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Abstract

We propose a method to combine several predictors (markers) that are measured repeatedly over 

time into a composite marker score without assuming a model and only requiring a mild condition 

on the predictor distribution. Assuming that the first and second moments of the predictors can be 

decomposed into a time and a marker component via a Kronecker product structure, that 

accommodates the longitudinal nature of the predictors, we develop first moment sufficient 

dimension reduction techniques to replace the original markers with linear transformations that 

contain sufficient information for the regression of the predictors on the outcome. These linear 

combinations can then be combined into a score that has better predictive performance than the 

score built under a general model that ignores the longitudinal structure of the data. Our methods 

can be applied to either continuous or categorical outcome measures. In simulations we focus on 

binary outcomes and show that our method outperforms existing alternatives using the AUC, the 

area under the receiver-operator characteristics (ROC) curve, as a summary measure of the 

discriminatory ability of a single continuous diagnostic marker for binary disease outcomes.
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1. Introduction

Much research effort is devoted to searching for predictors, also called markers, which may 

aid in diagnosis of disease or physical impairment. Ideally one would obtain a single marker 

with very high specificity and sensitivity. However, such high performance markers are yet 

to be found for many diseases. Strategies for combining information from multiple 

diagnostic predictors are needed, since a combination may provide a better tool for diagnosis 

or screening applications than any single marker on its own. In earlier work [1], we proposed 

an approach to combine several biomarkers into a composite marker score without assuming 
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a model for the distribution of the predictors. Using sufficient dimension reduction (SDR) 

techniques, we replaced the original markers with a lower-dimensional version, obtained 

through linear transformations of markers that contain sufficient information for regression 

of the predictors on the outcome. We focused on a first moment method, Sliced Inverse 

Regression (SIR) [2], and also a second moment method, Sliced Average Variance 

Estimation [3].

In this paper we extend first moment based SDR methods to combining several 

longitudinally measured biomarkers into a composite marker score under a mild 

distributional assumption and by exploiting their longitudinal structure. We assume that the 

means and the second moments of the markers can be separated into a marker and a time 

specific component via a Kronecker product structure. This substantially reduces the 

complexity of the first moment based dimension reduction subspace and results in better 

predictive accuracy of the resulting score compared to standard first moment based SDR 

methods.

Following the presentation of background material (Section 2), we present the new results 

(Section 3) for first moment based SDR methods for longitudinally measured predictors and 

an algorithm that extends SIR (Section 4) to that setting. We carry out simulations to assess 

and compare the performance of the longitudinal extension of SIR (Section 5) and give a 

data example in Section 6 before concluding with a discussion in Section 7.

2. Background

We start with a brief overview of standard sufficient dimension reduction methods, and a 

brief review of results for the estimation of the first moment based dimension reduction 

subspace, before considering the setting of longitudinally measured markers.

2.1. Sufficient dimension reduction (SDR)

Suppose we are interested in inferring the relationship between a response variable Y and a 

covariate vector X = (X1, …, Xp)T ∈ ℝp. When the number of covariates p is large, it is very 

difficult to visualize how Y changes as a function of the components of X which makes 

modeling challenging. Dimension reduction aims to reduce the complexity of the regression 

or classification problem prior to model fitting. In particular, SDR [4] aims to find a function 

of X, Q : ℝp → ℝd with d ≤ p, such that Q(X) contains the same information as X about the 

response Y. This means that F(Y|X = x) = F(Y|Q(X) = Q(x)), where F(·|·) is the conditional 

distribution function of Y given the second argument. This means no information about Y is 

lost when X is replaced by Q(X). For this reason, Q(X) is called a sufficient reduction for 

the regression of Y on X.

While in principle Q can be any function, only linear sufficient transformations 

 with η = (η1, …, ηd) ∈ ℝp×d have been used in SDR 

methodology so far (e.g., [2], [3], [4], [5], [6]). One important fact about linear sufficient 

reductions is that if the columns of a matrix γ span the vector space spanned by the columns 

of η, then ηTX and γTX contain the same information about Y and therefore inference needs 
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to focus on the subspace  = span(η) spanned by the columns of η and not on the matrix η 
itself. We call such a subspace a SDR subspace.

Under mild conditions the intersection of all SDR subspaces, called the central dimension 

reduction subspace and denoted by  ([4], Section 6.4, p. 108–112), is also sufficient. In 

particular,  exists when the support of the distribution of X is convex. The dimension d = 

dim( ), referred to as the structural dimension of the regression of Y on X, can take on 

any value in the set {0, 1, …, p}. When d < p, the structural dimension of the regression is 

smaller than the number of predictors and the complexity of the regression is reduced.

If η = (η1, …, ηd) is a basis for , then the d linear combinations 

contain all the information in X about Y. Moreover, the number of these linear combinations 

of X, d, is the smallest number of linear combinations of X with this property. In this sense, 

 is a “minimal” transformation of the covariate vector X for the 

regression of Y on it. Thus the goal of SDR methodology is to estimate d and a set of basis 

vectors η = (η1, …, ηd) such that span(η) ⊆ . A detailed exposition of SDR methodology 

is provided in [4].

2.2. The first moment based SDR subspace

If Q(X) is a sufficient reduction for the forward regression Y|X, then it is also a sufficient 

statistic for the inverse regression X|Y [5]. This result implies that we can use the inverse 

regression of X on Y in order to find sufficient reductions for the forward regression of Y on 

X. The advantage of inverse regression is that a complex, p-dimensional multiple forward 

regression of Y on X that cannot easily be visualized is translated to p univariate inverse 

regressions of each component of X on Y. Thus, a p-dimensional problem is mapped to p 
one-dimensional ones so that the difficulty of inference in high dimensions is removed. 

Because of this, most SDR methods are based on inverse regression.

In general, the estimation of  is based on finding a matrix Ω, called kernel, so that 

span(Ω) ⊆ . First moment methods such as Sliced Inverse Regression (SIR) [2], Principal 

Fitted Components (PFC) [6] and Parametric Inverse Regression (PIR) [7] use kernel 

matrices computed from first moments of X|Y, whereas second moment methods, such as 

Sliced Average Variance Estimation (SAVE) [3], use second moment based kernels. In this 

paper we focus on first moment methods, and in particular on extensions of SIR to 

longitudinal settings.

The first moment based SDR (FMSDR) subspace is the span of the centered mean of the 

inverse regression of X on Y, E(X|Y) − E(X), scaled by the inverse of the marginal 

covariance of X, Σ. That is,

(1)
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This subspace is the estimation target of SIR with kernel matrix ΩSIR = Σ−1cov(E(vec(X|

Y))).

If the predictors X satisfy the linearity condition ([4], p. 188), then  is contained in the 

central subspace,

(2)

This condition requires that there exists a linear sufficient transformation ηTX such that E(X|

ηTX) − E(X) is a linear function of ηTX [8]. An important feature of this condition is that it 

is required only for the marginal distribution of the predictors. The linearity condition holds 

when X has an elliptical distribution [9], for example a multivariate normal distribution, but 

normality is much stronger than needed. Coordinate-wise transformations or re-weighting of 

the predictors can help achieve ellipticity of X [10]. Moreover, the linearity condition holds 

approximately when p is large [11].

We show in the Appendix that for ΔY = cov(X|Y) and Δ = E(ΔY), the Principal Fitted 

Components (PFC) subspace defined by  = span{Δ−1 [E(X|Y) − E(X)]} also equals the 

FMSDR subspace under the linearity condition. That is,

(3)

When the marginal distribution of the predictors X satisfies the linearity condition, we can 

see from (2) and (3) that one can scale the conditional data, X|Y, using either the marginal 

covariance matrix Σ or the conditional Δ to obtain , and

For  to recover all of , and not just part of it, i.e. to obtain  = , cov(ηTX|

Y) must be positive definite for a linear sufficient transformation ηTX [12]. This is true, for 

example, when the predictors X|Y have a multivariate normal distribution and the 

conditional covariance of X does not depend on Y.

Under the linearity condition any kernel matrix whose column space spans the same space as 

 can be used to estimate  or a part of it. Different kernel matrices define different 

estimation methods, such as SIR, PIR and PFC. Here we focus on SIR and its extension to 

longitudinal data.
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3. Longitudinal first moment based SDR subspace

3.1. Notation and assumptions

We now estimate the first moment based dimension reduction subspace  for 

longitudinal data. Throughout this section we assume that the linearity condition holds for 

X.

In the longitudinal setting the p × 1 predictor vector X is measured over T time points. To be 

specific, let Yi ∈ ℝ be a one dimensional response variable for the ith individual in the 

study, with p-dimensional covariate vector Xit = (xi1t, …, xipt)T ∈ ℝp that is measured at 

time points t = 1, …, Ti, for i = 1, …, n, where n is the total sample size. For notational 

simplicity we assume that the markers are measured at the same time points for all 

individuals and that all individuals have the same number of observations over time, i.e. tij = 

tj, and Ti = T. The predictor vector over time can be represented as the p × T-matrix

(4)

that corresponds to the pT × 1 column vector vec(Xi) comprised of the columns of Xi 

stacked one after the other.

If one ignores the time structure of the data, standard dimension reduction can be applied to 

find η ∈ ℝpT×d such that F(Y|vec(X)) = F(Y|ηT vec(X)). However, the time structure is 

integral to the nature of longitudinal data and ignoring it could result in loss of accuracy in 

estimation for practically relevant sample sizes.

To accommodate the longitudinal structure of X|Y, we assume the first two moments of X 
can be decomposed into a time and a marker component. In particular, we let both the mean 

and the covariance of the markers be Kronecker products of the two components to further 

improve classification or regression, as follows.

Assumption 1—The conditional mean of X given Y has the following Kronecker product 

structure:

(5)

for some d × s matrix νy with E(νy) = 0 and det(cov(vec(νy))) > 0. The matrix β ∈ ℝT×s 

captures the mean structure over time, and α ∈ ℝp×d captures the mean structure of the 

markers regardless of time.
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A practically important case is that of binary outcomes, i.e. Y = 0, 1. For binary Y the 

condition (5) is satisfied if, for example, vec(E(X|Y)) = αy ⊗ β, which implies that the 

means of the markers change over time only by a multiplicative factor that affects all 

markers equally and is the same for the two groups defined by Y; that is, vec(E(Xt|Y)) = 

βtαy. Letting py = P(Y = y) and using that E(X) = p0α0 ⊗ β + (1 − p0)α1 ⊗ β, we get that 

vec(E(X|Y = y) − E(X)) = (1 − py)(α0 − α1) ⊗ β, which means that the first order moment 

condition is satisfied with νy = (1 − py).

Moreover, we assume that the second moments of X, either unconditional or conditional on 

Y, have a Kronecker product structure. In the next two sections we study the second moment 

assumptions and show that under this structure our target estimation subspace  is itself 

spanned by Kronecker products of the marker and time components.

Adopting this moment structure accommodates the longitudinal nature of the data by 

focusing on the predictor and time aspect separately and results in a substantial reduction in 

the number of parameters to estimate. Kronecker product structure of moments has been 

used previously in linear discriminant analysis procedures for repeated measurements 

normally distributed data, see e.g. [13], [14].

3.2. Σ = cov(vec(X)) = Σ1 ⊗ Σ2

When the longitudinal data arise from a prospective cohort, it may be reasonable to assume 

that the (Tp) × (Tp) covariance matrix of vec(X) can be written as Σ = Σ1 ⊗ Σ2, where Σ1 

captures the the covariance structure of the p markers and Σ2 models the temporal 

association. Thus, . In terms of correlation, this Kronecker product 

structure implies that

For the same marker measured at two different time points , and for 

two markers measured at the same time point . That means that the 

correlation of two markers measured at the same time point does not depend on time, i.e. 

 and the correlation of the same marker measured at two 

different time points is the same for all markers, . As Σ1 

⊗ Σ2 = (cΣ1) ⊗ (c−1Σ2), the matrices Σ1 and Σ2 are determined up to a multiplicative 

constant and we assume without loss of generality that .

In Theorem 1 below we show that  has a Kronecker structure induced by the 

Kronecker structure of Σ and the conditional mean of X. The proof is given in the Appendix.

Theorem 1—Suppose Assumption 1 holds and suppose cov(vec(X)) = Σ = Σ1 ⊗ Σ2. Then
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(6)

It follows immediately that 

.

3.3. Δ = E[cov(vec(X|Y))] = Δ1 ⊗ Δ2

Sometimes assuming that the overall population covariance Σ = Σ1 ⊗ Σ2 may not be 

reasonable, for example, when the data arise from a retrospective case-control sample. A 

slightly less restrictive assumption is to impose a Kronecker product structure on the 

conditional covariances of the predictors given the response Y. That is, 

. When either  or  do not depend on Y this structure 

implies Δ = E(var(X|Y)) = Δ1 ⊗ Δ2, as well. If the markers are sampled over the same time 

points in the groups defined by Y, the assumption that the correlations of the markers over 

time Δ1 do not depend on Y is reasonable, even though correlations of the markers differ for 

the groups defined by Y. If Δ = E(cov(X|Y)) = Δ1 ⊗ Δ2, the following theorem, whose proof 

is analogous to that of Theorem 1, holds.

Theorem 2—Suppose Assumption 1 holds and suppose Δ = E(cov(X|Y)) = Δ1 ⊗ Δ2. Then

(7)

Theorems 1 and 2 imply that when the conditional first moment vec(E(X|Y) − E(X)) and 

either cov(vec(X)) or E(cov(vec(X)|Y)) have a Kronecker product structure, then the 

structure of  is also a Kronecker product. In particular, when the assumptions of 

Theorem 1 are satisfied

(8)

If the conditions of Theorem 2 are satisfied,

(9)

Based on the results in (8) and (9), the estimation of  requires estimating many fewer 

parameters compared to the setting when no structure is imposed.

Remark: Under the additional assumption of multivariate normality of the markers, 

likelihood ratio tests can be used to assess if Assumptions 1 and 2 hold [15], [16].
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4. The longitudinal SIR (LSIR) algorithm

We estimate  using the SIR kernel matrix ΩSIR = Σ−1cov(E(X|Y)) based on repeated 

measurements of X. In Section 3 we showed that under the conditions of either Theorem 1 

or 2 the SIR subspace has a Kronecker product structure, that is  = span(Ωx) = 

span(Ω1x ⊗ Ω2x), where Ω1x, a p × p matrix, captures the reduction with respect to the 

predictors and Ω2x, a T × T matrix, captures the reduction of the markers with respect to 

time.

In the implementation of the algorithm, the predictors are standardized for numerical 

stability. Depending on whether the conditions of Theorem 1 or 2 are satisfied, the predictors 

can be standardized (centered and scaled) using Σ or Δ, respectively, for their scaling (see (8) 

and (9)). However, it can be shown by direct calculation, as in the proof of Corollary 3.4 in 

[6], that if one were to replace Σ̄1 and Σ̄2 by Δ̄
1 and Δ̄

2, respectively, in scaling the 

predictors, (= ) would remain the same. Hence, the algorithm uses the simpler Σ̄1 

and Σ̄2 to scale the data.

The standardized predictors Z = Σ−1/2(X − E(X)) are used to compute the kernel matrix Ωz = 

cov(E(Z|Y)). The latter relates to the kernel matrix for the original X predictors through Ωx 

= Σ1/2ΩzΣ−1/2.

Suppose that a sample (Xi, Yi), i = 1, …, n is available, where Yi denotes the outcome 

variable and Xi the (p × T) matrix of predictors for individual i given in (4).

• The p vector of covariate values for person i at time t is Xit = (xi1t, …, xipt)T, and 

x ̄·t = (x̄1t, …, x̄pt)T denotes the p-vector of predictor means over all subjects at 

time t. Similarly, Xij = (xij1, …, xijT)T denotes the T vector of the jth covariate 

values across all T time points for individual i, and let x̄j· be the T-vector of 

means of the j-th predictor, j = 1, …, p. Let nt be the number of observations at 

time t across all p predictors. Similarly, nj is the number of observations of the j-
th predictor across all time points.

• We normalize the predictor matrix Xi for the ith individual: vec(Zi) = Σ̄
−1/2(vec(Xi) − vec(x̄)), where each entry of x̄ is the empirical mean for each 

predictor at each time point over the i observations. We find Σ̄ = Σ̄1 ⊗ Σ̄2 by 

computing

(10)

(11)

and
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(12)

(13)

• As in standard SIR, we divide the support of Y into H slices. For continuous Y 
that means that Y is replaced by a discrete version Ỹ based on partitioning the 

observed range of Y into H fixed, non-overlapping slices. For categorical Y the 

slices are the categories of Y. Let  denote the p-vector of the standardized 

predictor means and  be the T-vector of the means of the j-th standardized 

predictor, j = 1, …, p, within slice h, h = 1, …, H. The proportion of observations 

in slice h at time t across all p predictors is  and  is the proportion of 

observations in slice h of the j-th predictor across all time points. Let

(14)

(15)

and

(16)

(17)

Then,

(18)
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• We separately compute the singular value decompositions (SVDs) 

 and , to write 

.

• To test for dimension, we estimate the rank of Ω̄
1z and Ω̄

2z separately using the 

weighted chi-square test for dimension in [17]. The dimension of Ω̄
LSIR is 

estimated by the product of the two estimated ranks since rank(Ω̄
LSIR) = 

rank(Ω̄
1z) × rank(Ω̄

2z).

• Letting rank(Ω̄
iz) = di, an estimate of the central subspace is given by

• To test for contributions of specific combinations of time points or predictors, we 

apply the test statistic proposed in Theorem 2 [18] separately to Ω̄
1z and Ω̄

2z. 

That is, we use a Wald type test to test hypotheses of the form H0 : Cvec(Udi) = 0 
vs H1 : Cvec(Udi) ≠ 0 where Udi = (Ui1, …, Uidi), i = 1, 2 for a prespecified r × 
kdi matrix C of zeroes and ones, where k = p for testing contributions of specific 

marker combinations and k = T for specific time points. The rank of C, r, equals 

the number of the elements of Udi set to zero. The test for marker contribution 

requires the computation of the asymptotic distribution of Ω̄
z, which is derived in 

the Appendix.

We focus on the longitudinal SIR algorithm that naturally accommodates categorical 

responses as the slices are by default the categories. For continuous responses, alternatively 

one can use the longitudinal version of either PIR [7] or PFC [6], where the inverse 

regressions are fitted parametrically and the estimation is expected to be more accurate.

5. Simulations

In the simulations we focus on binary outcomes, Y = 0, 1. We compare LSIR to standard 

SIR applied to the data ignoring their longitudinal structure, i.e. SIR is applied to X treated 

as the pT × 1 vector, vec(X). For binary Y, SIR and LSIR estimate at most a single direction 

in SY|X, that is  is given by a vector. The projection onto the space spanned by the SIR 

or LSIR kernel matrix can thus directly be used as a scalar diagnostic score. For categorical 

or continuous Y, if the dimension of the subspace is estimated to be larger than one, the 

projections need to be further combined to obtain a scalar score, for example by using the 

procedure in [1].

We quantify the discriminatory performance of the SIR and LSIR diagnostic scores with 

respect to the AUC, the area under the receiver-operator characteristics (ROC) curve. The 

ROC curve plots sensitivity against (1-specificity) (true vs. false positivity) for all thresholds 

that can be used to define ”test positive” (see also [19], page 67). Two diagnostic tests can be 

compared by calculating the difference between the areas under their two ROC curves 

(AUC), with the larger area corresponding to the ”better” test. The AUC values vary 

between 0.5 and 1, where 1 corresponds to perfect discriminatory accuracy of the test and 
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0.5 to no discriminatory ability. The AUC can also be expressed as the probability that the 

scalar diagnostic score for a randomly selected case S1 exceeds that for a randomly selected 

control S0, i.e. AUC = P(S1 > S0).

We generated samples of p = 5 and p = 10 markers XT = (X1, …, Xp) measured over T = 5 

and T = 10 times points from two normal populations with equal covariance matrices, (X|Y 
= i) ~ MVN(αi ⊗ β,Δ), i= 0, 1. Each αi, i = 0, 1 is a vector of length p and β is a vector of 

length T. We let α1 = p−1/2(1, …, 1), α0 has entries α0(k) = 0 for k = 1, 3,5 and α0(k) = p
−1/2 for k ≠ 1, 3, 5, and the entries of β are β(k) = (T − k + 1)−1. These values were chosen to 

reflect practically relevant AUC values. The choice of the β coefficients leads to larger 

differences in the group means for later time points, that is measurements more proximal to 

Y contribute more to discriminating the two groups. We let the number of observations in 

the Y = 0 and Y = 1 groups be equal, N = N0 = N1. To obtain unbiased estimates of the 

AUC, we used an independently generated sample of 500 cases and 500 controls.

For reference, we also computed the AUC value using 100, 000 cases and 100, 000 controls 

for the linear marker combination under the assumption that α, β and Σ are known exactly. 

We report this value as the ”true AUC.”

The overall covariance matrix of the predictors Σ has the Kronecker structure, Σ = Σ1 ⊗ Σ2. 

We assumed an AR(1) structure for Σ1, that is , and similarly for Σ2, 

, for various choices of ρp and ρT. The group specific covariance 

matrix Δ were computed using

For a model with p = 5 markers measured over T = 10 time points and the same mean and 

covariance matrices for both groups, (X|Y = i) ~ MV N(0, Δ), i= 0, 1, the AUC estimates 

(with standard errors) were 0.52 (0.01) for the truth, 0.51 (0.01) for LSIR and 0.51 (0.01) for 

SIR for N = 100 cases and controls. Both methods thus performed well when there was no 

difference in the distribution of the predictors between the two groups.

Table 1 presents means in 100 simulations for various values of p, T and correlations ρT and 

ρp. For p = T = 5with ρp = ρT = 0.3, the AUC values (with empirical standard errors in 

parentheses) for LSIR and SIR were 0.728(0.021) and 0.699(0.023) for N = 100 cases and 

controls, and 0.748(0.013) and 0.741(0.014) for N = 500 cases and controls. For the same 

setting with p = T = 10 the differences were more pronounced, with AUC values of LSIR 

and SIR 0.643(0.034) and 0.577(0.029) for N = 100 cases and controls and 0.699(0.015) and 

0.661(0.017) for N = 500 cases and controls.

Based on the paired t-test, LSIR had significantly higher AUC values than SIR, even for N = 

500 cases and N = 500 controls. For example, for N = 500 cases and controls, for p = T = 5 

with ρp = ρT = 0.3 the paired t-test p-value was 0.0002 and for p = T = 5 with ρp = 0, ρT = 

0.4 the paired t-test p-values was 0.0001.
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Results were very similar when the markers were uncorrelated, that is ρT = ρp = 0. In this 

setting the AUC was higher than for the correlated case, around 0.79 for the settings studied. 

SIR always resulted in lower AUC values for smaller sample sizes than LSIR. For N = 100, 

the difference was around 5%, a similar difference to the correlated case.

We also assessed the robustness of LSIR to violations of the moment assumptions. First, we 

violated the assumption of the Kronecker structure of the mean, but let Σ have a Kronecker 

structure. The mean vector for the controls was equal to zero, and the mean vector for cases 

had values (1/3pT, …, pT/3pT). For p = 5 and T = 6 with ρt = 0.4 and ρp = 0.3 the true AUC 

value was 0.73, and the AUCs (with empirical standard errors in parentheses) for LSIR and 

SIR were 0.64(0.03) and 0.62(0.03) respectively, for N = 100 cases and controls and 

0.68(0.02) and 0.67(0.02) for N = 500 cases and controls. For N = 1000 cases and controls 

LSIR and SIR both had AUC = 0.68 with standard error 0.02. We then assumed that the 

means had a Kronecker structure, with the same choices of parameters as for the models in 

Table 1, but the true covariance matrix Σ does not have a Kronecker structure. Instead Σ had 

an AR(1) structure with ρ = 0.3. For p = T = 5 the AUC values (with empirical standard 

errors in parentheses) for LSIR and SIR were 0.718(0.019) and 0.726(0.021) for N = 100 

cases and controls, and 0.767(0.015) and 0.770(0.016) for N = 500 cases and controls. For 

the same setting with p = 5 and T = 10 the AUC values of LSIR and SIR were 0.769(0.016) 

and 0.781(0.015) for N = 100 cases and controls and 0.699(0.015) and 0.661(0.017) for N = 

500 cases and controls. When the population means were zero and (1/3pT, …, pT/3pT) for 

controls and cases respectively, and the assumption on Σ was violated so that instead of a 

Kronecker product Σ had an AR(1) structure with ρ = 0.4, the true AUC value was 0.75, and 

the AUCs for LSIR and SIR were 0.681(0.030) and 0.645(0.024) respectively for N = 100 

cases and controls and 0.70(0.02) and 0.69(0.02) respectively for N = 500 cases and 

controls. Thus the LSIR procedure appears to be robust to violations of the assumption on 

the second moments.

R-code for the LSIR algorithm, testing of dimension and testing of marker contributions is 

available from the first author upon request. R-code that implements standard SIR is 

available in the package dr at http://cran.rproject.org/.

6. Data Analysis

We used data from the Vorarlberg Health Monitoring and Promotion Program [20], one of 

the world’s largest ongoing population-based risk factor surveillance programs, to illustrate 

LSIR and compare it to SIR. The aim was to classify men into two groups; those who 

developed cancer at the end of follow up and those who did not, using three serum 

biomarkers. The markers were the log transformed values of uric acid (UA), blood glucose 

(GLUC) and total serum cholesterol (CHOL). We used data from 100 male cancer cases 

who each had marker measurements at four time points prior to diagnosis, and selected a 

sample of 100 controls who also had measurements at four time points and at the end of 

follow up had not developed cancer. Thus the p = 3 predictors Xt = (UAt, GLUCt, CHOLt)T, 

t = 1, …, 4, were measured at T = 4 time points, which means that the dimension of this 

classification problem is 3 × 4 = 12. The histograms of the log-transformed markers in the 

cases and controls at time point t = 1, given in Figure 1, appeared reasonably symmetric.

Pfeiffer et al. Page 12

Stat Med. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In cases, the means of the markers for the four time points were X̄
t1 = (4.45, 5.38, 3.48), X̄

t2 

= (4.47, 5.41, 3.50), X̄
t3 = (4.50, 5.40, 3.43), X̄

t4 = (4.54, 5.43, 3.46) and in controls X̄
t1 = 

(4.47, 5.43, 3.64), X̄
t2 = (4.45, 5.39, 3.55), X̄

t3 = (4.49, 5.42, 3.60), X̄
t4 = (4.52, 5.38, 3.56). 

To check the assumption of Kronecker structure of the means for binary outcomes Y, it 

suffices to assess if the means of the markers in the control and case groups vary only by a 

constant that may depend on time. Visual inspection of the ratios of the means for the 

different time points did not suggest violations of Assumption 1.

The correlations of the three markers across the four time points were similar, with

Similarly, the correlations of the markers with each other for the four time points were 

similar,

We used a likelihood ratio test based on assuming a multivariate normal distribution for the 

markers, to test the hypothesis of an unstructured covariance matrix against the alternative of 

a Kronecker product structure of the covariance matrix of the data [13]. Under the null 

hypothesis of a Kronecker structure, −2LogLikelihood = −1709.9, and under the alternative 

hypothesis, −2LogLikelihood = −1781.60, corresponding to a p-value 0.19 based on a chi-

square distribution with Tp(Tp +1)/2 −T(T +1)/2 −p(p +1)/2 = 62 degrees of freedom. Thus, 

there was no strong evidence in the data against the null hypothesis of Kronecker product 

covariance structure.

The test for dimension estimated the dimension to be one for standard SIR (p-value=0.008 

for testing dimension 0 vs 1), and also 1 for LSIR for the time and marker parts separately.
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For LSIR, the coefficients for the projection corresponding to time component were β = 

(0.46, −0.31, 0.51, −0.66), and the coefficients for the marker component α= 

(UA,GLUC,CHOL) = (0.12, 0.99, 0.04). The resulting combined vector of coefficients for 

the projection was (UA1, GLUC1, CHOL1,…, UA4, GLUC4, CHOL4) = (−0.05, −0.45, 

−0.02, 0.04, 0.30, 0.01, −0.06, −0.50, −0.02, 0.08, 0.66, 0.03). When we tested the 

contribution of individual markers using LSIR, there was evidence based on the Wald test 

that GLUC significantly contributed to α (p-value= 0.04), while UA and CHOL did not (p-

value= 0.73 and p-value= 0.54, respectively). Applying the test to the time component 

showed that t4 contributed significantly to β (p = 0.05).

Based on standard SIR, the coefficients for the projection were (UA1, GLUC1, CHOL1, …, 

UA4, GLUC4, CHOL4) = (−0.16, −0.52, −0.02, 0.21, 0.25, 0.10, −0.01, −0.35, −0.12, 0.06, 

0.67, −0.02). When we tested for significance of the contributions of individual markers at 

given time points, glucose was significant at the first time point (p-value= 0.01)s and the 

fourth time point (p-value< 0.01). However, the contribution of glucose at all four time 

points jointly was not found to be significantly associated with outcome.

We also fitted a logistic regression model that included all predictors to the data. For binary 

outcomes, logistic regression is equivalent to standard SIR and yields the exact same 

projection. The corresponding log-odds ratios were (UA1, GLUC1, CHOL1, …, UA4, 

GLUC4, CHOL4) = (−1.01, −3.21, −0.12, 1.18, 1.47, 0.62, −0.02, −2.18, −0.69, 0.32, 4.33, 

−0.14). Based on the logistic model, only glucose measured at the first and fourth time point 

was significantly associated with outcome (p-value< 0.01).

As we did not have an independent test set, we used 2-fold Monte Carlo cross validation to 

obtain unbiased estimates for the AUC. That is, we randomly assigned each of the 

observations in the case and control group to one of two partitions of equal size. 

Subsequently we used one of the partitions as the training set to build the LSIR and SIR 

predictors, and evaluated the performance of our predictor on the remaining partition, 

labeled the test set. This procedure was repeated one thousand times. For each of the test 

sets, the AUC was computed and then averaged. The dimension of both SIR and LSIR 

subspaces was estimated to be one. The mean AUC value for the SIR predictor was 

0.60(0.04) while it was 0.63(0.04) for the LSIR score. The 95% confidence interval around 

the difference between the AUC values for LSIR and SIR was (−0.04, −0.02), indicating that 

LSIR had better discriminatory performance than SIR. The difference in AUC values for this 

example agrees with what we saw in the simulations for a small number of predictors.

In summary, LSIR and SIR provided similar results. Based on LSIR we identified glucose as 

a significant predictor and found that the fourth time point was important. This is plausible, 

as measurements taken at the fourth time point were most proximal to cancer diagnosis. SIR 

also sfound the coefficient for glucose measured at time one and four was significant. The 

importance of glucose at the first time point is somewhat more difficult to explain, and could 

be a chance finding.
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7. Discussion

In this paper we show that under the assumption that the first two moments of repeatedly 

measured predictors have a Kronecker product structure, which reflects the longitudinal 

structure of the predictors, the first moment based dimension reduction subspace also has a 

Kronecker product structure. We propose an algorithm that utilizes this structure to 

implement a longitudinal version of SIR, which we call LSIR. This substantially reduces the 

complexity of the estimation of the first moment based dimension reduction subspace. The 

reduction in estimation burden leads to a noticeable improvement in the discriminatory 

ability of a score obtained by projecting the data onto that subspace for practically relevant 

sample sizes. For binary outcomes, the improvement in the area under the curve for LSIR 

was approximately 5% higher than a score computed from standard SIR, that ignored the 

repeated measurement structure. This seemingly small difference constitutes a substantial 

improvement in discriminatory power [21]. To see this consider the simple case of a single 

continuous predictor that in both cases and controls arises from a normal population that 

differ only in their means, that is Xi ~ N(μi, σ2), i = 0, 1. The corresponding AUC is given by 

AUC = Φ((μ1 − μ0)/σ2). The odds ratio (OR) associated with X in a logistic model based on 

a case control sample is given by exp((μ1 −μ0)/σ2). When ν = (μ1 −μ0)/σ2 = 0.55, we obtain 

AUC = 0.71. In order to improve the AUC by 5%, we need to increase ν to ν = 0.70, or 

equivalently, we need to increase the OR associated with X from 1.73 to 2.01, corresponding 

to an 18% increase in the OR.

An important step before any data analysis is to test the assumption about the Kronecker 

structure of the moments. Under the additional assumption of multivariate normally 

distributed markers, likelihood ratio tests can be employed following [16]. Nevertheless, we 

found in simulations that even under violations of the Kronecker product structure, fitting a 

more parsimonious covariance matrix did not result in a noticeable or even statistically 

significant loss of discriminatory power.

Moment structures similar to the ones we assumed in this paper appeared for the first time in 

growth curve models (see [22]) that are used to analyze longitudinal and repeated measures 

data. These models were used in discrimination and classification of multivariate repeated 

measures data, for example, by [13] and [14]. While all these approaches study variations of 

such structures on the mean and covariance of X|Y, they also require normally distributed 

data. In contrast, we do not require normality or a specific distribution and our approach is 

computationally tractable even for large numbers of markers. In addition, the LSIR 

algorithm can easily be adapted to handle missing data and a variable number of 

observations for each individual.

One of the reviewers of this paper alerted us to the fact that a very similar approach to our 

method, currently unpublished, was proposed as part of a Ph.D. thesis [23] independently. In 

particular, Theorem 1 is a common result in our paper and [23] (see chapter 8), but our other 

methodological results, such as Theorem 2 and testing for dimension and marker 

contribution when the moments have a Kronecker product structure, are new and appear 

only in our paper, to the best of our knowledge.

Pfeiffer et al. Page 15

Stat Med. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SDR was first introduced into the analysis of longitudinal data by Li and Yin [24] who 

applied Li et al.’s [25] dimension reduction method to settings where both the outcome and 

the predictors are measured repeatedly over time. Time is considered as a categorical 

covariate, dimension reduction subspaces are estimated separately for each time point, and 

then combined into a single matrix. However, this approach ignores the correlation across 

time, an integral feature of longitudinal data.

In summary, we present a new SDR approach for longitudinally measured predictors. By 

exploiting the structure of moments of the longitudinal predictors we obtain more accurate 

estimates of the dimension reduction subspace and hence more accurate marker projections 

for classification. A limitation of the proposed work is that first moment methods for binary 

outcomes can detect at most one dimension in the central dimension reduction subspace and 

thus may miss important information of the predictors. In future work we plan to extend this 

approach to second moment based methods.
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8. Appendix A

Proof of (3)

By the linearity condition using (2) we have

(19)

with η ∈  and cov(νY) >0 and ηTη the identity matrix. Then E(X|Y) − E(X) = ΣηνY, 

span(η) = Σ−1span((E(X|Y) − E(X)) and

Using that (A + BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1 [26] we obtain

and therefore from (19),
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since span(η) = Σ−1span((E(X|Y) − E(X)).

Proof of Theorem 1

From the definition of the FMSDR subspace we have

The second equality follows from Prop. 2.6 in [9], p. 75.

Asymptotic distribution of Ω̄
LSIR

First, notice that if vec(E(X|Y) − E(X)) = (α ⊗ β)vec(νy), the same moment condition holds 

for the standardized predictors Z,

where  and . We derive the asymptotic distribution of Ω̄
1t given 

by (14). The proof for Ω̄
2t is analogous. Recall that  denotes the p-vector of the 

standardized predictor means within slice h, h = 1, …, H. The proportion of observations in 

slice h at time t across all p predictors is . Let  to 

obtain . Since Ω̄
1t is a sample covariance matrix, for each t = 1, …, T,

(20)
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where Ω1t = cov(E(Zt|Y)) = (αz ⊗ βz,t)cov(νy)(αz ⊗ βz,t)T with βz,t the t-th column of the 

matrix βz, and  is the p2 × p2 matrix with 

 and 

.

Since cov(νy) is positive definite, cov(νy) = UUT. Thus,

Using the eigendecomposition of the s × s matrix , Ω1 = 

αzUVDVTUTαT = (αz ⊗ (VD1/2))cov(νy)(αz ⊗ (VD1/2))T. Therefore from (20) we obtain

with . Now,

For t = 1, …, T, let , with elements . 

The p2 diagonal elements of  are given by  and 

, and the off diagonal elements are , where k, l, 
q, r = 1, …, p.

The asymptotic behavior of Ω̂
2 can be derived in a similar manner, by using ZT instead of Z 

and  in the above calculations, leading to

where . From the expressions for Ω1 and Ω2 it can be seen 

that span(Ω1 ⊗ Ω2) = span(αz ⊗ βz).
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Figure 1. 
Distribution of the three biomarkers after log-transformation in cases (top panel) and 

controls (bottom panel).
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