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Abstract

In this paper we develop and analyze a mathematical model for combined axial and transverse motions of two Euler–Bernoulli
beams coupled through a joint composed of two rigid bodies. The motivation for this problem comes from the need to accurately
model damping and joints for the next generation of inflatable/rigidizable space structures. We assume Kelvin–Voigt damping
in the two beams whose motions are coupled through a joint which includes an internal moment. The resulting equations of
motion consist of four, second-order in time, partial differential equations, four second-order ordinary differential equations, and
certain compatibility boundary conditions. The system is re-cast as an abstract second-order differential equation in an appropriate
Hilbert space, consisting of function spaces describing the distributed beam deflections, and a finite-dimensional space that projects
important features at the joint boundary. Semigroup theory is used to prove the system is well posed, and that with positive damping
parameters the resulting semigroup is analytic and exponentially stable. The spectrum of the infinitesimal generator is characterized.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Inflatable and rigidizable space structures have been the subject of numerous scientific studies for the past fifty
years and considerable progress has been made in the development of new materials and technologies for the design
and fabrication of these structures. Several proposed space antenna systems will require large ultra-light trusses to
provide the “backbone” of the structure. In recent years there has been renewed interest in inflatable/rigidizable space
structures [7] because of the efficiency they offer in packaging during boost-to-orbit. It has been recognized that
practical precision requirements can only be achieved through the development of new high-fidelity mathematical
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models and corresponding numerical tools. In particular, there is a need to understand better the dynamical response
characteristics, including inherent damping, of truss structures fabricated with these advanced material systems. In
addition, several proposed designs [6] make use of joints with special attachment “legs” which lead to the type of
model considered in the paper.

In this paper we study an assembly consisting of two beams with Kelvin–Voigt damping, coupled to a simple joint
through two legs, and develop an abstract 2nd-order differential equation of the form

Ẍ(t) +A(SẊ(t) + X(t)
)= 0,

on an appropriate Hilbert space H. The space H is a product space, consisting of function spaces describing the
distributed beam deflections, and a finite-dimensional space that projects important features at the joint boundary. We
put this 2nd-order model in a state-space setting and use semigroup theory to prove the model is well posed, and that
the semigroup is analytic and exponentially stable.

Very general assemblies of beams have been studied by J. Lagnese et al. [9]. Whereas the beam geometry consid-
ered here is a special case of the analysis in [9], the joint model is more complex, as detailed below. Additionally, our
beam model includes Kelvin–Voigt damping.

2. Equations of motion

We construct a mathematical model of the coupled joint-legs-beam system shown in Fig. 1. The model describes
the transverse and longitudinal motions of two beams coupled to a joint with two legs. Each beam can vibrate in the
plane: the transverse (bending) deformation of beam i is given by wi(t, si), while the longitudinal (axial) deformation
is given by ui(t, si), where 0 � si � Li , t � 0, i = 1,2. The joint configuration is described by x(t), y(t), the planar
Cartesian displacements of the pivot point, and by θi(t), the angle between leg i and the positive x-axis. The joint
model is composed of two rigid-bodies (the joint-legs) with an internal moment. As discussed below, the rigid joint
model in [9] may be viewed as a limiting case of this model. The physical parameters in the model are given by:

• Li , Ai , Ii , Ei , ρi : length, cross-section area, area moment of inertia, Young’s modulus and mass density of beam i,
i = 1,2 (with ρi,Ai,Ei, Ii > 0).

• li , mi , I i
� , di : length, mass, mass moment of inertia about the center of mass and distance from pivot to center of

mass of joint-leg i, i = 1,2.
• I i

Q = I i
� + mid

2
i > 0: mass moment of inertia of joint-leg i about pivot, i = 1,2.

• μi, γi, d, k: Kelvin–Voigt damping parameters in the axial motions, in the transverse bending, viscous joint damp-
ing, and joint stiffness parameters.

• mp: mass of the pivot.

Fig. 1. Joint beam system.
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Furthermore, m = m1 + m2 + mp > 0 is the total mass of the joint-leg system, and the angles ϕi describe the equilib-
rium orientation of beam i (see Fig. 1). Finally, Fi(t),Ni(t),Mi(t) represent the axial force, shear force, and bending
moment at the end si = Li of beam i, and MQ(t) is the internal torque exerted on joint-leg 1 by joint-leg 2.

2.1. Differential equations

The bending motions of the beams are described by an Euler–Bernoulli model with Kelvin–Voigt damping, viz.,

ρiAi

∂2wi(t, si)

∂t2
+ ∂2

∂s2
i

[
EiIi

∂2wi(t, si)

∂s2
i

+ γi

∂3wi(t, si)

∂s2
i ∂t

]
= 0, (1)

wi(t,0) = ∂wi(t,0)

∂si
= 0. (2)

The axial motions, again with Kelvin–Voigt damping, are described by

ρiAi

∂2ui(t, si)

∂t2
− ∂

∂si

[
EiAi

∂ui(t, si)

∂si
+ μi

∂2ui(t, si)

∂si∂t

]
= 0, (3)

ui(t,0) = 0. (4)

Since the continuum equations (1)–(4) reflect small deflection theory, we consider the dynamic equations for the
joint-leg linearized about x0 = y0 = ẋ0 = ẏ0 = θ̇0

1 = θ̇0
2 = 0 and θ0

1 = π
2 −ϕ1, θ0

2 = −π
2 +ϕ2. Principles of Newtonian

mechanics applied to the joint elements lead to

mẍ(t) − m1d1 cosϕ1θ̈1(t) + m2d2 cosϕ2θ̈2(t) = F1(t) sinϕ1 − N1(t) cosϕ1 + F2(t) sinϕ2 + N2(t) cosϕ2, (5)

mÿ(t) + m1d1 sinϕ1θ̈1(t) + m2d2 sinϕ2θ̈2(t) = F1(t) cosϕ1 + N1(t) sinϕ1 − F2(t) cosϕ2 + N2(t) sinϕ2, (6)

I 1
Qθ̈1(t) = MQ(t) + M1(t) + l1N1(t) + m1d1

[
ẍ(t) cosϕ1 − ÿ(t) sinϕ1

]
, (7)

I 2
Qθ̈2(t) = −MQ(t) + M2(t) + l2N2(t) − m2d2

[
ẍ(t) cosϕ2 + ÿ(t) sinϕ2

]
. (8)

Note that in these equations θi(t) denotes the perturbation in the angle between leg i and the positive x-axis. The
present model includes elastic and viscous terms for the internal moment MQ(t) given by

MQ(t) = k
(
θ2(t) − θ1(t)

)+ d
(
θ̇2(t) − θ̇1(t)

)
, (9)

but it is clearly possible to extend this to more general models. Note that increasing k renders the joint stiffer and as
k → ∞ this joint model approximates the Rigid Joint in [9, §8.1.1]. Similarly with d = k = 0 the internal moment
vanishes, and in the singular limit I i

Q → 0 the model approximates the Pinned Joint in [9, §8.1.2]. However for finite
admissible values of the joint parameters, the joint model here differs from those in [9].

2.2. Compatibility conditions

Geometric compatibility between the joint-leg and the si = Li end of the beam requires that:
for beam 1–leg 1:⎧⎪⎨⎪⎩

x(t) − l1θ1(t) cosϕ1 + w1(t,L1) cosϕ1 + u1(t,L1) sinϕ1 = 0,

y(t) + l1θ1(t) sinϕ1 − w1(t,L1) sinϕ1 + u1(t,L1) cosϕ1 = 0,

θ1(t) + w1
s (t,L1) = 0,

(10)

whereas, for beam 2–leg 2:⎧⎪⎨⎪⎩
x(t) + l2θ2(t) cosϕ2 − w2(t,L2) cosϕ2 + u2(t,L2) sinϕ2 = 0,

y(t) + l2θ2(t) sinϕ2 − w2(t,L2) sinϕ2 − u2(t,L2) cosϕ2 = 0,

θ2(t) + w2
s (t,L2) = 0.

(11)

These conditions require that the Cartesian position of the beam-tip and the joint-leg-tip remain the same, and that the
end-slope of the beam remain aligned with the joint-leg.
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Furthermore, the Kelvin–Voigt constitutive model for the material requires: bending moment at the interfaces

EıIıw
ı
ss(t,Lı) + γıẇ

ı
ss(t,Lı) = Mı(t), ı = 1,2, (12)

shear forces at the interfaces(
EıIıw

ı
ss + γıẇ

ı
ss

)
s
(t,Lı) = Nı(t), ı = 1,2, (13)

and axial forces at the interfaces(
AıEıu

ı + μıu̇
ı
)
s
(t,Lı) = Fı(t), ı = 1,2. (14)

The seemingly cumbersome notation for the spatial derivatives in (13), (14) is necessary because, while each sum in
parentheses is smooth, the summands need not be [1,10].

Note that the geometric compatibility equations (10), (11) can also be written in the form⎧⎪⎨⎪⎩
u1(t,L1) = −x(t) sinϕ1 − y(t) cosϕ1,

w1(t,L1) = −x(t) cosϕ1 + y(t) sinϕ1 + l1θ1(t),

w1
s (t,L1) = −θ1(t),

(15)

⎧⎪⎨⎪⎩
u2(t,L2) = −x(t) sinϕ2 + y(t) cosϕ2,

w2(t,L2) = x(t) cosϕ2 + y(t) sinϕ2 + l2θ2(t),

w2
s (t,L2) = −θ2(t).

(16)

3. A second-order abstract differential equation

We denote by Hn(0,L) the usual Sobolev space of functions in L2(0,L) with derivatives up to order n in L2(0,L).
The space Hn

� (0,L) denote the space of functions in Hn(0,L) that vanish, together with all derivatives up to the order
n − 1, at the left end (s = 0).

Define the Hilbert space Hz
.= L2(0,L1) × L2(0,L2) × L2(0,L1) × L2(0,L2) with the inner product

〈(
w1,w2, u1, u2)T ,

(
ξ1, ξ2, v1, v2)T 〉

Hz

.=
2∑

i=1

ρiAi

[〈
wi, ξ i

〉+ 〈
ui, vi

〉]
,

where 〈·,·〉 denotes the usual L2-inner product. We define on Hz the operator A1 by

dom(A1)
.= H 2

� ∩ H 4(0,L1) × H 2
� ∩ H 4(0,L2) × H 1

� ∩ H 2(0,L1) × H 1
� ∩ H 2(0,L2),

A1
.=

⎛⎜⎜⎜⎜⎝
E1I1
ρ1A1

D4 0 0 0

0 E2I2
ρ2A2

D4 0 0

0 0 −E1
ρ1

D2 0

0 0 0 −E2
ρ2

D2

⎞⎟⎟⎟⎟⎠ ,

where D
.= d

ds
. From standard arguments it follows that dom(A1) is dense in Hz.

With this notation Eqs. (1)–(4) can be written as the abstract second-order ordinary differential equation in Hz,

z̈(t) +A1
(
S1ż(t) + z(t)

)= 0, (17)

where

z(t)
.=

⎛⎜⎜⎜⎝
w1(t, ·)
w2(t, ·)
u1(t, ·)
u2(t, ·)

⎞⎟⎟⎟⎠ , S1
.=

⎛⎜⎜⎜⎜⎝
γ1

E1I1
0 0 0

0 γ2
E2I2

0 0

0 0 μ1
E1A1

0

0 0 0 μ2
E2A2

⎞⎟⎟⎟⎟⎠ . (18)
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For the joint dynamics we begin by defining two boundary projection operators P B
1 and P B

2 from Hz to R
6 by

dom
(
P B

1

) .= H 2(0,L1) × H 2(0,L2) × H 1(0,L1) × H 1(0,L2),

dom
(
P B

2

) .= H 4(0,L1) × H 4(0,L2) × H 2(0,L1) × H 2(0,L2),

P B
1

(
w1,w2, u1, u2)T .= (−w1

s (L1),w
1(L1),−w2

s (L2),w
2(L2),−u1(L1),−u2(L2)

)T
,

P B
2

(
w1,w2, u1, u2)T .= (

w1
ss(L1),w

1
sss(L1),w

2
ss(L2),w

2
sss(L2), u

1
s (L1), u

2
s (L2)

)T
,

where the subscript “s” denotes derivative with respect to the spatial variable s. Note that dom(A1) is contained in
both dom(P B

1 ) and dom(P B
2 ), so that both projections are well defined on dom(A1).

Next consider the (4 × 4) matrix M and the (4 × 6) matrix C given by

M
.=
(

mI2 P

P T diag(I 1
Q, I 2

Q)

)
, P

.=
(−m1d1 cosϕ1 m2d2 cosϕ2

m1d1 sinϕ1 m2d2 sinϕ2

)
(19)

and

C
.=

⎛⎜⎜⎜⎝
0 − cosϕ1 0 cosϕ2 sinϕ1 sinϕ2

0 sinϕ1 0 sinϕ2 cosϕ1 − cosϕ2

1 l1 0 0 0 0

0 0 1 l2 0 0

⎞⎟⎟⎟⎠ . (20)

Furthermore, define Hb
.= [ker(C)]⊥ = range(CT ) with the inner product

〈b, a〉Hb

.= bT
(
CT M−1C

)†
a = 〈

b,
(
CT M−1C

)†
a
〉
R6,

where (CT M−1C)† denotes the Moore–Penrose generalized inverse of the matrix CT M−1C. It can be easily checked
that C has full rank, ker(C) has dimension 2 and therefore [ker(C)]⊥ is a four-dimensional subspace of R

6. Since
ker(CT M−1C) = ker(C), the matrix CT M−1C is a one-to-one operator from [ker(C)]⊥ onto itself. The Moore–
Penrose generalized inverse of CT M−1C is precisely the inverse of this operator. An immediate calculation shows
that the matrix CT M−1C restricted to [ker(C)]⊥ is strictly positive definite, and therefore so is (CT M−1C)†. In the
sequel, we make free and repeated use of the four “Moore–Penrose identities” (see, for instance, [4, §2.1])

T T †T = T , T †T T † = T †, T †T = Q̃1, T T † = Q̃2, (21)

where T is a densely-defined, bounded linear operator from a Hilbert space X into a Hilbert space Y and Q̃1 and Q̃2
are the orthogonal projections of X onto [ker(T )]⊥ and of Y onto range(T ), respectively. In the infinite-dimensional
case, Q̃2 is the orthogonal projection onto the closure of range(T ) and in the right-hand side of the last identity above,
Q̃2 must be restricted to dom(T †)

.= range(T ) + [range(T )]⊥. In our case T = CT M−1C, X = Y = R
6, ker(T ) =

ker(C), range(T ) = range(CT ) = [ker(C)]⊥. Thus Q̃1 = Q̃2 is the orthogonal projection of R
6 onto [ker(C)]⊥ =

range(CT ).
With this notation the linearized equations for the joint-legs system (5)–(8) can be written in the form

Mη̈(t) + Bη̇(t) + Aη(t) = CF(t), (22)

where η
.= (x(t), y(t), θ1(t), θ2(t))

T , M and C are the matrices defined in (19), (20), and

A
.=

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 k −k

0 0 −k k

⎞⎟⎟⎟⎠ , B
.=

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 d −d

0 0 −d d

⎞⎟⎟⎟⎠ , F (t)
.=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1(t)

N1(t)

M2(t)

N2(t)

F1(t)

F2(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Also, with the notation above the geometric compatibility conditions (15), (16) are simply written in the form

P B
1 z(t) = CT η(t), (23)
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while the dynamic boundary compatibility conditions (12)–(14) take the form

EP B
2

(
z(t) + S1ż(t)

)= F(t), (24)

where E
.= diag(E1I1,E1I1,E2I2,E2I2,E1A1,E2A2) and the operator S1 :Hz 	→Hz is given in display (18). For

later use we define the (matrix) operator G :Hb 	→Hb by G
.= diag(γ1, γ1, γ2, γ2,μ1,μ2).

For ease of exposition we restrict attention to the case of an ideal pinned joint in which no damping and no stiffness
are presented in the joint, i.e. d = k = 0 and therefore B = A = 0. Multiply Eq. (22) by CT M−1 to obtain

CT η̈(t) = CT M−1CF(t).

By (23) the left-hand side of the above equation equals P B
1 z̈(t) while by (24), the right-hand side equals to

CT M−1CEP B
2 (z(t) + S1ż(t)). We arrive at the following ordinary differential equation for these two boundary pro-

jection vectors:

d2

dt2

(
P B

1 z(t)
)= CT M−1CEP B

2

(
z(t) + S1ż(t)

)
. (25)

To assemble the combined system we define the Hilbert space H .=Hz ×Hb with the usual inner product inherited
from those in Hz and Hb . In this Hilbert space we define the elastic operator A by

dom(A)
.=
{(

z

b

)
∈ dom(A1) ×Hb

∣∣∣ P B
1 z = b

}
and A .=

( A1 0

−CT M−1CEP B
2 0

)
. (26)

Clearly dom(A) is dense in H because dom(A1) is dense in Hz.
Thus, Eqs. (17) and (25) can be written as the second-order, homogeneous, linear elastic system

Ẍ(t) +A(SẊ(t) + X(t)
)= 0 on H, (27)

where X(t)
.= ( z(t)

b(t)

)
and S

.= ( S1 0
0 E−1G

)
. Note S1 is a nonnegative, self-adjoint, bounded, linear operator on Hz. Also

if (and only if) γ1, γ2, μ1 and μ2 are all positive, then S1 is strictly positive and in the undamped case (γ1 = γ2 =
μ1 = μ2 = 0) one has S1 = 0, G = 0 and therefore S = 0. In any case, S

1
2 is a well-defined, nonnegative, self-adjoint,

bounded linear operator on H. Also, it is clear that S1 commutes with A1.

Remark 1. It is interesting to note that in this framework, the joint-leg dynamics (Eqs. (5)–(8)) and the dynamic
compatibility conditions (Eqs. (12)–(14)) are reflected in an ODE coupling both boundary projection vectors b1(t)

.=
P B

1 z(t) and b2(t)
.= P B

2 z(t) (Eq. (25)). On the other hand, the geometric compatibility conditions (Eqs. (10), (11) or
equivalently (15), (16)) are simply reflected in the fact that for all times t � 0, b1(t) must remain in [ker(C)]⊥ and
must be equal to P B

1 z(t). The former condition is included directly by defining Hb to be [ker(C)]⊥ instead of R
6,

while the latter condition is incorporated into dom(A).

4. A state-space formulation

Our state-space formulation relies on some important properties of the elastic operator A defined in Eq. (26).

Theorem 2. The elastic operator A : dom(A) ⊂H→H is strictly positive and self-adjoint.

Remark 3. At first sight it may seem counterintuitive that the operator A is self-adjoint since in its definition (26) it
does not even “look” symmetric. However, recall that the symmetry (or not) of an operator depends strongly on its
domain. Here the beams are clamped at the left end and satisfy a “nontypical” boundary condition at the right end.
This translates into a “nonsymmetric” domain for A. It is precisely this lack of symmetry in the definition of the
domain that, in the end, makes the “asymmetric looking” operator A, in fact, self-adjoint.

Proof. As noted earlier, dom(A) is dense in H. We show first that A is symmetric. For that, let X2 = (y, a)T ∈
dom(A), where y = (ξ1, ξ2, v1, v2)T and P B

1 y = a ∈ [ker(C)]⊥. Then for any X1 = (z, b)T ∈ dom(A) with z =
(w1,w2, u1, u2)T one has P B

1 z = b ∈ [ker(C)]⊥ and (unless otherwise indicated, the inner products are in L2(0,Lı)),
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〈AX1,X2〉H = 〈A1z, y〉Hz
+ 〈−CT M−1CEP B

2 z, a
〉
Hb

=
〈(

E1I1

ρ1A1
w1

ssss ,
E2I2

ρ2A2
w2

ssss ,−
E1

ρ1
u1

ss ,−
E2

ρ2
u2

ss

)T

,
(
ξ1, ξ2, v1, v2)T 〉

Hz

− 〈
CT M−1CEP B

2 z,
(
CT M−1C

)†
a
〉
R6

=
2∑

i=1

Ei

[
Ii

〈
wi

ssss, ξ
i
〉− Ai

〈
ui

ss, v
i
〉]− 〈

EP B
2 z, a

〉
R6

=
2∑

i=1

{
EiIi

[(
wi

sssξ
i − wi

ssξ
i
s + wi

sξ
i
ss − wiξ i

sss

)
(Li) + 〈

wi, ξ i
ssss

〉]
− EiAi

[(
ui

sv
i − uivi

s

)
(Li) + 〈

ui, vi
ss

〉]}
− 〈

EP B
2 z, a

〉
R6 (integrate by parts and use the b.c. at s = 0)

= 〈z,A1y〉Hz
− 〈

b,EP B
2 y

〉
R6 + 〈

EP B
2 z, a

〉
R6 − 〈

EP B
2 z, a

〉
R6

(
use b = P B

1 z and a = P B
1 y

)
= 〈z,A1y〉Hz

− 〈
b, Q̃1EP B

2 y
〉
R6

(
since b ∈ [

ker(C)
]⊥)

= 〈z,A1y〉Hz
− 〈

b,CT M−1CEP B
2 y

〉
Hb

(
since T †T = Q̃1

)
=
〈(

z

b

)(
y

q

)〉
H

= 〈X1,AX2〉H.

Hence, X2 ∈ dom(A∗) and A∗X2 =AX2, i.e. A is a symmetric operator.
We prove now that A is in fact self-adjoint. It suffices to show that dom(A∗) ⊂ dom(A). Let X1 = (z, b)T =

(w1,w2, u1, u2, b)T ∈ dom(A∗). Then, there exists X2 = (y, a)T = (ξ1, ξ2, v1, v2, a)T ∈ H such that for all W =
(f, c)T = (α1, α2,p1,p2, c)T ∈ dom(A) one has

0 = 〈AW,X1〉H − 〈W,X2〉H
=
〈( A1f

−CT M−1CEP B
2 f

)
,

(
z

b

)〉
H

−
〈(

f

c

)
,

(
y

a

)〉
H

= 〈A1f, z〉Hz
− 〈f,y〉Hz

+ 〈−CT M−1CEP B
2 f,b

〉
Hb

− 〈c, a〉Hb

=
2∑

i=1

[
EiIi

〈
αi

ssss,w
i
〉− EiAi

〈
pi

ss, u
i
〉− ρiAi〈αi, ξi〉 − ρiAi

〈
pi, v

i
〉]

− 〈
EP B

2 f,b
〉
R6 − 〈

c,
(
CT M−1C

)†
a
〉
R6

=
2∑

i=1

[ Li∫
0

(
EiIiα

i
ssssw

i − ρiAiα
iξ i

)
ds −

Li∫
0

(
EiAip

i
ssu

i + ρiAip
ivi

)
ds

]

− 〈
EP B

2 f,b
〉
R6 − 〈

c,
(
CT M−1C

)†
a
〉
R6 . (28)

Since (28) must hold for all W = (f, c)T = (α1, α2,p1,p2, c)T ∈ dom(A), it must hold in particular for all
α1 ∈ H 4

0 (0,L1), α2 ∈ H 4
0 (0,L2), p1 ∈ H 2

0 (0,L1), p2 ∈ H 2
0 (0,L2) (in which case we have c = P B

1 f = 0 and also
P B

2 f = 0). Hence, it follows that

Li∫
0

(
EiIiα

i
ssssw

i − ρiAiα
iξ i

)
ds = 0, for all αi ∈ H 4

0 (0,Li), i = 1,2,
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and also

Li∫
0

(
EiAip

i
ssu

i + ρiAip
ivi

)
ds = 0, for all pi ∈ H 2

0 (0,Li), i = 1,2.

The Fundamental Lemma of the Calculus of Variations (see [5, pp. 31–32]) implies that there exist constants βi
1, βi

2,
βi

3, βi
4, δi

1, δi
2, i = 1,2, such that

EiIi

ρiAi

wi = βi
1 + βi

2s + βi
3s

2 + βi
4s

3 +
s∫

0

τ1∫
0

τ2∫
0

τ3∫
0

ξ i(σ ) dσ dτ3 dτ2 dτ1,

and

Ei

ρi

ui = δi
1 + δi

2s −
s∫

0

τ∫
0

vi(σ ) dσ dτ,

for s ∈ [0,Li], i = 1,2. Thus,

wi ∈ H 4(0,Li), ui ∈ H 2(0,Li), i = 1,2, (29)

and when we take derivatives

ξ i(s) = EiIi

ρiAi

wi
ssss(s), vi(s) = −Ei

ρi

ui
ss(s), i = 1,2, s ∈ [0,Li]. (30)

Substitution of (30) into (28) implies that for each W = (f, c)T = (α1, α2,p1,p2, c)T with W ∈ dom(A) one must
have

0 =
2∑

i=1

[
EiIi

Li∫
0

(
αi

ssssw
i − αiwi

ssss

)
ds − EiAi

Li∫
0

(
pi

ssu
i − piui

ss

)
ds

]

− 〈
EP B

2 f,b
〉
R6 − 〈

P B
1 f,

(
CT M−1C

)†
a
〉
R6

=
2∑

i=1

EiIi

[(
αi

sssw
i − αi

ssw
i
s + αi

sw
i
ss − αiwi

sss

)Li

0 − EiAi

(
pi

su
i − piui

s

)Li

0

]
− 〈

EP B
2 f,b

〉
R6 − 〈

P B
1 f,

(
CT M−1C

)†
a
〉
R6 (integration by parts)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1I1α
1
ss(L1)

E1I1α
1
sss(L1)

E2I2α
2
ss(L2)

E2I2α
2
sss(L2)

A1E1p
1
s (L1)

A2E2p
2
s (L2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−w1
s (L1)

w1(L1)

−w2
s (L2)

w2(L2)

−u1(L1)

−u2(L2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α1
s (L1)

α1(L1)

−α2
s (L2)

α2(L2)

−p1(L1)

−p2(L2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1I1w
1
ss(L1)

E1I1w
1
sss(L1)

E2I2w
2
ss(L2)

E2I2w
2
sss(L2)

E1A1u
1
s (L1)

E2A2u
2
s (L2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

2∑
i=1

EiIi

[
αi

sssw
i − αi

ssw
i
s

]
(0) +

2∑
i=1

EiAip
i
s(0)ui(0)

− 〈
EP B

2 f,b
〉
R6 − 〈

P B
1 f,

(
CT M−1C

)†
a
〉
R6

(
use αi(0) = αi

s(0) = pi(0) = 0
)

= 〈
EP B

2 f,P B
1 z

〉
R6 − 〈

P B
1 f,EP B

2 z
〉
R6 −

2∑
i=1

EiIi

[
αi

sssw
i − αi

ssw
i
s

]
(0) +

2∑
i=1

EiAip
i
s(0)ui(0)

− 〈
EP B

2 f,b
〉
R6 − 〈

P B
1 f,

(
CT M−1C

)†
a
〉
R6
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= 〈
EP B

2 f,P B
1 z − b

〉
R6 − 〈

P B
1 f,EP B

2 z + (
CT M−1C

)†
a
〉
R6

−
2∑

i=1

EiIi

[
αi

sssw
i − αi

ssw
i
s

]
(0) +

2∑
i=1

EiAip
i
su

i(0).

Since this must hold for all W = (f, c)T = (α1, α2,p1,p2, c)T ∈ dom(A) the above equation implies that
P B

1 z − b = 0, EP B
2 z + (CT M−1C)†a = 0 and wi(0) = wi

s(0) = ui(0) = 0 which, together with (29) implies that
X1 = (z, b)T = (w1,w2, u1, u2, b)T ∈ dom(A). This concludes the proof of the self-adjointness of A.

It remains to be shown that A is strictly positive. For this, note that for any X = (z, b)T = (w1,w2, u1, u2, b)T ∈
dom(A), after integration by parts and following similar steps as above, we have that

〈AX,X〉H = 〈A1z, z〉Hz
− 〈

b,EP B
2 z

〉
R6

=
2∑

i=1

Ei

[
Ii

〈
wi

ssss,w
i
〉− Ai

〈
ui

ss, u
i
〉]− 〈

b,EP B
2 z

〉
R6

=
2∑

i=1

EiIi

[(
wi

sssw
i − wi

ssw
i
s

)
(Li) + ∥∥wi

ss

∥∥2
L2(0,Li )

]
−

2∑
i=1

EiAi

[
ui

su
i(Li) − ∥∥ui

s

∥∥2
L2(0,Li )

]− 〈
b,EP B

2 z
〉
R6

=
2∑

i=1

[
EiIi

∥∥wi
ss

∥∥2
L2(0,Li )

+ EiAi

∥∥ui
s

∥∥2
L2(0,Li )

]

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−w1
s (L1)

w1(L1)

−w2
s (L2)

w2(L2)

−u1(L1)

−u2(L2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
•

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1I1w
1
ss(L1)

E1I1w
1
sss(L1)

E2I2w
2
ss(L2)

E2I2w
2
sss(L2)

E1A1u
1
s (L1)

E2A2u
1
s (L2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 〈

b,EP B
2 z

〉
R6

=
2∑

i=1

[
EiIi

∥∥wi
ss

∥∥2
L2(0,Li )

+ EiAi

∥∥ui
s

∥∥2
L2(0,Li )

]
� 0.

This last expression constitutes precisely the strain energy of the beams in our system. Hence A is nonnegative.
Moreover, if for some X = (z, b)T ∈ dom(A) one has 〈AX,X〉 = 0, then the above implies that wi is linear and ui is
constant, i = 1,2. Since wi(0) = wi

s(0) = 0 and ui(0) = 0 one concludes that wi ≡ 0 and ui ≡ 0 which implies that
z = 0, b = P B

2 z = 0 and therefore X = 0. Hence A is a strictly positive, self-adjoint operator on H. �
Since A is strictly positive and self-adjoint, it possesses a unique strictly positive self-adjoint square root, A 1

2 (see,
for instance, [8,12]). Moreover, any fractional powerAα ofA, α > 0, is well defined, strictly positive and self-adjoint.
We finally arrive at the definition of the state-space:

Y .= dom
(
A 1

2
)×H, with the inner product,〈(

X1

X2

)
,

(
W1

W2

)〉
Y

.= 〈
A 1

2 X1,A
1
2 W1

〉
H + 〈X2,W2〉H. (31)

The operator AB is defined on Y by

dom(AB)
.= {

(X1,X2)
T ∈ Y ∣∣X2 ∈ dom

(
A 1

2
)
, SX2 + X1 ∈ dom(A)

}
,

AB

(
X1

X2

)
.=
(

X2

−A(SX2 + X1)

)
. (32)
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It is clear that dom(A) × dom(A) ⊂ dom(AB), and dom(A) × dom(A) is dense in Y (because dom(A) is dense in
both dom(A 1

2 ) and in H). Hence, it follows that dom(AB) is dense in Y .
With this notation, the system (27) can be written in first-order form as

Ẏ (t) =ABY (t) on Y, (33)

where Y(t)
.= ( X(t)

Ẋ(t)

)
is the state-space variable.

Theorem 4 (Well-posedness). AB : Y → Y as defined in (32) is the infinitesimal generator of a strongly continuous

semigroup of contractions S(t) on Y . Hence for any initial condition Y0 = Y(0) = ( X(0)

Ẋ(0)

) ∈ dom(AB), system (33)
has a unique global solution Y(t) given by Y(t) = S(t)Y0.

Proof. Let Y = (X1,X2)
T ∈ dom(AB), then X1,X2 ∈ dom(A 1

2 ),X1 + SX2 ∈ dom(A) ⊂ dom(A 1
2 ) and therefore

SX2 ∈ dom(A 1
2 ),

〈ABY,Y 〉Y =
〈(

X2

−A(X1 + SX2)

)
,

(
X1

X2

)〉
Y

= 〈
A 1

2 X2,A
1
2 X1

〉
H − 〈

A 1
2 X1 +A 1

2 SX2,A
1
2 X2

〉
H

= −〈
A 1

2 SX2,A
1
2 X2

〉
H.

Now use the fact that dom(A) is a core for A 1
2 (see [8, Lemma 3.38]), so that given SX2 ∈ dom(A 1

2 ) there exists a

sequence {Wn} with Wn = (zn, bn)T ∈ dom(A) such that Wn → SX2 and A 1
2 Wn →A 1

2 SX2.
Write X2 = (z2, b2)

T and use the definition of S and of A to find that

SX2 =
(

S1z2

E−1Gb2

)T

and A 1
2 =

⎛⎝ A
1
2
1 0

−CT M−1CEP B
2 A

− 1
2

1 0

⎞⎠ .

The limit sequences above can be written (zn, bn)T → (S1z2,E
−1Gb2)

T and (A
1
2
1 zn,−CT M−1CEP B

2 A
− 1

2
1 zn) →

(A
1
2
1 S1z2,−CT M−1CEP B

2 A
− 1

2
1 S1z2). From these it follows that zn → S1z2 andA

1
2
1 zn →A

1
2
1 S1z2 (inHz) and bn →

E−1Gb2 (in Hb).

Since S1 is diagonal and positive definite, so is its inverse. Both A1 and A
1
2
1 are diagonal operators so these

commute with S−1
1 . Applying these observations it can be shown that A 1

2 (S−1
1 zn,P B

1 S−1
1 zn)T →A 1

2 X2.
Finally, then〈

A 1
2 SX2,A

1
2 X2

〉
H = lim

n→∞
〈
A 1

2 Wn,A 1
2
(
S−1

1 zn,P B
1 S−1

1 zn
)T 〉

H

= lim
n→∞

〈
Wn,A

(
S−1

1 zn,P B
1 S−1

1 zn
)T 〉

H

= lim
n→∞

[〈
zn,A1S

−1
1 zn

〉
Hz

− 〈
bn,CT M−1CP B

2 S−1
1 zn

〉
Hb

]
=

2∑
i=1

[
μi

∥∥ui
s

∥∥2 + γi

∥∥wi
ss

∥∥2]� 0.

The last step follows from the definitions of the operators and direct calculations as in the proof of Theorem 2. Thus,
AB is dissipative.

It can be easily checked that the adjoint of the operator AB is given by

dom
(
AB

∗)= {
(X1,X2)

T ∈ Y ∣∣X2 ∈ dom
(
A 1

2
)
, X1 − SX2 ∈ dom(A)

}
, AB

∗
(

X1

X2

)
=
( −X2

A(X1 − SX2)

)
.

If Y = (X1,X2)
T ∈ dom(AB

∗), then we have
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〈
AB

∗Y,Y
〉
Y =

〈( −X2

A(X1 − SX2)

)
,

(
X1

X2

)〉
Y

= −〈
A 1

2 X2,A
1
2 X1

〉
H + 〈

A 1
2 X1 +A 1

2 SX2,A
1
2 X2

〉
H

= −〈
A 1

2 SX2,A
1
2 X2

〉
H � 0.

Therefore, AB
∗ is also dissipative. The claim now follows from the Lumer–Phillips Theorem (see, for instance, [11,

Corollary 4.4]). �
Theorem 5 (Analyticity and exponential stability). Let AB : Y → Y be as defined in (32). If γ1, γ2, μ1, μ2 are all
positive, then the strongly continuous semigroup S(t) generated by AB is analytic and exponentially stable.

Proof. Assume that γ1 > 0, γ2 > 0, μ1 > 0, μ2 > 0. The analyticity of S(t) follows from Theorem 2.1 in [1] or
Theorem 4.1 in [10] with α = 1. Moreover, it is easy to check that the intersection of the spectrum of AB with the
imaginary axis is empty. In fact, suppose that there exist iβ ∈ σ(AB), for some β ∈ R. Then, there exists a sequence
Yn = ( X1,n

X2,n

) ∈ dom(AB) with ‖Yn‖Y = 1 such that

lim
n→∞

∥∥(iβI −AB)Yn

∥∥
Y = 0, (34)

i.e.

iβX1,n − X2,n → 0 in dom
(
A 1

2
)
, (35)

iβX2,n −A(X1,n + SX2,n) → 0 in H. (36)

Equation (34) implies that

Re〈ABYn,Yn〉 = −∥∥A 1
2 S

1
2 X2,n

∥∥2
H → 0. (37)

If β = 0, then (36) yields ‖A 1
2 X1,n‖H → 0. If β �= 0, then (35) and (37) imply ‖A 1

2 X1,n‖H → 0. In any case, this
contradicts the fact that ‖Yn‖Y = 1. Thus, the strongly continuous semigroup of contractions S(t) generated by AB

on Y is exponentially stable (see [3]), i.e. ‖S(t)‖L(Y ) � e−δt , where δ = − sup Reσ(AB) > 0. �
Remark 6. In the case where d, k > 0, changes are required in the Hb (finite-dimensional) parts of the operator AB .
Since this is a bounded perturbation, the so-modified AB is the infinitesimal generator of an analytic semigroup [11,
Corollary 2.2, p. 81].

5. Characterization of the spectrum of AB

Suppose that λ is an eigenvalue of AB corresponding to the eigenvector Y = (X1,X2)
T ∈ dom(AB), where X1 =

(z, b)T = (w1,w2, u1, u2, b)T . Then ABY = λY , which implies

X2 = λX1, −A(SX2 + X1) = λX2,

and therefore

A(I + λS)X1 = −λ2X1. (38)

Use the definitions of A and S, write X1 = (z, b)T and Eq. (38) takes the form( A1 0

−CT M−1CEP B
2 0

)(
I + λS1 0

0 I + λE−1G

)(
z

b

)
= −λ2

(
z

b

)
.

From this equation, and the fact that Y ∈ dom(AB), we obtain
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1 + λγ1

E1I1

)
E1I1

ρ1A1
w1

ssss = −λ2w1, w1(0) = w1
s (0) = 0,(

1 + λγ2

E2I2

)
E2I2

ρ2A2
w2

ssss = −λ2w2, w2(0) = w2
s (0) = 0,(

1 + λμ1

E1A1

)
E1

ρ1
u1

ss = λ2u1, u1(0) = 0,(
1 + λμ2

E2A2

)
E2

ρ2
u2

ss = λ2u2, u2(0) = 0, (39)

and

CT M−1CEP B
2 (I + λS1)z = λ2b, P B

1 z = b ∈ [
ker(C)

]⊥
. (40)

Now let βi , i = 1,2,3,4, be the columns of CT (Eq. (20)). Since [ker(C)]⊥ = span{βi, i = 1,2,3,4}, it follows that
b must be a linear combination of the βi ’s, i.e., there exist four constants a1, a2, a3, a4 such that

b = a1β1 + a2β2 + a3β3 + a4β4.

Since b = P B
1 z, the above equation takes the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−w1
s (L1)

w1(L1)

−w2
s (L2)

w2(L2)

−u1(L1)

−u2(L2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a3

−a1 cosϕ1 + a2 sinϕ1 + a3l1

a4

a1 cosϕ2 + a2 sinϕ2 + a4l2

a1 sinϕ1 + a2 cosϕ1

a1 sinϕ2 − a2 cosϕ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Substitution of these boundary conditions back into (39) yields the following four two-point boundary value problems
for w1, w2, u1 and u2:

w1
ssss(s) = c1(λ)w1(s), w1(0) = w1

s (0) = 0, w1
s (L1) = −a3, w1(L1) = −a1 cosϕ1 + a2 sinϕ1 + a3l1,

w2
ssss(s) = c2(λ)w2(s), w2(0) = w2

s (0) = 0, w2
s (L2) = −a4, w2(L2) = a1 cosϕ2 + a2 sinϕ2 + a4l2,

u1
ss(s) = d1(λ)u1(s), u1(0) = 0, u1(L1) = −a1 sinϕ1 − a2 cosϕ1,

u2
ss(s) = d2(λ)u2(s), u2(0) = 0, u2(L2) = −a1 sinϕ2 + a2 cosϕ2,

where

ci(λ)
.= − λ2ρiAi

EiIi + λγi

, di(λ)
.= λ2ρiAi

EiAi + λμi

, i = 1,2.

The general solution of w1
ssss(s) = c1(λ)w1(s) is

w1(s) = k1 sinα1s + k2 cosα1s + q sinhα1s + r coshα1s,

where k1, k2, q and r are arbitrary constants and α1 = α1(λ) is such that (α1)
4 = c1(λ). Substitution of the boundary

conditions at s = 0 implies that q = −k1 and r = −k2. Thus

w1(s) = k1(sinα1s − sinhα1s) + k2(cosα1s − coshα1s). (41)

Applying the two boundary conditions at s = L1 we obtain the following system of equations:{
k1(sinα1L1 − sinhα1L1) + k2(cosα1L1 − coshα1L1) = −a1 cosϕ1 + a2 sinϕ1 + a3l1,

α1
[
k1(cosα1L1 − coshα1L1) − k2(sinα1L1 + sinhα1L1)

]= −a3.
(42)

A similar analysis for w2(s) gives

w2(s) = k3(sinα2s − sinhα2s) + k4(cosα2s − coshα2s), (43)
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where α2 = α2(λ) satisfies (α2)
4 = c2(λ) and k3, k4 are constants satisfying the system of equations{

k3(sinα2L2 − sinhα2L2) + k4(cosα2L2 − coshα2L2) = a1 cosϕ2 + a2 sinϕ2 + a4l2,

α2
[
k3(cosα2L2 − coshα2L2) − k4(sinα2L2 + sinhα2L2)

]= −a4.
(44)

On the other hand, solving the two-point boundary-value problems for u1(s) and u2(s) gives

u1(s) = r1 sin δ1s, (45)

where δ1 = δ1(λ) satisfies (δ1)
2 = −d1(λ) and

r1 sin δ1L1 = −a1 sinϕ1 − a2 cosϕ1. (46)

Also,

u2(s) = r2 sin δ2s, (47)

where δ2 = δ2(λ) satisfies (δ2)
2 = −d2(λ) and

r2 sin δ2L2 = −a1 sinϕ2 + a2 cosϕ2. (48)

Note that Eqs. (42), (44), (46), (48), constitute a system of 6 linear equations in the 10 unknowns a1, a2, a3, a4, k1,
k2, k3, k4, r1, r2. This system can be written in the form

B1q = CT a, (49)

where a
.= (a1, a2, a3, a4)

T , q
.= (k1, k2, k3, k4, r1, r2)

T , and B1 is the following matrix:

B1
.=

⎛⎜⎜⎜⎜⎝
α1(coshα1L1−cosα1L1) α1(sinα1L1+sinhα1L1) 0 0 0 0

sinα1L1−sinhα1L1 cosα1L1−coshα1L1 0 0 0 0

0 0 α2(coshα2L2−cosα2L2) α2(sinα2L2+sinhα2L2) 0 0

0 0 sinα2L2−sinhα2L2 cosα2L2−coshα2L2 0 0

0 0 0 0 − sin δ1L1 0

0 0 0 0 0 − sin δ2L2

⎞⎟⎟⎟⎟⎠ .

(50)

Four more equations are obtained from (40). In fact, note that the first equation in (40) can be written in the form

CT M−1CEP B
2 (I + λS1)z = λ2CT

⎛⎜⎜⎜⎝
a1

a2

a3

a4

⎞⎟⎟⎟⎠ .

Multiply through by M(CCT )−1C and use the definitions of P B
2 , E, and S1 to obtain

C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(E1I1 + λγ1)w
1
ss(L1)

(E1I1 + λγ1)w
1
sss(L1)

(E2I2 + λγ2)w
2
ss(L2)

(E2I2 + λγ2)w
2
sss(L2)

(E1A1 + λμ1)u
1
s (L1)

(E2A2 + λμ2)u
2
s (L2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= λ2M

⎛⎜⎜⎜⎝
a1

a2

a3

a4

⎞⎟⎟⎟⎠ . (51)

Use Eqs. (41), (43), (45), (47) to find that

w1
ss(L1) = −α2

1

[
k1(sinα1L1 + sinhα1L1) + k2(cosα1L1 + coshα1L1)

]
,

w1
sss(L1) = α3

1

[−k1(cosα1L1 + coshα1L1) + k2(sinα1L1 − sinhα1L1)
]
,

w2
ss(L2) = −α2

2

[
k3(sinα2L2 + sinhα2L2) + k3(cosα2L2 + coshα2L2)

]
,

w2
sss(L2) = α3

2

[−k3(cosα2L2 + coshα2L2) + k3(sinα2L2 − sinhα2L2)
]
,

u1
s (L1) = δ1r1 cos δ1L1,

u2
s (L2) = δ2r2 cos δ2L2.
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Substitution of these expressions into (51) yields

CRq = λ2Ma, (52)

where

R
.=
(

R1 0

0 R2

)
,

with

R1
.=
(

(E1A1 + λμ1)δ1 cos δ1L1 0

0 (E2A2 + λμ2)δ2 cos δ2L2

)
and

R2
.=

⎛⎜⎜⎜⎝
−(E1I1 + λγ1)α

2
1(sinα1L1 + sinhα1L1) −(E1I1 + λγ1)α

2
1(cosα1L1 + coshα1L1)

−(E1I1 + λγ1)α
3
1(cosα1L1 + coshα1L1) (E1I1 + λγ1)α

3
1(sinα1L1 − sinhα1L1)

0 0

0 0

0 0

0 0

−(E2I2 + λγ2)α
2
2(sinα2L2 + sinhα2L2) −(E2I2 + λγ2)α

2
2(cosα2L2 + coshα2L2)

−(E2I2 + λγ2)α
3
2(cosα2L2 + coshα2L2) (E2I2 + λγ2)α

3
2(sinα2L2 − sinhα2L2)

⎞⎟⎟⎟⎠ .

Equation (52) implies that a = λ−2M−1CRq and substitution of this expression into Eq. (49) produces B1q =
λ−2CT M−1CRq , or equivalently, (λ2I − B−1

1 CT M−1CR)q = 0.
Let U

.= B−1
1 CT M−1CR and note that the matrices M and C depend only on the model parameters, while B1

and R also depend on α1, α2, δ1, δ2, and λ. We denote this dependency by U = U(λ,α1, α2, δ1, δ2). Since λ is an
eigenvalue of AB , it follows that

det
(
λ2I − U(λ,α1, α2, δ1, δ2)

)= 0.

Now, α1, α2, δ1, δ2 satisfy α1(λ)4 = c1(λ), α2(λ)4 = c2(λ), δ1(λ)2 = −d1(λ), δ2(λ)2 = −d2(λ). Thus, the eigenvalues
of AB are the solutions of the equation

det
(
λ2I − U

(
λ, c1(λ)

1
4 , c2(λ)

1
4 ,
[−d1(λ)

] 1
2 ,
[−d2(λ)

] 1
2
))= 0.

Here, “f
1
n ” must be understood to be any of the n branches of the corresponding complex-valued function.

Remark 7. In the case of no damping one has μi = γi = 0, so that the operators S1 and S are identically zero.
In this case, if λ is an eigenvalue of AB corresponding to the eigenvector (X1,X2)

T , then by (38), −(λ)2 is an
eigenvalue of A corresponding to the eigenvector X1. Since by Theorem 2 the operator A is strictly positive defi-
nite and self adjoint, one must have −(λ)2 ∈ R > 0. Thus, λ must be purely imaginary, so that α4

1 = −λ2 ρ1A1
E1I1

> 0

and therefore α̃1 � + 4
√

(−λ2 ρ1A1
E1I1

) > 0. Other values of α1 are obtained by multiplying α̃1 by the other fourth-roots
of unity, but these introduce no new solutions to (41). Therefore, there are no additional mode shapes. Similarly,

α2 = (−λ2 ρ2A2
E2I2

)
1
4 > 0, δ1 = (−λ2 ρ1

E1
)

1
2 > 0 and δ2 = (−λ2 ρ2

E2
)

1
2 > 0. Hence, B1 and R, being matrix functions of α1,

α2, γ1, γ2 can now be written as functions of λ2 only. Thus, in this case the eigenvalues are the solutions of the equa-
tion det(λ2B1(λ

2)[R(λ2)]−1 − CT M−1C) = 0. If we denote by W(σ) the 6 × 6 matrix W(σ)
.= σB1(σ )[R(σ)]−1,

then the eigenvalues are the solutions of the equation det(W(λ2) − CT M−1C) = 0.



Author's personal copy

196 J.A. Burns et al. / J. Math. Anal. Appl. 339 (2008) 182–196

6. Conclusions and future directions

In this paper we developed a state space model for the dynamics of two beams with Kelvin–Voigt damping, coupled
to a joint through two legs. The model was based on the four PDEs describing the transverse and longitudinal motions
of both beams, with homogeneous boundary conditions at one end and dynamic boundary conditions at the other end,
reflecting the dynamic and geometric compatibility conditions at the beam-leg interfaces. These dynamic boundary
conditions translate into an ODE for certain beam boundary projection terms. The complete system was written a
second-order, linear IVP in an appropriate Hilbert space H. After recasting as a first-order system, semigroup theory
was then used to prove well-posedness and exponential energy decay. A characterization of the spectrum of the
associated infinitesimal generator was also given.

As noted in the introduction, a primary motivation for this effort is to improve understanding of damping and to
investigate the effects of specific joint models typical of these inflatable/rigidizable space structures. We are using
the abstract framework developed in this paper to construct rigorous numerical schemes for identification, design and
control of such systems. Note that the results in this paper allow us to employ both frequency domain and time domain
techniques. In particular, in the frequency domain setting one may use the spectral characterization from Section 5,
while in a time domain setting one requires numerical approximation for the abstract Cauchy problem (33) [2]. In
either case, it is of interest to generalize the mathematical model for the internal joint-moment (9).
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