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Abstract. The ρ−variation and the oscillation of the heat and Poisson
semigroups of the Laplacian and Hermite operators (i.e ∆ and −∆ +
|x|2) are prove to be bounded from Lp(Rn, w(x)dx) into itself (from
L1(Rn, w(x)dx) into weak-L1(Rn, w(x)dx) in the case p = 1) for 1 ≤
p < ∞ and w being a weight in the Muckenhoupt’s Ap class.

In the case p = ∞ it is proved that these operators doesn’t map L∞

into itself. Even more, they map L∞ into BMO but the range of the
image is strictly smaller that the range of a general singular integral
operator.

1. Introduction

Let T = {Tt}t∈R be a family of bounded operators acting between spaces
of functions. One of the most studied problems in Harmonic Analysis is the
existence of limits limt→0 Ttf and limt→∞ Ttf, when f belongs to a certain
space of functions. Typical examples of this situation are found in the
study of the convergence of solutions of the heat and Poisson equations to
a boundary value. Then, the question can be posed of what is the speed
of convergence of the above limits. A classic method of measuring that
speed is to consider square functions of the type (

∑∞
i=1 |Ttif − Tti+1f |2)1/2.

The problem goes back to the 30’s of the last century and the names of
Littlewood and Paley are associated to it.

In the last years, in order to measure this speed, other expressions such as
the ρ−variation and the oscillation operators have been considered as well,
see [1], [2], [4], [6], and the references there in. The ρ-Variation operator
is defined by

Vρ(T )f(x) = sup
ti↘0

( ∞∑
i=1

|Ttif(x)− Tti+1f(x)|ρ
)1/ρ

, ρ > 2,

where the sup is taken over all sequences ti that are decreasing to zero. The
Oscillation operator can be introduced as

O(T )f(x)=

( ∞∑
i=1

sup
ti+1≤εi+1<εi≤ti

|Tεi+1f(x)− Tεif(x)|2
)1/2

,
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where ti is a fixed sequence decreasing to zero.
Our intention in this paper is to obtain new results for those operators

when the family T = {Tt}t∈R is either the heat semigroup or the Poisson

semigroup associated to the Laplacian ∆ =
n∑

i=1

∂2

∂x2
i

or the Hermite operator

H = −∆ + |x|2.
Nowadays it is well known that the vector valued Calderón-Zygmund the-

ory is the appropriate setting in order to study the behaviour of expressions
like (

∑∞
i=1 |Ttif −Tti+1f |2)1/2. Hence, it seems natural to use that theory in

order to study the ρ−variation and the oscillation operators. In fact, several
results for them have been obtained by that method, see for instance [1] and
[6].

In this paper, using the vector valued Calderón-Zygmund theory and with
the help of some previous results in [2], we prove the following

UNO Theorem 1.1. Let T = {Tt} be either the heat or the Poisson semigroup
associated to any of the operators ∆ or H. Then the oscillation operator,
O(T ), and the ρ−variation operator, Vρ(T ), ρ > 2, are bounded from
Lp(Rn, w(x)dx) into itself for 1 < p < ∞ and w ∈ Ap. Moreover O(T )
and Vρ(T ) are bounded from L1(Rn, w(x)dx) into weak−L1(Rn, w(x)dx) for
w ∈ A1.

For the reader’s convenience we recall that a measurable function w is said
to be in the Ap class, 1 ≤ p < ∞, if it satisfies the following conditions: w
is positive and finite almost everywhere and the Hardy-Littlewood maximal
operator is bounded from Lp(Rn, w(x)dx) into itself, for 1 < p < ∞, and
from L1(Rn, w(x)dx) into weak−L1(Rn, w(x)dx) if p = 1.

We suggest the reader to look at Theorem 1.1 as a result saying that
the operators O(T ) and Vρ(T ) behave as any standard Calderón-Zygmund
operator. However due to the particular form of these operators, one could
try to analyze their size in comparison with some particular operators. In
this line of thought we prove that in general these operators are “bigger”
than their corresponding maximal operators. In fact, we shall prove the
following

menor Theorem 1.2. Let T be the heat semigroup associated to ∆; then the oper-
ator O(T ) is not bounded from L∞(R) to L∞(R).

On the other hand, estimates (9) and (10) establish that, as is the case
with any standard Calderón-Zygmund operator, the image by O(T ) of a
function in L∞(Rn, dx) with compact support will be in BMO. It is well
known that a function in BMO can be unbounded and that its growth can
be of logarithmic type. Moreover,

BMO(R) = {f1 +Hf2 : f1, f2 ∈ L∞(R)},

holds, being the operator H the Hilbert transform. Then, one can deduce
that the image of an L∞(R) function by a general Calderón-Zygmund oper-
ator is a function in BMO with a logarithmic type increase. The following
result shows that in some sense the oscillation and variation operators are
“smaller” than a general Calderón-Zygmund operator.
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mayor Theorem 1.3. Let T = {et∆}. For every function f ∈ L∞(Rn, dx) with
support contained in the unit ball B0, there exists a constant C such that for
every ball of radius r, such that Br ⊂ B0, we have

1
|Br|

∫
Br

|O(T )f(x)|dx ≤ C
(

log
1
r

)1/2
‖f‖L∞(Rn,dx).

Now we shall describe the technical development of this manuscript, with
especial attention to the differences between the operators associated to ∆
and H.

The heat semigroup associated to ∆ is defined as

et∆f(x) =
1

(πt)n/2

∫
Rn

exp
(
− |x− y|2

t

)
f(y)dy.

The Poisson semigroup, Pt = e−t
√
−∆, is introduced throughout the follow-

ing subordination formula

subordinacion (1) Ptf(x) =
1√
4π

∫ ∞

0
te−t2/4s Tsf(x)s−3/2ds =

1√
π

∫ ∞

0

e−u

√
u

Tt2/4ufdu,

where Ts = es∆.
We can consider in an analogous way the heat semigroup e−tH (observe

that H is positive) defined as

meda (2) e−tHf(x) = (2π sinh 2t)−n/2

∫
Rn

e−
1
2
|x−y|2 coth 2t−x.y tanh tf(y)dy,

and its Poisson semigroup (e−t
√

H) defined by the formula (1), see [9] and
[8].

It is also known that the semigroups et∆, e−t
√
−∆, e−tH , e−t

√
H , are con-

tractions in Lp(Rn, dx), 1 ≤ p ≤ ∞, see [9]. Moreover, if we denote by
Tt any of these semigroups, the limits limt→0 Ttf and limt→∞ Ttf exist, in
Lp−norm and almost everywhere, for functions f ∈ Lp(Rn, dx), 1 ≤ p < ∞.

Before displaying the proof of Theorem 1.1 we observe that the formula
(1) implies that the Poisson semigroup is a type of integral mean of the
heat semigroup. This fact will allow us to prove in Theorem 2.3 the bound-
edness of the oscillation and ρ−variation operators related to the Poisson
semigroup, having previously obtained the corresponding ones for the heat
semigroup. Consequently, we are led to prove the Lp, 1 < p < ∞, bound-
edness just for the heat semigroup. These proofs are developed in Theorem
4.1 for the ∆ operator, and in Theorem 4.5 for the H operator.

Nevertheless, for p = 1 the situation is a little bit different, due to the fact
that the space L1,∞ is not a Banach space. In order to save this difficulty,
using again the subordination formula (1), we observe that the kernels of
the operators related to the Poisson semigroup satisfy the same estimates
than the corresponding ones associated to the heat semigroup (see Remark
3.1). Furthermore, as can be seen by (9) and (10), these are standard ker-
nels. This fact, along with the Lp, 1 < p < ∞, boundedness, allows us to
apply the vector-valued Calderón-Zygmund machinery to obtain Theorem
1.1. With these ideas in mind, we introduce in Section 2 the vector-valued
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analogs to the oscillation and ρ−variation operators and we identify its cor-
responding vector-valued kernels. The appropriate standard estimates for
the heat semigroup are proven in Section 3. The Lp boundedness results
contained in Theorem 4.1 were already known in the case et∆, see [2]. Nev-
ertheless, the results in [2] cannot be applied directly to the family e−tH ,
reason why, in order to prove the Lp boundedness of O(T ) and Vρ(T ), we
need to use some sharp estimates that are the content of Section 4.

Finally, in Section 5, we show that the operators are not bounded in L∞

but they are smaller than a standard Calderón-Zygmund operator.

2. Vector valued approach
approach

In the following we let {ti}i be a given fixed decreasing sequence to 0.
Consider the operator

O′(T )f(x) =

( ∞∑
i=1

sup
ti+1<δi≤ti

|Tti+1f(x)− Tδi
f(x)|2

)1/2

.

It is easy to see that

O′(T )f(x) ∼ O(T )f(x) a.e.x. sim.

Consequently, it will be enough to demonstrate Theorem 1.1 for the operator
O′(T ) instead of O(T ).
Let us denote by Ep the mixed normed Banach space of two variable func-
tions h defined on R× N, such that

E (3) ‖h‖Ep ≡

(∑
i

(sup
s
|h(s, i)|)p

)1/p

< ∞.

Let T = {Tt}t>0 be a family of operators defined on Lp(Rn, dµ), for some
p in the range 1 ≤ p < ∞. Let Ji = (ti+1, ti] and define the operator
U(T ) : f −→ U(T )f, where U(T )f is the E2-valued function given by

U(T )f(x) =
{
Tti+1f(x)− Tsf(x)

}
χJi(s).U (4)

Then

O′(T )f(x) =
∥∥{Tti+1f(x)− Tsf(x)

}
χJi(s)

∥∥
E2

= ‖U(T )f(x)‖E2 .paso (5)

Let Θ = {ε : ε = {εi}, εi ∈ R, εi ↘ 0}. We consider the set N × Θ and
denote by Fρ, 1 ≤ ρ < ∞, the mixed normed space of two variable functions
g(i, ε) such that

‖g‖Fρ ≡ sup
ε

(∑
i

|g(i, ε)|ρ
)1/ρ

< ∞.ro (6)

For a family T as above, we also consider the operator V (T ) : f −→ V (T )f,
acting on functions f belonging to Lp(Rn, dµ), and V (T )f being the Fρ-
valued function given by

V (7) V (T )f(x) = {Tεi+1f(x)− Tεif(x)}ε∈Θ .

As in the case of the oscillation operator it is obvious that

Vρ(T )f(x) = ‖V (T )f(x)‖Fρ .paso2 (8)
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As a consequence of identities (5) and (8), to show Theorem 1.1 it is enough
to prove the following Theorem.

DOS Theorem 2.1. Let T = {Tt} be either the heat or the Poisson semigroup
associated to any of the operators ∆ or H. Then, the operator U(T ) (respec-
tively V (T )) is bounded from Lp(Rn, w(x)dx) into Lp

E2
(Rn, w(x)dx) (respec-

tively Lp
Fρ

(Rn, w(x)dx), ρ > 2) for 1 < p < ∞ and w ∈ Ap. Moreover they
are bounded from L1(Rn, w(x)dx) into weak−L1

E2
(Rn, w(x)dx) (respectively

weak−L1
Fρ

(Rn, w(x)dx), ρ > 2 ) for w ∈ A1.

nota Remark 2.2. In the case that the family T = {Tt} is such that each oper-
ator Tt is given by integration against a kernel Mt(x, y), the operator U(T )
has also an associated kernel U , where U(x, y) is the element of E2 given by

(s, i) → U(x, y)(s, i) = (Mti+1(x, y)−Ms(x, y))χJi(s).

In other words,

U(T )f(x) =
∫
U(x, y)f(y)dy =

∫ {
(Mti+1(x, y)−Ms(x, y))χJi(s)

}
f(y)dy. Utotal

Analogous formulas can be given for the variation.Ucal

The direct consequence of the last Remark is that in order to demonstrate
Theorem 2.1 we can apply vector-valued Calderón-Zygmund theory. That
is to say it will be enough to prove two facts: firstly, the operator U(T )
(respectively V (T )) is bounded from L2(Rn, dx) into L2

E2
(Rn, dx) (respec-

tively from L2(Rn, dx) into L2
Fρ

(Rn, dx), for ρ > 2); in Section 4 this will be
actually done for p, 1 < p < ∞, see the comments just after Theorem 4.1
and Theorem 4.5; and secondly, the kernels described in Remark 2.2 satisfy
standard conditions; this will be done in Section 3.

The vector valued analogue of the variation and oscillation operators,
allows us to prove the following Theorem announced in the introduction.

Poissoncito Theorem 2.3. Let P = {Pt}, the subordinated Poisson semigroup of T =
{Tt}, and 1 < p < ∞. If ||O(T )f ||Lp(w(x)dx) ≤ C||f ||Lp(w(x)dx) then

||O(P)f ||Lp(w(x)dx) ≤ C||f ||Lp(w(x)dx).

A similar result can be stated for the variation operator.

Proof. We observe that

O(P)f(x) = ‖U(P)f(x)‖E2 = ‖{Pti+1f(x)− Psf(x)}‖E2

≤ 1√
π

∫ ∞

0

e−u

√
u
‖{Tt2i+1/4uf(x)− Ts2/4uf(x)}‖E2du

≤ 1√
π

∫ ∞

0

e−u

√
u
Ou(T )f(x)du.
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Therefore, by using Minkowsky’s inequality and the boundedness for O(T ),
we have

‖O(P)f‖Lp(ω(x)dx) ≤ C

∫ ∞

0

e−u

√
u
‖Ou(T )f‖Lp(ω(x)dx)du

≤ C

∫ ∞

0

e−u

√
u
‖f‖Lp(v(x)dx)du

≤ C‖f‖Lp(v(x)dx).

�

3. The kernels satisfy standard estimates
nucleos

Let T = {Tt} be the heat semigroup of ∆. As we indicated on Remark
2.2, the kernel of the operator U(T ) is

(s, i) −→ U(x, y)(s, i) = (Mti+1(x, y)−Ms(x, y))χJi(s)

=
1

πn/2

( 1

t
n/2
i+1

e
− |x−y|2

ti+1 − 1
sn/2

e−
|x−y|2

s

)
χJi(s) nucleo1

We shall show

11 (9) ‖U(x, y)(s, i)‖E2 ≤
C

|x− y|n
and

12 (10) ‖∇xU(x, y)(s, i)‖E2 + ‖∇yU(x, y)(s, i)‖E2 ≤
C

|x− y|n+1
.

Poissonremark Remark 3.1. Let P be the subordinated Poisson semigroup of the semi-
group T . Let U(x, y)(s, i) = (Mti+1(x, y)−Ms(x, y))χJi(s) the kernel of the
operator U(T ); by using the subordination formula (1) we get the following
expression for the kernel of the operator U(P)

W(x, y)(s, i) =
( 1√

π

∫ ∞

0

e−u

√
u
{Mt2i+1/4u(x, y)−Ms2/4u(x, y)}du

)
χJi(s)

=
1√
π

∫ ∞

0

e−u

√
u

{
Mt2i+1/4u(x, y)−Ms2/4u(x, y)

}
χJi(s)du.

Hence, by using Minkowski’s inequality we have

‖W(x, y)(s, i)‖E2 ≤ 1√
π

∫ ∞

0

e−u

√
u

∥∥∥(Mt2i+1/4u(x, y)−Ms2/4u(x, y)
)
χJi(s)

∥∥∥
E2

du

≤ C

|x− y|n
.

A parallel reasoning could have drove us to see that the kernel W satisfies
estimate (10).

compu Computational Remark 3.2. Along the paper, but mainly along this sec-
tion and the following section we shall use the following estimate. For every
N > 0, there exist positive constants C and c such that |u|Ne−|u| ≤ Ce−|u|/c,

where C and c depend only on N. In general, expressions of the type e−
|x−y|2

ct

should suggest to the reader that the estimate had been used in some previous
calculations with u = |x−y|2

t .
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Let f(t) =
1

tn/2
e−

|z|2
t ; we write

f(s)− f(ti+1) =
∫ s

ti+1

f ′(t)dt =
∫ ∞

0
χ[ti+1,s](t)f

′(t)dt,

where

f ′(t) =
( |z|2

t2
− n

2t

) 1
tn/2

e−
|z|2

t .

Then, by making z = x− y, we have

‖U(x, y)(s, i)‖E2 ≤ ‖U(x, y)(s, i)‖E1 ≤
∑

i

sup
ti+1<s≤ti

∣∣∣ 1

t
n/2
i+1

e
− |x−y|2

ti+1 − 1
sn/2

e−
|x−y|2

s

∣∣∣
=

∑
i

sup
ti+1<s≤ti

∣∣∣ ∫ s

ti+1

f ′(t)dt
∣∣∣ ≤∑

i

sup
ti+1<s≤ti

∫ s

ti+1

∣∣∣f ′(t)∣∣∣dtolvido (11)

=
∑

i

∫ ∞

0
χ[ti+1,ti](t)|f

′(t)|dt ≤
∫ ∞

0
|f ′(t)|dt

=
∫ ∞

0

∣∣∣( |x− y|2

t2
− n

2t
)
∣∣∣ 1
tn/2

e−
|x−y|2

t dt

≤
∫ ∞

0
(
|x− y|2

t
+

n

2
)

1
tn/2

e−
|x−y|2

t
dt

t

≤ C

∫ ∞

0

1
tn/2

e−
|x−y|2

ct
dt

t

=
C

|x− y|n

∫ ∞

0
un/2e−u/c du

u

=
C

|x− y|n
,

where we have used the Computational Remark 3.2 and in the penultimate
inequality we have made the change u = |x−y|2

t . This ends the proof of (9).

In order to prove (10) we consider g(t) =
|z|

t(n/2)+1
e−

|z|2
t . The proof runs

along the same lines as in the case of (9), just by observing that∫ ∞

0
|g′(t)|dt ≤ C

∫ ∞

0

( |x− y|2

t(n/2)+2
+

(n/2) + 1
tn/2+1

)
|x− y|e−

|x−y|2
t

dt

t

≤ C|x− y|
∫ ∞

0

1
t(n/2)+1

e−
|x−y|2

ct
dt

t

=
C

|x− y|n+1

∫ ∞

0
u(n/2)+1e−u/c du

u
,

where as usual we have made the change of variables u = |x−y|2
t .

pato Remark 3.3. We observe that in fact we have proved the following chain
of inequalities

‖U(x, y)(s, i)‖E2 ≤
∑

i

sup
ti+1<s≤ti

∣∣∣ 1

t
n/2
i+1

e
− |x−y|2

ti+1 − 1
sn/2

e−
|x−y|2

s

∣∣∣ ≤ C

|x− y|n
.
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‖∇xU(x, y)(s, i)‖E2 ≤ C
∑

i

sup
ti+1<s≤ti

|x− y|
∣∣∣ 1

t
(n/2)+1
i+1

e
− |x−y|2

ti+1 − 1
s(n/2)+1

e−
|x−y|2

s

∣∣∣
≤ C

|x− y|n+1
.

The constant C doesn’t depend on the particular sequence of {ti}. We left
to the reader to check that for the kernels of the operator V (T ) a similar
reasoning can be carried out. Hence the corresponding kernel also satisfies
standard estimates considering the norm Fρ with ρ > 2 given by formula
(6).

Now we shall prove the standard estimates for the case of the heat semi-
group of H = −∆ + |x|2. By making the change of parameter t = t(s) =
1
2 log 1+s

1−s , 0 < s < 1, 0 < t < ∞, we have that in order to analyze the
oscillation and variation of the family T = {Tt}∞t=0 given by formula (2),
it is enough to analyze the corresponding oscillation and variation of the
family R = {Rs}0<s<1 given by

Rsf(x) =
∫

Rn

Rs(x, y)f(y)dy

=
(

1− s2

4πs

)n/2 ∫
Rn

e−
1
4
(s|x+y|2+ 1

s
|x−y|2)f(y)dy.200 (12)

In this case the kernel of the operator U(R) can be expressed as

{R(x, y)} =
{(

Rsi+1(x, y)−Rs(x, y)
)
χJi(s)

}
,

where 0 < si+1 < s ≤ si ≤ 1, si ↘ 0. In order to follow the path in the

previous proofs, we consider the functions h(s) =
1
4
(s|x + y|2 +

1
s
|x − y|2).

and f(s) =
(1− s2

s

)n/2
e−h(s). Then, proceeding analogously as we did in

proving (9) for T we obtain∥∥∥{(Rsi+1(x, y)−Rs(x, y)
)
χJi(s)

}∥∥∥
E2

≤

∥∥∥∥∥
((

1− s2
i+1

si+1

)n/2

e−h(si+1) −
(

1− s2

s

)n/2

e−h(s)

)
χJi(s)

∥∥∥∥∥
E2

≤
∞∑
i=1

sup
si+1<s≤si

∣∣∣(1− s2
i+1

si+1

)n/2
e−h(si+1) −

(1− s2

s

)n/2
e−h(s)

∣∣∣estimacion (13)

=
∞∑
i=1

sup
si+1<s≤si

|f(si+1)− f(s)|

≤
∫ 1

0
|f ′(s)|ds,
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with

f ′(s) =
{
− n

2

(1− s2

s

)(n/2)−1 1 + s2

s2
−
(1− s2

s

)n/2
(
1
4
|x + y|2 − 1

4s2
|x− y|2)

}
e−h(s)

=
{
− n

2

(1− s2

s

)(n/2)−1 1 + s2

s2

}
e−h(s)

+
{
−
(1− s2

s

)n/2
(
1
4
|x + y|2 − 1

4s2
|x− y|2)

}
e−h(s)

= A1(s) + A2(s).

Therefore, it follows

∫ 1

0
|A1(s)|ds ≤ C

∫ 1

0

(1− s2

s

)(n/2)−1 1 + s2

s2
e−

1
4s
|x−y|2ds

≤ C

∫ 1

0

(1− s2

s

)(n/2) 1
1− s2

e−
1
4s
|x−y|2 ds

s

= C

∫ 1/2

0

(1− s2

s

)(n/2) 1
1− s2

e−
1
4s
|x−y|2 ds

s

+C

∫ 1

1/2

(1− s2

s

)(n/2) 1
1− s2

e−
1
4s
|x−y|2 ds

s
estimacion1 (14)

≤ C

∫ 1/2

0

1
s(n/2)

e−
1
4s
|x−y|2 ds

s

+C

∫ 1

1/2
(1− s)(n/2) 1

1− s
e−

1
4
|x−y|2 ds

s

≤ C
1

|x− y|n
+ Ce−

1
4
|x−y|2 ≤ C

1
|x− y|n

.

On the other hand

∫ 1

0
|A2(s)|ds ≤

∫ 1

0

1
sn/2

1
4
|x + y|2e−

1
4
(s|x+y|2+ 1

s
|x−y|2)ds

+
∫ 1

0

1
sn/2

1
4s2

|x− y|2e−
1
4
(s|x+y|2+ 1

s
|x−y|2)dsestimacion2 (15)

≤ C

∫ 1

0

1
sn/2

1
s
e−

1
4
( 1

s
|x−y|2)ds +

∫ 1

0

1
sn/2

1
s
e−

1
4
( 1

cs
|x−y|2)ds

≤ C

∫ 1/2

0

1
sn/2

e−
1
4
( 1

cs
|x−y|2) ds

s
+ C

∫ 1

1/2

1
sn/2

e−
1
4
( 1

cs
|x−y|2) ds

s

≤ C
1

|x− y|n
+ Ce−

|x−y|2
c ≤ C

1
|x− y|n

.



10 CRESCIMBENI, MACIAS, MENARGUEZ, TORREA, AND VIVIANI

This ends the proof of estimate (9) for the case of U(R). In order to prove
the estimate (10), we observe that∥∥∥∇xR(x, y)

∥∥∥
E2

=
∥∥∥{((1− s2

i+1

πsi+1

)n/2(
−1

2
(x− y)
si+1

− 1
2
si+1(x + y)

)
e
− 1

4
(si+1|x+y|2+ 1

si+1
|x−y|2)

−
(

1− s2

πs

)n/2(
−1

2
(x− y)

s
− 1

2
s(x + y)

)
e−

1
4
(s|x+y|2+ 1

s
|x−y|2)

)
χJi(s)

}∥∥∥
E2

≤
∫ 1

0
‖g′(s)‖Rnds,

where g(s) =
(

1− s2

s

)n/2(
−1

2
(x− y)

s
− 1

2
s(x + y)

)
e−h(s), x, y ∈ Rn, be-

ing h(s) = 1
4(s|x + y|2 + 1

s |x− y|2).
The derivative with respect to s of the function g is

g′(s) =
{
− n

2

(
1− s2

s

)n/2−1 (1 + s2

s2

)(
−1

2
(x− y)

s
− 1

2
s(x + y)

)
+
(

1− s2

s

)n/2(1
2

(x− y)
s2

− 1
2
(x + y)

)
+
(

1− s2

s

)n/2(
−1

2
(x− y)

s
− 1

2
s(x + y)

)(
− 1

4
(|x + y|2 +

1
s2
|x− y|2)

)}
e−h(s)

= B1(s) + B2(s) + B3(s).

Now we shall study each term of the previous sum∫ 1

0
|B1(s)|ds ≤ C

∫ 1

0
(1− s2)(n/2)−1 1

sn/2

(
|x− y|

s
+ s|x + y|

)
e−h(s) ds

s

≤ C

∫ 1

0
(1− s2)(n/2)−1 1

sn/2

(
1

s1/2
+ s1/2

)
e−

|x−y|2
cs

ds

s

≤ C

∫ 1/2

0

1
s(n+1)/2

e−
|x−y|2

cs
ds

s

+C

∫ 1

1/2
(1− s2)(n/2)−1e−

|x−y|2
cs

ds

s

≤ C

|x− y|n+1
+ Ce−

|x−y|2
c ≤ C

|x− y|n+1
.

The terms B2 and B3 are easier, in a parallel way that A2 was easier than
A1 and we leave the details to the reader. This ends the proof of estimate
(10) for the case R. A similar remark to 3.3 can be stated for this case, that
is to say our proof gives that the kernel of the operator V (R) satisfies also
the standard estimates of a vector-valued Calderón-Zygmund with Fρ norm
given by the formula (6) with ρ > 2.

4. Boundedness in L2(Rn, dx)
acotacion

The following Theorem was proved in [4]
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masjones Theorem 4.1. Let (Σ, dµ) a positive measure space. Let T = {Tt}t be a

symmetric diffusion semigroup if it satisfies T tT s = T t+s, T 0 = Id, limt→0 Ttf
L2

=
f and

(1) ‖T tf‖p ≤ ‖f‖p, for 1 ≤ p ≤ ∞;
(2) each Tt is a self-adjoint operator on L2(X),
(3) each T tf ≥ 0 if f ≥ 0;
(4) for each t, T t(1) = 1.

Then the operators O(T ) and Vρ(T ) are bounded in Lp(Rn, dx), for 1 < p <
∞.

The family T = {et∆}t is a symmetric diffusion semigroup and therefore
the operators O(T ) and Vρ(T ) are bounded in Lp(Rn, dx), for 1 < p < ∞.
In particular the vector valued operator U(T ), considered in Section 2, is
bounded from Lp(Rn, dx) into Lp

E2
(Rn, dx). On the other hand in the previ-

ous section we showed that this operator has a (vector-valued) kernel which
satisfies standard estimates. Therefore the use of vector-valued Calderón-
Zygmund theory gives Theorem 2.1. An analogous reasoning can be given
in order to prove the boundedness of the operator Vρ(T ) between Lp(Rn, dx)
into Lp

Fρ
(Rn, dx).

However, e−tH(1)(x) = e−t|x|2 ; in other words, the family T = {e−tH}t is
NOT a symmetric diffusion semigroup and the last Theorem can’t be applied
directly. In order to avoid this difficulty we shall consider the (Ornstein-
Uhlenbeck) operator L = −∆ + 2x · ∇. It is known that the heat semigroup
TOU = {e−tL}t is a symmetric diffusion semigroup in the measure space
(Rn, dγ(x)), where dγ(x) = π−n/2e−|x|

2
dx. In particular, by applying Theo-

rem 4.1, the operators O(TOU) and Vρ(TOU) are bounded in L2(Rn, dγ(x)).
There is a close relation between the operators H and L. The eigenfunc-

tions of L are the system of multidimensional Hermite polynomials Hα(x) =
Hα1(x1). . . . .Hαn(xn), x = (x1, . . . , xn), α = (α1, . . . , αn) where Hk(s) =

(−1)kes2 dke−s2

dsk
, s ∈ R, in fact LHα = 2|α|Hα. On the other hand, the sys-

tem of multidimensional Hermite functions hα(x) = hα1(x1). . . . .hαn(xn),
x = (x1, . . . , xn), α = (α1, . . . , αn) where hk(s) = (π1/22kk!)−1/2Hk(s)e−s2/2, s ∈
R, are the eigenfunctions of the operator H, satisfying Hhα = (2|α|+ n)hα.
The relation between the eigenfunctions can transported to the operators
associated to H and L. The following Proposition can be found in [5].

ibrahim Proposition 4.2. Let B be a normed space. The operator Λ, defined by

Λf(x) = f(x)πn/4e−
|x|2
2 , is an isometry from L2

B(Rn, dγ(x)) into L2
B(Rn, dx).

Moreover if f is a linear combination of Hermite polynomials the following
identities hold:

(i) (H − nId) ◦ Λf(x) = Λ ◦ Lf(x) and
(ii) e−t(H−nId) ◦ Λf(x) = Λ ◦ e−tLf(x),

with Id the identity operator.

This Proposition has the following consequence

intermedia Proposition 4.3. Consider the family S = e−t(H−nId). Then the operators
O(S) and Vρ(S) are bounded in L2(Rn, dx).
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Proof. Let f be a linear combination of Hermite polynomials. By applying
Proposition 4.2 we have

O(S)◦Λf(x) = Λ◦O(TOU)f(x) and Vρ(S)◦Λf(x) = Λ◦Vρ(TOU)f(x).

Then the Proposition follows by using the boundedness of this last operators
in L2(Rn, dγ(x)). �

T10 Theorem 4.4. Let T = e−tH and S = e−t(H−nId). The operators O(S −T )
and Vρ(S − T ) are bounded in Lp(Rn, dx), for 1 < p < ∞.

We postpone for a while the proof of this result. In this moment we want
to note that this Theorem together with Proposition 4.3 gives the following

T2 Theorem 4.5. Let T = e−tH . The operators O(T ) and Vρ(T ) are bounded
in Lp(Rn, dx), for 1 < p < ∞.

Now we can reproduce the arguments we gave just after Theorem 4.1 to
obtain the results in Theorem 2.1 for the Hermite operator H.

Before beginning proof of Theorem 4.4 we present a Lemma that will be
used in this section.

maximal Lemma 4.6. The maximal operator supt e−t(H−nId)f(x) is bounded from
Lp(Rn, dx), 1 < p < ∞, into itself.

Proof. We have e−t(H−nId)f = etne−tHf. Thus

sup
t

∣∣∣etne−tHf(x)
∣∣∣ ≤ sup

t≤1

∣∣∣etne−tHf(x)
∣∣∣ + sup

t>1

∣∣∣etne−tHf(x)
∣∣∣

≤ en sup
t

∣∣∣e−tHf(x)
∣∣∣ + sup

t>1

∣∣∣etne−tHf(x)
∣∣∣

= A + B.

It is well known that ‖A‖Lp(Rn,dx) ≤ C‖f‖Lp(Rn,dx). As for B, taken a func-
tion f good enough, it follows that

sup
t≥1

∣∣∣etne−tHf(x)
∣∣ = sup

t≥1

∣∣∣ ∫
Rn

∞∑
k=1

∑
|α|=k

e−2tkhα(x)hα(y)f(y)dy
∣∣∣

≤
∞∑

k=1

∑
|α|=k

e−2k|hα(x)|
∣∣∣ ∫

Rn

hα(y)f(y)dy
∣∣∣.

Then by Hölder’s inequality

sup
t≥1

∣∣∣etne−tHf(x)
∣∣ ≤ ∞∑

k=1

∑
|α|=k

e−2k|hα(x)|‖hα‖Lp′ (Rn,dx)‖f‖Lp(Rn,dx).

Hence, an application of Minkowski’s inequality renders

‖B‖Lp(Rn,dx) ≤
∞∑

k=1

∑
|α|=k

e−2k‖hα‖Lp(Rn,dx)‖hα‖Lp′ (Rn,dx)‖f‖Lp(Rn,dx)
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By employing [9, Lemma 1.5.2 ] we conclude ‖hα‖Lp(Rn,dx) ≤ C|α|θp , 1 ≤
p ≤ ∞, for some θp > 0. Therefore

‖B‖Lp(Rn,dx) ≤ C
(∑

k

kne−2kkθp+θp′
)
‖f‖Lp(Rn,dx) ≤ C‖f‖Lp(Rn,dx).

�

Proof. ( of Theorem 4.4)
Observe that, with the notation in formula (5), taking t∗ = 1

2 log 3, it follows

‖U(S − T )f(x)‖E2 ≤ ‖U(S − T )f(x)‖E2,ti<t∗ + ‖U(S − T )f(x)‖E2,ti>t∗

+sup
t
|(e−t(H−nId) − e−tH)f(x)|

= A1f(x) + A2f(x) + A3f(x).

Lemma 4.6 assures that the operator A3f is bounded in Lp(Rn, dx), 1 <
p < ∞.

Now we shall study the operator A1. As in the proof of the standard
estimates, we make the change of parameter t = t(s) = 1

2 log 1+s
1−s , 0 < s <

1, 0 < t < ∞, observe that t∗ = t(1
2). Then

(
e−t(s)(H−nId)f(x) − e−t(s)(H)f(x)

)
χt(s)<t∗

=
{(1 + s

1− s

)n/2
− 1
}

χ(0,1/2)(s)
∫

Rn

Rs(x, y)f(y)dy

= ϕ(s) χ(0,1/2)(s)
∫

Rn

Rs(x, y)f(y)dy,

where Rs is defined in (12), and ϕ(s) =
{(

1+s
1−s

)n/2
− 1
}

. The kernel of the
vector valued operator U(S − T ) can be expressed as

{
ϕ(si+1)Rsi+1(x, y)− ϕ(s)Rs(x, y)

)
χJi(s)

}
.

Observe that in the range 0 ≤ s ≤ 1
2 , the function ϕ is increasing and

satisfies ϕ(s) ∼ s. We remind, for the reader’s convenience, that after the
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change of parameter we can restrict ourselves to the interval [0, 1/2]. Hence

‖U(S − T )f(x)‖E2,si<
1
2

≤
∥∥∥{ϕ(si+1)

∫
Rn

(Rsi+1(x, y)−Rs(x, y))f(y)dyχJi(s)
}∥∥∥

E2,si<
1
2

+
∥∥∥{(ϕ(si+1)− ϕ(s))

∫
Rn

Rs(x, y)f(y)dy χJi(s)
}∥∥∥

E2,si<
1
2

≤
∥∥∥{ϕ(si+1)

∫
Rn

(Rsi+1(x, y)−Rs(x, y))f(y)dyχJi(s)
}∥∥∥

E2,si<
1
2

29 (16)

+C
∥∥∥{(si+1 − si)

∫
Rn

Rs(x, y)f(y)dy χJi(s)
}∥∥∥

E2,si<
1
2

≤ C

∫
Rn

∥∥∥si+1(Rsi+1(x, y)−Rs(x, y))χJi(s)
∥∥∥

E2,si<
1
2

|f(y)|dy

+C
∥∥∥{(si+1 − si) χJi(s)

}∥∥∥
E2,si<

1
2

sup
s

∣∣∣ ∫
Rn

Rs(x, y)f(y)dy
∣∣∣

≤ C

∫
Rn

∥∥∥si+1(Rsi+1(x, y)−Rs(x, y))χJi(s)
∥∥∥

E2,si<
1
2

|f(y)|dy

+C sup
s
|e−sHf(x)|.

Following carefully the lines of (13) we can get∥∥∥si+1(Rsi+1(x, y)−Rs(x, y))χJi(s)
∥∥∥

E2,si<
1
2

≤ C

∫ 1/2

0
sf ′(s)ds.

In other words, we have an extra “s” in the numerator in the computations
(14) and (15) which provides∥∥∥si+1(Rsi+1(x, y)−Rs(x, y))χJi(s)

∥∥∥
E2,si<

1
2

≤ C

∫ 1/2

0

s

sn/2
e−

|x−y|2
cs

ds

s

=
C

|x− y|n−2

∫ ∞

2|x−y|2
u

n−2
2 e−

u
c
du

u
.

Now we shall distinguish cases according to the size of |x− y|. If |x− y| > 1,
reminding Remark 3.2, we attain∥∥∥si+1(Rsi+1(x, y)−Rs(x, y))χJi(s)

∥∥∥
E2,si<

1
2

≤ Ce−
|x−y|2

c

|x− y|n−2

∫ ∞

2
u

n−2
2 e−

u
c
du

u

≤ Ce−
|x−y|2

c .

If |x− y| < 1 and n ≥ 3 we have∥∥∥si+1(Rsi+1(x, y) − Rs(x, y))χJi(s)
∥∥∥

E2,si<
1
2

≤ C

|x− y|n−2

(∫ 1

2|x−y|2
+
∫ ∞

1

)
u

n−2
2 e−

u
c
du

u
30 (17)

≤ C

|x− y|n−2
.
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In the case |x− y| < 1 and n < 3, we can write∥∥∥si+1(Rsi+1(x, y)−Rs(x, y))χJi(s)
∥∥∥

E2,si<
1
2

≤ C

|x− y|n−2

(∫ 1

2|x−y|2
+
∫ ∞

1

)
u

n−2
2 e−

u
c
du

u
40 (18)

≤ C

|x− y|n−2

(∫ 1

2|x−y|2
u

n−2
2 e−

u
c
du

u
+ C

)
≤ C(log |x− y|+ 1).

In consequence, using (16), (17) and (18), it results

‖U(S − T )f(x)‖E2,si<
1
2
≤ C

∫
Rn

Φ(x− y)|f(y)|dy + C sup
t
|e−tHf(x)|,

where Φ(x) is an integrable function. Therefore∥∥∥ ‖U(S − T )f(·)‖E2,si<
1
2

∥∥∥
Lp(Rn,dx)

≤ C‖f‖Lp(Rn,dx).

Let us analyze A2. Let f be a function such that
∫

Rn f(y)h0(y)dy = 0,
hence (

e−t(s)(H−nId)f(x)− e−t(s)(H)f(x)
)
χt(s)>t∗

=
{(1 + s

1− s

)n/2
− 1
}

×
∫

Rn

{
Rs(x, y)χ(1/2,1)(s)−

(1− s2

4πs

)n/2
e−

1
2
(|x|2+|y|2)

}
f(y)dy

= ϕ(s)
∫

Rn

R̃s(x, y)f(y)dy,

where Rs is defined in (12), R̃s(x, y) =
{

Rs(x, y)χ(1/2,1)(s)−
(

1−s2

4πs

)n/2
e−

1
2
(|x|2+|y|2)

}
and ϕ(s) =

{(
1+s
1−s

)n/2
− 1

}
. The kernel of the vector valued operator

U(S − T ) can then be expressed as{
ϕ(si+1)R̃si+1(x, y)− ϕ(s)R̃s(x, y)

)
χJi(s)

}
.

Observe that in the range 1/2 < s < 1, an application of the mean value
Theorem produces∣∣∣exp

(
− 1

4
(s|x + y|2 +

1
s
|x− y|2)

)
− exp

(
− |x|

2 + |y|2

2

)∣∣∣ ≤ Ce−
|x−y|2

c (1− s).

In consequence, for 1/2 < s < 1,

|R̃s(x, y)| ≤ C(1− s)n/2e−
|x−y|2

c (1− s).
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Moreover in the range 1/2 < s < 1 ϕ and ϕ′ are increasing and |ϕ′(s)| ≤
C(1− s)−(n/2)−1; on that account for some si+1 ≤ u ≤ s,

‖U(S − T )f(x)‖E2,si>
1
2

≤
∥∥∥{(ϕ(si+1)− ϕ(s))

∫
Rn

R̃s(x, y)f(y)dy χJi(s)
}∥∥∥

E2,si>
1
2

+
∥∥∥{ϕ(si+1)

∫
Rn

(R̃si+1(x, y)− R̃s(x, y))f(y)dyχJi(s)
}∥∥∥

E2,si>
1
2

≤
∥∥∥{(si+1 − s)ϕ′(u)

∫
Rn

(1− s)n/2e−
|x−y|2

c (1− s)|f(y)|dydy χJi(s)
}∥∥∥

E2,si>
1
2

+
∥∥∥{ϕ(si+1)

∫
Rn

(R̃si+1(x, y)− R̃s(x, y))f(y)dyχJi(s)
}∥∥∥

E2,si>
1
2

≤
∥∥∥{(si+1 − si)χJi(s)

}∥∥∥
E2,si>

1
2

∫
Rn

e−
|x−y|2

c |f(y)|dy

+
∥∥∥{ϕ(si+1)

∫
Rn

(R̃si+1(x, y)− R̃s(x, y))f(y)dyχJi(s)
}∥∥∥

E2,si>
1
2

≤ C

∫
Rn

e−
|x−y|2

c |f(y)|dy

+
∥∥∥{ϕ(si+1)

∫
Rn

(R̃si+1(x, y)− R̃s(x, y))f(y)dyχJi(s)
}∥∥∥

E2,si>
1
2

.

For the last summand, a careful look to formula (13) provides∥∥∥{ϕ(si+1)
(
R̃si+1(x, y)− R̃s(x, y)

)
χJi(s)

}∥∥∥
E2,si>

1
2

≤
∫ 1

0
ϕ(s)|F ′(s)|ds.

Where

F ′(s) =
{
− n

2

(1− s2

s

)(n/2)−1(1 + s2

s2

)}(
e−h(s) − e−

|x|2+|y|2
2

)
−
{(1− s2

s

)n/2
(
1
4
|x + y|2 − 1

4s2
|x− y|2)

}
e−h(s)

= E1(s) + E2(s),

being h(s) as in (13). Due to the fact that |e−h(s)−e−
|x|2+|y|2

2 | ≤ Ce−
|x−y|2

c (1−
s), we can reproduce the arguments in (14) for the range 1/2 < s < 1, arriv-

ing to the fact that the kernel above is estimated by ce−
|x−y|2

c . Hence as in
the case of A1 this gives as a consequence the boundedness in Lp(Rn, dx),
but in this case only for functions whose first Hermite coefficient is zero.
Observe that any arbitrary function f ∈ Lp(Rn, dx) can be written as

f(x) = f1(x) + f2(x)

=
{

f(x)−
(∫

Rn

f(y)h0(y)dy
)
h0(x)

}
+
(∫

Rn

f(y)h0(y)dy
)
h0(x).
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It is clear that f1 satisfies
∫

Rn f1(y)h0(y)dy = 0. Moreover ‖f1‖Lp(Rn,dx) ≤
C‖f‖Lp(Rn,dx) and ‖f2‖Lp(Rn,dx) ≤ C‖f‖Lp(Rn,dx). On the other hand

e−t(s)(H−nId)f2(x)− e−t(s)(H)f2(x) =
(

e−tn − 1
)

e−t(s)(H)f2(x)

=
(∫

Rn

f(y)h0(y)dy
)(

e−tn − 1
)
h0(x).

Hence∥∥∥‖U(S − T )f2(·)‖E2

∥∥∥
Lp(Rn,dx)

≤
∥∥∥(∫

Rn

f(y)h0(y)dy
)

h0(·)
∥∥∥

Lp(Rn,dx)
‖e−tn‖E2

≤ C‖f‖Lp(Rn,dx)‖h0‖Lp(Rn,dx) ≤ C‖f‖Lp(Rn,dx).

This ends the proof of the boundedness in Lp(Rn, dx) of the operator O(S−
T ).

A parallel argument can be given for Vρ(S − T ). �

5. L∞ results
extremo

We shall begin this section by proving that the oscillation operator asso-
ciated to the heat semigroup related to ∆ is not bounded from L∞(R) to
L∞(R). In fact we shall find a function g ∈ L∞(R) such that O(Tg)(x) =
∞, a.e. Let g be the function defined as

g (19) g(y) =
∑
k∈Z

(−1)k+1χ[ak,ak+1](y),

where a > 0 is a real number that will be fixed later.

lema1 Lemma 5.1. For every j ∈ Z

g(ajy) = (−1)jg(y).

Proof.

g(ajy) =
∑
k∈Z

(−1)k+1χ[ak,ak+1](a
jy)

=
∑

k−j∈Z
(−1)k+1−j(−1)jχ[ak−j ,ak−j+1](y)

= (−1)j
∑
l∈Z

(−1)l+1χ[al,al+1](y)

= (−1)jg(y).

�

lema2 Lemma 5.2. Let g the function defined in (19) and tj = a2j , j ∈ Z. Then

(1)
1

t
1/2
j

∫
R

e
− y2

tj g(y)dy = (−1)j

∫ ∞

0
e−u2

g(u)du.

(2)

∣∣∣∣∣ 1

t
1/2
j

∫
R

e
− y2

tj g(y)dy − 1

t
1/2
j+1

∫
R

e
− y2

tj+1 g(y)dy

∣∣∣∣∣ = 2
∣∣∣∣∫ ∞

0
e−u2

g(u)du

∣∣∣∣ .
Proof. Use the change of variable u = y

t
1/2
j

and Lemma 5.1. �
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lema4 Lemma 5.3. Given the function g defined in (19), there exists a > 0 such
that ∣∣∣∣∫ ∞

0
e−u2

g(u)du

∣∣∣∣ ≥ C.

Proof. It is very well known that
∫ ∞

0
e−u2

du =
√

π

2
. On the other hand∫ 1

0 e−u2
du ≥

√
π

3 . We choose a > 1 such that∫ 1

1
a

e−u2
du ≥ 4

5

√
π

3

. Then∫ ∞

0
e−u2

g(u)du =
∫ 1

a

0
e−u2

g(u)du +
∫ 1

1
a

e−u2
g(u)du +

∫ ∞

1
e−u2

g(u)du

≥
∫ 1

1
a

e−u2
du−

(∫ 1
a

0
e−u2

du +
∫ ∞

1
e−u2

du

)

≥ 4
5

√
π

3
−
(√

π

2
− 4

5

√
π

3

)
=

8
5

√
π

3
−
√

π

2
=
√

π

30
> 0.

�

lema5 Lemma 5.4. Given tj = a2j , j ∈ Z, Then∑
j

∣∣∣∣∣ 1

t
1/2
j+1

∫
R

e
− |x−y|2

tj+1 g(y)dy − 1

t
1/2
j

∫
R

e
− |x−y|2

tj g(y)dy

∣∣∣∣∣ = ∞, x ∈ Rn.

Proof. The result is obvious for x = 0 from Lemmas 5.2 and 5.3. Let
x > 0. We shall prove that the number of terms in the summatory which
are bigger than a certain constant is infinity. For a j fixed, the corresponding
term of the summatory may be expresed, through the changes of variable
u = (y − x)/aj+1, w = (y − x)/aj , in the form∣∣∣∣ 1

aj+1

∫
R

e
− |x−y|2

aj+1 g(y)dy − 1
aj

∫
R

e
− |x−y|2

aj g(y)dy

∣∣∣∣
=

∣∣∣∣∫
R

e−u2
g(aj+1u + x)du−

∫
R

e−w2
g(ajw + x)dw

∣∣∣∣
=

∣∣∣∣∫
R

e−u2
(−1)j+1g(u +

x

aj+1
)du−

∫
R

e−w2
(−1)jg(w +

x

aj
)dw

∣∣∣∣
=

∣∣∣∣∫
R

e−u2
g(u +

x

aj+1
)du +

∫
R

e−u2
g(u +

x

aj
)du

∣∣∣∣ .
Now, taking account that

lim
h→0

∫
R

e−u2
g(u + h)du =

∫
R

e−u2
g(u)du,

there exists η > 0 such that, for h < η,∫
R

e−u2
g(u + h)du ≥ 1

2

∫
R

e−u2
g(u)du.
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Then, for each x ∈ R+ and j such that 0 < x/aj < η,∣∣∣∣∫
R

e−u2
g(u +

x

aj+1
)du +

∫
R

e−u2
g(u +

x

aj
)du

∣∣∣∣ ≥ ∣∣∣∣∫
R

e−u2
g(u)du

∣∣∣∣ = C > 0.

�

The last Lemma provides obviously a proof of Theorem 1.2.

We finish this section presenting the proof of Theorem 1.3

Proof. Given Br = B(z, r) ⊂ B0 and the function f, we write f = f1 + f2,
where f1 = fχB(z,4r). Then O(T )f(x) ≤ O(T )f1(x) +O(T )f2(x). By using
Theorem 1.1, we have

1
|Br|

∫
Br

|O(T )f1(x)|dx ≤
( 1
|Br|

∫
Br

|O(T )f1(x)|2dx
)1/2

≤ C
( 1
|Br|

∫
B(z,4r)

|f(x)|2dx
)1/2

≤ C‖f‖L∞ .

On the other hand,

|
∫

Rn

(Mti+1(x, y)−Ms(x, y))f(y)dy|

= |
∫

Rn

1√
πn

( 1

t
n/2
i+1

e
− |x−y|2

ti+1 − 1
sn/2

e−
|x−y|2

s

)
f(y)dy|

≤
(∫

Rn

1√
πn

∣∣∣ 1

t
1/2
i+1

e
− |x−y|2

ti+1 − 1
sn/2

e−
|x−y|2

s

∣∣∣|f(y)|2dy
)1/2

×
(∫

Rn

1√
πn

∣∣∣ 1

t
n/2
i+1

e
− |x−y|2

ti+1 − 1
sn/2

e−
|x−y|2

s

∣∣∣dy
)1/2

≤ 2
(∫

Rn

1√
πn

∣∣∣ 1

t
n/2
i+1

e
− |x−y|2

ti+1 − 1
sn/2

e−
|x−y|2

s

∣∣∣|f(y)|2dy
)1/2

.

Therefore, for every x ∈ Br, by using (11) we have

‖U(T )f2(x)‖E2 =
∥∥∥∫

Rn

U(x, y)f2(y)dy
∥∥∥

E2

≤ 2
(∫

Rn

‖U(x, y)‖E1 |f2(y)|2dy
)1/2

≤ C
(∫

Rn

1
|x− y|n

|f2(y)|2dy
)1/2

≤ C
(∫

{2r<|x−y|<1}

1
|x− y|n

|f(y)|2dy
)1/2

≤ C‖f‖∞
(∫ 1

2r

dt

t

)1/2
≤ C‖f‖∞

(
log

1
r

)1/2
.

�
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Argentina

E-mail address: roberto.a.macias@gmail.com

IMAL-FIQ, Universidad Nacional del Litoral, Güemes 3450, 3000 Santa Fe,
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