case k = 0. Notice that

w({x ∈ R : |I+
α f(x)| > λ}) ≤ w({x ∈ R \ Ω̃ : |I+

α g(x)| > λ/2}) + w(Ω̃)

+ w({x ∈ R \ Ω̃ : |I+
α h(x)| > λ/2})

= I + II + III.

Given ε > 0 we choose p such that 1 < p < 1 + ε. We apply (1.3) with δ =
ε + 1− p > 0. Then we have that

I ≤ C

λp

∫

R
|I+

α g(x)|pw∗(x) dx

≤ C

λp

∫

R
[g(x)]pM−

αp,φε
w∗(x) dx ≤ C

λ

∫

R
g(x)M−

αp,φε
w∗(x) dx

≤ C

λ

∫

R\Ω
f(x)M−

αp,φε
w∗(x) dx +

C

λ

∑

j

∫

Ij

fIj M
−
αp,φε

wj(x) dx.

It is clear that we only have to estimate the second term. By (2.8) we get that
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∫

Ij

fIj M
−
αp,φε

wj(x) dx ≤
(∫

Ij

f(x)dx

)
1
|Ij |

∫

Ij

M−
αp,φε

wj(x) dx

≤
(∫

Ij

f(x) dx

)
inf
z∈Ij

M−
αp,φε

wj(z)

≤
∫

Ij

f(x)M−
αp,φε

wj(x) dx. (5.2)

Hence, I ≤ C
λ

∫
R f(x)M−

αp,φε
w(x) dx. Now, we shall estimate II. Notice that

II = w(Ω̃) = w(∪j Ĩj) ≤
∑

j

[w(I−j ) + w(Ij)].

For each j we have

w(I−j ) =
w(I−j )

|I−j |
1
λ

∫

Ij

f(x) dx ≤ C

λ

∫

Ij

f(x)M−w(x) dx.

If we now use that M+ is of weak-type (1,1) with respect to the pair of
weights (w,M−w) (see [26] or [10]) we get that

∑

j

w(Ij) = w(Ω) ≤ C

λ

∫

R
f(x)M−w(x) dx.

Then II ≤ C
λ

∫
R f(x)M−w(x) dx. To estimate III we use the fact that

∫
Ij

hj = 0
and we obtain

III ≤ C

λ

∑

j

∫

R\Ω̃
|I+

α hj(x)|w(x) dx ≤ C

λ

∑

j

∫

R\Ĩj

|I+
α hj(x)|wj(x) dx

=
C

λ

∑

j

∫ cj

−∞

∣∣∣∣∣
∫

Ij

(
hj(y)

(y − x)1−α
− hj(y)

(aj − x)1−α

)
dy

∣∣∣∣∣wj(x) dx

≤ C

λ

∑

j

∫

Ij

|hj(y)|
∞∑

m=0

∫

Im,j

∣∣∣∣
1

(y − x)1−α
− 1

(aj − x)1−α

∣∣∣∣ wj(x) dx dy,

where Im,j = (aj − 2m+1rj , aj − 2mrj) with rj = |Ij |. Now, using the mean value
theorem for each y ∈ Ij we get that

∫

Im,j

∣∣∣∣
1

(y − x)1−α
− 1

(aj − x)1−α

∣∣∣∣ wj(x) dx ≤ C
rj

(2mrj)2−α

∫

Im,j

wj(x) dx

≤ C
rj

(2mrj)2−α

∫ y

aj−2m+1rj

wj(x) dx

≤ C2−mM−
α wj(y).
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Then

III ≤ C

λ

∑

j

∫

Ij

|hj(y)|M−
α wj(y) dy

≤ C

λ

∑

j

∫

Ij

f(y)M−
α wj(y) dy +

C

λ

∑

j

∫

Ij

fIj
M−

α wj(y) dy.

Using (2.8) as in (5.2) in the second term of the last inequality,

III ≤ C

λ

∑

j

∫

Ij

f(y)M−
α wj(y) dy ≤ C

λ

∫

R
f(y)M−

α w(y) dy.

Therefore, collecting the estimates for I, II and III and using (2.6) we get the
theorem in the case k = 0.

Let now k ∈ N and suppose that the theorem is true for j < k. Then with
the same notation as in the proof of the case k = 0,

w({x ∈ R : |I+,k
α,b f(x)| > λ}) ≤ w({x ∈ R \ Ω̃ : |I+,k

α,b g(x)| > λ/2}) + w(Ω̃)

+ w({x ∈ R \ Ω̃ : |I+,k
α,b h(x)| > λ/2})

= I + II + III.

Given ε > 0 we choose p such that 1 < p < 1 + ε
k+1 and we apply (1.3) with

δ = ε− (k + 1)(p− 1) > 0. Then, as in the case k = 0, we obtain that

I ≤ C

λ

∫

R
f(x)M−

αp,φk+ε
w(x) dx

and

II ≤ C

λ

∫

R
f(x)M−w(x) dx.

To estimate III we write

∑

j

I+,k
α,b hj(x) =

∑

j

(b(x)− bIj )
kI+

α hj(x) +
∑

j

I+
α

(
(b− bIj )

khj

)
(x)

+
k−1∑

l=1

Ck,lI
+,l
α,b

( ∑

j

(b− bIj )
k−lhj

)
(x).
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The above decomposition follows from (4.1) as in [21]. Then

III ≤ w({x ∈ R \ Ω̃ : |
∑

j

(b(x)− bIj )
kI+

α hj(x)| > λ

6
})

+ w({x ∈ R \ Ω̃ : |
∑

j

I+
α

(
(b− bIj

)khj

)
(x)| > λ

6
})

+ w({x ∈ R \ Ω̃ : |
k−1∑

l=1

Ck,lI
+,l
α,b

( ∑

j

(b− bIj
)k−lhj

)
(x)| > λ

6
})

= (III)a + (III)b + (III)c.

In a similar way as in the estimate of III for k = 0, we get that

(III)a ≤ C

λ

∑

j

∫

R\Ω̃
|b(x)− bIj

|k|I+
α hj(x)|w(x) dx

≤ C

λ

∑

j

∫

R\Ω̃
|b(x)− bIj

|k
∣∣∣∣∣
∫

Ij

hj(y)
(y − x)1−α

dy −
∫

Ij

hj(y)
(aj − x)1−α

dy

∣∣∣∣∣ w(x) dx

≤ C

λ

∑

j

∫

Ij

|hj(y)|
∫

R\Ĩj

∣∣(y − x)α−1 − (aj − x)α−1
∣∣ |b(x)− bIj |kwj(x) dx dy

≤ C

λ

∑

j

∫

Ij

|hj(y)|
∞∑

m=0

∫

Im,j

∣∣(y − x)α−1 − (aj − x)α−1
∣∣ |b(x)− bIj |kwj(x) dx dy,

where Im,j = (aj − 2m+1rj , aj − 2mrj). Using again the mean value theorem, we
get ∫

Im,j

∣∣∣∣
1

(y − x)1−α
− 1

(aj − x)1−α

∣∣∣∣ |b(x)− bIj |kwj(x) dx

≤ C
rj

(2mrj)2−α

∫

Im,j

|b(x)− bIm,j |kwj(x) dx

+ C
rj

(2mrj)2−α
|bIj − bIm,j |k

∫

Im,j

wj(x) dx

= (III)a
1 + (III)a

2 .

By the generalized Hölder’s inequality with φk(t) = t[log(e+t)]k and φ̃k(t) ≈ et1/k

,
and using (2.12) we get

(III)a
1 ≤ C

rj

(2mrj)1−α
||b||kBMO||wj ||φk,Im,j ≤ C

1
2m

M−
α,φk

wj(y),

for all y ∈ Ij . Now, applying (2.9) we get that

(III)a
2 ≤ C

(m + 1)k

2m
M−

α wj(y),
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for all y ∈ Ij . Then

(III)a ≤ C

λ

∑

j

∫

Ij

|hj(y)|
( ∞∑

m=0

1
2m

M−
α,φk

wj(y) +
∞∑

m=1

(m + 1)k

2m
M−

α wj(y)

)
dy

≤ C

λ

∑

j

∫

Ij

|hj(y)|M−
α,φk

wj(y) dy ≤ C

λ

∫

R
f(y)M−

α,φk
w(y) dy,

where the last inequality follows as in the estimation of III in the case k = 0. To
estimate (III)b we shall use the case k = 0 and we obtain

(III)b ≤C

λ

∑

j

∫

Ij

|b(x)− bIj |k|f(x)− fIj |[M−
αp,φε

wj(x) + M−wj(x)] dx

≤C

λ

∑

j

[inf
Ij

M−
αp,φε

wj + inf
Ij

M−wj ]
∫

Ij

|b(x)− bIj
|kf(x)dx

+
C

λ

∑

j

[inf
Ij

M−
αp,φε

wj + inf
Ij

M−wj ]
∫

Ij

|b(x)− bIj
|kfIj

dx

=(III)b
1 + (III)b

2.

To estimate (III)b
2 we will use (2.8) and (2.10). Then we have

(III)b
2 ≤

C

λ

∑

j

1
|Ij | [inf

Ij

M−
αp,φε

wj + inf
Ij

M−wj ]
∫

Ij

|b(x)− bIj |k
∫

Ij

f(y)dydx

≤ C

λ

∑

j

1
|Ij |

∫

Ij

|b(x)− bIj |kdx

∫

Ij

f(y)[M−
αp,φε

wj(y) + M−wj(y)]dy

≤ C

λ

∑

j

||b||kBMO

∫

Ij

f(y)[M−
αp,φε

wj(y) + M−wj(y)]dy

≤ C

λ

∫

R
f(y)[M−

αp,φε
w(y) + M−w(y)]dy.

To estimate (III)b
1 we use again the generalized Hölder’s inequality for φk and φ̃k

(III)b
1 ≤

C

λ

∑

j

[inf
Ij

M−
αp,φε

wj + inf
Ij

M−wj ]
∫

Ij

|b(x)− bIj |kf(x)dx

≤ C

λ

∑

j

[inf
Ij

M−
αp,φε

wj + inf
Ij

M−wj ]|Ij |||(b− bIj )
k||φ̃k ,Ij

||f ||φk ,Ij

≤ C

λ
||b||kBMO

∑

j

[inf
Ij

M−
αp,φε

wj + inf
Ij

M−wj ]|Ij |||f ||φk ,Ij .

Now, the inequality

||f ||φk ,I ≤ inf
µ>0

{
µ +

µ

|I|
∫

I

φk

( |f |
µ

)}
,
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(see [7] and also [23]) and (5.1) gives us that

1
λ
|Ij |||f ||φk,Ij

≤ 1
λ
|Ij | inf

µ>0

{
µ +

µ

|Ij |
∫

Ij

φk

( |f |
µ

)}

≤ |Ij |+
∫

Ij

φk

(
f

λ

)
=

1
λ

∫

Ij

f +
∫

Ij

φk

(
f

λ

)
≤ 2

∫

Ij

φk

(
f

λ

)
.

Then

(III)b
1 ≤ C

∑

j

∫

Ij

φk

(
f(x)

λ

)
[M−

αp,φε
wj(x) + M−wj(x)]dx

≤ C

∫
φk

(
f(x)

λ

)
[M−

αp,φε
w(x) + M−w(x)]dx.

To conclude the proof we only have to estimate (III)c where we will use the
induction argument:

(III)c ≤ w({x ∈ R \ Ω̃ : |
k−1∑

l=1

Ck,lI
+,l
α,b

( ∑

j

(b− bIj )
k−lfχIj

)
(x)| > λ

12
})

+ w({x ∈ R \ Ω̃ : |
k−1∑

l=1

Ck,lI
+,l
α,b

(∑

j

(b− bIj )
k−lfIj χIj

)
(x)| > λ

12
})

= (III)c
1 + (III)c

2.

By induction,

(III)c
1

≤ C

k−1∑

l=1

∫

R
φl


f(x)

λ

∑

j

(b(x)− bIj )
k−lχIj (x)


 [M−

φl
w∗(x) + M−

αp,φl+ε
w∗(x)]dx

≤ C

k−1∑

l=1

∑

j

∫

Ij

φl

(
f(x)

λ
(b(x)− bIj )

k−l

)
[M−

φl
wj(x) + M−

αp,φl+ε
wj(x)]dx

≤ C

k−1∑

l=1

∑

j

[inf
Ij

M−
φl

wj + inf
Ij

M−
αp,φl+ε

wj ]
∫

Ij

φl

(
f(x)

λ
(b(x)− bIj )

k−l

)
dx.

Now observe that φ−1
k (t) ≈ t

[log(e+t)]k
and φ̃−1

k (t) ≈ [log(e + t)]k. Then

φ−1
k (t)φ̃−1

k−l(t) ≤ C φ−1
l (t).
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Using (2.4), (2.11) and (5.1) we get that
∫

Ij

φl

(
f(x)

λ
(b(x)− bIj

)k−l

)
dx

≤ C

∫

Ij

φk

(
f(x)

λ

)
dx + C

∫

Ij

φ̃k−l

(
(b(x)− bIj )

k−l
)
dx

≤ C

∫

Ij

φk

(
f(x)

λ

)
dx + C|Ij |

≤ C

∫

Ij

φk

(
f(x)

λ

)
dx + C

∫

Ij

f(x)
λ

dx ≤ C

∫

Ij

φk

(
f(x)

λ

)
dx.

Then

(III)c
1 ≤ C

k−1∑

l=1

∑

j

[inf
Ij

M−
φl

wj + inf
Ij

M−
αp,φl+ε

wj ]
∫

Ij

φk

(
f(x)

λ

)
dx

≤ C

k−1∑

l=1

∑

j

∫

Ij

φk

(
f(x)

λ

)
[M−

φl
w(x) + M−

αp,φl+ε
w(x)]dx.

The term (III)c
2 is controlled in the same way, just observe that by (2.11) and

Jensen’s inequality
∫

Ij

φl

(
fIj

λ
(b(x)− bIj )

k−l

)
dx ≤ C|Ij |φk

(
fIj

λ

)
+ C|Ij |

≤ C

∫

Ij

φk

(
f(x)

λ

)
dx.

Then, using (2.5),

(III)c ≤ C

∫
φk

(
f(x)

λ

)
[M−

φk−1
w(x) + M−

αp,φk−1+ε
w(x)] dx.

By (2.5) again and (2.6) we have that

III ≤ C

∫
φk

(
f(x)

λ

)
[M−

αp,φk+ε
w(x) + M−

φk
w(x)] dx.

Now, putting together the estimates of I, II and III, we are done. ¤
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