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1. Introduction

In this section we shall introduce the problem considered in this note through a concrete example on the most classical
fractal: the Cantor set. We shall also state here the main result of this note.

Let us start by introducing some basic notation. Even when our general result contained in Theorem 2 holds in quasi-
metric spaces, the general theory of spaces of homogeneous type developed by Macías and Segovia in [14], allows us to
reduce our environment to a somehow simpler situation. In this note (X,d) is a fixed given compact metric space. Without
loosing generality we assume that the d-diameter of X is less than one. We shall also assume that (X,d) is a doubling
metric space. This means that there exists a constant N such that no d-ball in X with radius r > 0 contains more than N
points of any r

2 -disperse subset of X . It is well known, and perhaps the most important result of the theory of spaces of
homogeneous type, that the finiteness of the metric dimension is equivalent to the existence of a doubling measure on the
Borel subsets of X (see [17,18]).

Let us start by a brief introduction of a distance on the family of all closed probabilistic subspaces (Y ,d,μ) of (X,d) is
such a way that a sequence (Yn,d,μn) converges to (Y ,d,μ) in that distance if and only if Yn tends to Y in the Hausdorff
sense and μn tends to μ in the weak star sense. This can be accomplished by adding the Hausdorff distance between
compact sets and the Kantorovich distance between measures. We shall borrow from [4] the notation and basic results
which we briefly introduce for the sake of completeness.

Let K = {K ⊆ X: K �= ∅, K compact}. With [A]ε we shall denote the ε-enlargement of the set A ⊂ X ; i.e. [A]ε =⋃
x∈A Bd(x, ε) = {y ∈ X: d(y, A) < ε}, where Bd(x, ε) = {y ∈ X: d(x, y) < ε} and d(x, A) = inf{d(x, y): y ∈ A}. Given A and

E two sets in K the Hausdorff distance from A to E is given by

dH (A, E) = inf
{
ε > 0: A ⊆ [E]ε and E ⊆ [A]ε

}
.

It is well known that (K,dH ) is a complete metric space (see [11]).
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On the other hand, the Kantorovich–Rubinshtein distance, also called Hutchinson distance (see [13]), on the set P (X) of
all the positive Borel probabilities μ (μ(X) = 1) is defined as follows

dK (μ,ν) = sup

{∣∣∣∣
∫

f dμ −
∫

f dν

∣∣∣∣: f ∈ Lip1(X)

}
,

where LipΛ(X) means that | f (x)− f (y)| � Λd(x, y) for every x and y ∈ X . The metric space (P (X),dK ) is complete, and the
dK -convergence of a sequence is equivalent to its weak star convergence to the same limit. We shall also use the notation
Lip(X) := ⋃

Λ>0 LipΛ(X).
Set X = K × P , and given two elements (Yi,μi) of X , i = 1,2, we define

dH K
(
(Y1,μ1), (Y2,μ2)

) = dH (Y1, Y2) + dK (μ1,μ2),

so that (X ,dH K ) becomes a complete metric space. Let

E = {
(Y ,μ) ∈ X : suppμ ⊆ Y

}
,

where suppμ denotes the support of μ, i.e. the complementary of the largest open set G in X for which
∫

ϕ dμ = 0 for
every ϕ ∈ C(X), the space of all continuous real valued functions on X , with suppϕ ⊆ G , and suppϕ is the closure of the
set {ϕ �= 0}. We have that (E ,dH K ) is a complete metric subspace of (X ,dH K ).

Let A be a given real number with A � 1. Let D(A) be the set of all couples (Y ,μ) in E such that the inequalities

0 < μ
(

Bd(y,2r)
)
� Aμ

(
Bd(y, r)

)
hold for every y ∈ Y and every r > 0. Such a couple (Y ,μ) is usually called a space of homogeneous type if we understand
that the metric is the restriction of d to Y . In [4] we prove the following elementary completeness type result for the

doubling condition. If {(Yn,μn): n ∈ N} is a sequence in D(A) and (Yn,μn)
dH K−−−→ (Y ,μ), then (Y ,μ) ∈ D(A4).

We shall introduce the Muckenhoupt classes on a couple (Y ,μ) ∈ D(A). Given 1 < p < ∞ and a couple (Y ,μ) ∈ D(A),
we say that a non-negative, non-trivial and locally integrable function w on Y is a weight on (Y ,μ). We shall say that a
weight w is an A p = A p(Y ,μ) Muckenhoupt weight if there exists a constant C such that the inequality( ∫

B

w dμ

)( ∫
B

w− 1
p−1 dμ

)p−1

� C
(
μ(B)

)p

holds for every d-ball B in Y . We shall also use the notation w ∈ A p(Y ,μ), and we shall say that C is a Muckenhoupt
constant for w . A classical reference for the theory of Muckenhoupt weights in the Euclidean space is the book by José
García Cuerva and José Luis Rubio de Francia (see [12]).

Let us take a look at the Cantor set and its standard approximations in the setting described in the preceding general
framework. The natural environment for the special case of the Cantor set is the space X = [0,1] with the usual distance.
Let us write

C =
∞⋂

n=1

Cn, Cn =
2n⋃

j=1

I j
n, I j

n = [
a j

n,b j
n
]
,

where Cn is the n-th step in the construction of the Cantor set. For each positive integer n, set Yn = {b j
n: j = 1,2, . . . ,2n},

in other words, Yn is the collection of all the right points of each interval in Cn . Let μn be the discrete measure defined
on Yn by μn({x}) = 2−n for each x ∈ Yn . Let us notice that Yn can be obtained by dividing by 3n all the non-negative
integers whose expansion in basis 3 do not contain the digit 2 and having at most n digits. So that each point x ∈ Yn

can be identified with an n-tuple (x1, x2, . . . , xn) where each xi is zero or one. With this notation, following [5], define
dn : Yn × Yn → R

+ ∪ {0} by

dn(x, y) =
{

0, if x = y,

3− j, if xi = yi for every i < j and x j �= y j.

It is easy to see that dn is a distance on Yn . Notice that for x ∈ Yn and j a positive integer, we have

Bdn

(
x,3− j) := {

y ∈ Yn: dn(x, y) < 3− j} = {y ∈ Yn: yi = xi, i = 1,2, . . . , j},
hence

card
(

Bdn

(
x,3− j)) =

{
2n− j, j � n,

1, j � n.

So that
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μn
(

Bdn

(
x,3− j)) =

{
2− j, j � n,

2−n, j � n.

Observe that given a positive integer n and x, y ∈ Yn , x �= y, with dn(x, y) = 3− j , we necessarily have that

x − y =
n∑

i= j

3−i(xi − yi),

from which we obtain the inequalities

dn(x, y) � |x − y| � 3dn(x, y),

for every n and every x, y ∈ Yn . Then, if B(x, r) is the interval of length 2r centered at x, we have

B(x, r) ∩ Yn ⊆ Bdn (x, r) ⊆ B(x,3r) ∩ Yn,

for every n, every x ∈ Yn and every r > 0.

Then each (Yn,μn) belongs to D(A) with respect to the usual distance for A = 43. Also (Yn,μn)
dH K−−−→ (C,μ), where μ

is the Hausdorff measure of dimension s = log 2/ log 3 on the Cantor set C .
Since the set Yn is finite and the measure μn is essentially counting, the basic facts of harmonic analysis on the space

of homogeneous type (Yn, | · |,μn) are somehow trivial. In particular any positive function defined on Yn becomes a Muck-
enhoupt weight belonging to every A p(Yn, | · |,μn) class. So that interesting problems arise only trying to obtain uniform
bounds.

We start by searching for the possible values of α ∈ R for which the functions wn(y) := |y|α = yα , y ∈ Yn , are Muck-
enhoupt A p weights on (Yn, | · |,μn) uniformly in n. Then, after a normalization to a probability measure of wn dμn on Yn ,
we look at its weak limit μ supported on the Cantor set C . Doing this we recover for fractional dimension the classical
Euclidean fact: w(x) = |x|α belongs to A p(Rn) if and only if −n < α < n(p − 1) (1 < p < ∞).

For this sequence of weights wn = yα on the sequence of spaces of homogeneous type (Yn, | · |,μn) we have the desired
uniform A p condition for an adequate interval of values for α.

Proposition 1. For s = log 2
log 3 and −s < α < s(p − 1) there exists a constant C = C(α) such that wn ∈ A p(Yn, | · |,μn) with Mucken-

houpt constant C for every n ∈ N.

Proof. Let us fix α in the open interval (−s, s(p − 1)). We shall show that there exists a constant C independent of n such
that ( ∫

B(x,r)

wn dμn

)( ∫
B(x,r)

w
− 1

p−1
n dμn

)p−1

� C
(
μn

(
B(x, r)

))p
(1)

for every n, every x ∈ Yn and every r > 0. Both integrals on the left-hand side of (1) involve positive or negative powers of
the variable y ∈ Yn . So, let us start by obtaining upper estimates for the integrals of these type of functions on B(x, r).

Notice first that for any β ∈ R we have that∫
B(x,r)

yβ dμn(y) = xβ

2n

for every 0 < r � 3−n and every x ∈ Yn , since B(x, r) ∩ Yn = {x}. Let us then assume that 3−n < r � 1, and take an integer
j such that 0 � j � n and 3− j < r � 31− j . Now, as in the Euclidean case, we divide our analysis according to the relative
position of the “first point” in Yn , 3−n , and x with respect to the size r of the given ball. Let us first assume that x ∈ Yn and
0 � x − 3−n < 2r. Then, for β � 0 we have∫

B(x,r)

yβ dμn �
∫

B(3−n,3r)

yβ dμn(y)

�
∫

Bdn (3−n,32− j)

yβ dμn(y)

� 3(3− j)βμn
(

Bdn

(
3−n,32− j))

= 3(3− j)β23μn
(

Bdn

(
x,3− j−1))

� 3(3− j)β23μn
(

B
(
x,3− j))

� 3(3− j)β23μn
(

B(x, r)
)
.
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On the other hand, for −s < β < 0 we have∫
B(x,r)

yβ dμn(y) �
∫

Bdn (3−n,3− j+2)

yβ dμn(y)

= 3−nβ

2n
+

∫
Bdn (3−n,3− j+2)−{3−n}

(
y − 3−n)β

dμn(y)

= 3−nβ

2n
+

n− j+1∑
�=0

∫
3−�− j+1�dn(3−n,y)<3−�− j+2

(
y − 3−n)β

dμn(y)

� 3−nβ

2n
+ 3

n− j+1∑
�=0

∫
3−�− j+1�dn(3−n,y)<3−�− j+2

dβ
n
(

y,3−n)dμn(y)

� 3−nβ

2n
+ 3

n− j+1∑
�=0

3β(−�− j+1)2−�− j+2

� 3β(1− j)+122− j
∞∑

�=0

(
3−β

2

)�

� 2431+β 1

2 − 3−β
3−β jμn

(
B(x, r)

)
.

Then ( ∫
B(x,r)

wn dμn

)( ∫
B(x,r)

w
− 1

p−1
n dμn

)p−1

=
( ∫

B(x,r)

yα dμn

)( ∫
B(x,r)

y− α
p−1 dμn

)p−1

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

24p−13α+p−1

(2−3
2α

p−1 )p−1
μ

p
n (B(x, r)), 0 < α < s(p − 1),

μ
p
n (B(x, r)), α = 0,

23p+131−2α

2−3−α μ
p
n (B(x, r)), −s < α < 0.

In the case x − 3−n � 2r we immediately have∫
B(x,r)

yβ dμn �
{

(x + r)βμn(B(x, r)), if β � 0,

(x − r)βμn(B(x, r)), if β < 0.

Since x � 2r we have x+r
x−r � 3. Then( ∫

B(x,r)

yα dμn

)( ∫
B(x,r)

y− α
p−1 dμn

)p−1

� 3|α|(μn
(

B(x, r)
))p

. �

Proposition 1 shows that the sequence of weights wn is uniformly in A p of the corresponding domain and measure. The
question considered in this note is whether or not from this uniform property on the approximating sequence it is possible
to deduce the Muckenhoupt condition for the limit weight on the limit measure space. The main aim of this paper is to
prove a general result in this direction which is essentially contained in the next statement. A quantitative more precise
version of Theorem 2 is contained in Theorem 8.

Theorem 2. Let 1 < p < ∞ be given. Let {(Yn,μn): n ∈ N} be a given sequence in D(A) such that (Yn,μn)
dH K−−→ (Y ,μ). Let

{wn: n ∈ N} a sequence of weights for which there exists a fixed constant C such that wn ∈ A p(Yn,μn) with Muckenhoupt con-
stant C for each n, normalized in such a way that

∫
wn dμn = 1 for each n. If wn dμn converges to dν in the weak star sense, then

there exists a weight w on Y such that dν = w dμ, and w ∈ A p(Y ,μ).

Notice that from Theorem 2 and Proposition 1 we may conclude that for s = log 2
log 3 and −s < α < s(p − 1), the weight

w(y) = yα belongs to A p on the Cantor set C with its natural Hausdorff measure μ. Let us point out that for this very
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special example, since from the results in [15] the limit Cantor space (C, | · |,μ) is an s-normal space of homogeneous type,
it is possible to show that the only powers of the distance to a fixed point in C which are A p weights are those in the
interval (−s, s(p − 1)) (see [1]).

The key of our argument is to give an equivalent version of the A p condition using smooth mean values of Lipschitz func-
tions instead of maximal operators, in order to be able to apply the metric Kantorovich view of the weak star convergence
of measures.

In Section 2 we review some basic facts of Muckenhoupt’s theory on A p-weights and we obtain some reformulations of
the A p condition which are suitable to obtain the proof of Theorem 2, which is given in Section 3.

2. Basic Muckenhoupt theory

The first basic and deep result of the Muckenhoupt theory is the equivalence of the A p condition with the boundedness
of the Hardy–Littlewood maximal operator on the associated weighted L p space. We shall state this equivalence in the
next theorem for the general setting. The fact that A p is necessary for the boundedness of the Hardy–Littlewood maximal
operator follows exactly the lines of the Euclidean case (see [10] for example). Its sufficiency can be found in [2] and is
an extension to spaces of homogeneous type of the technique introduced in [9]. Actually the first extension to space of
homogeneous type of Muckenhoupt theory is due to Alberto P. Calderón, and his results are contained in [7].

Theorem 3. Let (Y ,d,μ) be a space of homogeneous type, let w be a weight in Y and let 1 < p < ∞. The Hardy–Littlewood maximal
operator is bounded in Lp(w) if and only if w ∈ A p(Y ,d,μ). In other words, w ∈ A p(Y ,d,μ) if and only if there exists a constant C
such that the inequality

∫
|Mμ f |p w dμ � C

∫
| f |p w dμ

holds for every f ∈ L1
loc . Also the constant C depends only on the geometric constants, on p and on the Muckenhoupt constant for w.

In the above theorem Mμ f (x) is the non-centered Hardy–Littlewood maximal function defined by taking mean values
of | f | with respect to μ over the family of d-balls on Y containing x.

The boundedness of the Hardy–Littlewood maximal operator on L p of a measure ν , or even the uniform L p(ν) bounded-
ness of the μ-mean values over balls with fixed radii, contain even more information about the structure of that measure.
For the sake of simplicity and of further application we shall restrict our consideration to the compact case in order to
obtain such additional information under the assumption of the uniform boundedness of mean values.

Theorem 4. Let (Y ,d) be a compact metric space and let (Y ,d,μ) be a space of homogeneous type. Let ν be a Borel measure on Y
which is positive and finite on each d-ball of Y . If there exist 1 < p < ∞ and C > 0 such that the inequality

∫
Y

(
1

μ(Bd(x, r))

∫
Bd(x,r)

∣∣ f (y)
∣∣dμ(y)

)p

dν(x) � C

∫
Y

∣∣ f (y)
∣∣p

dν(y) (2)

holds for every r > 0 and every f ∈ L1(Y ,μ), then ν is a doubling measure on Y , ν is absolutely continuous with respect to μ, and the
Radon–Nikodym derivative of ν with respect to μ is an A p(Y ,d,μ) weight.

Notice that the boundedness of the Hardy–Littlewood maximal operator with respect to ν implies (2).
In the proof of Theorem 4 we shall use a powerful tool of real analysis which has been constructed on spaces of

homogeneous type by M. Christ in [8]: the “dyadic cubes”. Given (Y ,μ) ∈ D(A) for some A � 1, for every j ∈ N ∪ {0} there
exists a finite initial interval K( j) such that for each ( j,k) ∈ A := {( j,k): j ∈ N ∪ {0}, k ∈ K( j)} there exist a point y j

k ∈ Y

and an open set Q j
k satisfying, among many of the basic properties of dyadic cubes of R

n , the following two which will be
used in the sequel:

(1) there exist constants a > 0, c > 0 and 0 < δ < 1 such that Bd(yk
j,aδ j) ⊆ Q j

k ⊆ Bd(yk
j, cδ j) for every ( j,k) ∈ A;

(2) every bounded open subset of Y can be written, up to a set of μ-measure zero, as a disjoint union of Christ’s cubes
(see [3]).

Proof of Theorem 4. Fix a d-ball B = B(x0, R) on Y . Let E be a Borel subset of B . Notice that since for x ∈ B and r = 2R ,
from the doubling property for μ we have that
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(
μ(E)

μ(B)

)p

�
(

μ(B(x, r))

μ(B)

)p(
1

μ(B(x, r))

∫
B(x,r)

X E dμ

)p

� C1

(
1

μ(B(x, r))

∫
B(x,r)

X E dμ

)p

.

Hence from (2) with f = X E we have

ν(B)

(
μ(E)

μ(B)

)p

� C1

∫
B

(
1

μ(B(x, r))

∫
B(x,r)

X E dμ

)p

dν(x)

� C1

∫
Y

(
1

μ(B(x, r))

∫
B(x,r)

X E dμ

)p

dν(x)

� C1Cν(E)

= C2ν(E).

The inequality obtained for E ⊆ B can be rewritten as

μ(E)

μ(B)
� C1/p

2

(
ν(E)

ν(B)

)1/p

. (3)

Taking as E the ball with the same center of B and half its radius we obtain the first claim in the statement of Theorem 4,
i.e., ν is also a doubling measure on (Y ,d).

From the doubling property for μ and the inner and outer control of the dyadic sets by the family of d-balls, we
immediately conclude an inequality which is similar to (3) with Christ’s sets instead of balls. In fact, let Q be a dyadic set
and let B and B̃ two concentric balls of comparable radii such that B ⊆ Q ⊆ B̃ , hence, for each measurable set E in Q , we
have the inequalities

μ(E)

μ(Q )
� μ(E)

μ(B)

� A
μ(E)

μ(B̃)

� AC1/p
2

(
ν(E)

ν(B̃)

)1/p

� AC1/p
2

(
ν(E)

ν(Q )

)1/p

.

The last inequality shows that μ(E)/μ(Q ) < A(C2α)1/p whenever ν(E)/ν(Q ) < α and E is a measurable subset of Q , for
0 < α < 1. Applying this remark to Q − E instead of E we can have that

μ(E)

μ(Q )
� 1 − A(C2α)1/p implies

ν(E)

ν(Q )
� 1 − α, (4)

for 0 < α < min{1, /C2 A p}. In fact, ν(E)
ν(Q )

> 1 − α implies ν(Q −E)
ν(Q )

< α, so that

μ(Q − E)

μ(Q )
< A(C2α)1/p,

which implies

μ(E)

μ(Q )
> 1 − A(C2α)1/p .

Let us fix such an α and let us write β = 1 − A(C2α)1/p . Notice that 0 < β < 1. Let us assume that ν is not absolutely
continuous with respect to μ. Assume then that E is a Borel set in Y such that μ(E) = 0 but ν(E) > 0. Since ν is regular,
there exists an open set G containing E such that ν(G) < ν(E)/(1 − α). Since both measures μ and ν are doubling, the
boundaries of the dyadic sets are sets of μ and ν zero measures. In particular, this fact allows to write G = ⋃

j Q j ∪ N ,
with Q j dyadic sets and N a set of μ and ν measures equal to zero. Hence ν(G) = ∑

j ν(Q j). On the other hand, since

0 = μ(E ∩ Q j) for every j, we have that
μ(E∩Q j) � β . So that from (4) we get that ν(E ∩ Q j) � (1 − α)ν(Q j). Adding
μ(Q j)
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in j ∈ N we get ν(E) � (1 − α)ν(G), which contradicts the choice of G . So that ν � μ. Let us write w(x) to denote the
Radon–Nikodym derivative of ν with respect to μ. For the proof of the last statement, namely, that w ∈ A p(Y ,d,μ), we
only have to observe that the standard proof of Theorem 3 only requires the current hypothesis (2) of our Theorem 4. �

In the last part of this section we aim to get a version for A p suitable for the weak star convergence of measures. In this
direction we shall prove the following result.

Theorem 5. Let (Y ,d) be a compact metric space and let (Y ,d,μ) be a space of homogeneous type. Let ν be a Borel measure on Y
which is positive and finite on each d-ball of Y . Let 1 < p < ∞ be given. Then ν = w dμ with w ∈ A p(Y ,d,μ) if and only if there
exists a constant C > 0 such that the inequality∫ (

1∫
ϕx,r(y)dμ(y)

∫ ∣∣ f (y)
∣∣ϕx,r(y)dμ(y)

)p

dν(x) � C

∫ ∣∣ f (y)
∣∣p

dν(y) (5)

holds for every f ∈ Lip(Y ) and for every r > 0, where ϕx,r(y) = ϕ(
d(x,y)

r ) and ϕ is the continuous function on R
+ that takes the value

one in [0,1], vanishes in [2,∞), and is linear in the interval [1,2].

In order to prove the above result, we shall use the simultaneous density of the class of Lipschitz functions on the spaces
L p(μ) and L p(ν).

Lemma 6. Let (Y ,d) be a compact metric space. Assume that μ and ν are two finite Borel measures on Y . Then for every 1 � p,q < ∞
we have that Lip(Y ) is dense in L p(μ) ∩ Lq(ν).

Proof. Since μ and ν are finite, they are regular (see [6] for example). Moreover, since Y is compact we have that for any
Borel set E in Y and every ε > 0 there exist two open sets G1 and G2 containing E , and two compact sets K1 and K2
contained in E such that we have μ(G1 − K1) < ε and ν(G2 − K2) < ε. Taking G = G1 ∩ G2, K = K1 ∪ K2 and g defined as

g(x) = d(x, Gc)

d(x, Gc) + d(x, K )

we have that g is a Lipschitz function, and that∫
|g − X E |p dμ � 2pμ(G − K ) < 2pε

and ∫
|g − X E |q dν � 2qν(G − K ) < 2qε.

With the standard arguments we obtain the desired result. �
Proof of Theorem 5. Assume first that dν = w dμ with w ∈ A p(Y ,d,μ). For each x ∈ Y , r > 0 and f ∈ Lip(Y ), we have

1∫
ϕx,r(y)dμ(y)

∫ ∣∣ f (y)
∣∣ϕx,r(y)dμ(y) � 1

μ(Bd(x, r))

∫
Bd(x,2r)

∣∣ f (y)
∣∣dμ(y)

� A
1

μ(Bd(x,2r))

∫
Bd(x,2r)

∣∣ f (y)
∣∣dμ(y)

� AM f (x),

where A is the doubling constant for μ. On the other hand, from Theorem 3 we have that∫
|M f |p w dμ � C

∫
| f |p w dμ

for some constant C . Thus∫ (
1∫

ϕx,r(y)dμ(y)

∫ ∣∣ f (y)
∣∣ϕx,r(y)dμ(y)

)p

w(x)dμ(x) � ApC

∫
| f |p w dμ,

as desired.
In order to show that (5) implies the absolute continuity of ν with respect to μ an that dν

dμ is an A p(Y ,d,μ) weight,

using Theorem 4 we only have to prove that (5) for every Lipschitz function implies (2) for every function f in L1(Y ,μ). It
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is easy to see, using again the doubling condition for μ, that (5) for Lipschitz functions implies (2) for Lipschitz functions.
In fact∫ (

1

μ(Bd(x, r))

∫
Bd(x,r)

∣∣g(y)
∣∣dμ(y)

)p

dν(x) � Ap
∫ (

1∫
ϕx,r(y)dμ(y)

∫
ϕx,r(y)

∣∣g(y)
∣∣dμ(y)

)p

dν(x)

� ApC

∫
|g|p dν

for every r > 0 and every function g in Lip(Y ).
Notice that, from the monotone convergence theorem, in order to prove (2) for general f it is enough to prove it for

functions belonging to L∞(μ) ∩ L∞(ν). In fact, taking

hn =
{

f , if | f | � n,

n, if | f | > n,

the inequalities∫ (
1

μ(Bd(x, r))

∫
Bd(x,r)

∣∣hn(y)
∣∣dμ(y)

)p

dν(x) � C̃

∫ ∣∣hn(y)
∣∣p

dν(y)

for every n ∈ N, imply the same inequality with f instead of hn . Let us assume then that f ∈ L∞(μ) ∩ L∞(ν). Let {gk} be a
sequence of Lipschitz functions provided by Lemma 6 such that gk → f both in the L p(μ) and L p(ν) norms. Set, for fixed
r > 0,

Gr
k(x) = 1

μ(Bd(x, r))

∫
Bd(x,r)

|gk|dμ

and

F r(x) = 1

μ(Bd(x, r))

∫
Bd(x,r)

| f |dμ.

Notice that∫ ∣∣Gr
k − F r

∣∣p
dν �

∫ (
1

μ(Bd(x, r))

∫
Bd(x,r)

∣∣gk(y) − f (y)
∣∣p

dμ(y)

)
dν(x)

� ‖gk − f ‖p
L p(μ)

∫
dν(x)

μ(Bd(x, r))
.

On the other hand, the last integral is finite since ν(Y ) < ∞ and, for r > 0 fixed, μ(Bd(x, r)) as a function of x is bounded
below. In fact, let {Bd(xi, r/2): i = 1, . . . , I} be a finite covering of the compact space Y by d-balls of radius r/2. Hence,
given x ∈ Y there exists i ∈ {1, . . . , I} such that d(x, xi) < r/2, so that Bd(x, r) ⊇ Bd(xi, r/2). Thus

μ
(

Bd(x, r)
)
� min

i∈{1,...,I}
μ

(
Bd(xi, r/2)

)
> 0.

Hence, for fixed r > 0, Gr
k → F r in the L p(ν) sense. Finally, from the above remarks we get∥∥F r

∥∥
L p(ν)

�
∥∥Gr

k

∥∥
L p(ν)

+ ∥∥Gr
k − F r

∥∥
L p(ν)

� C̃‖gk‖L p(ν) + ∥∥Gr
k − F r

∥∥
L p(ν)

� C̃‖ f ‖L p(ν) + C̃‖gk − f ‖L p(ν) + ∥∥Gr
k − F r

∥∥
L p(ν)

.

Letting k → ∞ we obtain (2) for bounded functions. �
3. Proof of Theorem 2

Recall that (X,d) is a compact doubling metric space. Let (Y ,μ) ∈ D(A) and let ν be a Borel measure on Y such that
(Y , ν) ∈ E . For 1 < p < ∞ we shall write ν ∈ Ap(Y ,μ) if ν satisfies (5) for some constant C , for every r > 0 and every
f ∈ Lip(X). In the sequel we shall say that such a constant C is a Muckenhoupt constant for ν . Notice that this definition is
not a priori the characterization of A p(Y ,μ) given in Theorem 5, since there f ranges on the space Lip(Y ) and here on the
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space Lip(X). Since both spaces Lip(X) and Lip(Y ) are defined with respect to the same distance d, the trace on Y of every
function in Lip(X) belongs to Lip(Y ). On the other hand, since X has finite metric dimension, the basic covering lemma
used to generalize the Whitney extension method for Lipschitz function, holds. This fact proves that (5) holds for every
f ∈ Lip(X) if and only if (5) holds for every f ∈ Lip(Y ). So that ν ∈ A p(Y ,μ) if and only if ν � μ and w = dν

dμ ∈ A p(Y ,μ).
For the sake of completeness let us state the extension lemma and briefly sketch the idea of the proof that in the Euclidean
case can be found in [16] (see [1] for the general setting).

Lemma 7. Let (X,d) be a compact doubling metric space. Let Y be a given proper closed subset of X . Then there exists a linear and
continuous extension operator from Lip(Y ) to Lip(X).

Set G = X − Y . Let W = {Bk} be a Whitney covering of balls for G , and let {φk: k ∈ N} be an adequate partition of unity
associated to W . Given a Lipschitz function f on Y , an extension f̃ of f to X is

f̃ (x) =
{

f (x), if x ∈ Y ;∑
k f (yk)φk(x), if x ∈ G,

where {yk} is any sequence in Y such that yk belongs to a fixed dilation of Bk . The function f̃ has the required properties.
Theorem 2 will be a consequence of the following quantitative more precise statement.

Theorem 8. Let 1 < p < ∞ be given. Let {(Yn,μn): n ∈ N} be a given sequence in D(A) such that (Yn,μn)
dH K−−→ (Y ,μ). Let

{νn: n ∈ N} be a sequence of measures such that νn ∈ A p(Yn,μn) with Muckenhoupt constant C for every n. If νn
w∗−−→ ν , then

ν ∈ A p(Y ,μ) with the same Muckenhoupt constant C .

Thus Theorem 2 is a consequence of Theorems 8 and 5. Notice also that when Yn = Y and μn = μ for every n ∈ N, the
result of Theorem 8 is the completeness of the class A p(Y ,μ; C) of those A p(Y ,μ) measures with Muckenhoupt constant C .
Hence any contractive mapping on A p(Y ,μ; C) with respect to the distance dK , has a fixed point in A p(Y ,μ; C). Let us
also observe that without the hypothesis (Yn,μn) ∈ E contained in the definition of A p(Yn,μn) the result does not hold. In
fact, it is enough to take X = [0,1], d the usual distance, dμ = dx the Lebesgue measure, Yn = X , dμn = dμ = dx for each n,
and dνn = dx

n .

Proof of Theorem 8. Given f ∈ Lip(X), r > 0, x ∈ X and n ∈ N ∪ {∞}, let us write Mn f (x, r) to denote the smooth mean
value

Mn f (x, r) = 1∫
ϕx,r(y)dμn(y)

∫ ∣∣ f (y)
∣∣ϕx,r(y)dμn(y),

when
∫

ϕx,r(y)dμn(y) > 0. If
∫

ϕx,r(y)dμn(y) = 0 we define Mn f (x, r) = 0. Here we are using the notation μ∞ for μ. We
have to prove that∫ (

M∞ f (x, r)
)p

dν(x) � C

∫ ∣∣ f (y)
∣∣p

dν(y), (6)

where C is a uniform Muckenhoupt constant for the whole sequence {νn: n ∈ N}.
In order to prove (6), it is enough to show that for every ε > 0 there exists N = N(ε, r, f ) ∈ N such that for every n � N

the inequality∫ (
M∞ f (x, r)

)p
dνn(x) � ε + C

∫ ∣∣ f (y)
∣∣p

dνn(y) (7)

holds. In fact, once (7) is proved, since | f |p is continuous on X , the weak convergence of νn to ν shows that the right-hand
side tends to ε + C

∫ | f |p dν as n → ∞. On the other hand, even when (M∞ f (x, r))p could be discontinuous on X , it
is certainly continuous on [Y ]r/4, the r/4-enlargement of Y , since in this region we have that M∞ f (x, r) is the quotient
of the two continuous functions

∫ | f |ϕx,r dμ and
∫

ϕx,r dμ. Notice that the last one is positive because ϕ is one on some
small ball B centered at a point of Y , and since μ is a doubling measure we have 0 < μ(B) �

∫
ϕx,r dμ. Also the Hausdorff

convergence of Yn to Y implies that for n large enough Yn ⊆ [Y ]r/8. Hence after a continuous extension to the whole space
X of the restriction of M∞ f (x, r) to the closure of [Y ]r/8, we can also take limit as n → ∞ to the left-hand side of (7)
and use again the weak star convergence of νn to ν in order to obtain (6), except for an arbitrarily small ε added to its
right-hand side.

Let us proceed to prove (7). Let us first prove that to achieve this it is enough to show that for each r > 0 and each
f ∈ Lip(X), the sequence Mn f (x, r) converges uniformly to M∞ f (x, r) on [Y ]r/4. In fact, we have that for each ε > 0 there
exists N which could depend on f , r and ε but not on x ∈ [Y ]r/4, such that
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∫ (
M∞ f (x, r)

)p
dνn(x) �

∫ ∣∣(M∞ f (x, r)
)p − (

Mn f (x, r)
)p∣∣dνn(x) +

∫ (
Mn f (x, r)

)p
dνn(x)

� ε +
∫ (

Mn f (x, r)
)p

dνn(x),

for every n � N . Now, since νn ∈ A p(Yn,μn; C), we have (7).
In order to prove the uniform convergence of Mn f (·, r) to M∞ f (·, r) on [Y ]r/4, notice that since

∫
ϕx,r dμ > 0 on the

closure of [Y ]r/4, we only have to prove the uniform convergence of
∫ | f (y)|ϕx,r(y)dμn(y) to

∫ | f (y)|ϕx,r(y)dμ∞(y) on
[Y ]r/4 for every f ∈ Lip(X). In fact, since

∫
ϕx,r dμ is positive and continuous on the compact [Y ]r/4, then it has a positive

lower bound c. So that for n large enough we have that Yn ⊆ [Y ]r/4 and that
∫

ϕx,r dμn > c/2, hence

∣∣Mn f (x, r) − M∞ f (x, r)
∣∣ � 1∫

ϕx,r dμn

∣∣∣∣
∫

| f |ϕx,r dμn −
∫

| f |ϕx,r dμ

∣∣∣∣
+

∫ | f |ϕx,r dμ

(
∫

ϕx,r dμn)(
∫

ϕx,r dμ)

∣∣∣∣
∫

ϕx,r dμn −
∫

ϕx,r dμ

∣∣∣∣
� 2

c

∣∣∣∣
∫

| f |ϕx,r dμn −
∫ ∣∣ f (y)

∣∣ϕx,r dμ

∣∣∣∣ + 2
∫ | f |dμ

c2

∣∣∣∣
∫

ϕx,r dμn −
∫

ϕx,r dμ

∣∣∣∣,
which tends to zero as n → ∞ uniformly on [Y ]r/4.

Let us finally prove the uniform convergence of
∫ | f |ϕx,r dμn to

∫ | f |ϕx,r dμ∞ on [Y ]r/4 for every f ∈ Lip(X). This is
precisely the main point for the use Lipschitz functions in order to test the Muckenhoupt condition. If f ∈ Lip(X), there
exists Λ > 0 such that f ∈ LipΛ(X). On the other hand, for x and r fixed ϕx,r ∈ Lip1/r(X). Hence gx,r(y) = | f (y)|ϕx,r(y)

belongs to Lip 1
r ‖f‖∞+Λ

(X), where ‖ f ‖∞ = supy∈X | f (y)|. From the definition of dK and the weak star convergence of μn to

μ we have

sup
x∈X

∣∣∣∣
∫

gx,r(y)dμn(y) −
∫

gx,r(y)dμ∞(y)

∣∣∣∣ �
(

1

r
‖ f ‖∞ + Λ

)
dK (μn,μ∞) −→

n→∞ 0.

In other words,
∫ | f |ϕx,r dμn converges uniformly to

∫ | f |ϕx,r dμ∞ on [Y ]r/4. �
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