
Annals of Pure and Applied Logic 147 (2007) 1–22
www.elsevier.com/locate/apal

Geometry of Robinson consistency in Łukasiewicz logic

Manuela Busanichea, Daniele Mundicib,∗
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Abstract

We establish the Robinson joint consistency theorem for the infinite-valued propositional logic of Łukasiewicz. As a corollary
we easily obtain the amalgamation property for MV-algebras—the algebras of Łukasiewicz logic: all pre-existing proofs of this
latter result make essential use of the Pierce amalgamation theorem for abelian lattice-ordered groups (with strong unit) together
with the categorical equivalence Γ between these groups and MV-algebras. Our main tools are elementary and geometric.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We assume familiarity with MV-algebras and Łukasiewicz propositional logic: we refer the reader to [1] for all
unexplained notions. For X an arbitrary set of variables, L X denotes the set of formulas ψ whose variables are in X .
Any such ψ is said to be an L X -formula. The definition is the same for boolean logic and for many-valued logic. A
proper subset Θ of L X is called a theory (or, an L X -theory if necessary) if

(i) Θ contains all L X -tautologies of Łukasiewicz infinite-valued propositional logic, and
(ii) Θ is closed under modus ponens.

An L X -theory Θ is said to be prime (also called “complete” in Hájek’s monograph [3, 2.4.1]) if for any L X -formulas
ϕ and ψ either ϕ → ψ or ψ → ϕ belongs to Θ .

Every prime theory Θ has a unique maximally consistent completion Θ ′. In other words, L X ⊇ Θ ′
⊇ Θ and there

is no theory Θ ′′
⊆ L X properly extending Θ ′. By contrast with boolean logic Θ ′ generally does not coincide with Θ .

The Robinson consistency property for boolean, as well as for Łukasiewicz logic, can be stated as follows:

Suppose that Θ is a prime L X -theory, and Ψ is a prime LY -theory. Let Z = X ∩ Y and W = X ∪ Y . If
Θ ∩ L Z = Ψ ∩ L Z then there is a prime LW -theory Φ such that Θ = Φ ∩ L X and Ψ = Φ ∩ LY .
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In Theorem 5.1 below we shall prove the Robinson consistency property for Łukasiewicz propositional logic. With
a little more effort, we obtain an elementary proof of the amalgamation property for MV-algebras. We shall use the
well-known one–one correspondence between theories (resp., prime theories, resp., maximally consistent theories)
and ideals (resp., prime ideals, resp., maximal ideals) of free MV-algebras.

Throughout this paper we shall make constant use of the rich geometric machinery naturally arising from the theory
of MV-algebras, such as McNaughton’s representation of free MV-algebras in terms of [0, 1]-valued piecewise linear
functions, their underlying unimodular triangulations of the n-cube, and the spectral theory of free MV-algebras.

As a warm up we prove a weak form of joint consistency for infinite-valued Łukasiewicz propositional logic:

Proposition 1.1. Infinite-valued Łukasiewicz logic has the Robinson property for maximally consistent theories. In
other words, whenever Θ and Ψ are maximally consistent theories, respectively in the language L X and LY , and
Θ ∩ L X∩Y = Ψ ∩ L X∩Y then there is a maximally consistent L X∪Y -theory Φ such that Θ = Φ ∩ L X and
Ψ = Φ ∩ LY .

Proof. Let Z = X ∩ Y and Ξ = Θ ∩ L Z = Ψ ∩ L Z .We denote by FreeZ (resp., FreeX ) the free MV-algebra over the
free generating set Z (resp., over X ). By [1, 3.1.8, 9.1.5] FreeZ and FreeX are algebras of McNaughton functions. We
canonically identify FreeZ with the subalgebra of FreeX given by those McNaughton functions that only depend on
the variables of Z . Let us similarly write FreeZ ⊆ FreeY . Let x be the only valuation that satisfies every formula of Θ .
(Ref. [1] uses the terminology “[0, 1]-valuation” and “[0, 1]-satisfies”.) Following [1, p. 80] x is uniquely determined
by its values over X , and hence x can be identified with a point in the cube [0, 1]

X . Similarly, let y ∈ [0, 1]
Y be the

only valuation that satisfies all formulas of Ψ . From our hypotheses it follows that Ξ is a maximally consistent theory
and the only valuation z ∈ [0, 1]

Z that satisfies all formulas of Ξ is given by z = x |̀ Z = y |̀ Z . Let w be the only
point of [0, 1]

X∪Y whose X -coordinates are those of x and whose Y -coordinates are those of y, in symbolsw = x ∪ y.
The point w is well defined because x and y agree on their common coordinates. Let Φ be the set of L X∪Y -formulas
that are satisfied by the valuation w. Then the maximally consistent theory Φ has the desired properties. �

Corollary 1.2. All finite-valued Łukasiewicz logics have the Robinson property for maximally consistent theories. The
latter coincide with prime theories.

Proof. Let Ln ⊆ [0, 1] be the n-element Łukasiewicz chain [1, p. 8]. We recall that an MVn-algebra is an element of
the variety generated by the MV-algebra Ln .MVn-algebras are the algebras of the n-valued Łukasiewicz logic. Let X
be a set of variables. For each n = 2, 3, . . . let F (n)X denote the free MVn-algebra over the free generating set X . As is
well known [1, 8.5, 8.6], F (n)X is given by restricting to the product space LX

n ⊆ [0, 1]
X all McNaughton functions of

the free MV-algebra FreeX .Maximally consistent theories of F (n)X canonically correspond to points in LX
n via the map

sending any such point x into the set of L X -formulas that are satisfied by the valuation x . In finite-valued Łukasiewicz
logic, maximally consistent theories are the same as prime theories, because F (n)X is hyperarchimedean. (See [1, 6.3.1,
6.3.2, 8.5.1] for details.) The same argument of the foregoing proof now settles the present corollary as well. One
simply notes that, whenever x ∈ LX

n and y ∈ LY
n and x |̀ Z = y |̀ Z then x ∪ y belongs to LX∪Y

n . �

2. Classification of prime ideals in the free MV-algebra Freen

To prepare the proof of Theorem 5.1, in this and in the next two sections we will embark on a geometrical
investigation of prime ideals in finitely generated free MV-algebras. Let Freen denote the free n-generated MV-algebra.
Since Freen consists of continuous piecewise linear [0, 1]-valued functions over the n-cube, (equipped with the usual
topology) our main tools will be given by the affine (piecewise) linear geometry of Rn . Our standard reference will
be [1]. For general background and notation concerning simplicial complexes and related topics we also refer to the
introductory pages of [5]. In particular, for any set S = {a1, a2, . . . , as} of elements of Rn,we let conv{a1, a2, . . . , as}

denote the convex hull of S. Every simplex T considered in this paper shall be contained in some n-cube [0, 1]
n ;

accordingly, the interior int T and the relative interior relint T shall always be taken with respect to [0, 1]
n .

Definition 2.1. Let n ∈ N and 0 ≤ t ≤ n. By an index u = (u0, u1, . . . , ut ) we understand a (t + 1)-tuple of vectors
in Rn such that u1, . . . , ut are linearly independent and for some ε1, . . . , εt > 0 the simplex

T = conv{u0, u0 + ε1u1, u0 + ε1u1 + ε2u2, . . . , u0 + ε1u1 + · · · + εt ut }
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is contained in [0, 1]
n . Any such T is said to be a u-simplex. The set Ju ⊆ Freen is defined by

f ∈ Ju iff the zeroset f −1(0) of f contains some u-simplex. (1)

For each j = 0, 1, . . . t, let us write u j as an abbreviation of (u0, . . . , u j ). Since u j is an index, u j -simplexes and Ju j

are well defined.

Proposition 2.2. If T1 and T2 are u-simplexes then T1 ∩ T2 contains a u-simplex.

Proof. Induction on t . The cases t = 0, 1 are trivial.
For the induction step, assume without loss of generality u0 = 0. Let

T1 = conv{0, ε1u1, ε1u1 + ε2u2, . . . , ε1u1 + · · · + εt ut },

T2 = conv{0, η1u1, η1u1 + η2u2, . . . , η1u1 + · · · + ηt ut },

T ′

1 = conv{0, ε1u1, ε1u1 + ε2u2, . . . , ε1u1 + · · · + εt−1ut−1},

T ′

2 = conv{0, η1u1, η1u1 + η2u2, . . . , η1u1 + · · · + ηt−1ut−1}.

By induction hypothesis, T ′

1 ∩ T ′

2 contains some ut−1-simplex T ′, say

T ′
= conv{0, ω1u1, ω1u1 + ω2u2, . . . , ω1u1 + · · · + ωt−1ut−1}.

Since T1 and T2 are convex sets, for each x ∈ relint T ′

1 ∩ relint T ′

2 there are 0 < δ1, δ2 such that x + δ1ut ∈ T1 and
x + δ2ut ∈ T2 whence, letting δ = min{δ1, δ2}, we have x + δut ∈ T1 ∩ T2. The point c =

ω1
2 u1 + · · · +

ωt−1
2 ut−1

lies in relint T ′. Since relint T ′
⊆ relint T ′

1 ∩ relint T ′

2, there exists 0 < ω such that c + ωut ∈ T1 ∩ T2. Therefore the
u-simplex T = conv{0, ω1

2 u1,
ω1
2 u1 +

ω2
2 u2, . . . , c, c + ωut } satisfies T ⊆ T1 ∩ T2, as desired. �

Proposition 2.3. Ju is an ideal of Freen .

Proof. Trivially Ju is closed under minorants. If f, g ∈ Ju then by definition we have u-simplexes T ′ and T ′′ such that,
writing Z f for the zeroset of f , Z f ⊇ T ′ and Zg ⊇ T ′′. By Proposition 2.2 we have a u-simplex with T ⊆ T ′

∩ T ′′.

Now Z( f ⊕ g) = Z f ∩Zg ⊇ T ′
∩ T ′′

⊇ T, and f ⊕ g ∈ Ju. �

As we shall see in Proposition 2.8 below, Ju is in fact a prime ideal. Conversely, in Corollary 2.18 we shall see that
every prime ideal J of Freen has the form J = Ju for some index u.

Notation and terminology. Unless otherwise specified, every affine hyperplane H considered in this paper shall be
rational. In other words, H = {x ∈ Rn

|
∑n

i=1 mi xi = m0} for suitable integers m0,m1, . . . ,mn , where not all of
m1, . . . ,mn are zero. Throughout this paper the symbol H will denote a rational affine hyperplane in some euclidean
space Rn . As usual, the two closed half-spaces defined by H will be denoted by H+ and H− respectively. In more
detail,

H+
=

{
x ∈ Rn

|

n∑
i=1

mi xi ≥ m0

}
and H−

=

{
x ∈ Rn

|

n∑
i=1

mi xi ≤ m0

}
.

Every triangulation T considered in this paper shall be unimodular [1, 9.1.1]. The union of the simplexes of T
shall always coincide with an n-cube [0, 1]

n , for some n = 1, 2, . . . . Accordingly, we shall omit the specifications
“unimodular” and “of the n-cube”. By a refinement U of T we mean a unimodular triangulation U such that each
simplex of T is the union of simplexes of U . A triangulation T will be said to respect a hyperplane H if each simplex
of T is either contained in H+ or in H−.

We shall make frequent use of the following simple result:

Lemma 2.4. Let T be a triangulation. Let H ⊆ Rn be a hyperplane. Then there exists a refinement U of T such that
U respects H. Further, any two triangulations have a joint refinement that respects H.

Proof. This is an immediate consequence of the De Concini–Procesi lemma [4] on elimination of points of
indeterminacy in toric varieties. The rationality assumption for H is essential. See [12, Lemma 2.2] for an elementary
proof using only MV-algebraic machinery. �
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A standard tool to construct McNaughton functions out of triangulations is given by the following:

Lemma 2.5. Let T be a triangulation and µ be a {0, 1}-valued map defined over the set of vertices of simplexes in
T . Let f : [0, 1]

n
→ [0, 1] be the only function that is linear over each simplex of T and also satisfies f (x) = µ(x).

Then f ∈ Freen .

Proof. This follows from the assumed unimodularity of T . See [1, 9.1.4] for details. �

An ideal J of an MV-algebra A is said to be prime iff the quotient MV-algebra A/J is (6= {0} and) totally ordered.
The following characterization is folklore [1] and shall be used without explicit mention throughout this paper:

Lemma 2.6. For every MV-algebra A and ideal J 6= A of A the following conditions are equivalent:

(1) J is prime;
(2) whenever x, y ∈ A and x ∧ y = 0 then x ∈ J or y ∈ J ;
(3) whenever x, y ∈ A and x ∧ y ∈ J then x ∈ J or y ∈ J ;
(4) if P and Q are ideals of A and P ∩ Q ⊆ J then P ⊆ J or Q ⊆ J ;
(5) if P and Q are ideals of A and P ∩ Q = J then P = J or Q = J ;
(6) if P and Q are ideals of A containing J then P ⊆ Q or Q ⊆ P;
(7) for all x, y ∈ A either x → y ∈ ¬J or y → x ∈ ¬J ; here, as usual, x → y is short for ¬x ⊕ y, and the dual

ideal (also known as filter) ¬J is given by ¬J = {¬z | z ∈ J };
(8) for all x, y ∈ A either x 	 y ∈ J or y 	 x ∈ J , (where x 	 y is short for x � ¬y).

Definition 2.7. For every triangulation T and index u we let

T u
=

⋂
{F | F is a simplex of T and F contains some u-simplex}. (2)

As an immediate consequence of Proposition 2.2, one sees that T u is a simplex of T containing a u-simplex. Recalling
the notation u j for the index (u0, . . . u j ), it follows that T u j

is well defined for each j = 0, 1, . . . , t.

Proposition 2.8. For any index u = (u0, u1, . . . , ut ), Ju is a prime ideal of Freen .

Proof. We have already seen in Proposition 2.3 that Ju is an ideal of Freen . To see that Ju is prime, suppose that
f /∈ Ju, g /∈ Ju, with the intent of proving f ∧ g 6= 0. Using Lemma 2.4 let T be such that each of f, g, f ∧ g is
linear over each simplex of T . It follows that f (x) > 0 for some x ∈ T u (otherwise f would vanish over T u

⊇ T
for some u-simplex T , whence f ∈ Ju, which is impossible.) Similarly, g(y) > 0 for some y ∈ T u. Our assumption
about T ensures that both f and g must be > 0 over relint T u, and that f ∧ g is linear over T u. Therefore, over T u

we must either have f ≥ g or g ≥ f. In either case, f ∧ g 6= 0 as desired. �

Definition 2.9. For every index u = (u0, . . . , ut ) we set ζ(u0) =
⋂

{H | u0 ∈ H} and for each i = 1, . . . , t,

ζ(ui ) =

⋂
{H | conv{u0, u0 + u1, . . . , u0 + u1 + · · · + ui } ⊆ H} . (3)

Equivalently,

ζ(ui ) =

⋂
{H | T ⊆ H for some ui -simplex T }.

In the terminology of [5, p. 3], ζ(ui ) is a flat space, or an affine variety. For each 0 ≤ i ≤ t , translation by −u0 of
ζ(ui ) yields its associated linear space λ(ui ); in symbols,

λ(ui ) = ζ(ui )− u0 = {x ∈ Rn
| (u0 + x) ∈ ζ(ui )}. (4)

We often write ζ(u) instead of ζ(ut ), and λ(u) instead of λ(ut ).

Let T be a triangulation and u = (u0, . . . , ut ) an index. Then by Definition 2.7 we must have

dim T u j
≥ dim ζ(u j ) (5)

for all j ≤ t : indeed by the assumed unimodularity of T every simplex of T of codimension 1 is contained in a
rational hyperplane.
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Definition 2.10. We say that T is u-good if

dim T u j
= dim ζ(u j ) for each j = 0, 1, . . . , t. (6)

Further, for any f ∈ Freen we say that T is f -good if f is linear (in the affine sense) over each simplex T ∈ T . More
generally, T is said to be u f -good if it is f -good and u-good. Given finitely many indexes v,w, . . . and functions
g, h, . . . ∈ Freen , one similarly defines vwg-good, vwgh-good, and the like.

Lemma 2.11. Let u = (u0, . . . , ut ) be an index.

(i) For every triangulation T , T u j
is a face of T u j+1

, in symbols, T u j
� T u j+1

.

(ii) Every triangulation T can be refined to a u-good triangulation.
(iii) If W is a refinement of a u-good triangulation T , then Wu

⊆ T u. Specifically, T u is the smallest simplex of T
containing Wu.

(iv) Every refinement of a u-good (resp., u f -good, . . . ) triangulation is u-good (resp., u f -good, . . . ).
(v) We have the identity

Ju = { f ∈ Freen | for some u f -good triangulation T , f |̀T u
= 0}.

(vi) If f ∈ Ju then f |̀ Uu
= 0 for every u f -good triangulation U .

Proof. (i) is an immediate consequence of the definition. (ii) follows from Lemma 2.4.
(iii) Let T be the smallest simplex of T containing Wu. We claim that T u

= T . By way of contradiction assume
T u

6= T . By construction, T u
∩ T is a simplex of T which contains some u-simplex (Proposition 2.2). By minimality

of T u, T strictly contains T u. By minimality of T , T u does not containWu. Let S = T u
∩Wu. SinceW refines T then

S is a simplex ofW and ∅ 6= S $ Wu. Because both T u andWu contain some u-simplex, again by Proposition 2.2, S
contains a u-simplex R. This contradicts the minimality of Wu. Our claim is settled and T u

= T ⊇ Wu, as required
to complete the proof.

(iv) Let U be a refinement of a u-good triangulation T . By (iii), Uui
⊆ T ui

for each i = 0, . . . , t, whence
dim Uui

≤ dim T ui
= dim ζ(ui ). Conversely, from (5) we also have dim Uui

≥ dim ζ(ui ), as desired.
(v) The nontrivial inclusion follows from (ii).
(vi) By (v) there exists at least one u f -good triangulation T such that f |̀T u

= 0. Let U be any arbitrary u f -good
triangulation. Let V be a joint refinement of T and U as given by Lemma 2.4. Then by (iii) and (iv) the simplex
Vu is a subset of Uu

∩ T u having the same dimension as Uu. We have f |̀Vu
= 0. Since f is linear over Uu then

f |̀ Uu
= 0. �

Definition 2.12. Let u = (u0, u1, . . . , ut ) and v = (v0, v1, . . . , vr ) be indexes with t ≤ r. If vi = ui for all
i = 0, . . . , t, then v is called an extension of u. If in addition ζ(ut ) $ ζ(vr ) we say that v is a proper extension
of u.

Lemma 2.13. If v is an extension of u then Jv ⊆ Ju.

Proof. Suppose f ∈ Jv. By Lemma 2.11(vi), for any v f -good triangulation T , the function f vanishes over T v.
Trivially, T is u f -good and T u

= T vt
⊆ T v. Thus f vanishes over T u, whence by Lemma 2.11(v) f ∈ Ju. �

Remark. Given u = (u0, . . . , ut ) and n > t it may happen that t < dim ζ(u) ≤ n. (For example, if u = u0 and
u0 /∈ ([0, 1] ∩ Q)n, then dim ζ(u) > 0). In this case there is v ∈ λ(u) such that the vectors u1, . . . , ut , v form a
linearly independent set and ζ(u0, . . . , ut , v) = ζ(u). Thus (u0, . . . , ut , v) is not a proper extension of u.

Definition 2.14. Following [5, p. 40], for any triangulation T of the n-cube and simplex F ∈ T the star st(F; T )
of F in T is the smallest subcomplex of T containing all the members of T that contain F . The point-set-theoretical
union of st(F; T ) is called the closed star of F in T and it is denoted by clstar(F; T ). (The notation set st(F; T ) is
used in [5]). The interior of clstar(F; T ) relative to the n-cube, is called the open star of F in T , denoted ostar(F; T ).
It follows that

ostar(F; T ) = int{x ∈ [0, 1]
n

| ∃ n-dimensional T ∈ T with x ∈ T ⊇ F}. (7)

When T is clear from the context we simply write clstar(F) and ostar(F).
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For every prime ideal J the germinal ideal germ(J ) is the intersection of all prime ideals contained in J. Germinal
ideals have the following characterization:

Theorem 2.15. Let u = (u0, u1, . . . , ut ) be an index and f ∈ Freen . Then the following conditions are equivalent:

(i) f |̀ ostar(T u) = 0 for some u f -good triangulation T ;
(ii) f |̀ ostar(T u) = 0 for every u f -good triangulation T ;

(iii) f ∈ germ(Ju).

Proof. (ii) → (i) is trivial, because at least one u f -good triangulation T exists.
In order to prove (iii) → (ii) suppose f ∈ germ(Ju) ⊆ Ju and let T be an arbitrary u f -good triangulation.

By Lemma 2.11(vi), f |̀T u
= 0; by definition of T u there exist real numbers ε1, . . . , εt > 0, such that

conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · · + εt ut } ⊆ T u. By way of contradiction, suppose f (x) > 0 for some
x ∈ ostar(T u). Then there is a vector v orthogonal to λ(u) such that for all suitably small δ > 0 the function f is
linear and not constantly zero over the set

R = conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · · + εt ut , u0 + ε1u1 + · · · + εt ut + δv}.

Thus f > 0 over relint R. Let us write (u, v) instead of (u0, u1, . . . , ut , v). It follows that f 6∈ J(u,v). (For otherwise,
f vanishes over some (u, v)-simplex S; by Proposition 2.2, S may be assumed to satisfy S ⊆ R, which contradicts
f > 0 over relint R). By Lemma 2.13, J(u,v) ⊆ Ju and by Proposition 2.8 J(u,v) is prime. Thus, by definition of
germinal ideal, f /∈ germ(Ju), a contradiction.

(i) → (iii) Assume f |̀ostar(T u) = 0 for some u f -good triangulation T . Then f |̀T u
= 0 and f ∈ Ju. Let J

be a prime ideal of Freen such that J ⊆ Ju and f /∈ J (absurdum hypothesis). Let b ∈ ([0, 1] ∩ Q)n be the Farey
mediant of (the vertices of) T u: b is obtained by writing each vertex (v1/v, . . . , vn/v) of T u in homogeneous integer
coordinates as (v1, . . . , vn, v), then taking the sum (s1, . . . , sn, s) of all these vectors in Zn+1, and finally letting
b = (s1/s, . . . , sn/s). See [1, p. 56] or [9, 2.2] for details. The resulting refinement W of T whose only new vertex
is b is said to be obtained via starring T at the mediant of T u. As is well known, W is automatically unimodular,
u-good and b ∈ relint T u . In the light of Lemma 2.5, let the function g ∈ Freen be defined by specifying its values at
each vertex of W (with g linear over each simplex of W) as follows:

g(x) =

{
1 if x = b,
0 if x is any other vertex of W.

Then by Lemma 2.11(vi), g /∈ Ju, whence g /∈ J. By construction, g identically vanishes over the complement of
ostar(T u) in [0, 1]

n . Therefore, f ∧ g = 0 ∈ J , thus contradicting the primeness of J. �

Proposition 2.16. Let u = (u0, u1, . . . , ut ) be an index such that dim ζ(u) < n. Suppose J is a prime ideal such
that J ⊆ Ju. Suppose there does not exist a proper extension v of u such that J is contained in Jv. Then there is a
function f ∈ J and a u f -good triangulation T such that

(i) f |̀ T u
= 0 and

(ii) f (x) > 0 for all x ∈ clstar(T u) \ T u.

Proof. Let λ⊥ denote the orthogonal complement of λ(u) in Rn . Let ζ⊥
= λ⊥

+ u0 denote the affine space given by
u0-translation of λ⊥. The dimension d of ζ⊥ satisfies d = n −dim ζ(u) > 0. Let S be the (d −1)-dimensional sphere
of radius one, centered at u0, and lying in ζ⊥, in symbols,

S = {z ∈ ζ⊥
| distance(z, u0) = 1}.

Fix an arbitrary unit vector v ∈ λ⊥. Then the index (u, v) is a proper extension of u. Since by hypothesis, J 6⊆ J(u,v)
let fv ∈ J \ J(u,v), whence fv ∈ Ju ⊇ J. Let Tv be a (u, v) fv-good triangulation. Then by Lemma 2.11(v)–(vi) we
have

fv |̀T u
v = 0, and fv(x) > 0 for all x ∈ relint T (u,v)v . (8)
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Letting Ov = ostar(T (u,v)v ; Tv) it follows that

fv(x) > 0 for all x ∈ Ov. (9)

As a matter of fact, fv is linear over each n-simplex of the star of T (u,v)v in Tv , and is > 0 over relintT (u,v)v ⊆ Ov . Let
O ′
v be the projection of Ov into ζ⊥. Since Ov is open then O ′

v is relatively open in ζ⊥. For each y ∈ O ′
v let ỹ be the

intersection of S with the half-line originating in u0 and passing through y. Then the set

Õv = {ỹ | y ∈ O ′
v}

is relatively open in the sphere S. Letting now v range over all unit vectors of λ⊥, we define the family O by

O = {Õv | v ∈ λ⊥
}.

Then O is an open cover of S. The compactness of S yields a finite subfamily {Õv(1), Õv(2), . . . , Õv(k)} of O still
covering S. Each v(i) comes together with a function fi = fv(i) ∈ J \ J(u,v(i)) and some fi -good triangulation
Ti = Tv(i) which is also (u, v(i))-good.

Claim 1. For each nonzero vector w ∈ λ⊥ there is i ∈ {1, . . . , k} such that the closed star of T (u,v(i))i in Ti contains
some (u, w)-simplex

conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · · + εw}

whose vertex u0 + ε1u1 + · · · + εw lies in Ov(i).

As a matter of fact, let x = u0 + w ∈ ζ⊥. Let x̃ be the intersection of S with the half-line originating
in u0 and passing through x . Since {Õv(1), Õv(2), . . . , Õv(k)} is an open cover of S, there exists a v(i) together
with a y in the projection O ′

v(i) such that y coincides with u0 + δw for some δ > 0. Thus, there is a point
z = u0 + ε1u1 + · · · εt ut + εw ∈ Ov(i) whose projection into ζ⊥ coincides with y. By definition of Ov(i) there
is an n-simplex R in the star of T (u,v(i))i such that z ∈ R. Since R is convex and T u

i is a proper face of R we have

conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + . . . εt ut + εw} ⊆ R ⊆ clstar(T (u,v(i))i ; Ti ),

and the claim follows.
Let the function f ∈ J be defined by

f = f1 ∨ f2 ∨ · · · ∨ fk . (10)

In the light of Lemma 2.4, let T be an f -good triangulation that jointly refines each triangulation T1, . . . , Tk . By (8)
and Lemma 2.11(iii), fi |̀T u

= 0 for each i = 1, . . . , k. Thus,

f |̀T u
= 0. (11)

Claim 2. f (x) > 0 for each x ∈ clstar(T u) \ T u.

Write for short Q instead of ostar(T u) \ T u. We first assume x ∈ Q. Then x belongs to relint T , for a uniquely
determined smallest simplex T in the star of T u. Further, T u is a proper face of T , whence dim T > dim T u. The
vector x − u0 can be uniquely written as x − u0 = l + v where l ∈ λ, v ∈ λ⊥. We have v 6= 0 because x /∈ T u. It
follows that T contains some (u, v)-simplex. For any subset O of [0, 1]

n let O denote the closure of O . By Claim 1,
for some i = 1, . . . , k the closed star Ov(i) of T (u,v(i))i in Ti contains some (u, v)-simplex, whence so does T ∩ Ov(i)
by Proposition 2.2. So let T ∩ Ov(i) ⊇ T ′

= conv{u0, u0 + ω1u1, . . . , u0 + ω1u1 + · · · + ωv} for suitable ωi > 0.
Let c ∈ relint T ′. Then c ∈ Ov(i) and from (9) we obtain fi (c) > 0. Since f ≥ fi > 0 over Ov(i) we have f (c) > 0.
From c ∈ relint T it follows that f > 0 over relint T , because T ∈ T and T is f -good. Thus f (x) > 0 for all
x ∈ relint T, and our claim is settled in the special case when x ∈ Q. Assume now x ∈ clstar(T u) \ T u. Then there
is a point y ∈ relint T u (e.g., y = Farey mediant of the vertices of T u) such that the segment [x, y] contains some
point z ∈ ostar(T u)\T u. The segment [x, y] is contained in some simplex of the star of T u, and f is linear over such
simplex. By (11), f (y) = 0 and by our previous discussion, f (z) > 0. Then f (x) > 0, and our claim is settled.

The proof is complete. �
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Theorem 2.17. Let u = (u0, u1, . . . , ut ) be an index and J a prime ideal with J ⊆ Ju. If there does not exist a proper
extension v of u such that J is contained in Jv then J = Ju.

Proof. Case 1. dim ζ(u) = n.

This is equivalent to saying that for any possible choice of a vector v ∈ Rn, the index (u, v) is not a proper
extension of u. Suppose that J $ Ju (absurdum hypothesis). Let f ∈ Ju \ J and let T be a u f -good triangulation.
Then dim T u

= n and f |̀T u
= 0.As in the proof of Theorem 2.15, letW be the refinement of T obtained by starring

T at the mediant b of T u. Then b ∈ relint T u. In the light of Lemma 2.5 let the McNaughton function g ∈ Freen be
uniquely determined by specifying its value at each vertex of W as follows:

g(x) =

{
1 if x = b,
0 if x is any other vertex of W ,

with g linear over each simplex ofW . Since f |̀T u
= 0 we can write g ∧ f = 0, whence f ∧ g ∈ J. By construction,

g 6∈ Ju, whence g 6∈ J ; since f /∈ J we conclude that J is not prime, a contradiction.

Case 2. dim ζ(u) < n.

Let g be an arbitrary function in Ju. An application of Proposition 2.16 yields a function f ∈ J and a u f -good
triangulation T satisfying conditions (i)–(ii) therein. We shall construct a function h ∈ J such that g is in the ideal
generated by f ⊕ h, thus showing that Ju = J. To this purpose, let V be a u f g-good triangulation refining T . By
Lemma 2.11, g |̀Vu

= 0. As an application of Lemma 2.5, let the McNaughton function h ∈ Freen be given by

h(x) =

{
0 if x is a vertex of some simplex in the star of Vu,

1 if x is any other vertex of V,

with h being assumed linear over each simplex of V . By Theorem 2.15, h ∈ germ(Ju). Since J is prime and J ⊆ Ju,
it follows that h ∈ J. As an effect of Proposition 2.16 together with the inclusion Vu

⊆ T u given by Lemma 2.11(iii),
the only points in the closed star of Vu where f vanishes are those of Vu. Therefore, ( f ⊕ h)(x) = 0 iff x ∈ Vu.
Since g |̀Vu

= 0 and f ⊕ h ∈ J, by an application of [1, Lemma 3.4.8] we conclude that g ∈ J , as desired. �

Corollary 2.18. Every prime ideal J of Freen has the form J = Ju form some index u.

Proof. Every prime ideal of Freen is contained in exactly one maximal ideal [1, Corollary 1.2.12]. By [1, 3.4.7],
maximal ideals of Freen are exactly those of the form Jx = { f ∈ Freen | f (x) = 0} for some x ∈ [0, 1]

n . So let
u = (u0, . . . , ut ) be and index such that Ju ⊇ J , and for no proper extension v of u it is the case that Jv ⊇ J. An
application of Theorem 2.17 shows that J = Ju. �

Let u = (u0, . . . ut ) be an index. If the vector ui+1 belongs to the linear space λ(ui ), then λ(ui+1) = λ(ui ), and in
a sense that will be made precise in the next proposition, ui+1 is redundant in u. An index u is said to be reduced if
for all i = 0, . . . , t − 1, dim λ(ui ) < dim λ(ui+1). Equivalently, u is reduced iff for every u-good triangulation T we
have T u0

≺ T u1
≺ · · · ≺ T ut−1

≺ T ut
, where ≺ denotes proper subface.

The following strengthening of Corollary 2.18 shall find several applications in the rest of our paper: 1

Proposition 2.19. For every prime ideal J of Freen there exists a reduced index u such that J = Ju.

Proof. Corollary 2.18 yields an index u = (u0, . . . , ut ) such that J = Ju. If u is reduced we are done. Otherwise, we
define the function κ by

κ(1) = min{s > 0 | us /∈ λ(u0)}, and for 2 ≤ j ≤ r

κ( j) = min{s > κ( j − 1) | us /∈ λ(u0, . . . , uκ( j−1))}.

1 This result was first proved by Panti in [13, Corollary 4.9] using the Baker–Beynon representation of free vector lattices and free abelian
lattice-ordered groups, together with the categorical equivalence Γ of [7, 3.9] between MV-algebras and abelian lattice-ordered groups with strong
order-unit. Our shorter proof here only uses elementary MV-algebraic machinery.
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Let v = (u0, uκ(1), . . . , uκ(r)) and observe that r < t. Direct verification shows that v is a reduced index. From the
definition of v we see that ζ(u) = ζ(v). For any uv-good triangulation T we also have T u

= T v. As a matter of fact,
by definition of v, any v-simplex is contained in some u-simplex and any u-simplex contains some v-simplex. Thus
T u

⊆ T v. Since dim T u
= dim T v, then T u

= T v, as desired. Finally, by Lemma 2.11(v), Ju = Jv. �

3. Equal indexes for the same prime ideal

The principal topic of this section is the introduction of necessary and sufficient conditions for two reduced indexes
to represent the same prime ideal.

Proposition 3.1. Let u = (u0, u1, . . . , ut ) and v = (v0, v1, . . . , vt ) be two reduced indexes with ζ(ut−1) = ζ(vt−1).

Let T be a uv-good triangulation, and suppose that T u is a proper subface of T v, in symbols,

T u
≺ T v. (12)

Then there exists a refinement W of T such that Wut−1
= Wvt−1

,Wu
6⊆ Wv and Wv

6⊆ Wu.

Proof. One first verifies that

T ut−1
= T v

t−1
. (13)

As a matter of fact, T ut−1
≺ T u

≺ T v, T vt−1
≺ T v and both T vt−1

and T ut−1
lie on the space ζ(ut−1) = ζ(vt−1).

This proves (13).
By hypothesis, since T u is a proper face of T v, we have that dim(ζ(u)) < dim(ζ(v)). By definition of ζ(u) we

can write

conv{v0, v0 + v1, . . . , v0 + v1 + · · · + vt } 6⊆ ζ(u),

while conv{u0, u0 + u1, . . . , u0 + u1 + · · · + ut } ⊆ ζ(u). Since

conv{u0, u0 + u1, . . . , u0 + · · · + ut−1} ⊆ ζ(u) ⊇ conv{v0, v0 + v1, . . . , v0 + · · · + vt−1}

we conclude that the points v = v0 + v1 + · · · + vt and u = u0 + u1 + · · · + ut must be distinct.

Claim. There exists a hyperplane H satisfying:

(1) T ut−1
= T vt−1

⊆ H ;

(2) v ∈ int H+
;

(3) u ∈ int H−.

As a matter of fact, from our assumption that v and u are reduced and T u
≺ T v it follows that codim ζ(ut−1) ≥ 2.

Let z be a point in the interior of the line segment between u and v. The simplex

T = conv{v0, v0 + v1, . . . , v0 + v1 + · · · + vt−1, v0 + v1 + · · · + vt−1 + z}

satisfies dim T ≤ n −1. For simplicity let us first assume that dim T = n −1. Let K be the hyperplane determined by
T . Then K satisfies conditions (1)–(3). Let a0, a1, . . . , an be the coefficients of K .By slightly perturbing – if necessary
– the coefficients ai , we may find a hyperplane H such that H still satisfies conditions (1)–(3), and the coefficients of
H are all rational. Indeed, continuity ensures that conditions (2) and (3) are preserved under small perturbations; and
condition (1) is fulfilled by H as a consequence of the rationality of ζ(ut−1). The case dim T < n − 1 is proved in a
similar way. This settles our claim.

Letting now W be a refinement of T that respects H , as given by Lemma 2.4, a moment’s reflection shows that
Wu and Wv have the desired properties. �

Theorem 3.2. Let u = (u0, u1, . . . , ut ) and v = (v0, v1, . . . , vr ) be two reduced indexes such that Ju = Jv. Then
t = r, u0 = v0 and for each 0 ≤ j ≤ t, Ju j = Jv j .
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Proof. For definiteness assume t ≤ r . If (absurdum hypothesis) u0 6= v0 then by [1, Proposition 3.4.7] the maximal
ideals Ju0 and Jv0 are different. By Lemma 2.13, Ju ⊆ Ju0 and Ju = Jv ⊆ Jv0 , thus contradicting the fact that a prime
ideal is contained in precisely one maximal ideal [1, Corollary 1.2.12]. This shows that u0 = v0 and Ju0 = Jv0 .

Next we prove the identity

Jui = Jvi , 1 ≤ i ≤ t. (14)

By way of contradiction let j = min{i | Jui 6= Jvi }. Since j ≥ 1 and Ju j−1 = Jv j−1 , by Lemma 2.11 we can write

Uu j−1
= Uv

j−1
(15)

for every uv-good triangulation U . As a matter of fact, if U is a counterexample and, say, x is a vertex in U with
x ∈ Uv j−1

\ Uu j−1
then let the function f ∈ Freen be defined by

f (x) =

{
0 if x is a vertex of Uu j−1

,

1 if x is any other vertex of U ,

with f linear over each simplex of U . By Lemma 2.5 f is well defined. It follows that f ∈ Ju j−1 and f /∈ Jv j−1 ,

which is impossible. This settles (15).
In order to prove (14) we consider the three possible cases for our absurdum hypothesis Ju j 6= Jv j :

Case 1. Ju j 6⊆ Jv j and Jv j 6⊆ Ju j .

There must be a uv-good triangulation U such that Uv j
6⊆ Uu j

; for otherwise, by Lemma 2.11(iv), every function
f ∈ J u j

would also be in J v
j
, against our standing hypothesis. Symmetrically, there is a uv-good triangulation V

such that Vu j
6⊆ Vv j

. Let T be a refinement of both U and V. Then T is a uv-good triangulation with the following
properties:

(i) T u j−1
= T v j−1

,

(ii) T u j
6⊆ T v j

, and
(iii) T v j

6⊆ T u j

where the first equality follows from (15). Therefore, there exists a vertex x ∈ T u j
\T v j

, and a vertex y ∈ T v j
\T u j

.

If dim T u j−1
= n − 1, letting H be the hyperplane of T u j−1

in n-space we immediately see that x ∈ H+
\ H and

y ∈ H−
\ H. If dim T u j−1

< n − 1, then, again, x and y can be separated by a hyperplane H ⊇ T u j−1
. In the light

of Lemma 2.4 let W be a refinement of T that respects H. We can write

Wu j−1
⊆ H, Wut

⊆ H+ and Wvr
⊆ H−.

Let U be the set of vertices of Wut
. Using Lemma 2.5, let the McNaughton function f ∈ Freen be uniquely defined

by

f (x) =

{
0 if x ∈ U,
1 if x is any other vertex of W ,

with f linear over each simplex of W . Then f ∈ Ju and since there is at least one vertex in Wvr
\ Wut

we have
f /∈ Jv, a contradiction.

Case 2. Ju j is strictly contained in Jv j .

As a matter of fact, for every uv-good triangulation V we necessarily have Vv j
⊆ Vu j

(for otherwise, arguing as in
the proof of (15) we would obtain a function f ∈ Ju j \ Jv j , which is impossible). Moreover, the proper inclusion of
Ju j in Jv j yields a uv-good triangulation U such that Uv j

is a proper subface of Uu j
. As a consequence of (15), the

triangulation U also satisfies Uu j−1
= Uv j−1

. Therefore, ζ(u j−1) = ζ(v j−1), whence by Proposition 3.1 there exists
a refinement T of U such that T u j−1

= T v j−1
, T u j

6⊆ T v j
and T v j

6⊆ T u j
. The same argument as in the previous

case again yields a contradiction.
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Case 3. Jv j is strictly contained in Ju j .

This is similar to Case 2.
We have just proved (14). To conclude the proof, by way of contradiction, suppose t < r and let T be a uv-good

triangulation. Since the indexes u and v are reduced then T ut
is a proper subface of T vr

. Let U be the set of vertices
in T ut

. Using Lemma 2.5, let the McNaughton function g ∈ Freen be defined by

g(x) =

{
0 if x ∈ U,
1 if x is any other vertex of T ,

with g linear over each simplex of T . Then Lemma 2.11(v)–(vi) shows that g ∈ Ju and g /∈ Jv, again contradicting
Ju = Jv. In conclusion, t = r, as required to complete the proof of the theorem. �

Remark. In the light of Proposition 2.19 we can now assign to every prime ideal J of Freen a uniquely determined
integer r = rJ ≥ 0, where

rJ + 1 = number of elements of any reduced index of J. (16)

Our results show that rJ is the length of the maximal path of prime ideals

J0 ⊇ J1 ⊇ · · · ⊇ JrJ = J

leading to J from the maximal ideal above J . It is natural to say that rJ is the (Krull) depth of J .

Corollary 3.3. Let u = (u0, u1, . . . , ut ) and v = (v0, v1, . . . , vk) be two reduced indexes and let j ≤ min(t, k). If
ζ(u j−1) = ζ(v j−1) and T u j $ T v j

for some uv-good triangulation T , then Ju 6= Jv.

Proof. First note that T u j
is a proper subface of T v j

. By Proposition 3.1 there exists a refinement W of T such that
Wu j

6⊆ Wv j
and Wv j

6⊆ Wu j
. A routine variant of the argument given in the proof of Case 1 of Theorem 3.2, yields

the desired conclusion. �

Definition 3.4. Given a reduced index u = (u0, u1, . . . , ut ), for each 0 < j ≤ t we define the set θ(u j ), by the
stipulation

θ(u j ) = {x ∈ Rn
| x = y + βu j for some y ∈ λ(u j−1) and 0 < β ∈ R}. (17)

Theorem 3.5. Let u = (u0, u1, . . . , ut ) and v = (v0, v1, . . . , vt ) be two reduced indexes. Then the following
conditions are equivalent:

(i) Ju = Jv;
(ii) For every uv-good triangulation T , the sequence (T u0

, . . . , T ut
) coincides with (T v0

, . . . , T vt
);

(iii) u0 = v0 and u j ∈ θ(v j ) for all j = 1, . . . , t.

Proof. (ii) → (i) is an easy consequence of the Lemma 2.11(v)–(vi). The converse implication (i) → (ii) follows from
Corollary 3.3.

(iii) → (ii). Let T be a uv-good triangulation. Then trivially, T u0
= T v0

, ζ(u0) = ζ(v0) and λ(u0) = λ(v0).

Turning attention to j = 1, the hypothesis u1 ∈ θ(v1) yields an element y ∈ λ(v0) such that u1 = y + βv1 for some
0 < β ∈ R. Let ε0 > 0 be such that u0 +ε0 y ∈ relint (T u0

). By definition of T v1
for each z ∈ relint T u0

= relint T v0
,

there exists 0 < εz such that conv{z, z+εzv1} ⊆ T v1
. Thus there exists ε1 such that conv{u0, u0+ε1(y+βv1)} ⊆ T v1

,
that is, conv{u0, u0 + ε1u1} ⊆ T v1

. By definition of T u1
we can write T u1

⊆ T v1
. On the other hand, from

λ(u0) = λ(v0), it follows that v1 = −
1
β

y +
1
β

u1, whence v1 ∈ θ(u1). Symmetrically, T u1
⊇ T v1

, whence

T u1
= T v1

, ζ(u1) = ζ(v1) and λ(u1) = λ(v1).

Proceeding now by induction, assume T ui
= T vi

, ζ(ui ) = ζ(vi ) and λ(ui ) = λ(vi ) for all i < j. Let y ∈ λ(v j−1)

be such that u j = y + βv j for some 0 < β ∈ R. Since T u j−1
= T v j−1

there exist ε1, . . . , ε j−1 > 0 such that

relint(conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · · + ε j−1u j−1}) ⊆ relint(T v
j−1
).
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Since y ∈ λ(v j−1), there is δ > 0 such that

relint(conv{u0, u0 + ε1u1, . . . , u0 + ε1u1 + · · · + ε j−1u j−1 + δy}) ⊆ relint(T v
j−1
).

Arguing as for the case j = 1, by definition of T v j
we have real 0 < ε j such that

conv{u0, . . . , u0 + ε1u1 + · · · + ε j−1u j−1, u0 + ε1u1 + · · · + ε j−1u j−1 + ε j (y + βv j )} ⊆ T v
j
.

We conclude that T u j
⊆ T v j

. For the converse inclusion one similarly notes that v j = −
1
β

y +
1
β

u j for some

y ∈ λ(u j−1), i.e., v j ∈ θ(u j ). Thus, T u j
⊇ T v j

. The rest is clear.

(ii) → (iii). Suppose that T u j
= T v j

for every uv-good triangulation T and all j = 0, 1, . . . , t. Then
ζ(u j ) = ζ(v j ) and λ(u j ) = λ(v j ). If u0 6= v0 (absurdum hypothesis) then there exists a hyperplane H such that
u0 ∈ H+

\ H and v0 ∈ H−
\ H. Let T be a uv-good triangulation that respects H . Then, trivially, T u0

6= T v0
, against

our hypothesis.
Having thus proved that u0 = v0, by way of contradiction let

j = min{i | ui /∈ θ(v
i )} ≥ 1. (18)

It follows that

u j ∈ λ(v j ), (19)

for otherwise ζ(v j ) 6= ζ(u j ), whence for every uv-good triangulation T it would follow that T u j
6= T v j

, which is
impossible. Also notice that

u j /∈ λ(v
j−1), (20)

because λ(v j−1) = λ(u j−1) and u is reduced. Let

a1, . . . , ar , v j , w1, . . . , ws

be a basis for λ(v j ) such that a1, . . . , ar form a basis of λ(v j−1). By (19) there are uniquely determined coefficients
such that

u j = γ1a1 + · · · + γr ar + βv j + α1w1 + · · · + αsws .

As a consequence of our assumption that u j /∈ θ(v
j ), it is not the case that β > 0 and all α’s are zero. By (20), not all

of β and the α’s are zero. We shall see that the two remaining possibilities lead to contradiction.

Case 1. Some α is nonzero.
Then some hyperplane H ⊇ λ(v j−1) separates the points u = u0 + u1 + · · · + u j and v = v0 + v1 + · · · + v j ,

in the sense that u ∈ H+ and v ∈ H−. H is constructed as in Proposition 3.1. Any triangulation T which is uv-good
and respects H will satisfy the condition T v j

6= T u j
, against our hypothesis.

Case 2. All α’s are zero, and β ≤ 0.
Then necessarily β < 0 by (19)–(20). Again, some hyperplane H ⊇ λ(v j−1) separates u = u0 + u1 + · · · + u j

and v = v0 + v1 + · · · + v j . Any triangulation T which is uv-good and respects H will contradict our hypothesis.

This completes the proof of the theorem. �

4. Projections and prime ideal extensions

Suppose I is a prime ideal in Freen and m ≤ n. Then K = I ∩ Freem is a prime ideal in Freem . We shall be
concerned with the relationships between indexes of K and indexes of I , as given by Proposition 2.19. Whenever
m ≤ n we shall canonically identify Freem with the subalgebra of Freen given by all functions in Freen that only
depend on the first m variables, in symbols,

Freem ⊆ Freen . (21)
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To avoid any danger of confusion, any index u where each ui is in Rn (resp., each ui is in Rm) shall be called an index
for n-space (resp., index for m-space). In Theorem 4.10 below we shall prove a result to the effect that, whatever
reduced index w we choose for K we can always find for I a reduced index u whose projection into m-space is
precisely equal to w, once all zero vectors are deleted. This is the crucial step for proving the Robinson consistency
property for Łukasiewicz logic.

Notation. For integers 0 < m ≤ n and x ∈ Rn we let for short Pm(x) denote the projection of x into Rm . For each set
S ⊆ Rn, we let Pm(S) be defined by

Pm(S) = {y ∈ Rm
| y = Pm(x) for some x ∈ S}.

When the context is clear we shall simply write P instead of Pm .
Throughout this section M will denote an arbitrary (but always rational and affine) hyperplane in m-space; H will

still denote a hyperplane in n-space.
For later use we record here the following trivial fact:

Lemma 4.1. Let H be a hyperplane in Rn and let 1 ≤ m < n. Then either P(H) = Rm or P(H) is a rational and
affine hyperplane in Rm .

For any hyperplane M in Rm we denote by cyl(M) the cylindrification of M in Rn, i.e.,

cyl(M) = {x ∈ Rn
| P(x) ∈ M}.

Then cyl(M) is a (rational and affine) hyperplane in Rn and P(cyl(M)) = M . Further, for every hyperplane H in Rn

we have P(H) 6= Rm iff H = cyl(M) for some (necessarily unique) hyperplane M in Rm .

For the sake of completeness we give a proof of the following elementary fact:

Lemma 4.2. For each simplex T ⊆ Rn and each hyperplane M ⊆ Rm we have

T ⊆ cyl(M) iff P(T ) ⊆ M.

Proof. If T ⊆ cyl(M), then P(T ) ⊆ M. On the other hand, if T 6⊆ cyl(M), let x ∈ T \ cyl(M). Since the defining
equation of cyl(M) depends only on the first m variables we have P(x) /∈ M and P(x) ∈ P(T ). Then P(T ) 6⊆ M. �

We also record the following

Lemma 4.3. Let T ⊆ Rn be a simplex. Then we have

P
(⋂

{H | T ⊆ H}

)
= P

(⋂
{H | T ⊆ H and H = cyl(M) for some M}

)
=

⋂
{P(H) | T ⊆ H and H = cyl(M) for some M} =

⋂
{M | T ⊆ cyl(M)}.

Proof. The first identity is a direct consequence of Lemma 4.1. The second follows from the fact that every hyperplane
M in Rm has the same defining equation as cyl(M). The last identity is trivial. �

Given an index u = (u0, u1, . . . , ut ) for n-space the tuple (P(u0),P(u1), . . . ,P(ut )) need not be an index for m-
space, because the vectors P(u1), . . . ,P(ut ) may fail to be independent. However, for a uniquely determined integer
r ≥ 0 (given by the Krull depth of Ju as in (16)) we can give the following

Definition 4.4. We define π(u) by π(u) = (P(u0),P(uι(1)), . . . ,P(uι(r))), where

ι(1) = min{s > 0 | P(us) /∈ λ(P(u0))}, and for 2 ≤ j ≤ r

ι( j) = min{s > ι( j − 1) | P(us) /∈ λ((P(u0), . . . ,P(uι( j−1)))}.

Then π(u) is automatically a reduced index for m-space. The following is an immediate consequence of the
definition:



14 M. Busaniche, D. Mundici / Annals of Pure and Applied Logic 147 (2007) 1–22

Lemma 4.5. Let u = (u0, u1, . . . , ut ) and π(u) = (P(u0),P(uι(1)), . . . ,P(uι(r))). Let the simplexes Tπ(u), TP(u) and
T be defined by

Tπ(u) = conv{P(u0),P(u0)+ P(uι(1)), . . . ,P(u0)+ P(uι(1))+ · · · + P(uι(r))},
TP(u) = conv{P(u0),P(u0)+ P(u1), . . . ,P(u0)+ P(u1)+ · · · + P(ut )},

T = conv{u0, u0 + u1, . . . , u0 + u1 + · · · + ut }.

It follows that

(i) P(T ) = TP(u);
(ii) for any hyperplane M ⊆ Rm , Tπ(u) ⊆ M iff TP(u) ⊆ M.

Proposition 4.6. For every index u for n-space we have

P(ζ(u)) = ζ(π(u)).

Proof. By Lemmas 4.2 and 4.5 we can write ζ(π(u)) =
⋂

{M | Tπ(u) ⊆ M} =
⋂

{M | TP(u) ⊆ M} =
⋂

{M |

T ⊆ cyl(M)}. Using the identity P(ζ(u)) = P(
⋂

{H | T ⊆ H}) and applying Lemma 4.3 we obtain the desired
conclusion. �

Theorem 4.7. Let 1 ≤ m ≤ n. Then for every index u for n-space we have

Ju ∩ Freem = Jπ(u).

Proof. For some t ≤ n let us write u = (u0, u1, . . . ut ). Let f ∈ Ju ∩ Freem and let T be a u f -good triangulation
of [0, 1]

n . Then f |̀T u
= 0. Let U be a triangulation of [0, 1]

m that u-reflects the triangulation T , in the sense that U
is π(u) f -good and Uπ(u) ⊆ P(T u). The existence of such triangulation is guaranteed by Lemma 4.5 together with
Proposition 4.6, because

dim Uπ(u) = dim ζ(π(u)) = dim P(ζ(u)) = dim P(T u).

Since f ∈ Freem and f |̀Uπ(u) = 0, we conclude that f ∈ Jπ(u).
Conversely, let f ∈ Jπ(u) and let U be a π(u) f -good triangulation of [0, 1]

m . Then f ∈ Freem and f |̀Uπ(u) = 0.
Let T be a u f -good triangulation of [0, 1]

n that π(u)-reflects U . Stated otherwise, P(T u) ⊆ Uπ(u). Again, the
existence of T is guaranteed by Proposition 4.6 and Lemma 4.5. Now let x ∈ T u. Since T π(u)-reflects U, then
P(x) ∈ P(T u) ⊆ Uπ(u). From the fact that f ∈ Freem we have f (x) = f (P(x)) = 0, whence f ∈ Ju as desired. �

Definition 4.8. Given any arbitrary index u = (u0, u1, . . . , ut ) for n-space, let π(u) = (P(u0),P(uι(1)), . . . ,P(uι(k)))
be as in Definition 4.4. Let further w = (w0, w1, . . . , wk) be a reduced index for m-space. We say that π(u) adheres
to w if P(uι( j)) = w j for each j = 0, 1, . . . , k and P(us) = 0 for each s ∈ {1, . . . , t} not belonging to the range of ι.

Proposition 4.9. Let b ∈ λ(π(u)). Then there exists t ∈ λ(u) such that P(t) = b.

Proof. Immediate from Proposition 4.6. �

Our main tool to prove the Robinson consistency property for Łukasiewicz logic is given by the following:

Theorem 4.10. Let J be a prime ideal in Freen , and 1 ≤ m ≤ n.Write Freem ⊆ Freen as in (21). Let K = J ∩Freem .
Then K is a prime ideal of Freem . In the light of Proposition 2.19 write K = Jw for some reduced index for m-space.
Then there is a reduced index u for n-space such that

(i) J = Ju and
(ii) π(u) adheres to w.

Proof (Preliminaries). It is easy to prove that K is a prime ideal in Freem . Using Proposition 2.19 let w =

(w0, w1, . . . , wk) be a reduced index for m-space such that Jw = K . Also let v = (v0, v1, . . . , vt ) be a reduced
index for n-space such that J = Jv. From Theorem 4.7 it follows that Jw = Jv ∩ Freem = Jπ(v). Since w and π(v)
are reduced indexes for the same ideal in m-space, by Theorem 3.2, w and π(v) have the same length. We can write

π(v) = (P(v0),P(vι(1)), . . . ,P(vι(k)),
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where the map ι is as given in Definition 4.4. By Theorem 3.5, P(v0) = w0 and for each j = 1, . . . , k,
P(vι( j)) ∈ θ(w j ), i.e.,

P(vι( j)) = y j + β jw j (22)

for some y j ∈ λ(w j−1) and 0 < β j ∈ R. Let B0 = (b1
0, . . . , bs0

0 ) be a basis for λ(w0) = λ(P(v0)). For each
j = 1, . . . , k, let the basis B j of λ(w j ) be defined by:

(1) B j extends B j−1, i.e., if b ∈ B j−1, then b ∈ B j ;
(2) all vectors (b1

j , b2
j . . . b

s j
j ) ∈ B j \ B j−1 satisfy the identity b1

j = w j .

We now begin our construction of a reduced index u such that J = Jv = Ju,P(uι( j)) = w j , and P(us) = 0 for each
s not belonging to the range of ι.

Construction of u0 and uι(1). First of all, upon defining

u0 = v0,

we immediately obtain the desired identity P(u0) = P(v0) = w0. By Proposition 4.9 there exists a set T0 =

(t1
0 , . . . , t s0

0 ) ⊆ λ(v0) = λ(u0) such that P(t i
0) = bi

0 ∈ B0 for each i = 1, . . . , s0.

Next we construct uι(1). Since P(vι(1)) ∈ θ(w1), we can write y1 =
∑s0

j=1 α j b
j
0 ∈ λ(w0) for suitable α j ∈ R in

such a way that

P(vι(1)) = y1 + β1w1.

Since β1 > 0, we have

w1 = −
1
β1

y1 +
1
β1

P(vι(1)).

Letting z1 =
∑s0

j=1 α j t
j

0 ∈ λ(v0) = λ(u0), define

uι(1) = −
1
β1

z1 +
1
β1
vι(1).

Then

P(uι(1)) = −
1
β1

P(z1)+
1
β1

P(vι(1)) = w1.

From λ(v0) ⊆ λ(vι(1)−1), it follows that uι(1) ∈ θ(vι(1)). By Proposition 4.6, P(ζ((u0, uι(1)))) = ζ(w1). Then
by Proposition 4.9 for each j = 2, . . . , s1, there is a vector t j

1 in λ((u0, uι(1))) such that P(t j
1 ) = b j

1 ∈ B1. Let
T1 = T0 ∪ {uι(1), t2

1 , . . . , t s1
1 }. Since u0 = v0 and uι(1) ∈ θ(vι(1)) it follows that

T1 ⊆ λ((u0, uι(1))) ⊆ λ(vι(1)).

Construction of uι( j) for j ≥ 2. Proceeding by induction, suppose that we have already constructed uι(i) and Ti for
every 0 < i < j , in such a way that:

(1) uι(i) ∈ θ(vι(i));

(2) P(uι(i)) = wi ;

(3) Ti ⊆ λ((u0, uι(1), . . . , uι(i))) ⊆ λ(vι(i)), where Ti = Ti−1 ∪ {uι(i), t2
i , . . . t

si
i ) and P(tr

i ) = br
i ∈ Bi for all

1 < r ≤ si .

Since P(vι( j)) ∈ θ(w j ) let

y j =

j−1∑
d=0

(
sd∑

l=1

αd
l bl

d

)
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be an element of λ(w j−1) with αd
l ∈ R and bl

d ∈ Bd , (for each d = 0, 1, . . . , j − 1) satisfying the condition
P(vι( j)) = y j + β jw j . From β j > 0 we obtain w j = −

1
β j

y j +
1
β j

P(vι( j)). Letting now

z j =

j−1∑
d=0

(
sd∑

l=1

αd
l t l

d

)
,

we have z j ∈ λ(vι( j−1)). Upon defining uι( j) = −
1
β j

z j +
1
β j
vι( j), we have

P(uι( j)) = −
1
β j

P(z j )+
1
β j

P(vι( j)) = w j and uι( j) ∈ θ(vι( j)).

Finally, from Proposition 4.6 we have P(ζ((u0, . . . , uι( j)))) = ζ(w j ). Hence Proposition 4.9 ensures the existence of
vectors t l

j ∈ λ((u0, . . . , uι( j))) for l = 2, . . . s j such that P(t l
j ) = bl

j ∈ B j . Let T j = T j−1 ∪ {uι( j), t2
j , . . . , t

s j
j }. From

uι(i) ∈ θ(vι(i)) for each i ≤ j we get

T j ⊆ λ(vι( j)). (23)

The remaining elements of u. To conclude, we shall construct the vectors us’s for each s not belonging to the range of
ι. In other words, s ∈ {0, 1, . . . , t} is such that P(vs) lies in λ(P(v0), . . . ,P(vι( j))) = λ(w j ) for some j with ι( j) < s.
We can write

P(vs) =

j∑
d=0

(
sd∑

l=1

αd
l bl

d

)
,

with bl
d ∈ B j and αd

l ∈ R. Let

us = vs −

j∑
d=0

(
sd∑

l=1

αd
l t l

d

)
,

with t l
d ∈ T j such that P(t l

d) = bl
d . From (23) we obtain

j∑
d=0

(
sd∑

l=1

αd
l t l

d

)
∈ λ(vι( j)),

We also have us ∈ θ(vs) and P(us) = 0.

Letting u = (u0, u1, . . . ut ) we conclude that ui lies in θ(vi ) for each i = 1, 2, . . . , t . From Theorem 3.5(ii) and
(i) it follows that u is a reduced index for n-space and Ju = Jv. The construction of u also ensures that P(u) adheres
to w, as desired. �

5. Robinson consistency in Łukasiewicz logic

Recall from the Introduction the appropriate definitions. We shall now derive the central result of our paper: the
Robinson consistency property for infinite-valued Łukasiewicz propositional logic:

Theorem 5.1. Suppose Θ is a prime L X -theory, and Ψ is a prime LY -theory. Let Z = X ∩ Y and W = X ∪ Y . If
Θ ∩ L Z = Ψ ∩ L Z then there is a prime LW -theory Φ such that Θ = Φ ∩ L X and Ψ = Φ ∩ LY .

The proof will immediately follow from Theorem 5.2 below, via the familiar correspondence [1, 4.2.7, 4.6.3]
between LV -theories, implicative filters in the free MV-algebra FreeV over the free generating set V , and ideals of
FreeV , for any set V of variables.

Theorem 5.2. Let X, Y and Z be sets of free variables, with Z = X ∩ Y . Let I and J be prime ideals of FreeX and
FreeY respectively. Suppose I ∩ FreeZ = J ∩ FreeZ . Then there is a prime ideal A = AXY of FreeX∪Y such that

AXY ∩ FreeX = I and AXY ∩ FreeY = J. (24)
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We first settle the case of finitely many variables2:

Lemma 5.3. Theorem 5.2 holds in case X and Y are finite sets.

Proof. Let W = X ∪ Y . Let K = I ∩ FreeZ = J ∩ FreeZ . For some integers 1 ≤ m ≤ n′, n′′ the free MV-algebras
FreeZ , FreeX and FreeY consist of all McNaughton functions defined on the m -, n′-, and n′′-cube respectively. These
cubes live in Z -, X -, and Y -space respectively. By hypothesis, the dimension n of W -space satisfies the identity
n = n′

+ n′′
− m. For definiteness let us assume that the set of these n dimensions is equipped with a total order, and

that the first m dimensions pertain to Z -space, followed by n′
− m dimensions pertaining to (X \ Z)-space, and finally

n′′
− m dimensions pertaining to (Y \ Z)-space. Proposition 2.19 allows us to write K = Jw for some reduced index

w = (w0, . . . wr ) for Z -space and some r ≤ m.
By Theorem 4.10 we have reduced indexes u = (u0, . . . , us′) and v = (v0, . . . , vs′′), respectively for

n′-space and n′′-space, such that I = Ju, J = Jv and both π(u) and π(v) adhere to w. Thus, we have maps
ι′, ι′′ : {0, 1, . . . , r} → N, as given by Definition 4.4, such that

PZ (uι′( j)) = PZ (vι′′( j)) = w j for each j = 0, . . . , r, (25)
PZ (ui ) = 0 for all i ∈ {0, . . . , s′

} not in the range of ι′, (26)
PZ (v j ) = 0 for all j ∈ {0, . . . , s′′

} not in the range of ι′′. (27)

Let s = s′
+ s′′

− r .
We shall build an index e = (e0, . . . , es) for n-space such that the ideal A = Je (is a prime ideal of FreeW and)

satisfies Je ∩ FreeX = Ju and Je ∩ FreeY = Jv. From our construction it will follow in particular that s ≤ n.
We define the function ι : {0, 1, . . . , r} → N by

ι(0) = 0; ι( j) = ι′( j)+ ι′′( j)− 1, ( j = 1, . . . , r). (28)

Construction of eι( j) ( j = 0, . . . , r). By (25) the two vectors uι′( j) and vι′′( j) agree (with w j ) in their first
m coordinates. Since these are the only common coordinates, the set-theoretical union uι′( j) ∪ vι′′( j) yields an
n-dimensional vector in W -space, whose projections into X - and Y -space respectively coincide with uι′( j) and vι′′( j).
Upon defining eι( j) = uι′( j) ∪ vι′′( j) we have

PX (eι( j)) = uι′( j) and PY (eι( j)) = vι′′( j). (29)

This completes the construction of eι(0), . . . , eι(r).

As a preliminary step for the construction of the remaining vectors ei , let ξ : {0, . . . , r} → N stand for any of the
maps ι′, ι′′, ι. Correspondingly let Rξ denote the set {0, . . . , s′

}, {0, . . . , s′′
}, {0, . . . , s}. The set of elements j ∈ Rξ

not belonging to the range of ξ shall be partitioned into r + 1 (possibly empty) bands as follows:

the 0th band bandξ (0) is the set of integers i with 0 < i < ξ(1),
the first band bandξ (1) is the set of i with ξ(1) < i < ξ(2),
. . .
the r th band bandξ (r) is the set of those i ∈ Rξ such that ξ(r) < i.

For each j = 0, . . . , r letting #bandξ ( j) denote the cardinality of the j th band of ξ , by (28) we have

#bandι( j) = #bandι′( j)+ #bandι′′( j).

There certainly exists an order-preserving one–one map µ j from the disjoint union bandι′( j)
⋃

bandι′′( j) onto
bandι( j). To fix ideas, let µ j first accommodate – in their order – all elements of bandι′( j) and then all elements
of bandι′′( j). Let µ =

⋃
j µ j .

Construction of the remaining e j : adding batches of zeros.

2 In [10] it is proved that Gödel incompleteness cannot occur for prime theories over finitely many variables, but may occur otherwise. Thus,
certain properties of prime theories over finitely many variables need not automatically hold for prime theories over infinitely many variables.
Fortunately, as proved in this section, Lemma 5.3 extends to Theorem 5.2.
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For every index i ∈ bandι′( j) for some j = 0, . . . r, let µ(i) be its corresponding index in {0, . . . , s}. By
construction, µ(i) does not belong to the range of ι. Define the vector eµ(i) as the vector obtained by adding to
ui a batch of zero coordinates for all (Y \ X)-dimensions, (and agreeing with ui in each X -dimension). Thus

PX (eµ(i)) = ui . (30)

Since by (26) all coordinates of ui for the Z -dimensions are zeros, we also have

PY (eµ(i)) = 0. (31)

In a similar way, for every index i ∈ bandι′′( j) for some j = 0, . . . r, let µ(i) be its corresponding index in
{0, . . . , s} \ range(ι). Let eµ(i) be obtained from vi by adding a batch of zero coordinates for all (X \ Y )-dimensions,
and agreeing with vi otherwise. Thus

PY (eµ(i)) = vi (32)

and from (27),

PX (eµ(i)) = 0. (33)

Claim. The tuple (e1, . . . , es) forms an independent set of vectors in W -space.

Suppose
∑s

l=1 αlel = 0 for suitable real coefficients αl . An application of the projection operator PX yields∑s
l=1 αlPX (el) = 0. By construction of e, from (29), (30) and (33) we either have PX (el) = 0, or else PX (el) is

one of the vectors occurring in the tuple (u1, . . . , us′). We also have that for each i ∈ {0, . . . , s′
}, PX (el) = ui for

at most one l in {0, . . . , s}. Since the vectors u1, . . . , us′ are independent, it follows that αl = 0 for each dimension
l pertaining to X . Similarly, for each 1 ≤ l ≤ s from (29), (31) and (32) we either have PY (el) = 0 or else PY (el)

occurs in the tuple (v1, . . . , vs′′). Again for each i ∈ {0, . . . , s′′
}, PY (el) = vi for at most one l in {0, . . . , s}. Hence,

it follows that αl = 0 for each dimension l pertaining to Y . In conclusion, all αl vanish, as required to settle our claim.
Thus e is an index for W -space, and by Proposition 2.8, Je is a prime ideal in FreeW . By (29)–(33) πX (e) = u and

πY (e) = v. Moreover, πX (e) adheres to u and πY (e) adheres to v. From Theorem 4.7 we have Je ∩ FreeX = Ju and
Je ∩ FreeY = Jv. The proof is complete. �

In order to extend this result and get a proof of Theorem 5.2 we give the following three lemmas.

Lemma 5.4. Under the hypotheses and notation of Theorem 5.2, let 〈I, J 〉 denote the ideal of FreeX∪Y generated by
I and J . Then

〈I, J 〉 =

⋃
X ′,Y ′

{
〈I ∩ FreeX ′ , J ∩ FreeY ′〉 | X ′, Y ′ finite, X ′

⊆ X, Y ′
⊆ Y

}
. (34)

Proof. Since every element of FreeX is a McNaughton function depending on finitely many variables [1, 3.1.8], the
canonical inclusions FreeX ′ ⊆ FreeX and FreeY ′ ⊆ FreeY (whenever X ′

⊆ X and Y ′
⊆ Y ) are to the effect that

I =

⋃
X ′⊆X

{I ∩ FreeX ′ | X ′ finite}. (35)

Therefore, the right-hand term of (34) is contained in the left-hand term. For the converse inclusion, if f ∈ 〈I, J 〉

then f ≤ p ⊕ q , where p ∈ I ∩ FreeX ′ and q ∈ J ∩ FreeY ′ for some finite X ′
⊆ X and Y ′

⊆ Y . Thus
f ∈ 〈I ∩ FreeX ′ , J ∩ FreeY ′〉. �

Lemma 5.5. Under the hypotheses and notation of Theorem 5.2, we have the identities

〈I, J 〉 ∩ FreeX = I and 〈I, J 〉 ∩ FreeY = J. (36)

Proof. If X and Y are finite sets the result follows from Lemma 5.3. Otherwise, skipping all trivialities, assume
f ∈ 〈I, J 〉 ∩ FreeX . From Lemma 5.4, for some finite X f ⊆ X and finite X ′

⊆ X and Y ′
⊆ Y with X ′

⊇ X f we can
write p ⊕ q ≥ f ∈ FreeX f , where p ∈ I ∩ FreeX ′ and q ∈ J ∩ FreeY ′ . Thus f ∈ 〈I ∩ FreeX ′ , J ∩ FreeY ′〉 and we
are in the finite case. Then

f ∈ FreeX ′ ∩ 〈I ∩ FreeX ′ , J ∩ FreeY ′〉 = I ∩ FreeX ′ ⊆ I.

The rest is obtained by symmetry. �



M. Busaniche, D. Mundici / Annals of Pure and Applied Logic 147 (2007) 1–22 19

Lemma 5.6. Under the hypotheses and notation of Theorem 5.2, there is a prime ideal A = AXY of FreeX∪Y
satisfying A ⊇ 〈I, J 〉, A ∩ FreeX = I and A ∩ FreeY = J .

Proof. Using the foregoing lemma and the axiom of choice let A be an ideal of FreeX∪Y which is maximal for the
following three properties:

A ⊇ 〈I, J 〉, A ∩ FreeX = I, A ∩ FreeY = J. (37)

It is enough to prove that A is prime. For otherwise (absurdum hypothesis) there are a, b ∈ FreeX∪Y with

a 6∈ A, b 6∈ A, a ∧ b = 0. (38)

It follows that

a 6∈ 〈I, J 〉, b 6∈ 〈I, J 〉. (39)

Let A′
= 〈A, a〉 and A′′

= 〈A, b〉 respectively denote the ideals generated by A and a, and by A and b. By (37) we
can write without loss of generality

A′
∩ FreeX % I and

[
either A′′

∩ FreeY % J or A′′
∩ FreeX % I

]
.

Case 1. A′
∩ FreeX % I and A′′

∩ FreeY % J.

Then there are McNaughton functions f and g, together with finite sets of variables X f ⊆ X and Yg ⊆ Y , such that

f ∈ FreeX f ∩ A′, g ∈ FreeYg ∩ A′′ (40)

and

f 6∈ I, g 6∈ J, A′
∩ FreeX f % I ∩ FreeX f , A′′

∩ FreeYg % J ∩ FreeYg . (41)

For all finite X̃ ⊇ X f and Ỹ ⊇ Yg with X̃ ⊆ X and Ỹ ⊆ Y, letting A X̃ ,Ỹ be as given by Lemma 5.3, it follows that

f 6∈ A X̃ Ỹ , g 6∈ A X̃ Ỹ . (42)

(Otherwise f ∈ A X̃ Ỹ implies f ∈ A X̃ Ỹ ∩ FreeX f = I ∩ FreeX f against (41).)
Recall from [1, p. 33] the notation m.x for x ⊕ x ⊕· · ·⊕ x (m times). Then by [1, 1.1.8], from Eq. (40) it follows that

for some p, q, r ∈ 〈I, J 〉 and m ∈ N f ≤ m.a ⊕ p and g ≤ m.b ⊕ q,whence by (38), f ∧g ≤ m.(a∧b) ⊕ r = r and
f ∧g ∈ 〈I, J 〉.By Lemma 5.4 for some large finite X◦

⊆ X and Y ◦
⊆ Y we can write f ∧g ∈ 〈I ∩FreeX◦ , J ∩FreeY ◦〉,

whence by the construction (Lemma 5.3 and Theorem 4.10) of the prime ideal AX◦Y ◦ ⊇ 〈I ∩ FreeX◦ , J ∩ FreeY ◦〉 we
get f ∧ g ∈ AX◦Y ◦ . In view of (42) this contradicts the primeness of AX◦Y ◦ . The present case is settled.

Case 2. A′
∩ FreeX % I and A′′

∩ FreeX % I.

Then one similarly contradicts the primeness of some I ∩FreeX◦ . Thus A has the desired properties, and the lemma
is proved. �

The proof of this lemma completes the proof of Theorem 5.2, whence of Theorem 5.1, thus establishing the
Robinson consistency property for the infinite-valued Łukasiewicz logic.

6. A consequence of Robinson consistency: Amalgamation

Under very general conditions it is known [6, 5.2] that whenever a model-theoretic logic L with Tarski semantics
has the Robinson property, then L automatically satisfies the Craig interpolation theorem. This is no longer true of
Łukasiewicz logic which, as we have seen, has the Robinson property but does not satisfy Craig’s interpolation (for,
the Kleene tautology x ∧¬x → y∨¬y has no interpolant.) However, the Robinson consistency property offers a quick
dividend: it can be used to prove that MV-algebras and finite-valued MV-algebras have the amalgamation property:

Theorem 6.1. MV-algebras have the amalgamation property: for any two embeddings β : M → B and γ : M → C
there is an MV-algebra N together with embeddings β ′

: B → N and γ ′
: C → N such that γ ′

◦ γ = β ′
◦ β.
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For the proof we prepare:

Lemma 6.2. Let X and Z be two sets of free variables, with Z ⊆ X. Let K and I be ideals in FreeZ and FreeX
respectively, with K = I ∩ FreeZ . Then for every ideal K ′

⊇ K of FreeZ there is an ideal I ′
⊇ I of FreeX such that

I ′
∩ FreeZ = K ′.

Proof. Let σK and σI denote the canonical surjections

σK : a ∈ FreeZ 7→ [a]K = a/K ∈ FreeZ/K

and

σI : b ∈ FreeX 7→ [b]I = b/I ∈ FreeX/I.

Let η : FreeZ/K → FreeX/I be the embedding given by our hypothesis K = I ∩ FreeZ . In symbols,

η : [a]K 7→ [a]I ∀a ∈ FreeZ . (43)

Since K ′
⊇ K the set N = σK (K ′) = {[v]K | v ∈ K ′

} is an ideal of FreeZ/K . We are using the well-known
correspondence between ideals of FreeZ/K and ideals of FreeZ containing K . Recalling (43), let the ideal M of
FreeX/I be defined by

M = 〈η(N )〉 = ideal generated by η(N ) = 〈{[v]I | v ∈ K ′
}〉. (44)

The inverse σI -image of M is an ideal I ′
⊇ I of FreeX . In detail, for all c ∈ FreeX ,

c ∈ I ′ iff [c]I ∈ M iff [c]I ≤ [v]I for some v ∈ K ′. (45)

Claim. I ′
∩ FreeZ = K ′.

As a matter of fact, if a ∈ K ′ then [a]K ∈ σK (K ′), whence by (44) [a]I ∈ M and a ∈ I ′
∩ FreeZ . Conversely, if

a ∈ I ′
∩ FreeZ then by (45) [a]I ≤ [v]I for some v ∈ K ′. The familiar correspondence between congruences and

ideals [1, 1.2.6] and the definition of the implication operation are to the effect that the element ¬(a → v) belongs
to I . Since ¬(a → v) also belongs to FreeZ then by hypothesis it belongs to K , in symbols [a]K ≤ [v]K . Thus
¬(a → v) ∈ K ⊆ K ′. Because v ∈ K ′ and K ′ is closed under minorants, a ∈ K ′. �

We next prove

Lemma 6.3. Let X and Y be two sets of free variables, with Z = X ∩ Y . Let I and J be proper ideals, respectively of
FreeX and of FreeY , satisfying I ∩ FreeZ = J ∩ FreeZ . Then for every prime ideal I ′

⊇ I of FreeX there is a prime
ideal J ′

⊇ J of FreeY such that I ′
∩ FreeZ = J ′

∩ FreeZ .

Proof. Write K = I ∩ FreeZ and K ′
= I ′

∩ FreeZ . Then both K and K ′ are ideals of FreeZ . Moreover, K ′ is a prime
ideal. Let F be the set of ideals T of FreeY such that T ⊇ J and T ∩ FreeZ = K ′. By the foregoing lemma F is
non-empty. Further, the axiom of choice yields maximal elements in F . So let J ′

∈ F have the following properties:

J ′
∩ FreeZ = K ′ and J ′

⊇ J (46)
J ′ is maximal for the above two properties. (47)

Claim. J ′ is a prime ideal of FreeY .

Otherwise (absurdum hypothesis) let a, b ∈ FreeY satisfy

a ∧ b = 0, a 6∈ J ′, b 6∈ J ′. (48)

By (46)–(47), letting as usual 〈J ′, a〉 denote the ideal of FreeY generated by J ′ and a, we can write

〈J ′, a〉 % J ′ and 〈J ′, b〉 % J ′. (49)

We also have

〈J ′, a〉 ∩ 〈J ′, b〉 = J ′. (50)
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For, if c ∈ 〈J ′, a〉 ∩ 〈J ′, b〉 then for some m ∈ N and q ∈ J ′ we can write c ≤ m.a ⊕ q, c ≤ m.b ⊕ q, whence
c ≤ m.(a ∧ b)⊕ q = q, thus settling (50). From (46)–(48) we conclude

K ′ $ 〈J ′, a〉 ∩ FreeZ and K ′ $ 〈J ′, b〉 ∩ FreeZ , (51)

and since K ′ is a prime ideal,

K ′ $ 〈J ′, a〉 ∩ FreeZ ∩ 〈J ′, b〉 = J ′
∩ FreeZ = K ′,

a contradiction that settles our claim and completes the proof of the lemma. �

Next we prove3:

Lemma 6.4. Let X and Y be two sets of free variables, with Z = X ∩ Y . Let P and Q be ideals in FreeX and FreeY
respectively. If P ∩ FreeZ = Q ∩ FreeZ then the ideal 〈P, Q〉 of FreeX∪Y satisfies the identities

〈P, Q〉 ∩ FreeX = P and 〈P, Q〉 ∩ FreeY = Q. (52)

Proof. By way of contradiction suppose

f ∈ (〈P, Q〉 ∩ FreeX )\P.

By [1, 1.2.14] there is a prime I ⊇ P of FreeX such that f 6∈ I. Let K = I ∩ FreeZ . by Lemma 6.3 there is a prime
J ⊇ Q of FreeY such that K = J ∩ FreeZ . Now we are in the hypotheses of Theorem 5.2, whence let A be a prime
ideal in FreeX∪Y such that A ∩ FreeX = I and A ∩ FreeY = J . Observe that A ⊇ 〈I, J 〉 ⊇ 〈P, Q〉. Thus f ∈ A
whence f ∈ I , a contradiction. �

Proof of Theorem 6.1. For suitable sets X, Y of variables and ideals P of FreeX and Q of FreeY we can write
B = FreeX/P and C = FreeY /Q. Recalling that Z = X ∩ Y , let R′

= P ∩ FreeZ and R′′
= Q ∩ FreeZ .

Our assumption about M allows the identification M = FreeZ/R′
= FreeZ/R′′. Let N = FreeX∪Y /〈P, Q〉. Then

Lemma 6.4 yields the desired embeddings. The proof of Theorem 6.1 is complete.

We refer to [1, 8.5] for the variety of (Grigolia) MVn-algebras, n = 2, 3, . . ..

Corollary 6.5. For each n = 2, 3, . . . the variety of MVn-algebras has the amalgamation property.

Proof. We have already proved in Corollary 1.2 that the Robinson consistency theorem trivially holds for MVn-
algebras, because in any free MVn-algebra prime ideals coincide with maximal ideals. Then one can derive the
amalgamation property arguing verbatim as for the foregoing proof of amalgamation for the variety of MV-
algebras. �

Remark. Theorem 6.1 was first proved in [8, p. 91, Step 2] using the Γ functor of [7] and Pierce’s amalgamation
theorem for lattice-ordered abelian groups [14]. Corollary 6.5 was first proved in [2, Theorem 8], using the same tools.
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