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Abstract We study singular integral operators with Hilbert-valued kernels in the
setting of Rn with non-necessarily doubling measures. We obtain an explicit for-
mula for these operators following a similar approach as in [MST]. By using this
formula and a result due to Krein we get a T1-theorem in this context. Finally,
we develop a theory for antisymmetric kernels and we apply the results to the
Oscillation Operators related to the Riesz Transform.
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1 Introduction

The purpose of this work is to study singular integral operators with kernels taking
values on a Hilbert space, in the setting of measures on euclidean spaces satisfying
a growth condition.

The classical theory of singular integral operators starts with the celebrated
work of Calderón-Zygmund in [CZ]. Since then, many authors have been studying
these operators in different contexts. The necessary and sufficient conditions for
L2-boundedness (T1 Theorem) were developed by David and Journé in [DJ].
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The Calderón-Zygmund theory for operators with vector-valued kernels is linked
to the names of Benedek, Calderón and Panzone (see [BCP]) and the works in-
cluded in [RFRT] and [RFT]. The versions of T1 Theorem for operators with
vector-valued kernels have been recently treated in [HW] and [H1]. Also, T1 The-
orems in the case of non-necessarily doubling measures were considered, using
different approaches and techniques, by Nazarov, Treil and Volberg in [NTV],
Tolsa in [T1], [T2] and [T3], Melnikov and Verdera in [MV], Verdera in [V] and
Hytönen in [H2].

One of our motivations to consider vector-valued singular integral operators is
their applications to the study of the behavior of quadratic functions like

O(τ)f(x) =

( ∞∑
`=1

∣∣τεif(x)− τεi+1f(x)
∣∣2)1/2

,

related to the scalar family of operators {τε}ε>0 such that limε→0 τεf(x) = τf(x).

These kind of quadratic functions (Oscillation Operators) were earlier con-
sidered in connection with ergodic theory in [B1], [J], [JOR] and [JKRW]. Our
approach allows us to derive L2 boundedness results for these operators without
using Fourier transform and Plancherel Theorem.

We start with an operator T defined on scalar-valued Lipschitz functions, with
µ a Radón measure, “formally” associated to a vector-valued kernel k(x, y) in the
following sense:

Tf(x) =

∫
k(x, y)f(y)dµ(y),

whenever x is not in the support of f .

First, we prove several results by following the approach of Maćıas, Segovia
and Torrea in [MST], in order to obtain an explicit formula for Tf(x) for µ-almost
every x (see Theorem 2.4). This formula is new in the scalar case, in the setting of
non-necessarily doubling measures, and provide us an explicit expression for the
Cauchy integral on Lipschitz graphs.

Secondly, we apply the previous results to get Lipschitz bounds, when T1 = 0.
As a consequence we obtain T1-Theorems in the setting of non-necessarily dou-
bling measures with the aid of a result by Krein (see Theorems 2.6 and 2.9). The
application of the Krein’s Theorem to derive L2-boundedness for singular integral
operators appears for the first time in the work of Wittman ([W]). (See also [B2]).

Since Theorem 2.9 is obtained for vector-valued antisymmetric kernels sat-
isfying integral conditions (24) and (25), we are allowed to apply it to obtain
boundedness for the Oscillation operator of the Riesz transforms (see [CJRW1]
and [CJRW2] for works in this direction). This result is interesting by itself, al-
though it is only considered in the case of the Lebesgue measure.

The paper is organized as follows. In the next section the main results are
listed. In Section 3 we give definitions, notation and technical results. In Sections
4, 5 and 6 we provide the proofs of the main results. Finally in Section 7 we study
the Oscillation operator of the Riesz transform.
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2 Main results

First, we provide the definitions and notation in order to state the main theorems
of this paper. The technical details appear in Section 3.

We consider the setting of n-dimensional Euclidean space Rn endowed with
the quasidistance

d(x, y) = |x− y|n∞, where |a|∞ = max
i=1,...,n

|ai|, a = (a1, . . . , an). (1)

The properties of d are shown in (12) and (13). The balls for the metric d with
center x and radius s > 0 will be denoted by Bs(x)

We will consider a Radón measure µ defined on Rn, absolutely continuous with
respect to the Lebesgue measure. We assume in the sequel that µ satisfies the next
growth condition: There is a number ν, 0 < ν ≤ 1, such that for all s > 0 and
x ∈ Rn

µ(Bs(x)) ≤ c0sν , (2)

where c0 > 0 is a constant non-depending on s and x. In what follows we assume
that µ({x}) = 0 for every x ∈ Rn (µ is non-athomic).

The classical notation N,Z,R,C will stand for the usual set of numbers, and H
will denote an arbitrary Hilbert space. In addition, we will use several geometrical
constants, for example: α = 1/n, A and ρ (see Subsections 3.1 to 3.3).

The involved function spaces related to the measure µ will be the scalar and
vector valued versions of the Lebesgue spaces Lpµ, the bounded mean oscillation
spaces BMOρ (where ρ ≥ 1) and several classes of Lipschitz spaces, such that Λγ0
( Lipschitz functions with bounded support), Λγb (bounded Lipschitz functions),
etc. The Subsection 3.2 provides all the neccessary definitions.

As we say in the introduction our investigation will be focused on singular
integral operators T associated to a vector valued kernel k(x, y) which satisfy
certain “size” and “smoothness” conditions( see (24) and (25)). Also, we study
the adjoint operator T ∗ associated to the kernel k∗(x, y) = k(y, x). We refer to
Subsection 3.4 for these and other important definitions.

Hypothesis 2.1. We say that a linear operator T satisfies the main hypothesis

if the following conditions are fulfilled:

(i) For all 0 < γ ≤ α, the operator T : Λγ0(Rn,C)→ (Λγ0(Rn,H))′ is continuous.

(ii) T is associated to a kernel k(x, y) (with values in H).

(iii) T satisfies the W.B.P. for some η, 0 < η ≤ α (see Definition 3.10).

(iv) For some 1 ≤ r ≤ ∞, both kernels k and k∗ satisfy condition (24), and condition

(25) with exponent η + ε, ε > 0,

(v) T satisfies the Meyer Commutation Property (see Definition 3.11).

In the sequel we will put on play a list of vector constants in H, denoted as

{B,B̂ [g], {̄B,B̂ , and {̄(∗)
B,B̂

(see Definition 3.18), explicitly depending on some fixed

ball B and its associated doubling ball B̂ (see Definition 3.2). In the case of {B,B̂ [g],

the expression also depends on g, a given function of the space BMOρ(Rn,H).
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Furthermore, for each ball B with center z and functions φ ∈ L∞µ (Rn,C),
−→
ψ ∈ L∞µ (Rn,H), we define

IBφ(x) :=

∫
(k(x, y)− k(z, y))φ(y) (1− hB(y)) dµ(y) (3)

I
(∗)
B

−→
ψ (x) :=

∫ (
k∗(x, y)− k∗(z, y),

−→
ψ (y)

)
H(1− hB(y)) dµ(y), (4)

JBφ(x) =

∫ (
k∗(x, y)− k∗(z, y)

)
(1− hB(y))φ(y) dµ(y). (5)

Definition 2.2. . Given a function
−→
ψ ∈ Λγ0(Rn,H) supported in a ball B = Bs(z) we

define 〈
T1,
−→
ψ
〉

:=
〈
ThB ,

−→
ψ
〉

+
〈
IB1,

−→
ψ
〉
,

where hB is the cut function defined in subsection 3.3. In a similar way, given a vector
−→w ∈ H and a function φ ∈ Λγ0(Rn,C) supported in a ball B = Bs(z) we define〈

T ∗(1−→w ), φ
〉

:=
〈
T ∗(hB

−→w ), φ
〉

+
〈
I
(∗)
B (1−→w ), φ

〉
.

Definition 2.3. Let us assume that B1,B2 are Banach spaces. Given 0 < γ ≤ α, we

say that T is a bounded Lipschitz operator of order γ if T satisfies

‖Tf‖Λγ(Rn,B2)
≤ C‖f‖Λγ(Rn,B1)

(6)

and

‖Tf‖L∞µ (Rn,B2)
≤ C sγ0‖f‖Λγ(Rn,B1)

, (7)

for any function f ∈ Λγ0(Rn,B1) supported in a ball with radius s0.

If E is a set with positive µ-measure and f is a µ-integrable function over E,
we write

mE :=
1

µ(E)

∫
E
f dµ.

We are in position to state the main theorems.

Theorem 2.4. Let T be an operator satisfying Hypothesis 2.1 and T1 = g with g ∈
BMOρ(Rn,H).

(i) If φ ∈ Λη0(Rn,C) then, for every ball B containing the support of φ and for

µ-almost every x ∈ Rn, we have

Tφ(x) = (g(x)−mAB̂g)φ(x) + {B,B̂ [g]φ(x)− IB1(x)φ(x) (8)

+

∫
[φ(y)− φ(x)]k(x, y)hB(y) dµ(y),

where

sup
B a ball

∣∣{B,B̂ [g]
∣∣
H
≤ Cg, (9)

with Cg only depending on ‖g‖BMOρ(Rn,H).

(ii) In addition, if T1 = 0H, then T is a bounded-Lipschitz operator of order η for

any 0 < η ≤ α with B1 = C and B2 = H.
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Remark. We observe that the Meyer Commutation Property is not assumed
in the setting of spaces of homogeneous type, because it is true in such context.
Further, in [MST, Prop. 2.29] it is possible to obtain a reciprocal of Theorem
2.4(ii).

Theorem 2.5. Let T be an operator satisfying Hypothesis 2.1. In addition, assume

that, for fixed −→w 1, . . . ,
−→wN ∈ H, we have T ∗(1−→w i) = f−→w i , with f−→w i ∈ BMOρ(Rn,C),

i = 1, . . . , N . If
−→
ψ (x) =

∑N
i=1 ψi(x)−→w i, where ψi ∈ Λη0(Rn,C), then for every ball B

containing the support of
−→
ψ and µ-almost every x ∈ Rn, we have

T ∗(
−→
ψ )(x) = FB [

−→
ψ ](x) +

(
{̄(∗)
B,B̂

,
−→
ψ (x)

)
H −

(
JB1(x),

−→
ψ (x)

)
H (10)

+

∫ (
k∗(x, y)hB(y),

−→
ψ (y)−

−→
ψ (x)

)
Hdµ(y),

where

FB [
−→
ψ ](x) =

N∑
i=1

[
(f−→w i(x)−mAB̂f−→w i)ψi(x)−

〈
(f−→w i(x)−mAB̂f−→w i), lB̂

〉]
.

Suppose that T ∗(1−→w i) = 0 for i = 1, . . . , N . In this case we have FB [
−→
ψ ](x) = 0

in (10). Also, if AN = span{−→w 1, . . . ,
−→wN}, then T ∗ is a bounded-Lipschitz operator

of order η for all 0 < η ≤ α with B1 = AN and B2 = C.

Moreover, the constant C appearing in (6) and (7) is independent of the vectors
−→w 1, . . . ,

−→wN .

From the above result, the Krein’s Theorem (see Section 5) plays a key role in
order to get L2

µ boundedness of T and T ∗.

Theorem 2.6. Let T be an operator satisfying Hypothesis 2.1 with H a separable

Hilbert space. In addition, let us suppose that T1 = 0H and, for all vector −→ej in the

canonical base of H, T ∗(1−→ej ) = 0. Then T and T ∗ can be extended to linear operators

T : L2
µ(Rn,C) → L2

µ(Rn,H) and T ∗ : L2
µ(Rn,H) → L2

µ(Rn,C) respectively, in such

manner that

‖Tφ‖L2
µ(Rn,H) ≤ C‖φ‖L2

µ(Rn,C) and ‖T ∗
−→
ψ ‖L2

µ(Rn,C) ≤ C‖
−→
ψ ‖L2

µ(Rn,H).

Corollary 2.7. Under the same Hypothesis as Theorem 2.6, the operator T ∗ satisfies

equation (10) with FB [
−→
ψ ] = 0, for all

−→
ψ ∈ Λγ0(Rn,H).

The next results deal with antisymmetric kernels. The proofs are in Section 6.

Theorem 2.8. If T is a linear operator associated to an antisymmetric kernel k

satisfying (24) and (25), then T satisfies Hypothesis 2.1.

In addition, if T1 = g ∈ BMOρ(Rn,H), then Theorem 2.4 is fulfilled. Also, for

any
−→
ψ ∈ Λγ0(Rn,H) with B a ball containing the support of

−→
ψ and µ-almost every

x ∈ B, we have

T ∗
−→
ψ (x) = −

(
(g(x)−mAB̂g),

−→
ψ (x)

)
H +

〈
(g −mAB̂(g)), lB̂

−→
ψ (x)

〉
(11)

−
(
{̄B,B̂ ,

−→
ψ (x)

)
H +

(
IB1(x),

−→
ψ (x)

)
H

−
∫ (

k(x, y), (
−→
ψ (y)−

−→
ψ (x))hB(x)

)
H dµ(y).

In particular, if T1 = 0H, then T ∗(1−→w ) = 0 for all −→w ∈ H; also T ∗ is a bounded-

Lipschitz operator of order η for all 0 < η ≤ α with B1 = H and B2 = C. .
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Again, the Krein’s Theorem leads us to proof L2 boundedness by knowing the
Lipschitz boundedness of the operators T and T ∗.

Theorem 2.9. Let T be as in Theorem 2.8. If T1 = 0H, then T and T ∗ are bounded

linear operators from L2
µ(Rn,C) to L2

µ(Rn,H).

Remark. The last two results have no restriction on the Hilbert space H.

3 Technical details and previous results

3.1 Non-necessarily doubling measures on the Euclidean Space

The function d defined in (1) satisfies

d(x, z) ≤ cn(d(x, y) + d(y, z)), (we denote cn = 2n−1), (12)

and ∣∣d(x, y)− d(x′, y)∣∣ ≤ ns1−αd(x, x′)α, (we denote α = 1/n). (13)

for every x, x′, y ∈ Rn, whenever d(x, y) < s and d(x′, y) < s.
Also, any constant A greater than cn works on (12). We fix the value of A in

all the paper.
The ball centered in x ∈ Rn and radius s > 0 is the set Bs(x) = {y|d(x, y) <

s}. We denote aB the ball concentric with B and radius a times the radius of
B. Also, for z ∈ Rn and 0 < R1 < R2 we define the annulus E(z,R1, R2) =
BR2(x) \BR1(x).

If mn is the Lebesgue measure on Rn, we have mn(Bs(x)) = 2ns.
Given a ball B and numbers a > 1, b > 0, we say that B is (a, b)-doubling if

the following relation holds

µ(aB) ≤ bµ(B).

Lemma 3.1. Let z be a point in supp(µ) and σ be a positive number. If b > aν then

there exists an (a, b)-doubling ball B̃ centered in z with radius(B̃) ≥ σ.

The proof is easy. See for example [T1].
If we consider a family of concentrinc balls {Brι(x0)}ι∈I , with infimum radius

s > 0, their intersection satisfies the inclusions

Bs(x0) ⊂
⋂
ι∈I

Brι(x0) ⊂ {y : d(x0, y) ≤ s}.

This kind of intersection may be an “open” or a “closed” ball.

Definition 3.2. We say that a set B is a doubling ball if there are x0 ∈ Rn and

s > 0, such that B satisfies the inclusions

Bs(x0) ⊂ B ⊂ {y : d(x0, y) ≤ s}

and also B fulfills the condition

µ(aB) ≤ bµ(B), (14)
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with

a = 8A4ρ, and b = 2a,

where ρ ≥ 1 is a constant appearing in (17).

Consequently, we will say that B has radius s and is centered in x0.

Remark: The definition of aB is similar to which we have in the case that B is an

“open” ball.

Remark. In particular, since 0 < ν ≤ 1 and a > 1, we have b ≥ 2aν . By using
Lemma 3.1 it is not hard to see the following useful property

Proposition 3.3. Given a ball B with radius s > 0 and center in the support of µ,

there is a doubling ball containing B and concentric with B, having minimal radius.

In the sequel we will denote by B̂ the doubling ball associated to B given by
Proposition 3.3.

The following Proposition states that there exist doubling balls of radius as
small as we want, centered in every relevant point.

Proposition 3.4. For µ-almost every point x ∈ supp(µ) and any δ0 > 0, there exists

a doubling ball B centered in x with radius δ ≤ δ0.

See [T1] for a proof.

Lemma 3.5. (Differentiation). Let ϕ be a (scalar or vector-valued) function that is

locally µ-integrable. Then, for µ-almost every point x ∈ Rn there exists a sequence of

doubling balls Bj = Bsj (x) such that sj → 0 and

lim
j→∞

1

µ(Bj)

∫
Bj

ϕ(y)dµ(y) = ϕ(x).

Proof. It can be derived by standard arguments.

3.2 Vector-valued measures and spaces of functions

For definitions and general theory of Bochner-measure, see for example [DU].

Let (X,µ) be some σ-finite measure space. Take two Banach spaces A,B, with
norms |·|A and |·|B, respectively. It is known that if f is a B-valued µ-measurable
function then f is Bochner-µ-integrable if and only if the scalar-valued function
|f |B is µ-integrable, in the usual sense.

We will often use the next Theorem without explicit mention.

Theorem 3.6. Let ` be a bounded linear functional over the Banach space A. If F is

an A-valued Bochner-µ-integrable function, then the following equality holds

`
(∫

F (x) dµ(x)
)

=

∫
`(F (x)) dµ(x).
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We shall understand that H is a Hilbert space. For H-valued functions, we
consider the spaces of functions Lpµ(Rn,H), L∞µ (Rn,H) and BMOρ(Rn,H), endowed
with the following norms, respectively

‖f‖Lpµ(Rn,H) :=
(∫
|f(x)|pH dµ(x)

)1/p
, 1 ≤ p <∞, (15)

‖f‖L∞µ (Rn,H) := ess supµ{|f(x)|H : x ∈ Rn}, (16)

‖g‖BMOρ(Rn,H) := sup
B

µ(ρB)−1
∫
B
|g(x)−mBg|Hdµ(x), (17)

where mBg = µ(B)−1
∫
B g dµ and ρ ≥ 1 is fixed in the paper.

We denote by Λγ(Rn,H) the space of H-valued functions
−→
ψ such that the next

quantity is finite

‖
−→
ψ ‖Λγ(Rn,H) = sup

x,y∈supp(µ),x6=y

∣∣−→ψ (x)−
−→
ψ (y)

∣∣
H

d(x, y)γ
.

Also, we define

Λγ(B,H) = {
−→
ψ ∈ Λγ(Rn,H) : supp(

−→
ψ ) ⊂ B} with B a ball, (18)

Λγ0(Rn,H) =
⋃
B

Λγ(B,H), B ranging on all balls of Rn, (19)

{Λγ0(Rn,H)}0 = {
−→
ψ ∈ Λγ0(Rn,H) :

∫ −→
ψ dµ = 0H}, (20)

Λγb (Rn,H) = Λγ(Rn,H) ∩ L∞µ (Rn,H) (21)

and

(
Λγ0(Rn,H)

)′
the space of all continuous linear functions on Λγ0(Rn,H). (22)

It is easy to prove that if
−→
ψ belongs to the space Λγ(B,H), for some ball B

with radius s, then the following inequality holds

‖
−→
ψ ‖L∞µ (Rn,H) ≤ C‖

−→
ψ ‖Λγ(B,H)s

γ . (23)

In Λγ0(Rn,H) we define the topology which is the inductive limit of the spaces
Λγ(B,H). Also, it is not hard to see that the space Λγ0(Rn,H) is dense in Lpµ(Rn,H)
for each p, 1 ≤ p <∞.

Notation. We will use the symbol (·, ·)H for the inner product in H and the sym-

bol
〈
F,G

〉
for the distributional action. In particular, if G is an H-valued locally

sumable function and F has compact support, we write
〈
F,G

〉
=
∫ (

F (x), G(x)
)

H
dµ.
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3.3 Auxiliary functions

We set certain auxiliary scalar-valued functions needed in the paper. We start with
an infinitely differentiable function h : R+ → R+ satisfying h(t) = 1 if 0 ≤ t ≤ 1,
h(t) = 0 if t ≥ A and 0 ≤ h(t) ≤ 1 for all t ≥ 0. For each ball B with center z and
radius s > 0, we build functions hB , h′B , lB , as follows

hB(y) = h

(
d(y, z)

7A3s

)
, h′B(y) = h

(
d(y, z)

s

)
and lB(y) =

1∫
h′B dµ

h′B(y).

Remark. We note that
∫
lB(y) dµ(y) = 1.

Proposition 3.7. Given a ball B = Bs(z), we have

‖hB‖Λγ(Rn,C), ‖h
′
B‖Λγ(Rn,C) ≤ Cs

−γ ; ‖lB‖Λγ(Rn,C) ≤ Cµ(Bs(z))
−1s−γ .

Definition 3.8. In order to get a more compact notation, we define:

c1 := 2A, c2 := 5A2, c3 := 7A3, c4 := 8A4, c5 := 21A5, c6 := 32A6.

3.4 Singular Integral Operators

Definition 3.9. Let 1 ≤ r ≤ ∞ and r′ = r/(r − 1). We say that a function k :
(Rn × Rn \ ∆) → H satisfies a Lr-size condition, if for any R > 0 the following

condition holds [ ∫
E(x,R,AR)

|k(x, y)|rH dµ(y)
]1/r

≤ CR−ν/r
′
. (24)

We say that k satisfies a Lr-smoothness condition, if there exists η, 0 < η ≤ α,

such that[ ∫
E(y,R,AR)

|k(y, x)− k(z, x)|rH dµ(x)
]1/r

≤ CR−ν/r
′
(
d(y, z)

R

)η
, (25)

whenever Ad(y, z) ≤ R.

Remark. We denote ∆ = {(x, y) : x = y}.

Consider a linear continuous operator T : Λγ0(Rn,C) → (Λγ0(Rn,H))′ for some
γ, 0 < γ ≤ α, associated to a kernel k : (Rn × Rn \ ∆) → H in the sense that for
any function φ ∈ Λγ0(Rn,C) and x 6∈ supp(φ),

Tφ(x) =

∫
k(x, y)φ(y) dµ(y), (26)

holds. The adjoint operator T ∗ of T is defined as the linear operator from Λγ0(Rn,H)
to (Λγ0(Rn,C))′, by means of〈

T ∗
−→
ψ , φ

〉
=
〈
Tφ,
−→
ψ
〉
, (

−→
ψ ∈ Λγ0(Rn,H), φ ∈ Λγ0(Rn,C)). (27)

This operator has the associated kernel k∗(x, y) = k(y, x), in the sense that for any

function
−→
ψ ∈ Λγ0(Rn,H) and any point x 6∈ supp(

−→
ψ )

T ∗
−→
ψ (x) =

∫ (
k∗(x, y),

−→
ψ (y)

)
H dµ(y). (28)



10 Viola, P. S., Viviani B. E.

Definition 3.10. (W.B.P.) We say that T has the Weak Boundedness Property,

or T is weakly bounded, of order γ, 0 < γ ≤ α, if for each φ ∈ Λγ0(Rn,C) and
−→
ψ ∈ Λγ0(Rn,H) such that φ,

−→
ψ have their supports contained in B = Bs(x0), we have∣∣〈Tφ,−→ψ 〉∣∣ ≤ Cµ(ρB)‖φ‖Λγ(Rn,C)‖

−→
ψ ‖Λγ(Rn,H)s

2γ .

Definition 3.11. We say that T satisfies the Meyer Commutation Property if, for all

φ, ϕ ∈ Λγ
′

0 (Rn,C),
−→
ψ ∈ Λγ

′

0 (Rn,H) with γ′ > γ, the following equality holds

〈
T (φϕ),

−→
ψ
〉

=
〈
Tφ,
−→
ψϕ
〉

+

∫∫ [
ϕ(y)− ϕ(x)

](
φ(y) k(x, y),

−→
ψ (x)

)
Hdµ(x)dµ(y).

Remark. If T satisfies the Meyer Commutation Property, then T ∗ does it and
we have〈
T ∗(
−→
ψϕ), φ

〉
=
〈
T ∗
−→
ψ , φϕ

〉
+

∫∫ [
ϕ(y)− ϕ(x)

](−→
ψ (y), k∗(x, y)

)
Hφ(x) dµ(y)dµ(x).

The proof is easily derived after applying the Meyer Commutation Property of T
and the change of variables (x, y)→ (y, x).

3.5 Previous Lemmas

The proof of several results of the present subsection follow the same lines as their
analogues in Section 2 of [MST]. The differences are a consequence of the non-
necessarily doubling context and the presence of vector-valued functions. Hence,
we only develop those details that are actually different.

In this subsection we will suppose that T satisfies Hypothesis 2.1.
The following two Lemmas, using size and smoothness conditions of the kernels,

are basic.

Lemma 3.12. Suppose that k and k∗ satisfy condition (24).

If 0 < η ≤ α, then for all s > 0 and x ∈ Rn∫
Bs(x)

d(x, y)η|k(x, y)|Hdµ(y) ≤ Csη. (29)∫
E(x,A−2(A−1)s,2A2s)

|k(x, y)|Hdµ(y) ≤ C. (30)

Replacing k(x, y) by k∗(x, y) the same inequalities are still valid.

Proof. For (29) proceed as in Lemma 2.7 of [MST], using (2) and (24). For (30)
use Hölder inequality, (2) and (24), to get∫

E(x,A−2(A−1)s,2A2s)
|k(x, y)|Hdµ(y)

≤ C
(∫

E(x,A−2s,2A2s)
|k(x, y)|rHdµ(y)

)1/r(
µ(B2A2s(x))

)1/r′ ≤ C.
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Lemma 3.13. Suppose that k and k∗ satisfy condition (25). Given a ball B = Bs(z),

if x1, x2 ∈ Bc1s(z) then∣∣∣ ∫ (k(x1, y)− k(x2, y))(1− hB(y))dµ(y)
∣∣∣
H
≤ C

[d(x1, x2)

s

]η
≤ C. (31)

In addition, if k satisfies (25) with exponent η + ε, ε > 0, we have∫
Ad(x1,x2)<d(x1,y)

d(x2, y)
η|k(x1, y)− k(x2, y)|Hdµ(y) ≤ C d(x1, x2)η. (32)

Analogous estimates are true for k∗(x, y).

Proof. To obtain (31), we can proceed as in Lemma 2.13 of [MST].
For (32), applying Hölder inequality and using (25) and (2) we have∫

Ad(x1,x2)<d(x1,y)
d(x2, y)

η|k(x1, y)− k(x2, y)|Hdµ(y)

≤
∞∑
j=0

[ ∫
E(x1,AjAd(x1,x2),Aj+1Ad(x1,x2))

|k(x1, y)− k(x2, y)|rHdµ(y)
] 1
r ·

·
[ ∫

E(x1,AjAd(x1,x2),Aj+1Ad(x1,x2))
d(x2, y)

ηr′dµ(y)
] 1
r′

≤ C
∞∑
j=0

(Aj+1d(x1, x2))−
ν
r′ (A−(j+1))η+ε (Ajd(x1, x2))η+

ν
r′

≤ Cd(x1, x2)η.

The next Lemma enables to extend the definition of T and T ∗ to bounded
Lipschitz functions.

Lemma 3.14. Suppose that k and k∗ satisfy condition (25) and let B be a ball in Rn.

If φ ∈ L∞µ (Rn,C) and
−→
ψ ∈ L∞µ (Rn,H) then IBφ(x), I

(∗)
B

−→
ψ (x) and JBφ(x) are well

defined for µ-almost every x ∈ c1B.

Further, if φ ∈ Λγb (Rn,C) and
−→
ψ ∈ Λγb (Rn,H), 0 < γ ≤ α, then IBφ ∈ (Λγ(B,H))′,

I
(∗)
B

−→
ψ ∈ (Λγ(B,C))′, JBφ ∈ (Λγ(B,H))′ and∣∣∣ ∫ (IBφ(x),

−→
ψ (x)

)
Hdµ(x)

∣∣∣ ≤ Cµ(c1B)‖φ‖L∞µ (Rn,C)‖
−→
ψ ‖L∞µ (Rn,H),

with estimates completely analogous for I
(∗)
B and JB.

Proof. Apply Cauchy-Schwartz inequality to write∣∣∣ ∫ (IBφ(x),
−→
ψ (x)

)
H
dµ(x)

∣∣∣ ≤ ∫ |IBφ(x)|H |
−→
ψ (x)|Hdµ(x),

and proceed as in [MST, Lemma 2.14]. Do the same for I
(∗)
B and JB .
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Definition 3.15. Given a ball B, we define TB : Λγb (Rn,C) → ({Λγ(B,H)}0)′ and

T
(∗)
B : Λγb (Rn,H)→ ({Λγ(B,C)}0)′ as follows

TBφ = T (φhB) + IBφ, φ ∈ Λγb (Rn,C),

T
(∗)
B

−→
ψ = T ∗(

−→
ψ hB) + I

(∗)
B

−→
ψ ,

−→
ψ ∈ Λγb (Rn,H).

Lemma 3.16. For each pair of balls B1 = Br1(z1) ⊂ B2 = Br2(z2), for all φ ∈
Λγb (Rn) and all

−→
ψ ∈ {Λγ(B1,H)}0, the following equality holds〈

TB1φ,
−→
ψ
〉

=
〈
TB2φ,

−→
ψ
〉
.

In similar way, for all φ ∈ {Λγ(B1,C)}0 and all
−→
ψ ∈ Λγb (Rn,H) we have〈

T
(∗)
B1

−→
ψ , φ

〉
=
〈
T

(∗)
B2

−→
ψ , φ

〉
.

Proof. Proceeding as in [MST, Lemma 2.16], we can obtain that

−T (φ(hB2 − hB1))(z1) =

∫
k(z1, y)φ(y)

(
hB1(y)− hB2(y)

)
dµ(y)

and

−IB2φ(z1) =

∫ (
k(z2, y)− k(z1, y)

)
(1− hB2(y))φ(y) dµ(y).

So, since
∫ −→
ψ dµ = 0H, we have〈

TB2φ,
−→
ψ
〉
−
〈
TB1φ,

−→
ψ
〉

=
〈
TB2φ,

−→
ψ
〉
−
〈
T (φhB1),

−→
ψ
〉
−
〈
IB1φ,

−→
ψ
〉

=

∫ (∫ (
k(x, y)− k(z1, y)

)
φ(y)[1− hB1(y)]dµ(y),

−→
ψ (x)

)
H
dµ(x)

−
〈
IB1φ,

−→
ψ
〉

= 0.

The proof that
〈
T

(∗)
B1

−→
ψ , φ

〉
=
〈
T

(∗)
B2

−→
ψ , φ

〉
is very similar, using in this case I

(∗)
B

in place of IB and the identities

T ∗(
−→
ψ (hB2 − hB1))(z1) =

∫ (
k∗(z1, y),

−→
ψ (y)

)
H
(
hB2(y)− hB1(y)

)
dµ(y)

and

−I(∗)B2

−→
ψ (z1) =

∫ ((
k∗(z2, y)− k∗(z1, y)

)
(1− hB2(y)),

−→
ψ (y)

)
Hdµ(y).

It is clear that
〈
TBφ,

−→
ψ
〉

=
〈
Tφ,
−→
ψ
〉
, whenever supp(φ) ⊂ B, and

〈
T

(∗)
B

−→
ψ , φ

〉
=〈

T ∗
−→
ψ , φ

〉
, if supp(

−→
ψ ) ⊂ B. So, the preceding Lemma enables to introduce the

following extensions of T and T ∗.

Definition 3.17. For every φ ∈ Λγb (Rn,C) we define〈
Tφ,
−→
ψ
〉

=
〈
TBφ,

−→
ψ
〉
, for all

−→
ψ ∈ {Λγ0(Rn,H)}0 and supp(

−→
ψ ) ⊂ B.

In the same way, for every
−→
ψ ∈ Λγb (Rn,H) we define〈

T ∗
−→
ψ , φ

〉
=
〈
T

(∗)
B

−→
ψ , φ

〉
for all φ ∈ {Λγ0(Rn,C)}0 and supp(φ) ⊂ B.
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Definition 3.18. For a ball B and each function g ∈ BMOρ(Rn,H), by using the

Riesz Representation Theorem, we define the vector {B,B̂ [g] ∈ H as

(
{B,B̂ [g],−→w

)
H =

〈
ThB + IB1− (g −mAB̂(g)), lB̂

−→w
〉

for all −→w ∈ H.

On the other hand, for each function f in BMOρ(Rn,C), a fixed vector −→w ∈ H, and

a ball B, we define the number {(∗)
B,B̂

[f,−→w ] by

{(∗)
B,B̂

[f,−→w ] =
〈
T ∗(hB

−→w ) + I
(∗)
B (1−→w )− (f −mAB̂(f)), lB̂

〉
.

The quantity {(∗)
B,B̂

[f,−→w ] cannot be a vector of H since is not linear in −→w .

In a similar way, we also define the vectors {̄B,B̂ and {̄(∗)
B,B̂

by

(
{̄B,B̂ ,

−→w
)

H =
〈
ThB + IB1, lB̂

−→w
〉

for all −→w ∈ H

and

(
{̄(∗)
B,B̂

,−→w
)

H =
〈
T ∗(hB

−→w ) + I
(∗)
B (1−→w ), lB̂

〉
for all −→w ∈ H.

Remark. The quantities defined above, satisfy the next relations(
{B,B̂ [g],−→w

)
H =

(
{̄B,B̂ ,

−→w
)

H −
〈
(g −mAB̂(g)), lB̂

−→w
〉
,

{(∗)
B,B̂

[f,−→w ] =
(
{̄(∗)
B,B̂

,−→w
)

H −
〈
(f −mAB̂(f)), lB̂

〉
.

The next Lemma follows easily in the context of doubling measures, however
it is not straightforward in the case of non-necessarily doubling measures.

Lemma 3.19. Given a ball B and w ∈ H we get∣∣∣〈ThB , lB̂−→w〉∣∣∣ ≤ C|−→w |H, ∣∣∣〈T ∗(hB −→w ), lB̂

〉∣∣∣ ≤ C|−→w |H.
with constant C not depending on B and −→w .

Proof. Without loss of generality we suppose that |−→w |H = 1. Let B = Bs(z) and
denote ŝ the radius of B̂. Also, we denote B1 = B3A2s(z).

In the following we assume that any ball is centered in z and we recall that:

The function hB is 1 on Bc3s, null on Bc7A4s, and supported on Bc4s.

The function h′
B̂

is 1 on Bŝ, null in BcAŝ, and then supported on Bc1ŝ.

The function hB1 is 1 on Bc5s null on Bc21A6s, and supported on Bc6s. Hence
the function 1− hB1 is null on Bcc5s.

1st case: Suppose that c6s ≤ ŝ. We write〈
ThB , lB̂

−→w
〉

=
〈
ThB , hB1 lB̂

−→w
〉

+
〈
ThB , (1− hB1)lB̂

−→w
〉

=: J1 + J2.
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Observe that Bc6s ⊂ B̂, and ρB̂ ⊂ aB̂. Also hB and hB1 lB̂ are both supported
on Bc6s and hB1h′

B̂
= hB1 . Now, using the Weak Boundedness Property, Proposi-

tion 3.7, the assumption |−→w |H = 1 and the doubling condition of B̂, we get

|J1| ≤ µ(ρBc6s)Cs
2γ‖hB‖Λγ(Rn,C)‖hB1 lB̂‖Λγ(Rn,C)

≤ Cµ(ρBŝ)s
γ 1∫

hB̂
‖hB1h′

B̂
‖
Λγ(Rn,C)

≤ Cµ(aB̂)sγ
1

µ(B̂)
‖hB1‖Λγ(Rn,C)

≤ Cbsγ (4A2c3s)−γ ≤ Cb.

Since hB and (1− hB1)lB̂ have disjoint supports, we have

J2 =

∫∫ (
k(x, y),−→w

)
H
hB(y)(1− hB1(x))lB̂(x) dµ(x)dµ(y).

Then, applying Hölder inequality, condition (24) and the fact that c4s ≤ ŝ, we
have

|J2| ≤
∫

c4B

∣∣∣ ∫
x∈B̂

(
k(x, y),−→w

)
H hB(y)(1− hB1(x))lB̂(x) dµ(x)

∣∣∣dµ(y)

≤ 1∫
h′
B̂

∫
c4B

∫
E(y,c4s,c1ŝ)

|k(x, y)|H dµ(x)dµ(y)

≤ µ(c1B̂)
1
r′

µ(B̂)

∫
c4B

[ ∞∑
m=0

∫
E(y,c4sAm,c4sAm+1)

|k(x, y)|rH dµ(x)
] 1
r
dµ(y)

≤ µ(c1B̂)
1
r′

µ(B̂)
µ(c4B)Cµ(c4B)−

1
r′ ≤ Cb

(
µ(c4B)

µ(B̂)

) 1
r

≤ C.

2nd case. We now analyze the opposite situation, having s ≤ ŝ < c6s.
Since the functions hB and h′

B̂
have their supports contained in c4B̂, applying

the Weak Boundedness Property of T , Proposition 3.7, the doubling condition of
B̂ and the fact that s ≈ ŝ, we obtain∣∣〈ThB , lB̂−→w 〉∣∣ =

1∫
hB̂

∣∣〈ThB , h′B̂−→w 〉∣∣ ≤ C 1

µ(B̂)
µ(aB̂) ŝ2γs−γ ŝ−γ ≤ bC.

The proof that
∣∣〈T ∗(hB−→w ), lB̂

〉∣∣ ≤ C|−→w |H is very similar.

Lemma 3.20. Given g ∈ BMOρ(Rn,H) and a ball B, we get∣∣{B,B̂ [g]
∣∣
H ≤ Cg and

∣∣{̄B,B̂∣∣H ≤ C, (33)

where Cg only depends on ‖g‖BMOρ(Rn,H) and C does not depend on g and B. Further,

for f ∈ BMOρ(Rn,C), −→w ∈ H and a ball B, we get∣∣{(∗)
B,B̂

[f,−→w ]
∣∣
H ≤ C|

−→w |H + Cf ,
∣∣{̄(∗)
B,B̂

∣∣
H ≤ C, (34)

where Cf depends on ‖f‖BMOρ(Rn,C), but not on −→w or B.
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Proof. By Lemma 3.14, inequality (23), Proposition 3.7, the chain of inclusions
c1B ⊂ c1B̂ ⊂ aB̂ and the fact that B̂ is doubling, we have∣∣∣( ∫ IB1(x)lB̂(x)dµ(x),−→w

)
H

∣∣∣ ≤ Cµ(c1B)ŝγ‖lB̂‖Λγ(Rn,C)
|−→w |H ≤ C|

−→w |H.

Analogously
∣∣ ∫ (I(∗)B (1−→w )(x), lB̂(x)

)
H dµ(x)

∣∣ ≤ C|−→w |H.

Let g ∈ BMOρ(Rn,H). Since 0 ≤ lB̂(x) ≤ 1/µ(B̂), ρAB̂ ⊂ aB̂, and using the

fact that B̂ is doubling, we get∣∣∣〈g −mAB̂g, lB̂
−→w
〉∣∣∣ ≤ 1

µ(B̂)

∫
AB̂

∣∣g(x)−mAB̂g
∣∣
H dµ(x)|−→w |H

≤ C 1

µ(B̂)
µ(ρAB̂)‖g‖BMOρ(Rn,H)|

−→w |H

≤ Cb‖g‖BMOρ(Rn,H)|
−→w |H,

In similar way, we can prove that if f ∈ BMOρ(Rn,C), then∣∣∣〈(f −mAB̂f), lB̂

〉∣∣∣ ≤ C‖f‖BMOρ(Rn,C).

From these estimates, Lemma 3.19 and the Riesz Representation Theorem, the
proof of the Lemma is finished.

Lemma 3.21. If T1 = g ∈ BMOρ(Rn,H), for any ball B and
−→
ψ ∈ Λγ(B,H), we

have 〈
ThB ,

−→
ψ
〉

=

∫ (
g(x)−mAB̂(g),

−→
ψ (x)

)
Hdµ(x)

+
(
{B,B̂ [g],

∫ −→
ψ (x) dµ(x)

)
H −

∫ (
IB1(x),

−→
ψ (x)

)
Hdµ(x),

where supB

∣∣∣{B,B̂ [g]
∣∣∣
H
≤ Cg.

Remark. If H = C and B is (a, b)-doubling (that is, B = B̂), we recovered
Lemma 2.18 of [MST].

Proof. Proceeding as in the proof of Lemma 2.18 of [MST], adding ±lB̂
∫ −→
ψ and

±
(
mAB̂g,

∫ −→
ψ dµ

)
H, we clearly have〈

ThB + IB1,
−→
ψ
〉

=

∫ (
g(x)−mAB̂g,

−→
ψ (x)

)
Hdµ(x) +

(
{B,B̂ [g],

∫ −→
ψ dµ

)
H,

where {B,B̂ [g] is the vector defined in 3.18. In view of Lemma 3.19 we get that

supB

∣∣∣{B,B̂ [g]
∣∣∣
H
≤ Cg, as we desired.

Lemma 3.22. If −→w ∈ H and T ∗(1−→w ) = f ∈ BMOρ(Rn,C) then for any ball B and

φ ∈ Λγ(B,C), we have〈
T ∗(hB

−→w ), φ
〉

=

∫
(f(x)−mAB̂(f))φ(x)dµ(x) + {(∗)

B,B̂
[f,−→w ]

∫
φ(x)dµ(x)

−
∫
I
(∗)
B (1−→w )(x)φ(x)dµ(x),

where supB
∣∣{(∗)
B,B̂

[f,−→w ]
∣∣ ≤ C|−→w |H + Cf .
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Proof. We write
〈
T ∗(hB

−→w ) + I
(∗)
B (1−→w ), φ

〉
in similar way as in the preceding Lemma.

Then we use (34).

The next two Corollaries follow easily from Lemmas 3.21 and 3.22.

Corollary 3.23. The function g ∈ L∞µ (Rn,H) if and only if
∣∣〈ThB ,−→ψ 〉∣∣ ≤ C‖−→ψ ‖L1

µ(B,H)

for all
−→
ψ ∈ Λγ(B,H), where C is a constant not depending on B.

Corollary 3.24. If T ∗(1−→w ) = 0 for some −→w ∈ H, then
∣∣〈T ∗(hB−→w ), φ

〉∣∣ ≤ C|−→w |H‖φ‖L1
µ(B)

for all φ ∈ Λγ(B,C), where C neither depends on −→w nor B.

Given a ball B, for φ ∈ Λγ(B,C) and x ∈ B, we define

TBφ(x) = (g(x)−mAB̂g)φ(x) + {B,B̂ [g]φ(x)− IB1(x)φ(x) (35)

+

∫
[φ(y)− φ(x)]k(x, y)hB(y) dµ(y).

Consider a pair of balls B1 = Br1(z1) ⊂ B2 = Br2(z2). Then we can prove the
equality

TB2φ(x) = TB1φ(x), for µ-almost x ∈ B1.

This can be done by writing
(
{B2,B̂2

[g]− {B1,B̂1
[g],−→w

)
H, using Definition 3.18 and

proceeding as in [MST, Lemma 2.21].
Given a ball B, for ψ ∈ Λγ(B,C), −→w ∈ H and x ∈ B, we define

SB−→wψ(x) = (f(x)−mAB̂f)ψ(x) + {(∗)
B,B̂

[f,−→w ]ψ(x)− I(∗)B (1−→w )(x)ψ(x) (36)

+

∫
[ψ(y)− ψ(x)]

(
k∗(x, y),−→w

)
HhB(y)dµ(y).

Again, we have that SB1−→w ψ(x) = SB2−→w ψ(x) for all x ∈ B1, with B1 ⊂ B2. is well
defined.

The discusion above enables to define T̃ φ as the function

T̃ φ(x) = TBφ(x) for φ ∈ Λγ0(Rn,C),

where B is a ball containing the support of φ and x ∈ B.
In the same way, we can define S̃−→wψ as the function

S̃−→wψ(x) = SB−→wψ(x) (x ∈ B),

where B is a ball containing the support of ψ.

4 Proofs of main results: Lipschitz bounds and explicit formulas.

Lemma 4.1. Let T be a linear operator satisfying Hypothesis 2.1. Given x1, x2 ∈ Rn

consider the balls B1 = Bd(x1,x2)(x1) and B = Bs(x1) such that x1, x2 ∈ B with

Ad(x1, x2) < s.

If T1 ∈ L∞µ (Rn,H), then∣∣∣ ∫ k(x1, y)hB(y)(1− hB1(y))dµ(y)
∣∣∣
H
≤ C (37)

If T ∗(1−→w ) = 0 for some −→w ∈ H, then∣∣∣(∫ k∗(x1, y)hB(y)(1− hB1(y))dµ(y), w
)

H

∣∣∣ ≤ C|w|H (38)
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Remark. Actually, the inequalities (37) and (38) are true for almost every x1.
However, that is enough for the proof of Theorem 2.4.

Proof. Since x1 6∈ supp(hB(1 − hB1)) and B1 ⊂ B, by definition of the associated
kernel of T we get that the integral in (37) is equal to

|T (hB − hB1)(x1)|H ≤
(
|ThB(x1)|H + |ThB1(x1)|H

)
.

Since T1 ∈ L∞µ (Rn,H), by Corollary 3.23 and duality, it follows (37).
For (38) we proceed in analogous way using now Corolary 3.24.

Proof of Theorem 2.4. By using the Meyer Commutation Property and Lemma
3.21, it can be seen that Tφ = T̃ φ, and this proves (8).

Now, if T1 = 0H, using Lemma 3.13, Lemma 3.12(29) and inequalities (37) and
(33), the proof that T is a bounded-Lipschitz operator follows the same lines of
[MST, Theorem 2.32]

Proof of Theorem 2.5. We apply the Meyer Commutation Property of T ∗ in
order to prove that S̃−→wψ = T ∗(ψ−→w ), with ψ a scalar-valued function and −→w ∈ H.

Now, we can easily deduce (10) for a finite linear combination
−→
ψ = ψ1

−→w 1 + . . .+
ψN
−→wN .
The rest of the Theorem again follows the same lines of [MST, Theorem 2.32],

using this time Lemma 3.13, Lemma 3.12(30) and equations (38) and (34). We only

note that the operator JB is used after writing I
(∗)
B (1

−→
ψ (x)) =

(
JB(1),

−→
ψ (x)

)
H

.

Also, in some step of the proof (38) must be used with −→w =
−→
ψ (x2)−

−→
ψ (x1).

Observation 4.2. Let T be the operator Tφ(x) = g(x)φ(x). Suppose that g ∈ BMOρ(Rn,H)
and T satisfies the Weak Boundedness Property of order γ. Then

|g(x0)|H ≤ C, (39)

for µ-almost every x0 in the support of µ.

Proof. Take x0 ∈ supp(µ) and let {B̂j = Bŝj (x0)}∞j=1 be a sequence of doubling
balls such that limj→ ŝj = 0. Fix −→w ∈ H with |−→w |H = 1. Now, using that

∫
lB̂jdµ =

1 and the equalities∫ (
g(x),−→w

)
HlB̂j (x)dµ(x) =

∫ (
hB̂j (x)g(x),−→w

)
HlB̂j (x)dµ(x)

=
〈
ThB̂j , lB̂j

−→w
〉
,

we obtain that∣∣∣(mB̂j
g,−→w

)
H

∣∣∣ =

∣∣∣∣∫ (mB̂j
g,−→w

)
H lB̂j (x) dµ(x)

∣∣∣∣
≤
∣∣∣∣∫ (mB̂j

g − g(x),−→w
)

H lB̂j (x) dµ(x)

∣∣∣∣+ ∣∣∣〈ThB̂j , lB̂j−→w 〉∣∣∣.
By Weak Boundedness Property and Proposition 3.7, we have∣∣∣〈ThB̂j , lB̂j −→w 〉∣∣∣ ≤ C.
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On the other hand, since B̂j is a doubling ball and g ∈ BMOρ(Rn,H), we get

∣∣∣ ∫ (mB̂j
g − g(x),−→w

)
H lB̂j (x) dµ(x)

∣∣∣ ≤ ∣∣∣(mB̂j
g −mAB̂j

g,−→w
)

H

∣∣∣
+ 1

µ(B̂j)

∫
AB̂j

∣∣(mAB̂j
g − g(x),−→w

)
H
∣∣ dµ(x)

≤ 2

µ(B̂j)

∫
AB̂j

∣∣g(x)−mAB̂j
g
∣∣
H dµ(x)

≤ Cb‖g‖BMOρ(Rn,H).

In consequence

∣∣∣ 1

µ(B̂j)

(∫
B̂j

g(x) dµ(x),−→w
)

H

∣∣∣ ≤ C|w|H, for all j = 1, 2, . . ., and −→w ∈ H.

By Lemma 3.5, inequality (39) follows.

Corollary 4.3. Let T be a linear operator as in Theorem 2.4. Then the kernel k(x, y)
is 0 if and only if Tφ(x) = β(x)φ(x) for some β ∈ L∞µ (Rn,H).

Proof. If k(x, y) is zero, then using (8) we obtain the desired expression of T with
β(x) = g(x) − mAB̂g + {B,B̂ [g]. By Observation 4.2 it is clear that β belongs to

L∞µ (Rn,H).

5 Proof of main results: Krein’s Theorem and L2
µ-bounds of T .

In the next Lemma we denote by A some Hilbert space and by µ an arbitrary
measure on Rn.

Lemma 5.1. Assume that T, S are linear operators verifying

T : Λγ0(Rn,C) 7→ Λγb (Rn,A), S : Λγ0(Rn,A) 7→ Λγb (Rn,C)

and ∫
f(x)S−→g (x) dµ =

∫ (−→g (x),Tf(x)
)

A
dµ

for all f ∈ Λγ0(Rn,C) and −→g ∈ Λγ0(Rn,A). Also, suppose that T is a bounded-Lipschitz

operator of order γ from Λγ0(Rn,C) to Λγ(Rn,A) and S is a bounded-Lipschitz operator

of order γ from Λγ0(Rn,A) to Λγ(Rn,C).

Then, T is bounded from L2
µ(Rn,C) to L2

µ(Rn,A) and S is bounded from L2
µ(Rn,A)

to L2
µ(Rn,C).

The proof is similar to that contained in [W, Lemma 2.4] and it invokes the
Theorem of Krein ([GK]). In the present situation, a version of the Krein’s Theo-
rem for two different Hilbert spaces must be used.
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Proof of Theorem 2.6 and Corollary 2.7 .

Let AN = span{e1, . . . , eN} with N ∈ N and consider the projection operator
PN : H→ AN defined by PN (ei) = ei if 1 ≤ i ≤ N and 0H otherwise. Consider the
operators TN (

TNφ,
−→
ψ
)

=
(
Tφ, PN

−→
ψ
)
.

We clearly have that each TN satisfy Hypothesis 2.1. On the other hand, since
TN1 = 0H and T ∗N (1−→w ) = 0 for all −→w ∈ H, the conclusion of Theorems 2.4 and 2.5
are true.

Consequently, we can apply Lemma 5.1 with A = AN . In particular,∣∣∣(Tφ,−→ψ )∣∣∣ ≤ C‖φ‖L2
µ(Rn,C)‖

−→
ψ ‖L2

µ(Rn,H)

for all φ ∈ L2
µ(Rn,C) and

−→
ψ ∈ L2

µ(Rn,AN ), with C not depending on N .

Since Ω =
⋃∞
N=1 L

2
µ(Rn,AN ) is dense in L2

µ(Rn,H), the bilinear form
〈
Tφ,
−→
ψ
〉

can be extended to a bounded operator on L2
µ(Rn,C) × L2

µ(Rn,H). This proves
Theorem 2.6.

Now we continue with Corollary 2.7. Clearly, given
−→
ψ ∈ Λγ0(Rn,H), the se-

quence {
−→
ψN (x)}N with

−→
ψN (x) = PN

−→
ψ (x), converges to

−→
ψ in L2

µ(Rn,H). Also, it

can be shown that there is a subsequence {
−→
ψNj}j pointwisely convergent to

−→
ψ

and such that T ∗
−→
ψNj (x) → T ∗

−→
ψ (x) for µ-almost every x. Finally, applying (10)

to each element of {
−→
ψNj}j and the Theorem of the Dominated Convergence, the

proof is finished.

6 Proof of main results: Antisymmetric kernels.

In this section we suppose that the operator T is associated to an antisymmetric
kernel k, that is k(x, y) = −k(y, x) for all x, y ∈ Rn, satisfying (24) and (25).

Further, we assume
〈
Tφ,
−→
ψ
〉

:= limε→0

〈
Tεφ,

−→
ψ
〉
, where

〈
Tεφ,

−→
ψ
〉

:=

∫∫
d(x,y)≥ε

(
k(x, y)φ(y),

−→
ψ (x)

)
H dµ(x)dµ(y). (40)

We define the following expression that often appears when antisymmetric
kernels are used.

Definition 6.1. Given h ∈ Λγb (Rn,C) and F,G Lipschitz functions of order 0 < γ ≤ α
with compact support, such that F is scalar valued and G is H-valued, or viceversa, we

denote

EBM (h, F,G) =

∫∫
M∩(B×B)

(
k(x, y), (F (y)− F (x))h(y)G(x)

)
H dµ(y)dµ(x), (41)

where M is some µ × µ-measurable subset of Rn × Rn and B is either a ball or the

full space Rn. If M = Rn × Rn, the subscript M is dropped, and the same is done for

B = Rn.
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If h is supported on a ball B, the expression E(h, F,G) is well defined, because
the double integral in (41) is absolutely summable.

Proposition 6.2. Let h be a function in Λγb (Rn,C) and suppose that F and G are

Lipschitz functions of order γ with compact support such that F or G is H-valued. Let

B = Bs(x0) be a ball containing the support of F and G.

If M is any µ×µ-measurable set then the integral defining EBM (h, F,G) is absolutely

summable and, in addition, we have the following inequality∣∣∣EBM (h, F,G)
∣∣∣ ≤ C‖h‖L∞µ (Rn,C) ‖F‖Λγ‖G‖Λγ µ(B)s2γ . (42)

with constant C independent of M,B, h, F and G.

Proof. Applying Lemma 3.12, we clearly have∣∣∣EBM (h, F,G)
∣∣∣ ≤ C‖h‖L∞µ (Rn,C)‖F‖Λγ‖G‖L∞µ µ(B)sγ .

Inequality (23) ends the proof.

We observe that, as a consequence of this Proposition, if M is some symmetric
µ-measurable subset of Rn × Rn, using the antisymmetric property of k we easily
have that EBM (h, F,G) is equal to

1

2

∫∫
M∩(B×B)

(
k(x, y), (F (y)− F (x))(h(y)G(x) + h(x)G(y))

)
H
dµ(y)dµ(x). (43)

Proposition 6.3. For every 0 < γ ≤ α the operator T , given by (40), is well defined

for all functions φ ∈ Λγ0(Rn,C) and
−→
ψ ∈ Λγ0(Rn,H). Also, the following equality holds

〈
Tφ,
−→
ψ
〉

=
1

2

∫∫ (
k(x, y), φ(y)

−→
ψ (x)− φ(x)

−→
ψ (y)

)
H dµ(x)dµ(y), (44)

and, in addition, the following Weak Boundedness Property is verified∣∣〈Tφ,−→ψ 〉∣∣ ≤ Cµ(B)s2γ‖φ‖Λγ(Rn,C)‖ψ‖Λγ(Rn,H), (45)

for functions φ and
−→
ψ supported in Bs(x0).

Moreover, for every 0 < γ ≤ α, the operator T satisfies the Meyer Commutation

Property and is continuous from Λγ0(Rn,C) to
(
Λγ0(Rn,H)

)′
.

Proof. By (24), the double integral (40) is absolutely summable and, in particular,
is well defined.

We need to take Mε = {(x, y)|d(x, y) ≥ ε} and to note that the support of

φ(y)
−→
ψ (x)− φ(x)

−→
ψ (y) is contained in B×B. Now, we make the change of variable

(x, y) 7→ (y, x) and apply the antisymmetric property of k to obtain

〈
Tεφ,

−→
ψ
〉

=
1

2

∫∫
Mε∩(B×B)

(
k(x, y), φ(y)

−→
ψ (x)− φ(x)

−→
ψ (y)

)
Hdµ(x)dµ(y). (46)

Using equality (43) with h = 1, we get that〈
Tεφ,

−→
ψ
〉

= EBMε
(1, φ,

−→
ψ )− EBMε

(1,
−→
ψ , φ).
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Hence, noting that the support of φ(y)
−→
ψ (x) − φ(x)

−→
ψ (y) is contained in B × B,

applying Proposition 6.2 and the Theorem of Dominated Convergence, we clearly
have (44) after taking ε→ 0.

To check the Meyer Commutation Property, let us take h, ϕ ∈ Λγ0(Rn,C) and
−→
ψ ∈ Λγ0(Rn,H). Let B be a ball containing the support of the three functions.

We have E(h, ϕ,
−→
ψ ) = EB(h, ϕ,

−→
ψ ). Now, by (44) and (43) we get

〈
Thϕ,

−→
ψ
〉
−〈

Th, ϕ
−→
ψ
〉

= E(h, ϕ,
−→
ψ ).

To prove the continuity, we take into account the topology of the inductive
limit on Λγ0(Rn,H) (see for example [MS]) and we use (45).

Observation 6.4. We note that in equation (43) and Proposition 6.3, the antisymmet-

ric property and (24) are the unique properties of k that were used, while the property

(25) of k was not used.

Proof of Theorem 2.8. Let φ ∈ Λγ0(Rn,C) be a function supported in the ball B.

So hB , φ and
−→
ψ are all supported in c4B. Writing E(hB , φ,

−→
ψ ) = Ec4B(hB , φ,

−→
ψ )

and E(hB ,
−→
ψ , φ) = Ec4B(hB ,

−→
ψ , φ), since hB(·)φ(·) = φ(·) and hB(·)

−→
ψ (·) =

−→
ψ (·),

by equality (41) we get

E(hB , φ,
−→
ψ )− E(hB ,

−→
ψ , φ) = 2

〈
Tφ,
−→
ψ
〉

= 2
〈
T ∗
−→
ψ , φ

〉
. (47)

Denote by ZB{
−→
ψ , φ} to the following expression∫ (

(g(x)−mAB̂g),
−→
ψ (x)

)
Hφ(x)dµ(x)−

∫ 〈
(g −mAB̂(g)), lB̂

−→
ψ (x)

〉
φ(x)dµ(x)

+

∫ (
{̄B,B̂ ,

−→
ψ (x)

)
Hφ(x)dµ(x)−

∫ (
IB1(x),

−→
ψ (x)

)
Hφ(x)dµ(x).

Now, by using the formula (8) for Tφ and (47), we have〈
T ∗
−→
ψ , φ

〉
=
〈
Tφ, ψ

〉
= ZB{

−→
ψ , φ}+ 2

〈
T ∗
−→
ψ , φ

〉
+ E(hB ,

−→
ψ , φ). (48)

Therefore we obtain 〈
T ∗
−→
ψ , φ

〉
= −ZB{

−→
ψ , φ} − E(hB ,

−→
ψ , φ).

Then, for µ-almost every x ∈ B, the formula (11) holds.

Now, suppose that T1 = 0H. Let φ ∈ Λγ0(Rn,C) such that supp(φ) ⊂ B =
Bs(x0) and

∫
φdµ = 0. For −→w ∈ H, we know that〈

T ∗(1−→w ), φ
〉

=
〈
T ∗(hB

−→w ), φ
〉

+
〈
I
(∗)
B (1−→w ), φ

〉
.

Using definition of T ∗ and (44), we get〈
T ∗(hB

−→w ), φ
〉

=
〈
Tφ, hB

−→w
〉

= −
〈
ThB , φ

−→w
〉
. (49)

On the other hand, it is easy to check that〈
I
(∗)
B (1−→w ), φ

〉
= −

〈
IB1, φ−→w

〉
, (50)

because k is antisymmetric.
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Since φ−→w is in Λγ0(Rn,H) and
∫

(φ−→w )dµ = 0H, by (49) and (50) we have〈
T ∗(1−→w ), φ

〉
= −

〈
ThB , φ

−→w
〉
−
〈
IB1, φ−→w

〉
= −

〈
T1, φ−→w

〉
= 0.

Finally, for the proof that T ∗ is a bounded-Lipschitz operator, it can be used
the same procedure as Theorem 2.5.

Proof of Theorem 2.9. Since T1 = 0, we can apply Theorem 2.8 and then Lemma
5.1 with T = T , S = T ∗ and A = H. This ends the proof.

7 Oscillation operator

In this section, we fix H = `2(C) and m = mn, the normalized n-dimensional
Lebesgue measure, with the exponent ν in (2) equal to 1. Also, we suppose κ(x, y)
is an antisymmetric and scalar-valued kernel associated to some singular integral
operator τ , where τ is the limit of the family {τε}ε>0 defined by〈

τεf, g
〉

=

∫∫
d(x,y)≥ε

κ(x, y)f(y)g(x)dm(y)dm(x).

Next, we define the Oscillation operator T = O(τ), by means of

〈
Tf,−→g

〉
= lim
L→∞

L∑
`=−L

〈
(τA` − τA`−1)f, g

〉
, (51)

for all f ∈ Λγ0(Rn,C), −→g ∈ Λγ0(Rn,H), whenever the limit exists.
Observe that T has associated the vector-valued kernel

K(x, y) = {κ(x, y)χ[A`−1,A`)(d(x, y))}`∈Z. (52)

We shall study this operator and its L2
m-bounds through T1-theorems.

Lemma 7.1. If the kernel κ is antisymmetric and satisfies condition (24) then K

satisfies both conditions too.

The proof is easy by (52) and after observing that |K(x, y)|H ≤ |κ(x, y)|.

Remark 7.2. By Lemma 7.1 and Observation 6.4, the operator O(τ) is continuous

from Λγ0(Rn,C) to (Λγ0(Rn,H))′ and satisfies the Weak Boundedness Property and the

Meyer Commutation Property, for all 0 < γ ≤ α.

Now we study the Oscillation operators for the Riesz Transforms. The j-th
Riesz Transform (j = 1, · · · , n) for f ∈ Λγ0(Rn,C) is defined by

<jf(x) = lim
ε→0

∫
d(x,y)≥ε

xj − yj
d(x, y)

1
n (n+1)

f(y) dm(y).

In what follows we only consider j = 1 and we shall denote < = <1.
Obviously, the kernel κ(x, y) = (x1 − y1)/d(x, y)

1
n (n+1) is antisymmetric.
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It is well known that κ satisfies the following conditions

|κ(x, y)| ≤ Cd(x, y)−1, (for all x, y, x 6= y),∣∣κ(x, y)− κ(x′, y)
∣∣ ≤ C d(x, x′)α

d(x, y)1+α
, (for all x, y, d(x, x′) ≤ d(x, y)/A).

We now define T and K by (51) and (52), respectively. We will prove that the
kernel K satisfies a Lr-smoothness condition, at least for r = 2.

Proposition 7.3. For all R > 0 and for all pair of points x, x′ ∈ Rn such that

d(x, x′) < R/A, the following it is true

(∫
R≤d(x,y)<AR

∣∣K(x, y)−K(x′, y)
∣∣2
Hdm(y)

)1/2

≤ CR−1/2
(
d(x, x′)

R

)α/2
,

where A > cn.

Proof. Let x, x′ be a pair of points such that d(x, x′) < R/A. Let j ∈ Z be the
integer satisfiying Aj−1 ≤ R < Aj . We calculate∫
R<d(x,y)≤AR

∣∣K(x, y)−K(x′, y)
∣∣2 dm(y)

≤
∫
R<d(x,y)≤AR

∣∣κ(x, y)− κ(x′, y)
∣∣2∑
`∈Z

∣∣∣χ[A`−1,A`)(d(x, y))
∣∣∣2 dm(y)

+

∫
R<d(x,y)≤AR

∣∣κ(x′, y)
∣∣2∑
`∈Z

∣∣∣χ[A`−1,A`)(d(x, y))− χ[A`−1,A`)(d(x
′, y))

∣∣∣2 dm(y)

=: J1 + J2.

For J1, since R < d(x, y) ≤ AR we get that χ[A`−1,A`)(d(x, y)) = 0 whenever

` 6= j, j + 1. Now, we can apply the L2-smoothness condition of κ and the desired
bound is obtained.

For J2, we have that
∣∣κ(x′, y)

∣∣2 ≤ C R−2. So, we pay attention to the series.
Let us introduce the following notation:

U`(x, y) :=
∣∣∣χ[A`−1,A`)(d(x, y))− χ[A`−1,A`)(d(x

′, y))
∣∣∣2,

I
(`)
1 :=

∫
R<d(x,y)≤Aj

U`(x, y)dm(y),

I
(`)
2 :=

∫
Aj<d(x,y)≤AR

U`(x, y)dm(y).

Now, we can write

J2 ≤ CR−2
∑
`∈Z

(
I
(`)
1 + I

(`)
2

)
.

We first analyze the terms I
(`)
1 . Suppose that d(x′, y) < A` ≤ Aj−1. We have

d(x, y) ≤ cnd(x′, y) + cnd(x, x
′) < cnA

` +
cn
A
R < A`+1 +

cn
A
d(x, y).
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From this we obtain (1− cn/A)d(x, y) < A`+1 and then, (1− cn/A)Aj−1 < A`+1 ≤
Aj , which implies

(j − 1) + logA(1− cn/A)− 1 < ` < j − 1.

This means that the series above has at most |logA(1− cn/A)− 1| terms of the

form I
(`)
1 not null with ` ≤ j − 1. For these terms we have

0 ≤ d(x, y)− d(x′, y) ≤ nd(x, x′)αAj(1−α),

therefore

Aj−1 ≤ d(x, y) ≤ A` + nd(x, x′)αAj(1−α) ≤ Aj−1 + Cd(x, x′)αR1−α

and then

I
(`)
1 ≤

∫
Aj−1<d(x,y)≤Aj

U`(x, y) dm(y)

≤ Cm
(
B(x,Aj−1 + Cd(x, x′)αR1−α) \B(x,Aj−1)

)
≤ Cd(x, x′)αR1−α.

On the another hand, we have d(x′, y) ≤ cn(d(x, x′)+d(x, y)) ≤ cn(R/A+Aj) <
Aj+1. This implies that U`(x, y) = 0 for ` ≥ j + 2. It remains to study the terms

I
(j)
1 and I

(j+1)
1 .

For I
(j+1)
1 , since Aj−1 < d(x, y) ≤ Aj , it is enough to consider Aj < d(x′, y) ≤

Aj+1. In this case we have

0 ≤ d(x′, y)− d(x, y) ≤ nd(x′, x)αA(j+1)(1−α) ≤ C d(x, x′)αR1−α,

so, we obtain Aj < d(x′, y) ≤ Aj + Cd(x, x′)αR1−α and then∣∣I(j+1)
1

∣∣ ≤ m(B(x′, Aj + Cd(x, x′)αR1−α) \B(x′, Aj)) ≤ Cd(x, x′)αR1−α,

as desired.
Now, we focus on I

(j)
1 . We have Aj−1 ≤ d(x, y) < Aj ≤ AR. The expression

Uj(x, y) is not null only in the case that d(x′, y) < Aj−1 or if d(x′, y) ≥ Aj .
In the first case we can write

Aj−1 > d(x′, y) = (d(x′, y)− d(x, y)) + d(x, y),

but since d(x, y) ≥ Aj−1, it happens that d(x′, y)− d(x, y) < 0, so

Aj−1 +
∣∣d(x′, y)− d(x, y)∣∣ ≥ d(x, y).

This implies
Aj−1 ≤ d(x, y) ≤ Aj−1 + nd(x, x′)α(AR)1−α. (53)

Suppose now that we are in the second case, that is d(x′, y) ≥ Aj . Since d(x, y) <
Aj , we get that d(x′, y)− d(x, y) ≥ 0. We can write

Cd(x, x′)αR1−α + d(x, y) ≥
(
d(x′, y)− d(x, y)

)
+ d(x, y) ≥ Aj .

Hence
Aj ≤ d(x′, y) ≤ Aj + Cd(x, x′)αR1−α. (54)
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From (53) and (54) the function Uj(x, y) is not null in the union of the two anulli

A1
j := BAj−1+Cd(x,x′)αR1−α(x) \BAj−1(x),

A2
j := BAj+Cd(x,x′)αR1−α(x′) \BAj (x

′).

Since m is the measure of Lebesgue, we have

m(A1
j ) = Cd(x, x′)αR1−α

m(A2
j ) = Cd(x, x′)αR1−α.

This give us the desired bounds.
Proceeding in a similar way we can obtain the same bounds as above for the

terms I
(`)
2 , ` ∈ Z.

Summing up, we obtain the desired bound for J2 and the proof is completed.

Related to the condition T1 = 0H we have the following Proposition, whose
proof is easy and it is left to the reader.

Proposition 7.4. If the kernel κ satisfies∫
E(x,a,b)

κ(x, y)dm(y) = 0, all x ∈ Rn and any 0 < a < b, (55)

then T (1) = O(τ)(1) = 0H.

On view of Lemma 7.1, Remark 7.2, Proposition 7.3 and Proposition 7.4 we
can state the following

Theorem 7.5. The Oscillation operator associated to the j-th Riesz Transform (j =
1, . . . , n), is bounded from L2

m(Rn,C) to L2
m(Rn,H).

In particular, since the Hilbert transform is just the Riesz transform when the
dimension is n = 1, we have that

Corollary 7.6. The Oscillation operator of the Hilbert-transform can be extended to

a bounded linear operator from L2
m(Rn,C) to L2

m(Rn,H).

Remark. We note that Theorem 7.5 is still true for any singular integral operator
τ associated to an antisymmetric kernel satisfying the standard conditions and
(55).
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