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1. Introduction

As it is well known, classical Riesz transforms map L p(w), 1 < p < ∞, into itself as long as w belongs to the Mucken-
houpt class A p , i.e. weights satisfying( ∫

B

w

)( ∫
B

w− 1
p−1

)p−1

� C |B|p, (1)

where B denotes any ball in R
d . However they fail to be bounded for p = ∞. In the unweighted case the substitute result

is that L∞ is mapped into a larger space, the BMO space of John and Nirenberg. Moreover, it turns to be true that BMO
itself is applied continuously into BMO under the Riesz transforms. This result has been generalized to the more general
spaces BMOβ(w), 0 � β < 1, for certain classes of weights (see [10,11]). More precisely, for w belonging to A∞ = ⋃∞

p=1 A p
and satisfying

|B| 1−β
d

∫
Bc

w(y)

|xB − y|d+1−β
� C

w(B)

|B| , (2)

each Riesz transform maps continuously BMOβ(w) into itself, 0 � β < 1, where

BMOβ(w) =
{

f ∈ L1
loc: sup

B

1

|B|β/d w(B)

∫
B

∣∣ f (x) − f B
∣∣dx < ∞

}
,

with the supremum taken over all balls B and f B denoting the average of f over B .
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Classical Riesz transforms are associated to the Laplacian operator by

Ri = ∂

∂xi
(−�)−1/2, i = 1,2, . . . ,d.

If we make a perturbation of the Laplace operator we obtain a Schrödinger operator

L = −� + V ,

where V is a no-negative function. Correspondingly, we may associate to the differential operator L the Riesz transforms

Ri = ∂

∂xi
(−� + V )−1/2, i = 1,2, . . . ,d.

These operators have been considered in [12], where the author shows that they are also Calderón–Zygmund singular
integrals as long as the potential V belongs to a reverse-Hölder class R Hq for some exponent q � d � 3, i.e. there exists
a constant C such that(

1

|B|
∫
B

V (y)q dy

)1/q

� C

|B|
∫
B

V (y)dy, (3)

for every ball B ⊂ R
d .

As a consequence Ri , i = 1,2, . . . ,d, are bounded on L p(w), for 1 < p < ∞ and w ∈ A p , and of weak type on L1(w),
for w ∈ A1. Moreover, Shen shows that if V satisfies (3) with d

2 � q < d and w ≡ 1, then Ri are bounded only on a finite
range of p, namely for 1 < p � p0 with 1

p0
= 1

d − 1
q , which he proves to be optimal. Consequently, assuming (3) for q � d/2

we will have L p boundedness of the adjoints R∗
i , near p = ∞. In fact it will hold for p′

0 � p < ∞ when d/2 � q < d or
1 < p < ∞ when q � d.

Also, regarding these operators, in [4] the authors introduced an appropriate version of the Hardy space H1 which turns
out to be invariant by Ri , under the assumption q > d/2. Further related results can be found in [5] and [6].

In connection with boundedness of other operators associated to L, in [3] appears an appropriate version of the BMO
space of John–Nirenberg, for potentials V satisfying (3), for some q > d

2 , and d � 3. Such space is defined through the
following function associated to V already used in [4–6,12]. Given x ∈ R

d we set

ρ(x) = sup

{
r > 0:

1

rd−2

∫
B(x,r)

V � 1

}
, x ∈ R

d. (4)

With this notation the space BMOL is defined as the set of functions f in L1
loc satisfying∫

B

| f − f B | � C |B|, with f B = 1

|B|
∫
B

f ,

for every ball B ⊂ R
d , and∫

B

| f | � C |B|,

for every ball B = B(x, R), with R � ρ(x).
Clearly BMOL is a subspace of BMO and contains L∞ . In [3] it is proved that BMOL is the dual of the Hardy type space

H1
L

introduced in [4].

In [1] we defined the more general space BMOβ

L
(w) for an exponent 0 � β < 1 and a weight w as the set of functions f

in L1
loc satisfying∫

B

| f − f B | � C w(B)|B|β/d, (5)

for every ball B ⊂ R
d , and∫

B

| f | � C w(B)|B|β/d, (6)

for every ball B = B(x, R), with R � ρ(x).
A norm in the space BMOβ

L
(w) can be given by the maximum of the two infima of the constants that satisfy (5) and (6)

respectively. This norm will be denoted by ‖ · ‖ β .

BMO

L
(w)
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The aim of this paper is to explore boundedness properties of the Riesz transforms Ri and their adjoints R∗
i on the

spaces BMOβ

L
(w). To our knowledge there were not results in this direction even in the simplest case w ≡ 1 and β = 0.

However, during the revision of this article, the referee communicated us that in [2] the authors have proved the BMOL-
boundedness of Ri , for q > d. Also, observe that due to the lack of symmetry of the problem, Ri and R∗

i may have different
properties.

In order to give the precise statements we consider the following class of weights. For η � 1 we say that w ∈ Dη if there
exists a constant C such that

w(t B) � Ctdη w(B), (7)

for every ball B ⊂ R
d and t > 1. Here, as usual, t B denotes the ball with the same center as B and t times its radius. We

remind that a weight w satisfies the doubling property
∫

2B

w � C

∫
B

w, (8)

for every ball B ⊂ R
d , if and only if w ∈ Dη for some η � 1.

Let us notice that our assumption (3) on V implies that V belongs to some A p class and thus satisfies (8) and hence (7)
for some μ � 1.

Before stating the main theorems we introduce the definition of the reverse Hölder index of V as q0 = sup{q: V ∈ R Hq}.
Observe that since V ∈ R Hq implies V ∈ R Hq+ε , under the assumption V ∈ R Hd we may conclude q0 > d.

Theorem 1. Let V ∈ R Hd and w ∈ A∞ ∩ Dη . Then

(a) For any 0 � β < 1 − d/q0 and 1 � η < 1 + 1−d/q0−β
d , the operators Ri , 1 � i � d, are bounded on BMOβ

L
(w).

(b) For any 0 � β < 1 and 1 � η < 1 + 1−β
d , the operators R∗

i , 1 � j � d, are bounded on BMOβ

L
(w).

Theorem 2. Let V ∈ R Hd/2 such that q0 � d, 0 � β < 2 − d
q0

, and w ∈ Dη ∩ ⋃
s>p′

0
(A p0/s′ ∩ R Hs) where 1

p0
= 1

q0
− 1

d and 1 � η <

1 + 2−d/q0−β
d . Then the operators R∗

i , 1 � i � d, are bounded on BMOβ

L
(w).

Remark 1. For Ri the condition V ∈ R Hd in Theorem 1 can not be relaxed to V ∈ R Hd/2 as it is the case for R∗
i . In fact, for

w ≡ 1 and V ∈ R Hq with d/2 < q < d, since L∞ ⊂ BMOL ⊂ BMO we would have that Ri , i = 1, . . . ,d, are bounded from L∞
into the classical BMO. Besides, by [12, Theorem 0.5] they are also bounded on L p , 1

p = 1
q − 1

d . Therefore by interpolation
Ri , i = 1, . . . ,d, would be bounded on any Lr , p < r < ∞, leading to a contradiction since as we mentioned, the range given
in [12] is optimal. This is also the reason why even in the case V ∈ R Hd we obtain a wider class of weights for R∗

i .

Remark 2. We point out that any non-negative polynomial gives an example of a potential V satisfying the assumption of
Theorem 1. In fact, those potentials satisfy (3) for any q > 1. In particular it applies to V (x) = |x|2 which gives the Hermite
operator. In this situation it can be seen that the weights given by Theorem 1 in part (a) and (b) and those associated to
the classical Riesz transforms coincide (see Proposition 4 below).

As a corollary of Theorem 1 we have the following application.

Corollary 1. Let V ∈ R Hd, w ∈ A∞ ∩ Dη and 1 � η < 1 + 1−d/q0−β
d . If u is a solution of

−�u + V u = div ḡ,

then

‖u‖
BMOβ

L
(w)

� C‖ḡ‖
BMOβ

L
(w)

.

Proof. Since ∇u = R(R∗ · ḡ), the result follows applying Theorem 1. �
The paper is organized as follows. In Section 2 we present some estimates related to the potential V and properties

regarding the spaces and weights under consideration. Section 3 is due to estimates on the size and smoothness of the
kernels. Finally, in Section 4 we prove our main results.
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2. Some preliminary results

We start stating some properties of the function ρ defined in (4) that we will use frequently.

Proposition 1. (See [12].) Let V ∈ R Hd/2 . For the associated function ρ there exist C and k0 � 1 such that

C−1ρ(x)

(
1 + |x − y|

ρ(x)

)−k0

� ρ(y) � Cρ(x)

(
1 + |x − y|

ρ(x)

) k0
k0+1

, (9)

for all x, y ∈ R
d.

Lemma 1. Let V ∈ R Hq with q > d/2 and ε > d
q . Then for any constant C1 there exists a constant C2 such that

∫
B(x,C1r)

V (u)

|u − x|d−ε
du � C2rε−2

(
r

ρ(x)

)2−d/q

, (10)

if 0 < r � ρ(x), and∫
B(x,C1r)

V (u)

|u − x|d−ε
du � C2rε−2

(
r

ρ(x)

)2+(μ−1)d

,

if r > ρ(x), where μ is such that V ∈ Dμ .

Proof. Clearly we may assume C1 � 1. Since ε > d
q , by Hölder’s inequality,

∫
B(x,C1r)

V (u)

|u − x|d−ε
du � Crε−d/q

( ∫
B(x,C1r)

V q
)1/q

.

If 0 < r � ρ(x), using (3), the doubling property (8) and the definition of ρ , the last factor can be bounded by( ∫
B(x,C1ρ(x))

V q
)1/q

� Cρ(x)
d
q −d

∫
B(x,ρ(x))

V � Cρ(x)
d
q −2

.

In the case r > ρ(x), we use (3) and V ∈ Dμ to obtain the bound

Crε−d
∫

B(x,C1r)

V � Crε−d
(

r

ρ(x)

)μd ∫
B(x,ρ(x))

V � Crε−d
(

r

ρ(x)

)μd

ρ(x)d−2. �

Next we present some special properties of the spaces BMOβ

L
(w).

Proposition 2. Let 0 � β < 1 and a weight w ∈ Dη for some η � 1. A function f belongs to BMOβ

L
(w) if and only if condition (5) is

satisfied for every ball B = B(x, R) with R < ρ(x), and∫
B(x,ρ(x))

| f | � C w
(

B
(
x,ρ(x)

))∣∣ρ(x)
∣∣β, (11)

for all x ∈ R
d.

A proof of this result can be found in [3] for the case w ≡ 1 and β = 0, and in [1] for the general case.
Recall that functions belonging to the classical BMO space satisfy the John–Nirenberg estimate (see [9]). An extension

of this result to the weighted case was given by Muckenhoupt and Wheeden in [11] and a general version that includes
BMOβ(w), 0 � β < 1, appears in [10]. Even though the proofs are worked out in d = 1, they can be easily carried out in
higher dimension as well.

Weighted John–Nirenberg inequalities have an important consequence, namely that equivalent norms can be obtained
taking appropriate r-averages for the oscillations as long as 1 � r � p′ . More precisely, a function f ∈ BMOβ(w) if and only
if

sup
B

1

|B|β/d

(
1

w(B)|B|β/d

∫
B

| f − f B |r w1−r
)1/r

< ∞, (12)

and, moreover, this quantity gives an equivalent norm.
An extension of such results for BMOβ

(w) spaces is contained in the following proposition.

L
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Proposition 3. Let 0 � β < 1, w ∈ A p and 1 � r � p′ , r < ∞. Then f ∈ BMOβ

L
(w) if and only if

sup
B

1

|B|β/d

(
1

w(B)

∫
B

| f − f B |r w1−r
)1/r

< ∞, (13)

and

sup
B∈Bρ

1

|B|β/d

(
1

w(B)

∫
B

| f |r w1−r
)1/r

< ∞, (14)

where Bρ is the set of balls B = B(x, R) with R � ρ(x). Moreover, the maximum of the two suprema gives an equivalent norm.

Proof. First, if (13) and (14) are satisfied, Hölder’s inequality implies that f ∈ BM O β

L
(w) with the norm is controlled by the

sum of the two suprema. On the other hand, by the continuous inclusion BM O β

L
(w) ⊂ BMOβ(w) we only have to prove

that the left-hand side of (14) is dominated by ‖ f ‖
BM O β

L
(w)

. Since A p ⊂ Ar′ , for every ball B ∈ Bρ we have

(
1

w(B)

∫
B

| f |r w1−r
)1/r

�
(

1

w(B)

∫
B

| f − f B |r w1−r
)1/r

+ | f B |
(

w1−r(B)

w(B)

)1/r

� ‖ f ‖
BMOβ

L
(w)

|B|β/d
(

1 + w(B)1/r′
(w1−r(B))1/r

|B|
)

� C‖ f ‖
BMOβ

L
(w)

|B|β/d. � (15)

Before finishing this section we state the following lemma, providing a very useful property for the functions in
BMOβ

L
(w). A proof for the case ν = 1 was given in [1].

Lemma 2. Let w ∈ At ∩ Dη with t � 1, η � 1 and f ∈ BMOβ

L
(w). Then, for every ball B = B(x, r) and any finite ν � t′ , we have

( ∫
B

| f |ν w1−ν

)1/ν

� C‖ f ‖
BMOβ

L (w)
w(B)1/ν |B|β/d max

{
1,

(
ρ(x)

r

)dη−d+β}
,

if η > 1 or β > 0, and

( ∫
B

| f |ν w1−ν

)1/ν

� C‖ f ‖BMOL(w)w(B)1/ν max

{
1,1 + log

(
ρ(x)

r

)}
,

if η = 1 and β = 0.

Proof. The proof follows the same lines as in [1] for the case ν = 1. For the sake of completeness we include it here. We
write f = f − f B + (

∑ j0−1
j=1 f2 j B − f2 j+1 B) + f2 j0 B , where 2 j0−1 <

ρ(x)
r � 2 j0 . Then,

( ∫
B

| f |ν w1−ν

)1/ν

� I1 + I2 + I3,

with I1 = (
∫

B | f − f B |ν w1−ν)1/ν , I2 = (w1−ν(B))1/ν
∑ j0−1

j=1 | f2 j B − f2 j+1 B | and I3 = (w1−ν(B))1/ν | f |2 j0 B .
For the first term we just use Proposition 3. For I2 and I3 we bound the oscillation and the average using the definition

of the norm, and

(
w1−ν(B)

)1/ν � C
|B|

w(B)1/ν ′ ,

since w ∈ Aν ′ .
Combining these estimates we obtain

I2 + I3 � C‖ f ‖BMOL(w)w(B)1/ν |B|β/d
j0∑

j=1

2 j(dη−d+β).

Evaluating the sum according to the cases dη − d + β = 0 and dη − d + β > 0 we arrive to the desired result. �
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We finish this section making some remarks about the weights appearing in Theorems 1 and 2.
The weights for classical Riesz transforms are given by an integral condition (2) while our classes are stated through a

doubling condition. Nevertheless, all the classes can be described in both ways as the following proposition shows.

Proposition 4. Let γ > 0 and s � 1. Then, w ∈ R Hs ∩ Dη with η < 1 + γ /d if and only if

|B| γ
d

( ∫
Bc

w(y)s

|x − y|d+γ s

)1/s

� C
w(B)

|B| , (16)

for every ball B = B(x, r).

Proof. If we suppose w ∈ R Hs ∩ Dη , denoting Bk = B(x,2kr),

∫
Bc

w(y)s

|x − y|d+γ s
�

∞∑
k=1

1

(2kr)d+sγ

∫
Bk

ws

� C
∞∑

k=1

(
w(Bk)

(2kr)γ +d

)s

� C

(
w(B)

|B|1+ γ
d

∞∑
k=1

2k(dη−γ −d)

)s

,

where the last series converges since η < 1 + γ /d, obtaining (16).
On the other hand, if we suppose (16), by Hölder’s inequality we have

|B| γ s
d

∫
Bc

w(y)s

|x − y|d+γ s
� C

ws(B)

|B| , (17)

and this implies

ws(2B \ B) � C ws(B)

which in turn gives the doubling condition for ws . Therefore, with standard arguments we obtain

ws(B) � C ws(2B \ B).

Now it is easy to see that (16) implies w ∈ R Hs .
Next we check that the function ψ(t) = ws(B(x, t)) satisfies

∞∫
t

ψ(s)

sd+γ s+1
ds � C

ψ(t)

td+γ s
.

This follows from (17) splitting the integral dyadically and using the doubling condition for ws .
Therefore, applying [8, Lemma (3.3)] there exists there exists ε > 0 such that

ws(t B) � Ctd+γ s−ε ws(B),

for every ball B and t � 1. Finally, as a consequence of Hölder’s inequality and w ∈ R Hs we obtain that w ∈ Dη with
η < 1 + γ

d . �
Remark 3. In view of this proposition the class of weights appearing in Theorem 1 are those A∞ weights satisfying (16)
with s = 1, and γ = 1 − β − d

q0
for the part (a) and γ = 1 − β for the part (b).

Regarding Theorem 2 we obtain the weights satisfying (16) with s > p′
0 and γ = 2−β −d/q0, which also belong to A p0/s′ .

Remark 4. Clearly, the class of weights mentioned in the introduction regarding the classical Riesz transforms coincide with
that of Theorem 1 part (b) and contains those of Theorem 1 part (a) and Theorem 2.

Examples of power weights satisfying the assumptions of the previous results are w(x) = |x|α , with −d < α < 1 − β −
d/q0 for Theorem 1 part (a), and −d < α < 1 − β for part (b), while for Theorem 2, the exponent α should be in the range

−d + d

q0
− 1 < α < 1 − β −

(
d

q0
− 1

)
.
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3. Some estimates for the kernels

We shall denote by R and R∗ the vectors whose components are the Riesz transforms Ri and R∗
i respectively, i.e.,

R = ∇(−� + V )−1/2, R∗ = (−� + V )−1/2∇.

According to [12], under the assumption that V ∈ R Hq with q > d, R is a Calderón–Zygmund operator. In particular he
shows that its R

d vector valued kernel K satisfies for any 0 < δ < 1 − d/q the smoothness condition

∣∣K(x, z) − K(y, z)
∣∣ + ∣∣K(z, x) − K(z, y)

∣∣ � C
|x − y|δ

|x − z|d+δ
, (18)

whenever |x − z| > 2|x − y|.
However, Calderón–Zygmund estimates are not enough to obtain our results. We shall need some sharper estimates for

the kernel and its difference with the corresponding to the classical Riesz operator. That is the content of the next lemma
which is basically contained in [12].

Lemma 3. If V ∈ R Hq with q > d, then we have:

(a) For every k there exists a constant Ck such that
∣∣K(x, z)

∣∣ � Ck

(1 + |x−z|
ρ(x) )k

1

|x − z|d . (19)

(b) If K denotes the R
d vector valued kernel of the classical Riesz operator R, then

∣∣K(x, z) − K(x, z)
∣∣ � C

|x − z|d
( |x − z|

ρ(x)

)2−d/q

. (20)

Proof. For part (a) we refer to [12, inequality (6.5)]. To deal with (b) we first observe that if |x − z| � ρ(x) the result is true
since both are Calderón–Zygmund kernels. The case |x − z| < ρ(x) is a consequence of the estimate (valid for q > d/2)

∣∣K(x, z) − K(x, z)
∣∣ � C

|x − z|d−1

( ∫
B(x,|x−z|/4)

V (u)

|u − x|d−1
du + 1

|x − z|
( |x − z|

ρ(x)

)2−d/q)

appearing in the same paper as inequality (5.9). In fact if q > d, we may use Lemma 1 with ε = 1 and we bound the first
term in the sum by the second one. �

In order to control the operator R acting on functions in BMOβ

L
(w) we need a new estimate concerning the smoothness

of the difference K − K.

Lemma 4. Let V ∈ R Hq with q > d and 0 < δ < 1 − d
q . Then, there exists a constant C such that

∣∣[K(x, z) − K(x, z)
] − [

K(y, z) − K(y, z)
]∣∣ � C |x − y|δ

|x − z|d+δ

( |x − z|
ρ(x)

)2−d/q

, (21)

whenever |x − z| � 2|x − y|.
Proof. Inequality (21) certainly holds when |x− z| � ρ(x) since both kernels K and K satisfy the Calderón-Zygmund smooth-
ness estimate (18) for δ < 1 − d/q. Now suppose |x − z| < ρ(x). Let Λ(x, z, τ ) and Γ (x, z, τ ) be the fundamental solutions of
(−� + V + iτ ) and (−� + iτ ) respectively. It is well known (see [12, p. 529]) that for any positive k there exists a constant
Ck such that

∣∣∇1Γ (x, z, τ )
∣∣ � Ck

(1 + |τ |1/2|x − z|)k

1

|x − z|d−1
(22)

and ∣∣(∇1)
2Γ (x, z, τ )

∣∣ � Ck

(1 + |τ |1/2|x − z|)k

1

|x − z|d , (23)

for all x, z ∈ R
d , where ∇1 means that we are taking all the partial derivatives with respect to the first variable. Also, from

[12, Theorem 2.7], we have
∣∣Λ(x, z, τ )

∣∣ � Ck

[1 + |τ |1/2|x − z|]k[1 + |x − z|/ρ(x)]k|x − z|d−2
(24)

for all x, z ∈ R
d . Notice that since Λ(x, z, τ ) = Λ(z, x,−τ ) we may replace ρ(x) by ρ(z) in the previous inequality.



122 B. Bongioanni et al. / J. Math. Anal. Appl. 357 (2009) 115–131
With this notation, following [12, p. 538] the difference of the kernels can be written as

K(x, z) − K(x, z) = − 1

2π

∫
R

(−iτ )−1/2[∇1Λ(x, z, τ ) − ∇1Γ (x, z, τ )
]

dτ .

On the other hand since u = Λ − Γ , as a function of the first variable, satisfies the equation −�u + iτu = −V Λ, we obtain

Λ − Γ = −
∫

Rd

Γ V Λ.

Then

K(x, z) − K(x, z) = − 1

2π

∫
R

(−iτ )−1/2
∫

Rd

∇1Γ (x, u, τ )V (u)Λ(u, z, τ )du dτ . (25)

Consequently,
[

K(x, z) − K(x, z)
] − [

K(y, z) − K(y, z)
]

= − 1

2π

∫
R

(−iτ )−1/2
∫

Rd

[∇1Γ (x, u, τ ) − ∇1Γ (y, u, τ )
]
V (u)Λ(u, z, τ )du dτ .

We will deal first with the absolute value of the inner integral before performing the integration in τ . To this end we
consider four regions covering R

d:

E1 =
{

u: |u − x| < 3

2
|x − y|

}
;

E2 =
{

u:
3

2
|x − y| � |u − x| < 1

2
|x − z|

}
;

E3 =
{

u:
1

2
|x − z| � |u − x| < 2|x − z|

}
;

E4 = {
u: |u − x| � 2|x − z|}.

After taking absolute value inside, we call I j , j = 1,2,3,4, the corresponding integrals and we proceed to estimate them.
For I1, we majorize by the sum of the gradients and estimate each integral separately. Since both are similar we work

out one of them. Due to the assumption |x − z| > 2|x − y|, for u ∈ E1 we have |u − z| � 1
4 |x − z|, and by (22) and (24), we

get ∫
E1

∣∣∇1Γ (x, u, τ )Λ(u, z, τ )
∣∣V (u)du � Ck

∫
E1

V (u)

(1 + |τ |1/2|u − z|)k|x − u|d−1|u − z|d−2
du

� Ck

(1 + |τ |1/2|x − z|)k|x − z|d−2

∫
B(x,2|x−y|)

V (u)

|x − u|d−1
du

� Ck |x − y|δ
(1 + |τ |1/2|x − z|)k|x − z|d−1+δ

(
|x − z|
ρ(x)

)2−d/q, (26)

where in the last inequality we have used Lemma 1 with ε = 1 and r = |x − y| < 1
2 |x − z|, and δ < 1 − d

q .

Next, to take care of the integrals on the remaining regions, we observe that for |u − x| � 3
2 |x − y| the Mean Value

Theorem together with (23) and (24) give
∣∣[∇1Γ (x, u, τ ) − ∇1Γ (y, u, τ )

]
V (u)Λ(u, z, τ )

∣∣
� Ck|x − y|V (u)

(1 + |τ |1/2|u − z|)k(1 + |u−z|
ρ(z) )k|u − z|d−2(1 + |τ |1/2|x − u|)k|x − u|d . (27)

Then, since u ∈ E2 implies |u − z| � |x − z| − |u − x| > 1
2 |x − z|, we obtain

I2 � Ck|x − y|
(1 + |τ |1/2|x − z|)k|x − z|d−2

∫
E2

V (u)

|x − u|d du

� Ck|x − y|δ
(1 + |τ |1/2|x − z|)k|x − z|d−2

∫
V (u)

|x − u|d−1+δ
du.
B(x,|x−z|)
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By Lemma 1 with ε = 1 − δ and r = |x − z|, we arrive to

I2 � Ck|x − y|δ
(1 + |τ |1/2|x − z|)k|x − z|d−1+δ

( |x − z|
ρ(x)

)2−d/q

. (28)

By (27) and using that u ∈ E3 implies |x − z| ∼ |u − x|,
I3 � Ck|x − y|

(1 + |τ |1/2|x − z|)k|x − z|d
∫
E3

V (u)

|u − z|d−2
du

and since E3 ⊂ B(z,3|x − z|) we may use Lemma 1 with ε = 2 and r = |x − z| to obtain

I3 � Ck|x − y|
(1 + |τ |1/2|x − z|)k|x − z|d

( |x − z|
ρ(x)

)2−d/q

, (29)

where we have use also that ρ(z) ∼ ρ(x).
Finally, to deal with I4 we use again (27). Noticing that for u ∈ E4 |u − x| ∼ |u − z| and ρ(x) ∼ ρ(z) we get

I4 � Ck|x − y|
(1 + |τ |1/2|x − z|)k

∫
E4

V (u)

|x − u|2d−2(1 + |u−x|
ρ(x) )k

du. (30)

We split the integral above into E4 ∩ B(x,ρ(x)) and E4 ∩ B(x,ρ(x))c .
For the first part, we have

∫
2|x−z|<|u−x|<ρ(x)

V (u)

|x − u|2d−2(1 + |u−x|
ρ(x) )k

du �
( ∫

B(x,2|x−z|)c

1

|u − x|(2d−2)q′ du

)1/q′( ∫
B(x,ρ(x))

V q
)1/q

� C

|x − z|d
( |x − z|

ρ(x)

)2−d/q

, (31)

where we have used (3) and the definition of ρ .
For the other term, splitting into dyadic annuli and choosing k big enough, we obtain∫

|u−x|>ρ(x)

V (u)

|x − u|2d−2(1 + |u−x|
ρ(x) )k

du � ρ(x)k
∫

|u−x|>ρ(x)

V (u)

|x − u|k+2d−2
du

� C

ρ(x)2d−2

∑
j

1

2 j(k+2d−2)

∫

|u−x|<2 j+1ρ(x)

V

� C

ρ(x)2d−2

( ∫
|u−x|<ρ(x)

V

)∑
j

1

2 j(k+2d−2−μ)

� C

ρ(x)d
� C

|x − z|d
( |x − z|

ρ(x)

)2−d/q

, (32)

where in the third inequality we have use that V belongs to Dμ for some μ � 1.
From (30), (31), (32), we obtain

I4 � Ck|x − y|
(1 + |τ |1/2|x − z|)k

C

|x − z|d
( |x − z|

ρ(x)

)2−d/q

. (33)

Now from (26), (28), (29) and (33), integrating on τ we get the desired estimate and we finish the proof of the
lemma. �

Regarding R∗ we will work under a milder condition on V , that is V satisfies (3) with q > d/2. Under this hypothesis
R∗ is not necessarily a Calderón–Zygmund operator. However, by [12] it is bounded “near” L∞ . We state in the next two
lemmas properties of K∗ that replace (18) and inequalities of Lemma 3.

Lemma 5. If V ∈ R Hq with d/2 < q < d, then we have:

(a) For every k there exists a constant C such that

∣∣K∗(x, z)
∣∣ � C

(1 + |x−z|
ρ(x) )k

1

|x − z|d−1

( ∫
V (u)

|u − z|d−1
du + 1

|x − z|
)

. (34)
B(z,|x−z|/4)
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Moreover, the last inequality also holds with ρ(x) replaced by ρ(z).
(b) For every k and 0 < δ < 2 − d/q there exists a constant C such that

∣∣K∗(x, z) − K∗(y, z)
∣∣ � C

(1 + |x−z|
ρ(x) )k

|x − y|δ
|x − z|d−1+δ

( ∫
B(z,|x−z|/4)

V (u)

|u − z|d−1
du + 1

|x − z|
)

, (35)

whenever |x − y| < 2
3 |x − z|. Moreover, the last inequality also holds with ρ(x) replaced by ρ(z).

(c) If K∗ denotes the R
d vector valued kernel of the adjoint of the classical Riesz operator, then

∣∣K∗(x, z) − K∗(x, z)
∣∣ � C

|x − z|d−1

( ∫
B(z,|x−z|/4)

V (u)

|u − z|d−1
du + 1

|x − z|
( |x − z|

ρ(x)

)2−d/q)
. (36)

Proof. Inequalities (34) and (36) can be found in [12], pages 538 and 540 respectively. We point out that inequality (36)
is proved only for |x − z| < ρ(x) but using the size of K∗ and K∗ this restriction is not necessary. Estimate (35) appears in
[7, Lemma 4] for |x − y| < 1

16 |x − z|. However, it is possible to change the factor 1/16 for any positive constant less than
one. In order to see that both estimates (34) and (35) still hold with ρ(z), it is enough to consider the case ρ(z) < |x − z|,
since otherwise ρ(x) ∼ ρ(z). In that case, using Proposition 1 we have

(
1 + |x − z|

ρ(x)

)−k

� C

(
1 + |x − z|

ρ(z)

)−(1−σ)k

(37)

where 0 < σ < 1. �
Lemma 6. If V ∈ R Hq with q > d, then we have:

(a) For every k there exists a constant C such that

∣∣K∗(x, z)
∣∣ � C

(1 + |x−z|
ρ(x) )k

1

|x − z|d . (38)

Moreover, the last inequality also holds with ρ(x) replaced by ρ(z).
(2) For every k and 0 < δ < 1 there exists a constant C such that

∣∣K∗(x, z) − K∗(y, z)
∣∣ � C

(1 + |x−z|
ρ(x) )k

|x − y|δ
|x − z|d+δ

, (39)

whenever |x − y| < 2
3 |x − z|. Moreover, the last inequality also holds with ρ(x) replaced by ρ(z).

(c) If K∗ denotes the R
d vector-valued kernel of the adjoint of the classical Riesz operator, then

∣∣K∗(x, z) − K∗(x, z)
∣∣ � C

|x − z|d
( |x − z|

ρ(x)

)2−d/q

. (40)

Proof. Since K∗(x, z) = K(z, x), inequality (38) is a consequence of (19) and (37).
In order to see (39), given 0 < δ < 1, we consider d/2 < s < d and such that 0 < δ < 2 − d/s. Since V satisfies (3) for

every s < q, inequality (35) holds, in particular with ρ(z). Now, if |x − z| < ρ(z) we use the first inequality in Lemma 1 to
see ∫

B(z,|x−z|/4)

V (u)

|u − z|d−1
du � C

1

|x − z| .

In the case |x − z| � ρ(z), using the second inequality in Lemma 1 we get

∫
B(z,|x−z|/4)

V (u)

|u − z|d−1
du � C

1

|x − z|
(

1 + |x − z|
ρ(z)

)2+(μ−1)d

.

Finally, by (37) we may replace ρ(z) with ρ(x) and (38) holds.
To check (40), if |x − z| < ρ(x) the result follows from (20) since ρ(x) ∼ ρ(z). In the case |x − z| � ρ(x) we use that the

size of each kernel is like 1
|x−z|d and that 2 − d/q > 0. �

The following result gives an appropriate version of Lemma 4 for R∗ under the weaker assumption V ∈ R Hd/2.
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Lemma 7. Let V ∈ R Hq with q > d/2 and 0 < δ < min{1,2 − d/q}. Then, there exists a constant C such that

∣∣K∗(x, z) − K∗(x, z) − [
K∗(y, z) − K∗(y, z)

]∣∣
� C |x − y|δ

|x − z|d−1+δ

( ∫
B(z,|x−z|/4)

V (u)

|u − z|d−1
du + 1

|x − z|
( |x − z|

ρ(x)

)2−d/q)
(41)

whenever |x − z| � 2|x − y|. Moreover, in the case q > d,

∣∣K∗(x, z) − K∗(x, z) − [
K∗(y, z) − K∗(y, z)

]∣∣ � C |x − y|δ
|x − z|d+δ

( |x − z|
ρ(x)

)2−d/q

, (42)

whenever |x − z| � 2|x − y|.

Proof. First observe that for |x − z| � ρ(x), estimates (41) and (42) can be derived using the smoothness of each kernel (see
(35) and (39) for K∗).

For the rest of the proof we assume |x − z| < ρ(x). From (25) and the fact that Λ(u, x, τ ) = Λ(x, u,−τ ) we obtain

K∗(x, z) − K∗(x, z) − [
K∗(y, z) − K∗(y, z)

]

= − 1

2π

∫
R

(−iτ )−1/2
∫

Rd

∇1Γ (z, u, τ )V (u)
[
Λ(x, u,−τ ) − Λ(y, u,−τ )

]
du dτ .

We call I the absolute value of the inner integral in the above expression, and we split R
d into the same regions E j ,

j = 1,2,3,4 as in Lemma 4. We denote by I j , the integral over E j , j = 1,2,3,4 after taking absolute value inside.
For I1, we majorize the absolute value of the difference related to Λ by the sum of the absolute values of each term and

estimate each integral separately. Since both are similar we work out one of them. First we notice that |x − z| > 2|x − y|
implies |z − u| > 1

4 |x − z| for u ∈ E1. Then, using (24) and (22), we have
∫
E1

∣∣∇1Γ (z, u, τ )Λ(x, u,−τ )
∣∣V (u)du � Ck

(1 + |τ |1/2|x − z|)k|x − z|d−1

∫
B(x,2|x−y|)

V (u)

|x − u|d−2
du

� Ck|x − y|δ
(1 + |τ |1/2|x − z|)k|x − z|d−1+δ

( |x − z|
ρ(x)

)2−d/q

, (43)

where in the last inequality we have used Lemma 1 with ε = 2 and r = |x − y| < 2ρ(x), and that δ � 2 − d/q.
For the remaining regions we will use the following estimate taken from [7, p. 427],

∣∣Λ(x, u,−τ ) − Λ(y, u,−τ )
∣∣ � C

|x − y|δ
|x − u|d−2+δ

[(
1 + |τ |1/2|x − u|)

(
1 + |x − u|

ρ(u)

)]−k

, (44)

for |x − y| < 2
3 |x − u| and 0 < δ < min{1,2 − d/q}. In fact, in [7] the inequality is proved for q < d. However, for q � d since

V belongs to R Hs for every s � q, the above inequality holds for any 0 < δ < 1.
To estimate I2 we use (44) and (22) to get

I2 � Ck|x − y|δ
(1 + |τ |1/2|x − z|)k|x − z|d−1

∫

B(x, 1
2 |x−z|)

V (u)

|u − x|d−2+δ
du

� Ck|x − y|δ
(1 + |τ |1/2|x − z|)k|x − z|d−1+δ

( |x − z|
ρ(x)

)2−d/q

, (45)

where in the last inequality we have used Lemma 1 with r = 1
2 |x − z| and ε = 2 − δ.

To deal with I3 we notice E3 ⊂ B(z,3|x − z|). Using again (44) and (22) we arrive to

I3 � Ck|x − y|δ
(1 + |τ |1/2|x − z|)k|x − z|d−2+δ

∫
B(z,3|x−z|)

V (u)

|u − z|d−1
du. (46)

Finally, for u ∈ E4 we have |u − x| ∼ |u − z| and hence, using (44) and (22),

I4 � Ck|x − y|δ
(1 + |τ |1/2|x − z|)k

∫
V (u)

|u − x|2d−3+δ

[
1 +

( |u − x|
ρ(u)

)]−k

du.
E4
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We set E4 = E1
4 ∪ E2

4, where E1
4 = {u: 2|x − z| � |u − x| � ρ(x)}. Applying Hölder’s inequality the above integral over E1

4
is bounded by

( ∫
B(x,ρ(x))

V q
)1/q( ∫

|u−x|>2|x−z|

1

|u − x|(2d−3+δ)q′ du

)1/q′

� C

|x − z|d−1+δ

( |x − z|
ρ(z)

)2−d/q

,

where in the last inequality we have used the reverse Hölder condition on V and the definition of ρ .
To estimate the integral on E2

4, by Proposition 1 we have

ρ(u) � Cρ(x)1−σ |u − x|σ , (47)

with 0 < σ < 1. Therefore, we set N = k(1 − σ) to get

∫
|u−x|>ρ(x)

V (u)

|u − x|2d−3+δ

(
ρ(x)

|u − x|
)N

du � ρ(x)−2d+3−δ

∞∑
j=1

2− j(2d−3+δ+N)

∫

|u−x|<2 jρ(x)

V .

Since V satisfies a doubling condition and we can choose k large enough, proceeding as in (32) the last expression is
bounded by a constant times

ρ(x)−d+1−δ � C

|x − z|d−1+δ

( |x − z|
ρ(z)

)2−d/q

,

since d − 1 + δ � 2 − d/q.
Now using the estimates in E1

4 and E2
4 reminding that |x − z| � ρ(x), we obtain

I4 � Ck|x − y|δ
(1 + |τ |1/2|x − z|)k|x − z|d−1+δ

( |x − z|
ρ(x)

)2−d/q

. (48)

From (43), (45), (46) and (48), performing the integration on τ we get (41). It remains to check (42) for |x − z| < ρ(x).
For q > d, this is a consequence of Lemma 1 and the fact that ρ(x) ∼ ρ(z). In the case q = d we use that V belongs to
R Hq+η for some η > 0. �
4. Proofs of the main results

Proof of Theorem 1. First we will prove (a). Notice that by our assumptions if we fix β and η we may choose q > d and
β < δ < 1 − d/q such that V ∈ R Hq and

1 � η < 1 + δ − β

d
. (49)

According to Proposition 2 we only need to check that∫
B

|R f | � C‖ f ‖
BM O β

L
(w)

w(B)|B|β/d, (50)

for all B = B(x0,ρ(x0)), x0 ∈ R
d , and∫

B

∣∣R f − (R f )B

∣∣ � C‖ f ‖
BMOβ

L
(w)

w(B)|B|β/d, (51)

with B = B(x0, r), r < ρ(x0).
We start with (50). For B = B(x0,ρ(x0)) we write f = f1 + f2, with f1 = f χ2B .
Since w ∈ A∞ , w ∈ A p for some 1 < p < ∞ and hence w1−p′ ∈ A p′ . Using that under our assumptions R is a Calderón–

Zygmund operator we have

∫
B

|R f1| � w(B)1/p
( ∫

B

|R f1|p′
w1−p′

)1/p′

� C w(B)1/p
( ∫

2B

| f |p′
w1−p′

)1/p′

� C‖ f ‖
BM O β

L
(w)

w(B) |B|β/d,

where in the last inequality we apply Proposition 3 and the doubling property of the weight w .
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On the other hand, an application of Lemma 3 gives∫
B

|R f2| �
∫
B

∫
(2B)c

∣∣K(x, z) f (z)
∣∣dz dx

� Ck

∫
B

∫
(2B)c

(
ρ(x)

|x − z|
)k 1

|x − z|d
∣∣ f (z)

∣∣dz dx

� Ckρ(x0)
k+d

∫
(2B)c

| f (z)|
|x0 − z|k+d

dz,

where we have use that ρ(x) ∼ ρ(x0) (Proposition 1) and |x0 − z| ∼ |x − z|.
Splitting the integral into dyadic annuli and using the doubling property, the above expression is bounded by

Ck

∞∑
j=2

1

2 j(k+d)

∫

2 j B

∣∣ f (z)
∣∣dz � Ck‖ f ‖

BMOβ

L
(w)

ρ(x0)
β

∞∑
j=2

w(2 j B)

2 j(k+d−β)

� Ck‖ f ‖
BMOβ

L
(w)

ρ(x0)
β w(B)

∞∑
j=2

1

2 j(k+d−β−dη)
,

and the last sum is finite choosing k big enough. This completes the proof of (50).
In order to check (51) we consider the ball B = B(x0, r), r < ρ(x0).∫

B

∣∣R f (x) − (R f )B

∣∣dx �
∫
B

∣∣(R − R) f (x) − [
(R − R) f

]
B

∣∣dx +
∫
B

∣∣R f (x) − (R f )B
∣∣dx

= I + II. (52)

Since BM O β

L
(w) ⊂ BMOβ(w) and the weight w satisfies (2) (see Remark 4), the classical Riesz transform preserves

BMOβ(w) and thus

II � C‖ f ‖
BMOβ

L
(w)

w(B)|B|β/d.

It remains to take care of I . We set f = f1 + f2 + f3 with f1 = f χ5B and f3 = f χBc
0

with B0 = B(x0,5ρ(x0)). Then
I � I1 + I2 + I3 where I j is the integral that defines I with f j instead of f .

To estimate I1 we use Lemma 3 obtaining

I1 � 2
∫
B

∣∣(R − R) f (x)
∣∣dx

� C

∫
B

∫
5B

| f (z)|
|x − z|d

( |x − z|
ρ(x)

)2−d/q

dz dx

� Cρ(x0)
d/q−2

∫
5B

∫
B

1

|x − z|d+d/q−2
dx

∣∣ f (z)
∣∣dz

� C

(
r

ρ(x0)

)2−d/q ∫
5B

∣∣ f (z)
∣∣dz.

By Lemma 2 in the case β > 0 or η > 1, the last expression is bounded by
(

r

ρ(x0)

)2−d/q−dη+d−β

rβ w(B)‖ f ‖
BMOβ

L
(w)

� Crβ w(B)‖ f ‖
BMOβ

L
(w)

,

since by assumption the exponent 2 − d/q − dη + d − β is non-negative. The case β = 0 and η = 1 follows in the same way.
To deal with I2 we clearly have

I2 � 1

|B|
∫
B

∫
B

∫
B0\5B

∣∣[K(x, z) − K(x, z)
] − [

K(y, z) − K(y, z)
]∣∣∣∣ f (z)

∣∣dz dx dy.

Now, since x, y ∈ B and z ∈ (5B)c it follows |x − z| � 2|x − y|, and therefore we may apply Lemma 4 for δ chosen as
above to get
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I2 � C

|B|
∫
B

∫
B

∫
B0\5B

|x − y|δ
|x − z|d+δ

( |x − z|
ρ(x)

)2−d/q∣∣ f (z)
∣∣dz dx dy

� C
rd+δ

ρ(x0)2−d/q

∫
B0\5B

| f (z)|
|x0 − z|d+δ−2+d/q

dz,

since ρ(x0) ∼ ρ(x) and |x − z| ∼ |x0 − z|.
Splitting the integral, using Lemma 2 for β > 0 or η > 1, and the doubling condition we obtain for j0 the integer part of

log(ρ(x0)/5r),

I2 � C

(
r

ρ(x)

)2−d/q j0∑
j=2

1

2 j(d+δ−2+d/q)

∫

2 j+1 B\2 j B

∣∣ f (z)
∣∣dz

� C

(
r

ρ(x0)

)2−d/q−dη+d−β

rβ w(B)‖ f ‖
BMOβ

L
(w)

j0∑
j=2

2 j(2−δ−d/q)

� C

(
r

ρ(x0)

)δ−dη+d−β

rβ w(B)‖ f ‖
BM O β

L
(w)

,

and since r < ρ(x0) and (49) implies 0 < δ −dη+d −β , we arrive to the desired estimate. The case β = 0 and η = 1 follows
in the same way majorizing the log function by an appropriate positive power.

Finally, for I3 we use that both kernels K and K satisfy the Calderón–Zygmund smoothness estimate (18) for δ < 1 −d/q.
Therefore proceeding as with I2 we obtain

I3 � Crd+δ

∫
Bc

0

| f (z)|
|x0 − z|d+δ

dz

� C
∞∑

j= j0

1

2 j(d+δ)

∫

2 j+1 B

∣∣ f (z)
∣∣dz

� Crβ‖ f ‖
BM O β

L
(w)

∞∑
j= j0

1

2 j(d+δ−β)
w

(
2 j B

)
.

Applying the doubling condition our choice of δ implies that the last series converges and we obtain the desired result.
In order to prove (b), we may proceed as before, this time choosing q > d and β < δ < 1 such that V ∈ R Hq and (49)

holds, and using Lemma 6 and Lemma 7 instead of Lemma 3 an Lemma 4 respectively. �
Before the proof of Theorem 2 we need the following technical lemma. In what follows we denote by I1 = (−�)−1/2

the classical fractional integral of order 1.

Lemma 8. Let V ∈ R Hq with d/2 < q < d and w ∈ R Hs ∩ A p/s′ for some s < p′ where 1
p = 1

q − 1
d . Then for any f ∈ BMOβ

L
(w),

0 � β < 1, and any ball B = B(x, r),∫
B

∣∣ f (z)
∣∣I1(V χ2B)(z)dz � C‖ f ‖

BMOβ

L
(w)

w(B)rβ−1Φβ,η

(
r

ρ(x)

)
, (53)

where

Φβ,η(t) =
⎧⎨
⎩

t2+μd−d if t � 1,

td−dη−β+2−d/q if t < 1, and either β > 0 or η > 1,

[1 + log(1/t)]t2−d/q if t < 1, η = 1 and β = 0,

for η and μ being the exponent of the doubling property satisfied by w and V respectively.

Proof. We first apply Hölder’s inequality to estimate the right-hand side of (53) by

‖ f χB‖p′
∥∥I1(V χ2B)

∥∥
p .

To bound the first factor we apply again Hölder’s inequality with exponent σ such that σ p′ = (p/s′)′ = ν to the functions

| f |p′
w

1
σ −p′

and w p′− 1
σ . It is easy to check that (p′ − 1 )σ ′ = s and 1′ ′ = s′ . Therefore,
σ σ p sp
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‖ f χB‖p′ �
( ∫

B

ws
)s′/sp( ∫

B

| f |ν w1−ν

)1/ν

� C
w(B)s′/p

|B|1/p

( ∫
B

| f |ν w1−ν

)1/ν

. (54)

On the other hand, due to the boundedness of I1 and the doubling property of V we have

∥∥I1(V χ2B)
∥∥

p � C‖V χ2B‖q � C
V (B)

|B|1/q′ . (55)

In the case r � ρ(x0), since w ∈ A p/s′ , an application of Proposition 3 gives us

‖ f χB‖p′ � ‖ f ‖
BMOβ

L

w(B)rβ−d/p . (56)

Now we apply the second part of Lemma 1 to estimate the right-hand side of (55) by

rd−2−d/q′
(

r

ρ(x)

)2+(μ−1)d

.

Combining the above estimates we arrive to (53).
The case r < ρ(x), is handled similarly, using Lemma 2 and the first part of Lemma 1 to bound (54) and (55) respec-

tively. �
Proof of Theorem 2. Let s > p′

0 such that w ∈ A p0/s′ ∩ R Hs . We choose q satisfying d/2 < q < q0 � d, V ∈ R Hq , 0 � β < 2− d
q ,

1 � η < 1 + 2−d/q−β
d and such that w ∈ A p/s′ for 1

p = 1
q − 1

d .
As in the proof of Theorem 1 we only need to check (50) and (51) with R∗ instead of R. To obtain these estimates,

we follow the same steps as for the previous theorem. Let us notice that there we used estimates of the kernel given by
Lemma 6 and Lemma 7 for q > d. This time we have to take care of an additional term involving V .

Let x0 ∈ R
d and B = B(x0,ρ(x0)), and set f = f1 + f2 with f1 = χ2B f . Since R∗ is bounded in L p′

(see [12, Theorem 0.5])
and using (56) we have

∫
B

|R∗ f1| � |B|1/p
( ∫

B

|R∗ f1|p′
)1/p′

� C |B|1/p
( ∫

B

| f |p′
)1/p′

� C‖ f ‖
BMOβ

L
|B|β/d w(B). (57)

For f2 we estimate the size of K ∗ using Lemma 5. We only have to take care of the term with V . The other is the same
as in Theorem 1.

Now, using that for x ∈ B and z ∈ R
d \ 2B , ρ(x) ∼ ρ(x0), |x − z| ∼ |x0 − z|, B(z, |z−x|

4 ) ⊂ B(x0,2|x0 − z|), we have that

∫
B

∫

Rd\2B

ρ(x)k
( ∫

B(z, |x−z|
4 )

V (u)

|u − z|d−1
du

) | f (z)|
|x − z|k+d−1

dz dx

is bounded by a constant times

ρ(x0)

∞∑
j=1

1

2 j(k+d−1)

∫

2 j+1 B\2 j B

( ∫

2 j+2 B

V (u)

|u − z|d−1
du

)∣∣ f (z)
∣∣dz.

Noticing that
∫

2 j+2 B
V (u)

|u−z|d−1 du = I1(χ2 j+2 B V )(z), we may use Lemma 8 and w ∈ Dη , to obtain the bound

C‖ f ‖
BMOβ

L
(w)

w(B)ρ(x0)
β

∞∑
j=1

1

2 j(k+2d−β−2−μd−ηd)
.

Choosing k large enough to make the series convergent we arrive to the desired estimate.
Now we take care of the oscillation of R∗ on a ball B = B(x0, r) with r < ρ(x0).
First, we use the same estimate as in (52) with R and R replaced by their adjoints and we again call I and II to the

corresponding terms. For II, the same argument is valid since w satisfies (2) (see Remark 4). For I we set I j , j = 1,2,3 as
in there.
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To estimate I1 we use part (c) of Lemma 5. The term without V can be carried out in the same way. For the term
involving V we notice that B(z, 1

4 |z − x|) ⊂ 8B for x ∈ B and z ∈ 5B . Therefore it can be bounded by
∫
B

∫
5B

| f (z)|
|x − z|d−1

I1(V χ8B)(z)dz dx = Cr

∫
5B

∣∣ f (z)
∣∣I1(V χ8B)(z)dz.

An application of Lemma 8 yields to the bound

‖ f ‖
BMOβ

L
(w)

w(B)rβ

(
r

ρ(x0)

)d−ηd−β+2−d/q

,

when β > 0 or η > 1, or

‖ f ‖
BMOβ

L
(w)

w(B)

(
1 + log

ρ(x0)

r

)(
r

ρ(x0)

)2−d/q

,

when β = 0 and η = 1. Due to the assumptions on η and q we obtain the desired result.
Now we proceed to estimate I2. Notice that we may assume 5r < ρ(x0), otherwise I2 = 0. Making use of Lemma 7

we obtain two terms. One is the same as in Theorem 1 and can be handled in a similar way, this time choosing δ close
enough to 2 − d/q. For the term containing V we use that for x ∈ B and z ∈ R

d \ 2B , ρ(x) ∼ ρ(x0), |x − z| ∼ |x0 − z|,
B(z, |z−x|

4 ) ⊂ B(x0,2|x0 − z|). Then we need to estimate

rδ+d
∫

B(x0,ρ(x0))\5B

| f (z)|
|x0 − z|d+δ−1

∫
B(x0,2|x0−z|)

V (u)

|u − z|d−1
du dz.

Breaking the integral in z dyadically and setting j0 such that 2 j0−1r � ρ(x0) � 2 j0 r, the last expression is bounded by

r
j0∑

j=3

1

2 j(d+δ−1)

∫

2 j B

∣∣ f (z)
∣∣I1(χ2 j+1 B V )(z)dz.

Applying Lemma 8, we obtain for the case β > 0 or η > 1 the bound

rβ w(B)‖ f ‖
BMOβ

L

(
r

ρ(x0)

)d−ηd−β+2−d/q j0∑
j=3

2 j(2−d/q−δ) � Crβ w(B)‖ f ‖
BMOβ

L

(
r

ρ(x0)

)d−ηd−β+δ

� Crβ w(B)‖ f ‖
BMOβ

L

,

choosing δ close enough to 2 − d/q. The case β = 0 and η = 1 follows in the same way.
Now we take care of I3. Here, as in Theorem 1, we use the smoothness of each kernel separately. For R∗ we use

Calderón–Zygmund condition and for R∗ we use Lemma 5 with δ as above. Again we only have to deal with the term
with V , which can be bounded by

Cρ(x0)
krδ+d

∫

Rd\B(x0,ρ(x0))

| f (z)|
|x0 − z|k+d+δ−1

∫
B(x0,2|x0−z|)

V (u)

|u − z|d−1
du dz

� Cρ(x0)
kr1−k

∞∑
j= j0

1

2 j(k+d+δ−1)

∫

2 j B

∣∣ f (z)
∣∣I1(χ2 j+1 B V )(z)dz,

and applying again Lemma 8 this time we obtain the bound

C‖ f ‖
BMOβ

L

w(B)rβ

(
r

ρ(x0)

)2+(μ−1)d−k ∞∑
j= j0

1

2 j(k+2d−2+δ−β−dμ−dη)
.

Choosing k large enough to make the series convergent we get

C‖ f ‖
BMOβ

L

w(B)rβ

(
r

ρ(x0)

)d+δ−β−dη

,

and the last factor is bounded since r < ρ(x0) and the exponent is positive according to our assumptions and the choice
of δ. �
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