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Abstract. We examine the structure of a variety of related weight classes on
the real line and the positive real axis: doubling measures, Ap weights, the Bp

weights of Ariño and Muckenhoupt, and ∆2 Young functions. We give a number of
characterizations of these classes. As applications we compute the Matuszewska-
Orlicz indices of a Young function due to Lindberg [27], give a sufficient condition
for a function m to be a multiplier of the doubling measures on R+ and answer a
question on quasi-symmetric mappings raised by the first author in [4].

1. Introduction

The purpose of this paper is to bring together a number of results on the struc-
ture of various classes of measures and (increasing) weights on the real line and the
positive real axis. These weights are important in a number of different branches of
analysis—weighted norm inequalities, Orlicz spaces, quasi-symmetric mappings—and
our results incorporate ideas from these fields.

The paper is organized as follows: in Sections 2—5 we describe all of our results in
detail. In Section 2 we state the basic definitions and properties of the measures
and weights we are interested in. In Section 3 we give our results on the relation-
ship between three classes on the positive real axis: ∆2 Young functions, Ap weights
and the Bp measures of Ariño and Muckenhoupt [1]. As an application we com-
pute the Matuszewska-Orlicz indices (and so the Boyd indices) of the Young function
ta+b sin(log(| log(t)|)). This function was introduced by Lindberg [27] and considered by
a number of other authors. The values of its indices have long been conjectured but,
until now, have never been proved. In Section 4 we gather together a number of other
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results about these and other related weight classes. In Section 5 we characterize the
so-called engulfing property of sections of convex functions on the real line. This
property is important in the study of Monge-Ampère equations (see Gutiérrez and
Huang [19]). There is a connection between such convex functions, doubling mea-
sures, and quasi-symmetric maps (defined in the introduction to Section 5) and the
resulting classification scheme parallels Theorem 3.1 in Section 3. As an application
of these ideas we give a sufficient condition on a function to be a multiplier of doubling
measures on R+ and answer in the negative a question on quasi-symmetric functions
raised by the first author in [4]. In the remaining sections we give the proofs of our
results.

Throughout this paper all notation is standard or will be defined as needed. By
weights we will always mean non-negative, locally integrable functions which are
positive on a set of positive measure. Given a Lebesgue measurable set E and a
weight w, |E| will denote the Lebesgue measure of E and w(E) =

∫
E
w dx. Given

1 < p < ∞, p′ = p/(p − 1) will denote the conjugate exponent of p. Finally, C will
denote a positive constant whose value may change at each appearance.

2. Measures and weights

In this section we give a brief overview of the measures and weights we will be
considering.

Doubling measures. Given a non-negative Borel measure µ on R or R+, we say
that µ is a doubling measure if there exists a constant Cµ such that for every interval
I, µ(2I) ≤ Cµµ(I), where 2I is the interval with the same center as I and twice
the length. It is easy to see that given any 0 < α < 1, there exists a constant
C = C(Cµ, α) such that µ(I) ≤ Cµ(αI) (where αI has the same center as I and
|αI| = α|I|). Equivalently, µ is doubling if there exists M > 1 such that given
adjacent intervals I and J of equal length,

(2.1) M−1µ(I) ≤ µ(J) ≤Mµ(I).

If this property only holds for dyadic intervals I and J that have the same dyadic
parent, then we say that µ is a dyadic doubling measure.

Bp measures. A non-negative Borel measure µ on R+ is in the Bp class, 0 < p <∞,
if there exists a positive constant C such that for every t > 0,

(2.2)

∫ ∞

t

1

xp
dµ ≤ C

tp

∫ t

0

dµ.

The Bp class with µ absolutely continuous and p > 1 was introduced by Ariño and
Muckenhoupt [1] while studying the Hardy-Littlewood maximal operator on Lorentz
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spaces. They showed that the Bp condition for absolutely continuous µ is necessary
and sufficient for the Hardy-Littlewood maximal operator restricted to decreasing
functions to be bounded on Lp(w,R+). Sbordone and Wik [36] extended this result
to 0 < p ≤ 1. A close examination of these proofs show that they hold for any
non-negative Borel measure µ satisfying the Bp condition.

Sbordone and Wik further showed that a Borel measure µ is in Bp for some p > 0
if and only if it satisfies the B∞ condition: there exists a constant C such that for
every t > 0, µ([0, 2t]) ≤ Cµ([0, t]). This is an “anchored” doubling condition, and so
we immediately have that every doubling measure is in B∞. The reverse inclusion
is false: for example, if we define µ by dµ(x) = χ[0,1](x)dx, then µ ∈ B∞ but is not
doubling.

There is a constructive characterization of B∞ measures. Let Dk be the set of all
dyadic intervals contained in Ik = [0, 2k], k ∈ Z and let D =

⋃
k Dk. Given I ∈ D, let

hI be the Haar function

hI(x) =

{
1 x ∈ I−

−1 x ∈ I+,

where I− and I+ are the dyadic subintervals of I such that |I±| = |I|/2.

Theorem 2.1. A non-negative Borel measure µ satisfies the B∞ condition if and
only if for every k ∈ Z the following is true: µk, the restriction of µ to Ik, can be
written as

µk = µ(Ik)
∏
I∈Dk

(1 + aIhI),

where the product converges in the weak∗ topology, |aI | < 1, and there exists ε > 0
(independent of k) such that if I = Ij, j ≤ k, then aI < 1− ε.

The proof of Theorem 2.1 is a trivial modification of a characterization of dyadic
doubling measures due to Fefferman, Kenig and Pipher [12]. It suffices to note that
the B∞ condition is equivalent to the dyadic B∞ condition: for all j, µ([0, 2j+1]) ≤
Cµ([0, 2j]). Further details are left to the interested reader.

Ap weights. A non-negative, locally integrable function w is in the Ap class, 1 <
p < ∞, if there exists a positive constant C such that for every interval I ⊂ R+ or
R, (

1

|I|

∫
I

w(x) dx

) (
1

|I|

∫
I

w(x)1−p′ dx

)p−1

≤ C.

The union of all the Ap classes is denoted A∞. The Ap class was introduced by
Muckenhoupt [29], who showed that a necessary and sufficient condition for the
Hardy-Littlewood maximal operator to be bounded on Lp(w) is w ∈ Ap. The Ap
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weights also govern the weighted norm inequalities for the Hilbert transform and a
number of other operators. For more information on Ap weights, see Duoandikoetxea
[11] or Garćıa-Cuerva and Rubio de Francia [18].

∆2 Young functions. A non-negative function w on R+ is a Young function if it
is continuous, convex, strictly increasing, w(0) = 0, and w(t)/t → ∞ as t → ∞. A
Young function satisfies the ∆2 condition if w(2t) ≤ Cw(t) for all t > 0. In [4] the
first author showed that an increasing weight on R+ satisfies the ∆2 condition if and
only if it is in Ap for some p > 1.

Given a Young function w, let w̄ denote its complementary function—that is,

w̄(t) = sup
s≥0
{st− w(s)}.

The complementary function is also a Young function, and w̄ is ∆2 if and only if w
satisfies the 52 condition: for some a > 1, 2aw(t) ≤ w(at).

The growth of a Young function and its complementary function are measured by its
Matuszewska-Orlicz indices. Given a Young function w, define the function Hw by

Hw(t) = sup
s>0

w(st)

w(s)
.

Then the upper and lower indices of w are defined by

i(w) = lim
t→0+

log(Hw(t))

log(t)
, I(w) = lim

t→∞

log(Hw(t))

log(t)
.

The indices of w and w̄ have the following properties:

i) 1 ≤ i(w) ≤ I(w) ≤ ∞;
ii) I(w)−1 + i(w̄)−1 = i(w)−1 + I(w̄)−1 = 1;
iii) I(w) <∞ if and only if w is ∆2 and i(w) > 1 if and only if w̄ is ∆2.

For more information on Young functions, see Krasnosel’skĭı and Rutickĭı [25] or Rao
and Ren [34]. For the indices of Young functions, see Maligranda [28] or Fiorenza
and Krbec [14].

3. Bp measures, Ap weights and ∆2 Young functions

Our main result in this section is to show that there is a very close relationship
between Bp measures, Ap weights on R+ and ∆2 Young functions.

Theorem 3.1. Given a non-negative Borel measure µ on R+, define the functions v
and w on R+ by

v(t) =

∫ t

0

dµ and w(t) =

∫ t

0

v(x) dx.
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Then given p > 0, the following are equivalent:

i) µ ∈ Bp;
ii) v is increasing and in Ap+1;
iii) w is a ∆2 Young function and in Ap+2.

We prove Theorem 3.1 in Section 6.

Remark 3.2. The implication that (i) implies (ii) in Theorem 3.1 generalizes a result
due to Johnson and Neugebauer [22], who showed that the integral of an Ap weight
is in Ap+1. Their proof was a corollary to a more general result on homomorphisms
and Ap weights; the first author gave a direct proof in [4].

This paper was written in two stages, with a long gap in between. During this
interregnum we learned that the equivalence of (i) and (ii) in Theorem 3.1 (for
absolutely continuous µ) was discovered independently by Cerdà and Mart́ın [3], and
was implicit in Soria [38]. Their proof is very similar to ours, drawing on results in
[4]. We are grateful to the authors for calling our attention to their work.

The indices of a ∆2 Young function and its complementary function correlate precisely
with their Ap classes, as the next two results show.

Theorem 3.3. Given a ∆2 Young function w and p∗, 1 ≤ p∗ <∞, the following are
equivalent:

i) I(w) = p∗;
ii) q > p∗ if and only if there exists a constant C such that for every t > 0,

tq
∫ ∞

t

w(x)

xq

dx

x
≤ Cw(t);

iii) q > p∗ if and only if for any a > 1,

lim inf
n→∞

(
w(ak−n)

w(ak)

)1/n

> a−q,

and the limit infimum is uniform in k;
iv) p∗ + 1 = inf{q : w ∈ Aq};

In the next result we want w̄ to be ∆2, so we must assume that i(w) > 1.

Theorem 3.4. Given a ∆2 Young function w and p∗, 1 < p∗ <∞, the following are
equivalent:

i) i(w) = p∗;



6 DAVID CRUZ-URIBE, SFO, LILIANA FORZANI, AND DIEGO MALDONADO

ii) q < p∗ if and only if there exists a constant C such that for every t > 0

tq
∫ t

0

w(x)

xq

dx

x
≤ Cw(t);

iii) q < p∗ if and only if for every a > 1,

lim sup
n→∞

(
w(ak−n)

w(ak)

)1/n

< a−q,

and the limit supremum is uniform in k;
iv) p′∗ + 1 = inf{q : w̄ ∈ Aq}.

Theorem 3.3 is implicit in the literature. The equivalence of (i) and (ii) is due to
Maligranda [28]. The equivalence of (ii), (iii) and (iv) was shown in [4]; there (iii)
was only shown for a = 2, but the same proof works for any a. We prove Theorem 3.4
in Section 6.

We give two applications of Theorems 3.3 and 3.4. The proof of each is also in Sec-
tion 6. First, we consider the Ap class of a ∆2 Young function whose complementary
function is also in ∆2. It follows at once from Theorem 3.1 that in this case both w
and w̄ can be in Ap only if p > 2. In fact, there are sharper lower bounds in terms of
the best ∆2 and ∇2 constants.

Theorem 3.5. Let w be a ∆2 Young function whose complementary function is also
in ∆2, and let D and A be the best constants in the ∆2 and ∇2 conditions. Then:

i) w ∈ Ap only if p > 2 +
log 2

logA
;

ii) w̄ ∈ Ap only if p > 1 +
logD

logD − log 2
.

As a second application we compute the upper and lower indices of a complicated
Young function that has appeared frequently in the literature.

Theorem 3.6. Given a, b ∈ R+, a > 1 + b
√

2, then the Young function

w(t) = ta+b sin(log(| log(t)|))

has indices I(w) = a+ b
√

2 and i(w) = a− b
√

2.

This example is due to Lindberg [27]. Maligranda [28] showed that i(w) ≥ a − b
√

2
and I(w) ≤ a+ b

√
2. Independently, Fusco and Sbordone [17] considered the special

case a = 4 and b = 1. They showed that p(w) = 4−
√

2 and q(w) = 4 +
√

2, where
p and q are the lower and upper Simonenko indices,

p(w) = inf
t>0

tw′(t)

w(t)
≤ i(w), q(w) = sup

t>0

tw′(t)

w(t)
≥ I(w).
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(For more on Simonenko indices, see Maligranda [28].) Fiorenza [13] later extended
their result to the general case. Finally, when a = 4 and b = 1, Fiorenza and Krbec
[14] claimed to prove Theorem 3.6; unfortunately, there is an error in their proof
and they only establish the inequalities already gotten by Maligranda and Fusco and
Sbordone.

4. Additional results for weights on R+

Another growth condition. If 1 < p <∞, then a Young function w is in the class
Bp if there exists c > 0 such that∫ ∞

c

w(x)

xp

dx

x
<∞.

This class was introduced by Pérez [33]. In the literature it is normally denoted by
Bp. To avoid confusion with the class Bp of Ariño and Muckenhoupt, we adopt the
given notation. The Bp condition plays an important role in the study of two-weight
norm inequalities for classical operators: see [8, 9, 10, 31, 32, 33].

The functions from the class Bp that often appear in practice are ∆2 Young functions.
As we noted in Section 3, these functions are in Aq for some q > 1, so it is reasonable
to conjecture that there is some relationship between q and p. By Theorem 3.3, if
w ∈ Ap+1, then for every t > 0,

tp
∫ ∞

t

w(x)

xp

dx

x
≤ Cw(t),

so w ∈ Bp. The converse need not be true; Pérez [33] gave a simple counter-example:
w(t) = tp log(e + t)−1−δ, δ > 0. It is “almost” in Ap+1, however, as the following
theorem shows.

Theorem 4.1. Let w be a Young function such that w(t) = tpψ(t), where ψ is a
decreasing function. Then w ∈ Aq for all q > p+ 1.

Theorem 4.1 includes the principal examples of Bp weights which appear in practice.
However, in general there is no relationship between p and q as the next example
shows.

Example 4.2. Given 1 < p <∞ and q > p+ 1, there exists a ∆2 Young function w
such that w ∈ Bp but w is not in Aq.

We prove Theorem 4.1 and construct Example 4.2 in Section 7.
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The classes Ap, Bp and the reverse Hölder inequality. The two classes Ap and
Bp govern similar weighted norm inequalities, so it is not surprising that they have
similar structural properties as well. One such property is the “p − ε” property: if
w ∈ Bp then for some ε > 0, w ∈ Bp−ε. (This is due to Ariño and Muckenhoupt [1].
Also see Neugebauer [30] and Sbordone and Wik [36].)

For Ap weights, the p− ε property is a consequence of the fact that Ap weights satisfy
the reverse Hölder inequality,

RHs :

(
1

|I|

∫
I

w(x)s dx

)1/s

≤ C

|I|

∫
I

w(x) dx, for all intervals I,

for some s > 1. Therefore, it is surprising that Bp weights do not satisfy a re-
verse Hölder-type inequality. The natural candidate would be the “anchored” reverse
Hölder inequality,

RH0
s :

(
1

t

∫ t

0

w(x)s dx

)1/s

≤ C

t

∫ t

0

w(x) dx, for all intervals I.

However, the following is true.

Theorem 4.3. For any s > 1, if w ∈ RH0
s then w ∈ B∞. However, there exists

w ∈ B∞ such that w does not satisfy the RH0
s condition for any s > 1.

Remark 4.4. Theorem 4.3 is somewhat less surprising if we recall that Ariño and
Muckenhoupt [1] showed that if w satisfies the “anchored” Ap condition,

A0
p :

(
1

t

∫ t

0

w(x) dx

) (
1

t

∫ t

0

w(x)1−p′ dx

)p−1

≤ C, t > 0,

then w ∈ Bp, but that the converse is not true.

Another consequence of the reverse Hölder inequality is that Ap weights can be per-
turbed by taking powers: if w ∈ Ap then there exists s > 1 such that wr ∈ Ap for
0 < r < s. This property fails dramatically for Bp weights.

Example 4.5. There exists a weight w ∈ B∞ such that wr is not in B∞ for any
r 6= 1.

Remark 4.6. If w ∈ RH0
s , s > 1, then by an modifying an argument of Heinonen,

Kilpeläinen and Martio [20, pp. 66-8] we can show that wr ∈ RH0
s/r, 0 < r < s.

Details are left to the reader.

Remark 4.7. Example 4.5 was first discovered while studying the analogous problem
for doubling weights. For those results, see [5].

We prove Theorem 4.3 and construct Example 4.5 in Section 8.
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B∞ weights and the minimal operator. The class B∞ can be characterized in
terms of weighted norm inequalities for the minimal operator:

mf(x) = inf
I3x

1

|I|

∫
I

|f(y)| dy,

where the infimum is taken over all intervals I ⊂ R+ which contain x. The minimal
operator was first introduced by Cruz-Uribe and Neugebauer [6] to study the fine
structure of Ap weights. They showed that∫

Rn

w(x)

mf(x)p
dx ≤ C

∫
Rn

w(x)

|f(x)|p
dx, 0 < p <∞,

if and only if w ∈ A∞. (Here we extend the definition ofm to Rn in the obvious way.)
If we restrict f to be an increasing function on R+, we can prove a result analogous
to this and to that of Ariño and Muckenhoupt [1].

Theorem 4.8. Given a non-negative Borel measure µ, the following are equivalent:

i) µ ∈ B∞;
ii) there exists a constant C such that for any p, 0 < p < ∞, and any non-

negative, increasing function f ,

µ({x ∈ R+ : mf(x) < 1/t}) ≤ C

tp

∫
R+

dµ

f(x)p
;

iii) there exists a constant C such that for any p, 0 < p < ∞, and any non-
negative, increasing function f ,∫

R+

dµ

mf(x)p
≤ C

∫
R+

dµ

f(x)p
.

Cruz-Uribe, Neugebauer and Olesen [7] proved two-weight norm inequalities for the
minimal operator, and based on their results we originally conjectured that a nec-
essary and sufficient condition for the two-weight version of Theorem 4.8 to hold
is

(4.1)
1

t

∫ t

0

u(x) dx ≤ C

(
1

t

∫ t

0

v(x)1/(p+1) dx

)p+1

.

But in the one-weight case, by Theorem 4.3 this implies that w1/(p+1) ∈ B∞, and
Example 4.5 shows that this is not necessary for w to be in B∞. In Proposition 9.1
we show that inequality (4.1) is sufficient for the weak-type inequality; the problem of
finding necessary and sufficient conditions for the weak and strong-type inequalities
remains open.

All of these results are proved in Section 9.
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5. Doubling measures, quasi-symmetric maps,
and the engulfing property

In this section we are primarily interested in weights on R instead of R+. For brevity,
if µ is a doubling measure, we will write µ ∈ D.

A homeomorphism W : R → R is called quasi-symmetric if there exists a constant
M = M(W ) ≥ 1 such that

(5.1)
1

M
≤ W (x+ t)−W (x)

W (x)−W (x− t)
≤M, x ∈ R, t > 0.

In this case we write W ∈ QS. Given a measure µ, define Wµ : R → R by

Wµ(t) =
∫ t

0
dµ. By (2.1) and (5.1), if µ ∈ D, then Wµ is a quasi-symmetric map-

ping. Conversely, given an increasing quasi-symmetric mapping W , the measure µW

defined by µW (I) = W (y) − W (x), where I = (x, y) ⊂ R, is a doubling measure
(again by (2.1) and (5.1)). This gives us a correspondence between doubling mea-
sures and increasing quasi-symmetric mappings (modulo additive constants). In this
section we add another element into the D–QS scheme by considering the class of
convex functions gotten by integrating quasi-symmetric maps. Our first task will be
to characterize these convex functions in terms of their sections.

In order to introduce our approach let us first consider strictly convex functions in
higher dimensions. (A function is strictly convex if its graph does not contain any
line-segments.) Every strictly convex differentiable function w : Rn → R has an
associated Monge-Ampère measure µw defined on any Borel set E ⊂ Rn by

(5.2) µw(E) = |∇w(E)|.
Following L. Caffarelli [2], we associate with w a family of open convex sets called
sections defined by

(5.3) Sw(x, t) = {y ∈ Rn : w(y) < w(x) + 〈∇w(x), y − x〉+ t},
where x ∈ Rn and t > 0. The measure µw has the (DC)-doubling property if there
exist constants α ∈ (0, 1) and C > 1 such that

(5.4) µw(Sw(x, t)) ≤ Cµw(αSw(x, t)),

for every section Sw(x, t). Here αSw(x, t) is the open convex set obtained by α-
contraction of Sw(x, t) with respect to its center of mass. The sections of w satisfy
the engulfing property if there exists a constant K > 1 such that for every section
Sw(x, t),

y ∈ Sw(x, t) ⇒ Sw(x, t) ⊂ Sw(y,Kt).

We will write w ∈ Eng if w is a strictly convex differentiable function w whose
sections have the engulfing property. In [19], C. Gutiérrez and Q. Huang proved that
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the (DC)-doubling property for µw implies the engulfing property for the sections
of w, where the engulfing constant K depends only on α and C in (5.4), and the
dimension n. In [15], two of the authors proved the converse: the engulfing property
with constant K implies the (DC)-doubling property with some α = α(K,n) and
C = C(K,n).

If we restrict ourselves to dimension 1, then the strict convexity of w implies that
every open bounded interval I ⊂ R is a section Sw(x, t) of w for some x ∈ I and
t > 0 (x is gotten, for instance, from the mean value theorem). Further, for µw the
(DC)-doubling condition (5.4) is equivalent to µw ∈ D. Therefore, µw is doubling if
and only if w ∈ Eng. Thus, every function w ∈ Eng generates a doubling measure
µw ∈ D. Conversely, given µ ∈ D, define

(5.5) wµ(x) =

∫ x

0

Wµ(t) dt.

Then wµ : R → R is a strictly convex differentiable function; and, by (5.2), its
Monge-Ampère measure coincides with µ. Since µ ∈ D, µ satisfies the (DC)-doubling
condition. Therefore, wµ ∈ Eng, and we get the D–QS–Eng scheme. (Compare this
with the equivalences in Theorem 3.1.) An n-dimensional version of the D–QS–Eng
scheme has been introduced by Kovalev, Maldonado, and Wu in [24].

In Section 10 we prove the following characterization of the engulfing property. Given
w : R → R strictly convex and differentiable, set

wx(y) := w(y)− w(x)− w′(x)(y − x), x, y ∈ R.

Theorem 5.1. Let w : R → R be a strictly convex differentiable function. The
following are equivalent:

i) (Engulfing property of the sections of w.) There exists a constant K > 1 such
that

x ∈ Sw(y, t) ⇒ Sw(y, t) ⊂ Sw(x,Kt), x, y ∈ R, t > 0.

ii) There exists a constant K ′ > 1 such that

x ∈ Sw(y, t) ⇒ y ∈ Sw(x,K ′t), x, y ∈ R, t > 0.

iii) There exists a constant K ′′ > 1 such that for every x, y ∈ R
K ′′ + 1

K ′′ wx(y) ≤ (w′(x)− w′(y)) (x− y) ≤ (K ′′ + 1)wx(y).

Remark 5.2. Theorem 5.1 has been generalized to n dimensions in [15]. The proof of
this generalization uses Theorem 5.1, and an earlier version of this result appeared in
the unpublished manuscript [16]. We stress that this is the first time that Theorem 5.1
is published and that the generalization in [15] makes heavy use of Theorem 5.1. That
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is, the n-dimensional version follows from the the one-dimensional version (Theorem
5.1) which has not been published anywhere else.

As an immediate consequence of Theorem 5.1 we get two corollaries. The first shows
that we may assume without loss of generality that w is a smooth function in com-
putations.

Corollary 5.3. Let w ∈ Eng with constant K. If ρ ∈ C∞
0 (R) and ρ ≥ 0 (but not

identically zero), then ρ ∗ w ∈ Eng with constant K̃, where K̃ depends only on K
(and not on ρ.)

The second gives another characterization of quasi-symmetric mappings that we will
need to construct Example 11.1.

Corollary 5.4. An increasing homeomorphism W : R → R is quasi-symmetric if
and only if there exists λ ∈ (0, 1/2) such that for every x, y ∈ R, x < y

λW (y) + (1− λ)W (x) ≤ 1

y − x

∫ y

x

W (s) ds ≤ λW (x) + (1− λ)W (y).

Growth conditions. Let w ∈ Eng with constant K, and w(0) = w′(0) = 0. We do
not lose generality with this assumption since it can always be gotten by subtracting
a suitable affine function from w; doing this does not change its associated Monge-
Ampère measure. By part (iii) in Theorem 5.1, for x > 0 we have

(5.6)
K + 1

K
w(x) ≤ w′(x)x ≤ (K + 1)w(x);

if we divide this expression by xw(x) and recognize the derivatives of the correspond-
ing logarithms, we get that the functions w(x)/x1+1/K and w(x)/xK+1 are increasing
and decreasing respectively on R+. As an immediate consequence of this we get es-
timates of the Matuszewska-Orlicz indices of w as functions on R+: 1 +K−1 ≤ i(w)
and K + 1 ≥ I(w). (See Maligranda [28] or Fiorenza and Krbec [14] for further
details.)

Furthermore, it is immediate that the sections of the function x 7→ w(−x) also
have the engulfing property with the same constant. Consequently, if we set mw :=
min{w(1), w(−1)} and Mw := max{w(1), w(−1)}, we have

mw|x|1+K ≤ w(x) ≤Mw|x|1+1/K , if |x| ≤ 1,

and
mw|x|1+1/K ≤ w(x) ≤Mw|x|1+K , if |x| ≥ 1.

If we combine this with (5.6) and use that w′(x)x = |w′(x)x| we get a growth condition
on w′:

(5.7)
K + 1

K
mw|x|K ≤ |w′(x)| ≤ (K + 1)Mw|x|1/K , if |x| ≤ 1,
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and

(5.8)
K + 1

K
mw|x|1/K ≤ |w′(x)| ≤ (K + 1)Mw|x|K , if |x| ≥ 1.

It is easy to prove that if w ∈ Eng then, for fixed y ∈ R, the function x 7→ w(x+ y)
also is in Eng, with the same constant. Hence, (5.7) yields that w′ is 1/K-Hölder
continuous. Furthermore, we have the following result.

Theorem 5.5. Let w ∈ Eng with constant K and w(0) = w′(0) = 0, then for every
x > 0,

1

x2

∫ x

0

w′′(t)t2 dt '
∫ x

0

w′(t)

t
dt ' w(x)

x
' w′(x),

where the constants depend only on K.

The uniform ∆2 condition. Condition (5.6) implies that w is a ∆2 function; to

see this notice that
∫ 2x

x
w′(t)/w(t) dt ≤ (K + 1)

∫ 2x

x
1/t dt. In fact, (5.6) also implies

that w′ is a ∆2 function.

However, (5.6) is stronger than the ∆2 condition. For instance, the strictly convex
function φ(x) =

√
x2 + 1− 1 is ∆2, but it is easy to see that it does not verify (5.6)

for any K > 1. The next result shows that in order to have w ∈ Eng, w must satisfy
the ∆2 condition about every point (not only about 0) and must also be essentially
symmetric about every point.

Theorem 5.6. Let w : R → R be a strictly convex differentiable function. Then
w ∈ Eng if and only if it satisfies

(5.9) wy(y − a) ' wy(y + a), y ∈ R, a > 0.

and

(5.10) wy(y + a) ' wy(y + 2a), y ∈ R, a > 0.

Remark 5.7. Condition (5.9) says that w is essentially symmetric about every point,
and condition (5.10) says that it satisfies the ∆2 condition at each point in R.

Applications to doubling measures. As an application of the techniques de-
veloped to characterize the engulfing property, we give a sufficient conditions for
multipliers of doubling measures. For simplicity we restrict ourselves to R+, though
we note in passing that these results can be extended to the real line using the tech-
niques given by Schröder [37]. The multipliers of Ap weights were characterized by
Johnson and Neugebauer in [21], and the multipliers for the class of monotone dou-
bling weights were classified by the first author in [4]. However, very little is known
for multipliers of doubling measures.
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To state our result we need one definition. Given a non-negative measurable function
m on R+, we say that m ∈ M if there exists a constant Cm > 1 such that

m(2t) ≤ Cmm(t), t > 0,(5.11)

and

m(s) ≤ Cmm(t), 0 < s < t.(5.12)

Note that if m is increasing, then (5.12) is automatic and (5.11) is the ∆2 condition.

Theorem 5.8. Let m ∈ M with constant Cm, and µ ∈ D with doubling constant Cµ.
Then mµ ∈ D with doubling constant depending only on Cµ and Cm.

As a second application we consider the following problem. In [4, Theorem 6.5], the
first author proved that if µ is a doubling measure on R+, then W (t) = µ([0, t)) is
an Ap weight for all p > p0, where p0 depended only on the doubling constant of
µ. The function W has several additional properties: it is strictly increasing and
(locally) Hölder continuous. Motivated by this, he posed the following question: If
W is a strictly increasing function on R+ that is in Ap for some p > 1, W (0) = 0,
and is (locally) Hölder continuous, then is the measure µ defined by µ([0, t]) = W (t)
a doubling measure? By applying our techniques we have shown that the answer to
this question is no, and we give a counterexample in Example 11.1.

We prove Theorems 5.1, 5.5 and 5.6, and Corollaries 5.3 and 5.4 in Section 10. We
prove Theorem 5.8 and construct Example 11.1 in Section 11.

6. Properties of ∆2 Young Functions

In this section we prove Theorems 3.1, 3.4, 3.5, and 3.6. The proof of Theorem 3.1
requires two lemmas from [4]: we alluded to the first in the Introduction; the second
is part of Theorem 3.3 and we restate it here for convenience.

Lemma 6.1. Given an increasing function w on R+, then w ∈ A∞ if and only if w
satisfies the ∆2 condition.

Lemma 6.2. Given p, 1 < p < ∞, an increasing function w on R+ is in Ap if and
only if for all t > 0,

(6.1) tp−1

∫ ∞

t

w(x)

xp
dx ≤ Cw(t).

Proof of Theorem 3.1. We first show that (i) and (ii) are equivalent. Suppose first
that µ ∈ Bp. Then v is an increasing function, so we can apply Lemma 6.2. By
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Fubini’s theorem and inequality (2.2),∫ ∞

t

v(x)

xp+1
dx =

∫ ∞

t

∫ x

0

dµ(y)x−(p+1) dx

=

∫ t

0

∫ ∞

t

x−(p+1) dx dµ(y) +

∫ ∞

t

∫ ∞

y

x−(p+1) dxdµ(y)

=
1

ptp

∫ t

0

dµ(y) +
1

p

∫ ∞

t

y−p dµ(y) ≤ Ct−pv(t).

Conversely, if v ∈ Ap+1 then essentially the same calculation shows that

Ct−p

∫ t

0

dµ(y) = Ct−pv(t) ≥
∫ ∞

t

v(x)

xp+1
dx ≥ 1

p

∫ ∞

t

y−p dµ(y).

so µ ∈ Bp.

We now show that (ii) and (iii) are equivalent. It suffices to note that if v ∈ Ap+1,
then v ∈ Bp+1. (This is due to Ariño and Muckenhoupt [1]; a simple proof is implicit
in the proof of Lemma 6.2 in [4].) But then by the above argument w ∈ Ap+2.

To prove the converse, suppose that w ∈ Ap+2. Then w satisfies the ∆2 condition,
and so, since v is increasing,

Cw(t) ≥ w(2t) ≥
∫ 2t

t

v dx ≥ tv(t).

Similarly, w(t) ≤ tv(t). Therefore

tp
∫ ∞

t

v(x)

xp+1
dx ≤ Ctp

∫ ∞

t

w(x)

xp+2
dx ≤ Ct−1w(t) ≤ Cv(t).

Hence by Lemma 6.2, v ∈ Ap+1. �

Proof of Theorem 3.4. The equivalence of (i) and (ii) is due to Maligranda [28]; we
note in passing that for this to be true we do not have to assume that i(w) > 1.

The equivalence of (i) and (iv) follows from Theorem 3.3: i(w) = p∗ is equivalent to
I(w̄) = p′∗, which in turn is equivalent to (iv).

To complete the proof we will show that (ii) and (iii) are equivalent. Suppose that
(iii) is true. Fix q < p∗, t > 0 and fix k ∈ Z such that 2k−1 < t ≤ 2k. Then since w
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is increasing,

tq
∫ t

0

w(x)

xq

dx

x
≤ 2kq

∫ 2k

0

w(x)

xq

dx

x
= 2kq

k∑
j=−∞

∫ 2j

2j−1

w(x)

xq

dx

x

≤ 2kq

k∑
j=−∞

log(2)
w(2j)

2(j−1)q
= log(2)w(2k)

∞∑
n=0

2(n+1)qw(2k−n)

w(2k)
.

By hypothesis, there exists L < 2−q and N > 0, independent of k, such that if n ≥ N ,

w(2k−n)

w(2k)
≤ Ln.

Therefore, since w is ∆2,

tq
∫ t

0

w(x)

xq

dx

x
≤ log(2)Cw(2k−1)

∞∑
n=0

(L2q)n ≤ Cw(t).

To prove that (ii) implies (iii), fix a > 1 and k ∈ Z, and fix t such that ak ≤ t < ak+1.
Fix q and r > 1 such that q < qr < p∗. Then arguing almost exactly as we did in
the first part of the proof, we have that∫ t

0

w(x)

xqr

dx

x
≤ C log(a)

∞∑
n=0

w(ak−n)

aqr(k−n)
.

Therefore, by (ii) we have that

C ≥ w(t)−1tq
∫ t

0

w(x)

xqr

dx

x
≥

∞∑
n=0

w(ak−n)

w(ak)
aqrn.

Since the series converges, by the root test we must have that

lim sup
n→∞

(
w(ak−n)

w(ak)

)1/n

≤ a−qr < a−q.

Further, since this sum is uniformly bounded for all k, the limit supremum must hold
uniformly in k.

This completes the proof. �

Proof of Theorem 3.5. By the ∇2 condition, for all t > 0, w(t/A) ≤ w(t)/(2A), so by
induction, w(A−nt) ≤ w(t)/(2A)n, n ≥ 1. Let t = Ak; then(

w(Ak−n)

w(Ak)

)1/n

<
1

2A
.
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On the other hand, by Lemma 6.1 and Theorem 3.3, we must have that for some
p > 1,

lim inf
n→∞

(
w(Ak−n)

w(Ak)

)1/n

> A1−p.

If we combine these two inequalities and solve for p, we see that

p > 2 +
log 2

logA
.

If we repeat this argument, mutatis mutandis, for w̄, using the ∆2 condition and (iii)
in Theorem 3.4, we get the desired bound for w̄. �

Proof of Theorem 3.6. As we noted above, it has already been shown that I(w) ≤
a+b

√
2 and i(w) ≥ a−b

√
2. Therefore, we only need to prove the reverse inequalities.

Let k > n be large positive integers; their exact values will be fixed below. Then(
w(ek−n)

w(ek)

)1/n

= exp

(
−a+ b

(
(k − n) sin log(k − n)− k sin log(k)

n

))
.

If we rewrite log(k− n) = log(k) + log
(
1− n

k

)
, then by a simple calculation we have

that

(k − n) sin log(k − n)− k sin log(k)

n

=
(k − n) sin log(k) cos log

(
1− n

k

)
+ (k − n) cos log(k) sin log

(
1− n

k

)
− k sin log(k)

n
.

Since k > n, we have that

sin log
(
1− n

k

)
= −n

k
+O

(
n2

k2

)
,

cos log
(
1− n

k

)
= 1 +O

(
n2

k2

)
.

If we substitute this into the above expression and simplify we get

(k − n) sin log(k − n)− k sin log(k)

n
= − sin log(k)− cos log(k) +O

(n
k

)
.

Hence, (
w(ek−n)

w(ek)

)1/n

= exp
(
−a− b(sin log(k) + cos log(k)) +O

(n
k

))
.

The function sin log(x)+cos log(x) has maximum value
√

2 and minimum value −
√

2,
and since sine is periodic, it takes on these values for arbitrarily large values of x.
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Therefore, if we take any ε > 0, then for any large n > 0, there exist k1, k2 > n such
that

−a− b(sin log(k1) + cos log(k1)) +O

(
n

k1

)
< −a− b

√
2 + ε(6.2)

−a− b(sin log(k2) + cos log(k2)) +O

(
n

k2

)
> a− b

√
2− ε.(6.3)

If we combine inequality (6.2) with (iii) of Theorem 3.3, we see that for every q >
I(w), we have that

exp(−a− b
√

2 + ε) > e−q,

so q > a + b
√

2 − ε. Since this is true for all such q and all ε > 0, we conclude that
I(w) ≥ a+ b

√
2.

We argue in exactly the same way using (6.3) and (iii) of Theorem 3.4 to conclude
that i(w) ≤ a− b

√
2. This completes the proof. �

7. The Class Bp

In this section we prove Theorem 4.1 and construct Example 4.2.

Proof of Theorem 4.1. Since w is a Young function, it is differentiable except possibly
on a countable set, and v(t) = w′(t) is an increasing function. (See Wheeden and
Zygmund [39, p. 120].) By Theorem 3.1 it will suffice to show that v ∈ Ar for any
r > p. But since ψ is decreasing, ψ′ ≤ 0, so for t > 0,

v(t) = w′(t) = ptp−1ψ(t) + tpψ′(t) ≤ ptp−1ψ(t).

Therefore, for r > p and any t > 0, since ψ is decreasing,

tr−1

∫ ∞

t

v(x)

xr
dx ≤ ptr−1

∫ ∞

t

ψ(x)

xr−p+1
dx ≤ ptr−1ψ(t)

∫ ∞

t

xp−r−1 dx

≤ Ctp−1ψ(t) ≤ Ct−1w(t) ≤ Cv(t).

The last inequality holds since v is increasing. �

Construction of Example 4.2. Given an increasing weight v, define w as in Theo-
rem 3.1. If v ∈ A∞ then arguing as in the proof of Theorem 3.1, w(t) ≈ tv(t).
Therefore, by Theorem 3.1, to get the desired counter-example it will suffice to fix
r, 0 < r < p − 1, and to construct an increasing function v such that v(t) ≤ Ctr,
t ≥ 1, and v ∈ A∞, but such that v is not in Aq−1. Without loss of generality we
may assume that q− 2 = jr for some integer j ≥ 2. (The reason for this assumption
will become clear below.)
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Define v as follows: let I0 = [0, 1] and for n ≥ 1 let In = (2n−1, 2n]. Now set

v(t) =
∞∑

n=0

anχIn(t);

we will choose the an’s so that v has the desired properties.

We first define a strictly increasing sequence {Ni} by letting N0 = 0, and for all i
odd, let Ni = (j − 1)i+Ni−1 and Ni+1 = ji+Ni−1.

Now define the an’s as follows: let a0 = 1. If i is odd and Ni−1 ≤ n ≤ Ni, let
an = 2r(Ni−1); if Ni < n ≤ Ni+1 let an = aNi

2(q−2)(n−Ni). Then

aNi+1
= 2rNi−12(q−2)(Ni+1−Ni) = 2rNi−1+jri = 2rNi+1 .

Since q− 2 > r, it follows immediately from our choice of the an’s that v(t) ≤ 2q−2tr,
and that v(2t) ≤ 2q−2v(t), so by Lemma 6.1, v ∈ A∞.

To show that v is not in Aq−1 we apply Lemma 6.2 with t = 2k. Then the left-hand
side of inequality (6.1) becomes

tq−2

∫ ∞

t

v(x)

xq−1
dx =2k(q−2)

∞∑
n=k+1

∫ 2n

2n−1

x1−q dx

=
2q−2 − 1

q − 2
2k(q−2)

∞∑
n=k+1

an2n(2−q).

Since the righthand side of inequality (6.1) is equal to ak, it will suffice to show that
for any K greater than 0 there exists k such that

∞∑
n=k+1

an2n(2−q) > Kak2
k(2−q).

Let k = Ni, i odd. Then

∞∑
n=k+1

an2n(2−q) >

Ni+1∑
n=Ni+1

aNi
2(q−2)(n−Ni)2n(2−q) = ak2

k(2−q)(Ni+1 −Ni).

By our choice of the Ni’s, we can make the difference Ni+1 −Ni as large as desired.
This completes our proof. �

8. Properties of Bp weights

In this section we prove Theorem 4.3 and construct Example 4.5. We are grateful to
C.J. Neugebauer for showing us the original proof of Theorem 4.3.
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Proof of Theorem 4.3. Let C be the constant in the RH0
s condition for w, and fix

α > 0 such that (1 − α)1/s′ = (2C)−1. Then by Hölder’s inequality and the RH0
s

condition, for any t > 0, if we let E = [αt, t] then∫ t

αt

w(x) dx =

∫ t

0

w(x)χE dx ≤
(∫ t

0

w(x)s dx

)1/s

|E|1/s′

≤ C(1− α)1/s′
∫ t

0

w(x) dx =
1

2

∫ t

0

w(x) dx.

Hence ∫ t

0

w(x) dx ≤ 2

∫ αt

0

w(x) dx,

and so by induction, ∫ t

0

w(x) dx ≤ 2n

∫ αnt

0

w(x) dx.

For some n ≥ 1, αn ≤ 1/2; therefore w ∈ B∞.

To prove that B∞ weights need not satisfy the RH0
s condition, let w(t) = χ[0,1](t).

The B∞ condition is immediate. On the other hand, if we take t > 1 and s > 1, then
the RH0

s condition would imply that t−1/s ≤ Ct−1, which is false for t sufficiently
large. �

Construction of Example 4.2. Let I0 = [0, 1] and for n ≥ 1 let In = (2n−1, 2n]. Let
Jn be the interval of width 2−n with the same center as In. Define the increasing
sequence {Ni} by N0 = 0 and Ni = Ni−1 + i.

Now define w by

w(t) =
∞∑

n=0

an(t),

where for i odd,

an(t) =

{
4nχJn(t) Ni−1 ≤ n < Ni

2χIn(t) Ni ≤ n < Ni+1.

Since for each n ≥ 0, w(In) = 2n, it follows that w ∈ B∞.

To see that wr is not in B∞, suppose first that r < 1. If we let t = 2Ni−1, i odd, then
wr([t, 2t]) = wr(INi

) = 2r2Ni−1, but

wr([0, t]) =

Ni−1∑
n=0

wr(In) ≤
Ni−1∑
n=0

2r2n−1 +

Ni−1∑
n=0

4rn2−n

≤2r2Ni−1 + C2(2r−1)Ni .
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Therefore,

wr([0, t])

wr([t, 2t]
≤ 21+Ni−1−Ni + C2(2r−2)Ni+1.

Since r < 1, and since Ni − Ni−1 = i, we can make the righthand side as small as
desired. However, this contradicts the B∞ condition, so wr is not in B∞.

If r > 1 let t = 2Ni−1, i even. Then a similar computation shows that wr([t, 2t]) =
2(2r−1)Ni+1 and wr([0, t]) ≤ C2(2r−1)Ni−1 +C2r2Ni . Then the ratio wr([0, t])/wr([t, 2t])
can again be made as small as desired and so wr is not in B∞. �

9. The minimal operator

In this section we prove weighted norm inequalities for the minimal operator.

Proof of Theorem 4.8. To prove that (1) implies (3), we use the result of Ariño and
Muckenhoupt [1] and Sbordone and Wik [36] mentioned in the Introduction: given
q > 0, if µ ∈ Bq and g is non-negative and decreasing then

(9.1)

∫
R+

Mg(x)q dµ ≤ C

∫
R+

g(x)q dµ,

where M is the Hardy-Littlewood maximal operator. But by Hölder’s inequality, if
f is non-negative and decreasing, then for any r > 0,

(9.2) mf(x)−p ≤M(f−r)(x)p/r, x ∈ R+.

If µ ∈ B∞ then µ ∈ Bq for some q > 0, so fix r > 0 such that p/r = q. Then (3)
follows from inequalities (9.1) and (9.2).

That (3) implies (2) is immediate.

Finally, we prove that (2) implies (1). Fix t > 0 and let

f(x) =


1 x ∈ [0, t],

β x ∈ (t, 2t]

∞ x > 2t,

where β > 1 will be fixed below. Then mf(x) ≥ 1, so (2) implies that

µ([0, 2t]) ≤ C

∫
R+

dµ

fp
≤ Cµ([0, t]) +

C

βp
µ([t, 2t]).

Fix β so that C/βp ≤ 1/2. Then re-arranging terms we get µ([0, 2t]) ≤ Cµ([0, t]).
Since C is independent of t, µ ∈ B∞. �
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We conclude this section by giving a sufficient condition for a two-weight, weak-
type inequality. The proof is adapted from the corresponding result in Cruz-Uribe,
Neugebauer and Olesen [7]. We are grateful to C.J. Neugebauer for showing it to us.

Proposition 9.1. Fix p, 0 < p <∞. If (u, v) is a pair of weights such that

1

t

∫ t

0

u(x) dx ≤ C

(
1

t

∫ t

0

v(x)1/(p+1) dx

)p+1

,

then for any non-negative, increasing function f ,

u({x ∈ R+ : mf(x) < 1/t}) ≤ C

tp

∫
R+

v(x)

f(x)p
dx.

Proof. Fix t > 0. Since f is increasing and mf is upper semi-continuous, there exists
rt > 0 such that Et = {x ∈ R+ : mf(x) < 1/t} = [0, rt). Again since f is increasing,

1

rt

∫ rt

0

f(x) dx ≤ 1/t.

Therefore, by our hypothesis and by Hölder’s inequality,

u(Et) =

∫ rt

0

u(x) dx ≤ rp
t

tp

(∫ rt

0

u(x) dx

) (∫ rt

0

f(x) dx

)−p

≤ C

tp

(∫ rt

0

v(x)1/(p+1) dx

)p+1 (∫ rt

0

f(x) dx

)−p

≤ C

tp

∫ rt

0

v(x)

f(x)p
dx ≤ C

tp

∫
R+

v(x)

f(x)p
dx.

�

10. Characterizations of the engulfing property

In this section we prove Theorems 5.1, 5.5 and 5.6, and Corollaries 5.3 and 5.4.

Proof of Theorem 5.1. The proof of (i) ⇒ (ii) is obvious since y ∈ Sw(y, t) for every
y ∈ R and t > 0. Thus (ii) holds with K ′ = K.

Proof of (ii) ⇒ (iii). Given x, y ∈ R and ε > 0, we have

w(x) < w(x) + ε = w(y) + w′(y)(x− y) + w(x)− w(y)− w′(y)(x− y) + ε,

(note that the convexity of w implies w(x) − w(y) − w′(y)(x − y) ≥ 0), this means
that x ∈ Sw(y, w(x) − w(y) − w′(y)(x − y) + ε). By property (ii), we must have
y ∈ Sw(x,K ′(w(x)− w(y)− w′(y)(x− y) + ε)), which means

w(y) ≤ w(x) + w′(x)(y − x) +K ′w(x)−K ′w(y)−K ′w′(y)(x− y) +K ′ε.



STRUCTURE OF INCREASING WEIGHTS 23

Letting ε go to 0 we get

(10.1) (K ′ + 1)w(y) ≤ (K ′ + 1)w(x) + (w′(x) +K ′w′(y))(y − x).

Now interchanging the roles of x and y, we obtain

(10.2) (K ′ + 1)w(x) ≤ (K ′ + 1)w(y) + (w′(y) +K ′w′(x))(x− y).

From (10.1) and (10.2),

(10.3)
w′(x) +K ′w′(y)

K ′ + 1
≤ w(x)− w(y)

x− y
≤ w′(y) +K ′w′(x)

K ′ + 1
.

By using the first inequality we get

(10.4)
1

K ′ + 1
(w′(x)− w′(y)) (x− y) ≤ w(x)− w(y)− w′(y)(x− y).

The second inequality yields

(10.5) w(x)− w(y)− w′(x)(x− y) ≤ 1

K ′ + 1
(w′(y)− w′(x)) (x− y),

which implies

(10.6) w(x)− w(y)− w′(y)(x− y) ≤ K ′

K ′ + 1
(w′(x)− w′(y)) (x− y).

Now (iii) follows from (10.6) and (10.4) (with x and y exchanged) and K ′′ = K ′.

Proof of (ii) ⇒ (i). Let us take x ∈ Sw(y, t) (consequently y ∈ Sw(x,K ′t)). We
need to produce K such that Sw(y, t) ⊂ Sw(x,Kt). Take z ∈ Sw(y, t) (consequently
y ∈ Sw(z,K ′t)). Suppose first that (z − y)(x− y) ≥ 0, then

w(x)−w(z)− w′(z)(x− z)

= w(y)− w(z)− w′(z)(y − z) + (w(x)− w(y)− w′(z)(x− y))

≤ K ′t+ w(x)− w(y)− w′(z)(x− y)

= K ′t+ w(x)− w(y)− w′(y)(x− y) + w′(y)(x− y)− w′(z)(x− y)

≤ K ′t+ t+ (w′(y)− w′(z)) (x− y) =: A(x, y, z)

≤ (K ′ + 1)t.
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Thus, x ∈ Sw(z, (K ′ + 1)t) and then property (ii) implies z ∈ Sw(x,K ′(K ′ + 1)t).
The second case to consider is (z − y)(x− y) < 0 and |y − z| < |x− y|. Then

w(z)− w(x)−w′(x)(z − x)

= w(z)− w(y)− w′(y)(z − y)

+ (w(y)− w(x) + w′(y)(z − y)− w′(x)(z − x))

≤ t+ w(y)− w(x)− w′(x)(y − x)

+ w′(x)(y − x) + w′(y)(z − y)− w′(x)(z − x)

≤ t+K ′t+ (w′(x)− w′(y)) (y − z)

≤ (K ′ + 1)t+ (w′(x)− w′(y)) (x− y)(10.7)

≤ (K ′ + 1)t+ (K ′ + 1) (w(x)− w(y)− w′(y)(x− y))

≤ (K ′ + 1)t+ (K ′ + 1)t = 2(K ′ + 1)t,

where we used part (iii) in (10.7). Now, consider the case (z − y)(x − y) < 0 and
|y − z| > |x− y| we then have

A(x, y, z) ≤ K ′t+ t+ (w′(y)− w′(z)) (y − z)

≤ (K ′ + 1)t+ (K ′ + 1) (w(z)− w(y)− w′(y)(z − y)) ≤ 2(K ′ + 1)t.

Hence, x ∈ Sw(z, 2(K ′ + 1)t) and by (ii) we get z ∈ Sw(x, 2K ′(K ′ + 1)). Therefore,
the engulfing property follows with constant K = 2K ′(K ′ + 1).

Proof of (iii) ⇒ (ii). Suppose x ∈ Sw(y, t), that is, w(x)−w(y)−w′(y)(x− y) < t.
Now, by using the first inequality in (iii),

w(y)− w(x)− w′(x)(y − x) ≤ K ′′

K ′′ + 1
(w′(x)− w′(y)) (x− y),

and by the second inequality in (iii),

(w′(x)− w′(y)) (x− y) = (w′(y)− w′(x)) (y − x)

≤ (K ′′ + 1) (w(x)− w(y)− w′(y)(x− y)) < (K ′′ + 1)t,

consequently, w(y)− w(x)− w′(x)(y − x) < K ′′t, which means y ∈ Sw(x,K ′′t); and
(ii) follows with K ′ = K ′′. �
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Proof of Corollary 5.3. Set ψ(x) =
∫
w(x− u)ρ(u) du. By Theorem 5.1,

K ′′ + 1

K ′′ (ψ(y)− ψ(x)− ψ′(x)(y − x))

=
K ′′ + 1

K ′

∫
(w(y − u)− w(x− u)− w′(x− u)(y − u− (x− u))) ρ(u) du

≤
∫

(w′(y − u)− w′(x− y))(y − x)ρ(u) du

≤ (K ′′ + 1)

∫
(w(y − u)− w(x− u)− w′(x− u)(y − u− (x− u))) ρ(u) du

≤ (K ′′ + 1) (ψ(y)− ψ(x)− ψ′(x)(y − x)) .

Again by Theorem 5.1, ψ ∈ Eng with some K̃ depending only on K. �

Proof of Corollary 5.4. By definition, W is quasi-symmetric if and only if µ := W ′

(weak-derivative, that is, W (t)−W (0) =
∫ t

0
dµ) is a doubling measure. Equivalently,

the sections of wµ (as defined in (5.5)) verify the engulfing property, with some
constant K. We only need to apply Theorem 5.1 to wµ, and express (10.3) in terms
of wµ with λ = 1/(K ′ + 1) and w′w = W . Which yields the desired result. �

To prove Theorem 5.5 we need the following lemma that is a classical result on quasi-
symmetric mappings. We give a new proof that is short, quantitative, and more
geometric.

Lemma 10.1. Let w ∈ Eng with constant K, and suppose that w(0) = w′(0) = 0.
Then, for 0 < σ < τ ,

(10.8)
1

K

( τ
σ

)1/K

≤ w′(τ)

w′(σ)
≤ K

( τ
σ

)K

.

Proof. We begin with the first inequality. By (5.6) we have

w′(τ)

w′(σ)
=
σ

τ

τw′(τ)

σw′(σ)
≥ σ

τ

(1 + 1/K)

K + 1

w(τ)

w(σ)
.

Now, since the engulfing property implies that the function f(t)/t1+1/K is increasing
on (0,∞), we get

σ

τ

(1 + 1/K)

(K + 1)

w(τ)

w(σ)
≥ σ

τ

(1 + 1/K)

(K + 1)

( τ
σ

)1+1/K

=
1

K

( τ
σ

)1/K

.

For the second inequality, we use (5.6) again

w′(τ)

w′(σ)
=
σ

τ

τw′(τ)

σw′(σ)
≤ σ

τ

(K + 1)

(1 + 1/K)

w(τ)

w(σ)
.
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Now we use that the function w(t)/t1+K is decreasing to get

(K + 1)

(1 + 1/K)

σ

τ

w(τ)

w(σ)
≤ (K + 1)

(1 + 1/K)

( τ
σ

)K

= K
( τ
σ

)K

.

�

Proof of Theorem 5.5. Let us prove first the equivalence 1
x2

∫ x

0
w′′(t)t2 dt ' w(x)

x
. Let

f ∈ Eng with constant K and f(0) = f ′(0) = 0, then, given 0 ≤ σ < τ , we have∫ τ

σ

t2f ′′(t)dt = t2f ′(t)|τσ − 2

∫ τ

σ

tf ′(t)dt ≤ τ 2f ′(τ) ≤ (K + 1)τf(τ),

where we used (5.6) for the last inequality. On the other hand, for 0 < σ < τ , and
using (5.6) again∫ τ

σ

t2f ′′(t)dt ≥ (1 + 1/K)

∫ τ

σ

tf(t)f ′′(t)/f ′(t) dt

= (1 + 1/K)

∫ τ

σ

tf(t)(ln f ′)′(t) dt ≥ (1 + 1/K)σf(σ) (ln f ′(t)|τσ)

= (1 + 1/K)σf(σ) ln(f ′(τ)/f ′(σ)).

But, by Lemma 10.1, f ′(τ)/f ′(σ) ≥ 1
K

(
τ
σ

)1/K
. Next, set σ = τ/(2KK) and use that

the function f(t)/t1+K is decreasing, (so that f(σ) ≥ (τ/σ)1+Kf(τ)) to get∫ τ

τ/(2KK)

t2f ′′(t)dt ≥ (1 + 1/K)
τ

2KK

(
1

2KK

)1+K

f(τ)
1

K
ln 2

= (ln 2)
K + 1

K2

(
1

2KK

)K+2

τf(τ).

Finally, take τ = 1 and define CK = (K + 1), cK = (ln 2)K+1
K2

(
1

2KK

)K+2
to get

(10.9) cKf(1) ≤
∫ 1

0

t2f ′′(t)dt ≤ CKf(1).

Now, given x ∈ R and w as in the statement of the theorem, define f(t) := w(tx). By
relating the sections of f and w it is immediate to verify that f ∈ Eng with constant
K (independent of x). If we now apply (10.9) to this f we get

(10.10) cKw(x) ≤
∫ 1

0

(tx)2w′′(tx)dt ≤ CKw(x).

After the change of variables u = tx, we get the first equivalence.
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We now prove the equivalence
∫ x

0
w′(t)

t
dt ' w(x)

x
. Clearly,

∫ x

0
w′(t)/t dt ≥ 1/x

∫ x

0
w′(t) dt =

w(x)/x. On the other hand, by (5.6) we have(
w(t)

t

)′

≥ 1

K

w(t)

t2
,

and (5.6) gives w(t)/t ≥ w′(t)/(K + 1). Thus(
w(t)

t

)′

≥ 1

K(K + 1)

w′(t)

t
,

integrating from 0 to x, we get w(x)/x ≥ 1/(K2 +K)
∫ x

0
w′(t)/t dt.

The equivalence w′(x)x ' w(x) is just (5.6). �

Proof of Theorem 5.6. Assume first that w ∈ Eng. Then, in the notation of Theo-
rem 5.1 for all y ∈ R and a > 0 we have (with constants depending only on K)

wy(y − a)

wy(y + a)
' (w′(y − a)− w′(y))(−a)

(w′(y + a)− w′(y))a
=
µw(y − a, y)

µw(y, y + a)
' 1.

Hence,
wy(y − a) ' wy(y + a), y ∈ R, a > 0,

which is (5.9).

Similarly, by Theorem 5.1 we get

wy(y + a)

wy(y + 2a)
' (w′(y + a)− w′(y))a

(w′(y + 2a)− w′(y))2a
' µw(y, y + a)

µw(y, y + 2a)
' 1.

Hence,

(10.11) wy(y + a) ' wy(y + 2a), y ∈ R, a > 0,

which is (5.10).

Conversely, suppose that w satisfies conditions (5.9) and (5.10). We will show that
wy(x) ' w′y(x)(x− y) for every x, y ∈ R; the desired result then follows from Theo-
rem 5.1. If y < x, set b = x− y > 0. Then, since wy(y) = w′y(y) = 0, by convexity of
wy we have

w′y(x) = w′y(y + b) ≤ wy(y + 2b)

b
≤ C

wy(y + b)

b
,

where we used (5.10). On the other hand, by the convexity of wy,

w′y(y + b) ≥ wy(y + b)

b
.

Thus, wy(x) ' w′y(x)(x − y) when y < x. For the case y > x note that (5.9) and
(5.10) imply

wy(y − 2a) ≤ Cwy(y − a), y ∈ R, a > 0.
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Set a = y − x and now use that convexity implies −wy(y − a) ≤ wy(y − 2a)/a. The
rest follows as in the first case. �

11. Doubling measures

In this section we prove Theorem 5.8 and construct Example 11.1.

Proof of Theorem 5.8. Given positive real numbers σ and τ, set τ̃ = (3τ + σ)/4,
σ̃ = (3σ + τ)/4. That is, if I = (σ, τ), then (1/2)I = (σ̃, τ̃).

As usual, set w(x) =
∫ x

0

∫ t

0
dµ(s)dt. Then w ∈ Eng with a constant K depending

only on the doubling constant for µ. We denote by C(Cm, K) a constant depending
only on Cm and K, which could be different at each occurrence. We first consider
intervals (σ, τ) such that τ/σ ≤MK := (2K)K + 1. In this case we have∫ τ

σ

m(t)w′′(t) dt ≤ Cmm(τ)

∫ τ

σ

w′′(t) dt ≤ CµCmm(τ)

∫ τ̃

σ̃

w′′(t) dt,

where we used (5.12) and w′′ doubling. Now, since 0 < σ < σ̃ < τ̃ < τ < MKσ, by
iteration of (5.11), there exists a constant C = C(Cm, K), depending only on Cm and
K, such that m(τ) ≤ Cm(σ). Then,

CµCmm(τ)

∫ τ̃

σ̃

w′′(t) dt ≤ C(Cm, K)m(σ)

∫ τ̃

σ̃

w′′(t) dt;

using (5.12) again we see that m(σ) ≤ Cmm(t) for t ∈ (σ̃, τ̃). Thus, we get the
doubling condition

(11.1)

∫ τ

σ

m(t)w′′(t) dt ≤ C(Cm, K)

∫ τ̃

σ̃

m(t)w′′(t) dt.

We now consider intervals (σ, τ) with τ/σ ≥MK . For β ∈ (0, 1), set

σβ =
τ + σ

2
− β

τ − σ

2
and τβ =

τ + σ

2
+ β

τ − σ

2
,

so that if I = (σ, τ), then βI = (σβ, τβ). Notice that τ/σ ≥MK implies

τβ
σβ

=
(1 + β) τ

σ
+ (1− β)

(1− β) τ
σ

+ (1 + β)
≥ (1 + β)MK + (1− β)

(1− β)MK + (1 + β)
.

Fix α = α(K) ∈ (0, 1) close to 1 and depending only on K such that

(1 + α)MK + (1− α)

(1− α)MK + (1 + α)
≥ (2K)K ;
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then τα/σα ≥ (2K)K . We will show that for intervals (σ, τ) with τ/σ ≥MK we have

(11.2)

∫ τ

σ

m(t)w′′(t) dt ≤ C(K,Cm)

∫ τα

σα

m(t)w′′(t) dt.

Set ςα := τα/(2K)K ≥ σα.∫ τα

σα

m(t)w′′(t) dt ≥
∫ τα

ςα

m(t)w′′(t) dt =

∫ τα

ςα

m(t)w′(t)
w′′(t)

w′(t)
dt

≥ 1

Cm

m(ςα)w′(ςα) ln(w′(τα)/w′(ςα)).

By Lemma (10.1), we have

w′(τα)

w′(ςα)
≥ 1

K

(
τα
ςα

)1/K

= 2.

Thus, ∫ τα

σα

m(t)w′′(t) dt ≥ ln 2

Cm

m(ςα)w′(ςα).

Then by (5.11) and since by (5.6) w′ is ∆2, there exists a constant C0, depending
only on K and Cm, such that m(τα) ≤ C0m(ςα) and w′(τα) ≤ C0w

′(ςα). Hence,∫ τα

σα

m(t)w′′(t) dt ≥ C(Cm, K)m(τα)w′(τα).

Since τ ≤ 2τα, for some constant C1 depending only on Cm and K, we get m(τ) ≤
C1m(τα) and w′(τ) ≤ C1w

′(τα). Hence,∫ τα

σα

m(t)w′′(t) dt ≥ C(Cm, K)m(τ)w′(τ).

On the other hand,∫ τ

σ

m(t)w′′(t) dt ≤ Cmm(τ)(w′(τ)− w′(σ)) ≤ Cmm(τ)w′(τ),

and we get (11.2). Notice that, since α is close to 1, we can take α ≥ 1/2. In this
case we have (σ̃, τ̃) ⊂ (σα, τα) and we can replace (σ̃, τ̃) by (σα, τα) in the right hand
side of (11.1). Therefore, µ(σ, τ) ≤ Cµ(σα, τα), for all σ, τ > 0, and mµ is a doubling
measure on R+. �

Example 11.1. There exists a function W on R+ such that W (0) = 0, W is increas-
ing and locally Hölder continuous, but the measure µ defined by µ([0, t]) = W (t) is
not a doubling measure.
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Proof. For x ∈ R+ define

W (x) = n+ (x− n)n+1

if x ∈ [n, n + 1), n = 0, 1, 2, . . . It is easily seen that x/2 ≤ W (x) ≤ x, for every
x ∈ R+. Since the weight w0(x) = x is doubling in R+, and W is comparable to
w0 on R+, we get that W is a doubling weight on R+ as well. Since W is a strictly
increasing doubling weight, by Corollary 4.4 in [4], W is an A∞ weight on R+. Clearly,
W is locally Lipschitz. Thus, W verifies all the hypotheses required in the question.
Now, suppose that µ is a doubling measure. Let W be the odd extension of W to the
whole real line, since µ ∈ D we have W ∈ QS (see Lemma 7.1 in [26]). In particular,
W must verify the inequalities (5.6) in Corollary 5.4 for some λ ∈ (0, 1/2). But,
taking x = n and y = n+ 1 (n ∈ N arbitrary), we get

1

y − x

∫ y

x

W (t) dt =

∫ n+1

n

W (t) dt = n+

∫ n+1

n

(t− n)n+1 dt = n+
1

n+ 2
.

On the other hand,

λW (y) + (1− λ)W (x) = λ(n+ 1) + (1− λ)n = λ+ n.

Thus, by the first inequality in (5.6) we get λ ≤ 1/(n + 2), which cannot hold for
every n. Thus, we reach the contradiction. �

Remark 11.2. The class of weights W on R+ which gives a positive answer to the
original question is determined by inequality (5.6) in Corollary 5.4.

Remark 11.3. This construction of Example 11.1 is interesting for its application
of the techniques developed above. However, we also want to note that by using
Theorem 3.1 we can easily construct another counterexample. Let µ be absolutely
continuous with Radon-Nikodym derivative m(t) = χ[0,1](t) + t−1χ(1,∞)(t). Then
simple computations show that µ is not doubling; µ ∈ Bp for any p > 0 so v ∈ Ap+1;
and v is strictly increasing and Lipschitz.
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[10] D. Cruz-Uribe, SFO, and C. Pérez, On the two-weight problem for singular integral operators,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. I (2002), 821-849.

[11] J. Duoandikoetxea, Fourier Analysis, Grad. Studies Math. 29, Amer. Math. Soc., Providence,
2000.

[12] R. Fefferman, C. Kenig and J. Pipher, The theory of weights and the Dirichlet problem for
elliptic equations, Annals of Math. 134 (1991), 65-124.

[13] A. Fiorenza, An inequality for Jensen means, Nonlinear Anal. 16 (1991), 191-198.
[14] A. Fiorenza and M. Krbec, Indices of Orlicz spaces and some applications, Comment. Math.

Univ. Carolin. 38 (1997), 433-451.
[15] L. Forzani and D. Maldonado, On geometric characterizations for Monge-Ampère doubling

measures, J. Math. Anal. Appl. 275(2) (2002), 721-732.
[16] , Doubling weights, quasi-symmetric mappings, and a class of convex functions on the

real line, unpublished preprint.
[17] N. Fusco and C. Sbordone, Higher integrability of the gradient of minimizers of functionals with

nonstandard growth conditions, Comm. Pure Appl. Math. 43 (1990), 673-683.
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