Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings

Hugo Aimar, Marilina Carena*
Instituto de Matemática Aplicada del Litoral (CONICET-UNL), Departamento de Matemática (FIQ-UNL), Santa Fe, Argentina

ARTICLE INFO

Article history:

Received 30 June 2011
Available online 7 June 2012
Submitted by Pekka Koskela

Keywords:

Hardy-Littlewood maximal operator
Iterated function systems
Hutchinson orbits
Muckenhoupt weights

Abstract

Let M_{n} denote the Hardy-Littlewood maximal operator on the n-th iteration of a given iterated function system (IFS). We give sufficient conditions on the IFS in order to obtain a pointwise estimate for M_{n} in terms of the composition of M_{0} and a discrete Hardy-Littlewood type maximal operator. As a corollary we prove the uniform preservation of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS.

© 2012 Elsevier Inc. All rights reserved.

0. Introduction

We shall start by introducing our result for the most elementary self-similar settings; the interval [0, 1]. The interval $[0,1]=X$ can be regarded as the Banach fixed point for the mapping T on the compact sets K of the real line defined as

$$
T(K)=\psi_{1}(K) \cup \psi_{2}(K)
$$

where $\psi_{1}(x)=\frac{x}{2}, \psi_{2}(x)=\frac{x}{2}+\frac{1}{2}$. The standard one dimensional Lebesgue length λ on [0,1], can also be seen as the invariant measure induced by the IFS $\Psi=\left\{\psi_{1}, \psi_{2}\right\}$. In fact, λ is the fixed point of the mapping S on the Borel probabilities μ on [0,1] defined by

$$
S(\mu)(E)=\frac{1}{2} \mu\left(\psi_{1}^{-1}(E)\right)+\frac{1}{2} \mu\left(\psi_{2}^{-1}(E)\right)
$$

for E a Borel subset of X.
The system $\Psi=\left\{\psi_{1}, \psi_{2}\right\}$ is by no means the only IFS producing [0,1] as the self-similar set and λ as the invariant measure. Let us write T_{Ψ} and S_{Ψ} to denote the mappings T and S introduced above to emphasize its dependence on Ψ. The system $\Phi=\left\{\phi_{1}, \phi_{2}\right\}$ with $\phi_{1}(x)=\psi_{1}(x)=\frac{x}{2}$ and $\phi_{2}(x)=1-\frac{x}{2}$ (see Fig. 1), induces the mappings T_{Φ} and S_{Φ} changing ψ_{i} by ϕ_{i}. The fixed points for T_{Φ} and S_{Φ} are, again, $[0,1]$ and λ. It is easy to realize that the system Φ has some advantages over the system Ψ from the, let us say, analytical point of view. In fact, if μ is absolutely continuous with respect to λ with density w, i.e. $d \mu(x)=w(x) d x$, it is easy to check that $S_{\Psi}(\mu)$ is also absolutely continuous and that its Radon-Nikodym derivative is given by

$$
w_{\Psi}= \begin{cases}w \circ \psi_{1}^{-1} & \text { on } X_{1} \\ w \circ \psi_{2}^{-1} & \text { on } X_{2}\end{cases}
$$

[^0]

Fig. 1. $\psi=\left\{\psi_{1}, \psi_{2}\right\}$ and $\Phi=\left\{\phi_{1}, \phi_{2}\right\}$.

Fig. 2. Densities for $S_{\psi}(\mu)$ and $S_{\Phi}(\mu)$.
where $X_{i}=\psi_{i}(X)=\psi_{i}([0,1])$. Of course $S_{\Phi}(\mu)$ has the density

$$
w_{\Phi}= \begin{cases}w \circ \phi_{1}^{-1} & \text { on } X_{1} \\ w \circ \phi_{2}^{-1} & \text { on } X_{2}\end{cases}
$$

It is easy to see that Φ is continuity preserving but Ψ is not, in the sense that $w_{\Phi}(x)$ if continuous if w is. The function $w_{\Psi}(x)$, instead, is generically discontinuous for w continuous.

Not only continuity is preserved by Φ but also some precise quantitative integral properties such as the Muckenhoupt conditions. Take μ to be an absolutely continuous measure on [0,1] with a density belonging to a Muckenhoupt class. To fix ideas, take $d \mu(x)=\frac{1}{2} w(x) d x$, with $w(x)=x^{-1 / 2}$. Hence μ is a Borel probability measure on [0,1 . Moreover, μ is doubling. In other words, regarding $X=[0,1]$ as a metric space with the restriction of the usual distance, we easily see that $\mu(B(x, 2 r)) \leq 4 \mu(B(x, r))$ for every $x \in X$ and every $r>0$. Here $B(y, s)$ is the open ball in [0,1] centered at $y \in X$ with radius $s>0$. Precisely, $B(y, s)=(y-s, y+s) \cap[0,1]$. Actually the doubling property can be deduced from the fact that $w(x)$ is an A_{2} Muckenhoupt weight. We shall introduce later these classes of densities. Notice that while w_{Ψ} is no longer doubling, w_{Φ} is. In fact

$$
2 \sqrt{2} w_{\Psi}(x)= \begin{cases}x^{-1 / 2} & \text { if } 0<x<1 / 2 \\ \left(x-\frac{1}{2}\right)^{-1 / 2} & \text { if } 1 / 2<x<1\end{cases}
$$

(see Fig. 2), and

$$
2 \sqrt{2} w_{\Phi}(x)= \begin{cases}x^{-1 / 2} & \text { if } 0<x<1 / 2 \\ (1-x)^{-1 / 2} & \text { if } 1 / 2<x<1\end{cases}
$$

For our purposes, two facts deserve to be emphasized. First, these behaviors persist along the iterations S_{Ψ}^{n} of S_{Ψ} and S_{Φ}^{n} of S_{Φ} (see Fig. 3). Second, the densities associated to the measures $S_{\Phi}^{n}(\mu)$ are all A_{2}-Muckenhoupt weights. Moreover, the A_{2} constants are bounded uniformly with respect to n.

After the original work by Benjamin Muckenhoupt contained in [1] (see also [2,3]) it is well known that the Muckenhoupt condition on a density w reflects the behavior of the Hardy-Littlewood maximal operator on the spaces $L^{p}(\mu)$ with $d \mu(x)=w(x) d x$. Hence, it looks natural to ask whether the above observed behavior of $S_{\phi}^{n}(\mu)$ can be predicted from the analysis of Hardy-Littlewood maximal functions.

Fig. 3. Densities for $S_{\Psi}^{2}(\mu)$ and $S_{\Phi}^{2}(\mu)$.
To state our result in the setting defined by the IFS Φ on $X=[0,1]$, we start by some basic notation. For any Borel measurable function f on X and any $x \in X$, set

$$
M f(x)=\sup _{r>0} \frac{1}{\lambda(B(x, r))} \int_{B(x, r)}|f(y)| d y,
$$

to denote the standard centered Hardy-Littlewood maximal function on X. Here, as before, λ denotes the one dimensional Lebesgue measure on X and $B(x, r)=(x-r, x+r) \cap X, x \in X$.

For a given (large) positive integer N, we may regard the set $I_{N}:=\{1,2, \ldots, N\}$ with the counting measure and the usual distance inherited from \mathbb{R}^{1}, as a metric measure space. In such a setting the Hardy-Littlewood maximal operator is well defined. In fact, for g a real function (finite sequence) defined on I_{N} and let $i \in I_{N}$, the Hardy-Littlewood maximal function is given by

$$
\mathfrak{M}_{N} g(i)=\sup _{r>0} \frac{1}{\operatorname{card}(\Im(i, r))} \sum_{j \in \mathcal{J}(i, r)}|g(j)|,
$$

where $\Im(i, r)=(i-r, i+r) \cap I_{N}$.
It is easy to see directly by the standard covering arguments or to deduce from the general setting of spaces of homogeneous type, that the operators \mathfrak{M}_{N} are uniformly of weak type $(1,1)$ and hence uniformly bounded on each $L^{p}\left(I_{N}\right.$, card) for $1<p \leq \infty$.

Notice that for each $n \in \mathbb{N}$ and for each $j=1,2,3, \ldots, 2^{n}$ there exists one and only one sequence $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ with $\alpha_{i} \in\{1,2\}$ such that $\phi_{\alpha_{1}} \circ \cdots \circ \phi_{\alpha_{n}}([0,1])=\left[\frac{j-1}{2^{n}}, \frac{j}{2^{n}}\right]$. In fact, it is enough to take $\alpha_{i}=\beta_{i}+1$, where $\beta_{i}, i=1, \ldots, n$, are the n first terms in the binary expansion of any number in $\left[\frac{j-1}{2^{n}}, \frac{j}{2^{n}}\right)$. This fact allows us to write

$$
[0,1]=\bigcup_{j=1}^{2^{n}}\left[\frac{j-1}{2^{n}}, \frac{j}{2^{n}}\right]=\bigcup_{j=1}^{2^{n}} X_{j}^{n}=\bigcup_{j=1}^{2^{n}} \phi_{j}^{n}(X), \quad \text { with } \phi_{j}^{n}=\phi_{\alpha_{1}} \circ \cdots \circ \phi_{\alpha_{n}}
$$

To simplify our statement, let us introduce the following notation. For a given Borel measurable f on [0, 1] and a fixed $z \in[0,1]$, we write $M\left(f \circ \phi^{n}\right)(z)$ to denote the sequence $g_{z}(j)=M\left(f \circ \phi_{j}^{n}\right)(z)$, for $j \in I_{2^{n}}=\left\{1,2,3, \ldots, 2^{n}\right\}$.

Theorem 1. There exists a constant C such that the inequality

$$
\begin{equation*}
(M f)\left(\phi_{i}^{n}(z)\right) \leq C \mathfrak{M}_{2^{n}}\left[M\left(f \circ \phi^{n}\right)(z)\right](i) \tag{0.1}
\end{equation*}
$$

holds for every $i=1,2,3, \ldots, 2^{n}$, every $n \in \mathbb{N}$, every measurable function f defined on $[0,1]$ and every $z \in[0,1]$.
Inequality (0.1) reads, somehow more explicitly

$$
(M f)\left(\phi_{i}^{n}(z)\right) \leq C \sup _{r>0} \frac{1}{\operatorname{card}(\Im(i, r))} \sum_{j \in \mathfrak{J}(i, r)} M\left(f \circ \phi_{j}^{n}\right)(z) .
$$

Let us show here how to use (0.1) to prove that the Muckenhoupt classes are preserved along the Hutchinson orbits. Following [1] (see also [3]) we say that a non-negative integrable function w defined on [0, 1] is an $A_{p}=A_{p}([0,1])$ Muckenhoupt weight, with $1<p<\infty$, if there exists a constant C such that the inequality

$$
\left(\int_{B(x, r)} w(y) d y\right)\left(\int_{B(x, r)} w^{-\frac{1}{p-1}}(y) d y\right)^{p-1} \leq C(\lambda(B(x, r)))^{p}
$$

holds for every $x \in X$ and $r>0$. Here $B(x, r)$ and λ have the same meaning as in the definition of the operator M.

Corollary 2. If $w \in A_{p}([0,1])$ and $d v=w(x) d x$, then there exists a constant C such that

$$
\begin{equation*}
\int_{[0,1]}|M f|^{p} d v_{n} \leq C \int_{[0,1]}|f|^{p} d v_{n} \tag{0.2}
\end{equation*}
$$

for every $n \in \mathbb{N}$ and every measurable function f, where $v_{n}=S_{\Phi}^{n}(v)$. Hence v_{n} is absolutely continuous with respect to $d x$ and its Radon-Nikodym derivative belongs uniformly to $A_{p}([0,1])$.

Proof. Notice first that with the above notation we have that $d \nu_{n}(x)=w_{n}(x) d x$ with $w_{n}=w \circ\left(\phi_{j}^{n}\right)^{-1}$ on $\left[\frac{j-1}{2^{n}}, \frac{j}{2^{n}}\right]$, for every $j=1, \ldots, 2^{n}$. Hence for a given measurable function h we have

$$
\begin{equation*}
\int_{[0,1]} h d v_{n}=\sum_{i=1}^{2^{n}} \int_{X_{i}^{n}} h(z) w\left(\left(\phi_{i}^{n}\right)^{-1}(z)\right) d z=\frac{1}{2^{n}} \sum_{i=1}^{2^{n}} \int_{X} h\left(\phi_{i}^{n}(x)\right) w(x) d x \tag{0.3}
\end{equation*}
$$

To prove (0.2) we apply (0.3), (0.1), the uniform L^{p} boundedness of $\mathfrak{M}_{2^{n}}$ with the counting measure, the $L^{p}(w d x)$ boundedness of M and (0.3) again, as follows.

$$
\begin{aligned}
\int_{[0,1]}|M f|^{p} d v_{n} & =\frac{1}{2^{n}} \sum_{i=1}^{2^{n}} \int_{[0,1]}\left|M f\left(\phi_{i}^{n}(x)\right)\right|^{p} w(x) d x \\
& \leq \frac{C}{2^{n}} \sum_{i=1}^{2^{n}} \int_{[0,1]}\left|\mathfrak{M}_{2^{n}}\left[M\left(f \circ \phi^{n}\right)(x)\right](i)\right|^{p} w(x) d x \\
& =\frac{C}{2^{n}} \int_{[0,1]}\left(\sum_{i=1}^{2^{n}}\left|\mathfrak{M}_{2^{n}}\left[M\left(f \circ \phi^{n}\right)(x)\right](i)\right|^{p}\right) w(x) d x \\
& \leq \frac{C}{2^{n}} \int_{[0,1]}\left(\sum_{i=1}^{2^{n}}\left|M\left(f \circ \phi_{i}^{n}\right)(x)\right|^{p}\right) w(x) d x \\
& =\frac{C}{2^{n}} \sum_{i=1}^{2^{n}} \int_{[0,1]}\left|M\left(f \circ \phi_{i}^{n}\right)(x)\right|^{p} w(x) d x \\
& \leq \frac{C}{2^{n}} \sum_{i=1}^{2^{n}} \int_{[0,1]}\left|\left(f \circ \phi_{i}^{n}\right)(x)\right|^{p} w(x) d x \\
& =C \int_{[0,1]}|f|^{p} d v_{n} .
\end{aligned}
$$

The constant C may change from line to line. The absolute continuity of v_{n} and the uniform Muckenhoupt condition for its Radon-Nikodym derivative follows from Muckenhoupt's theorem and the fact that the constant C in the above inequality does not depend on n and f.

We shall obtain Theorem 1 as a consequence of the more general result contained in Theorem 3 which we state and prove, after some notation, in Section 1. In Section 2 we generalize Corollary 2, and in Section 3 we exhibit examples of the general results applied to some classical situations.

1. The main result

We shall describe the general setting from a somehow axiomatic point of view. The approach allows us to state and prove the main result in a concise and quite general form containing many classical situations.
(A) The underlying space (X, d, μ). Let (X, d) be a compact metric space with diameter 1 . Let μ be a Borel probability on X such that the functions of $r \in(0,1]$ defined by $\mu_{x}(r)=\mu(B(x, r)), x \in X$, are uniformly equivalent to a positive power of r. Precisely, there exist constants K_{1}, K_{2} and $\gamma>0$ such that the inequalities

$$
K_{1} r^{\gamma} \leq \mu_{x}(r) \leq K_{2} r^{\gamma}
$$

hold for every $x \in X$ and $r \in(0,1]$. Sometimes this property is called Ahlfors condition or is described by saying that (X, d, μ) is a normal space of dimension γ. In fact γ is the Hausdorff dimension of each ball in X. It is easy to see that if (X, d, μ) is a normal space, then (X, d, μ) is a space of homogeneous type. This means that there exists a constant $A \geq 1$ (called doubling constant) such that $0<\mu_{x}(2 r) \leq A \mu_{x}(r)<\infty$ for every $x \in X$ and every $r>0$.
(B) The family Φ of similitudes. A finite set $\Phi=\left\{\phi_{i}: X \rightarrow X, i=1,2, \ldots, H\right\}$ of contractive similitudes with the same contraction rate is given. Precisely, each ϕ_{i} satisfies

$$
d\left(\phi_{i}(x), \phi_{i}(y)\right)=\beta d(x, y)
$$

for every $x, y \in X$ and some constant $0<\beta<1$. For $n \in \mathbb{N}$, set $\mathfrak{I}^{n}=\{1,2, \ldots, H\}^{n}$. Given $\boldsymbol{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathfrak{I}^{n}$, we denote with ϕ_{i}^{n} the composition $\phi_{i_{n}} \circ \phi_{i_{n-1}} \circ \cdots \circ \phi_{i_{2}} \circ \phi_{i_{1}}$. Then for any subset E of X we have $\phi_{i}^{n}(E)=$ $\left(\phi_{i_{n}} \circ \phi_{i_{n-1}} \circ \cdots \circ \phi_{i_{2}} \circ \phi_{i_{1}}\right)(E)$. Set $X_{i}^{n}=\phi_{i}^{n}(X)$ and $X^{n}=\bigcup_{i \in J^{n}} X_{i}^{n}$. We shall assume that Φ satisfies:
(B1) Open Set Condition (OSC). There exists a non-empty open set $U \subset X$ such that

$$
\bigcup_{i=1}^{H} \phi_{i}(U) \subseteq U
$$

and $\phi_{i}(U) \cap \phi_{j}(U)=\emptyset$ if $i \neq j$. We shall say that U is a set for the OSC for Φ.
(B2) Adjacency. There exists a positive constant c such that the inclusion

$$
B\left(\boldsymbol{\phi}_{i}^{n}(z), r\right) \cap X_{j}^{n} \subseteq B\left(\boldsymbol{\phi}_{j}^{n}(z), c r\right) \cap X_{j}^{n}
$$

holds for every $n \in \mathbb{N}$, every $\boldsymbol{i}, \boldsymbol{j} \in \mathfrak{I}^{n}$, every $r>0$ and every $z \in X$.
To avoid dilations for the statement of the general result, we only remark at this point that the setting $X=[0,1]$ with the usual distance and length, and $\Phi=\left\{\phi_{1}(x)=\frac{x}{2}, \phi_{2}(x)=1-\frac{x}{2}\right\}$ presented in the introduction satisfies all these properties. Notice also that the system $\Psi=\left\{\psi_{1}(x)=\frac{x}{2}, \psi_{2}(x)=\frac{1}{2}+\frac{x}{2}\right\}$ satisfies all the above properties except (B2), which does not hold if $n=1$ with $i=1, j=2, z=1$ and r small. That is why we call it the "adjacency" property of the system.

We proceed to define precisely the three maximal operators involved. Let h be an integrable real function defined on X. The Hardy-Littlewood centered maximal function associated to h is given by

$$
M h(x)=\sup _{r>0} \frac{1}{\mu(B(x, r))} \int_{B(x, r)}|h(y)| d \mu(y) .
$$

To define a discrete version of the Hardy-Littlewood maximal operator, let us fix $x_{0} \in U$ and for $\boldsymbol{i}, \boldsymbol{j} \in \mathfrak{I}_{\tilde{d}}^{n}$ define $\tilde{d}(\boldsymbol{i}, \boldsymbol{j})=d\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\left(x_{0}\right), \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(x_{0}\right)\right)$. For $n \in \mathbb{N}, \boldsymbol{i} \in \mathfrak{I}^{n}$ and $r>0$, set $\mathscr{B}(\boldsymbol{i}, r)$ to denote the \tilde{d}-ball of radius r in ($\left.\tilde{I}^{n}, \tilde{d}\right)$. More precisely, $\mathcal{B}(\boldsymbol{i}, r)=\left\{\boldsymbol{j} \in \mathfrak{I}^{n}: d\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\left(x_{0}\right), \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(x_{0}\right)\right)<r\right\}$. As our second operator, we shall consider a Hardy-Littlewood type maximal function defined using the family $\mathcal{B}(\boldsymbol{i}, r)$. Precisely, given a real function g defined on \mathfrak{I}^{n},

$$
\mathfrak{M}_{n} g(\boldsymbol{i})=\sup _{r>0} \frac{1}{\operatorname{card}(\mathcal{B}(\boldsymbol{i}, r))} \sum_{\boldsymbol{j} \in \mathcal{B}(i, r)}|g(\boldsymbol{j})|
$$

We have to point out that \tilde{d} and hence the \mathfrak{M}_{n} 's depend on $x_{0} \in U$, but we shall fix it from now on.
To introduce the third Hardy-Littlewood maximal operator considered in this note, we shall make use of the natural "uniformly distributed" probability measure induced by μ on X^{n} given by

$$
\mu^{n}(E)=\frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{T}^{n}} \mu\left(\left(\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)^{-1}(E)\right)
$$

for E a Borel set in X^{n}. In other words, $\mu^{n}=H^{-n} \sum_{j \in \mathfrak{J}^{n}} \mu_{\boldsymbol{j}}^{n}$, with $\mu_{\boldsymbol{j}}^{n}(E)=\mu\left(\left(\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)^{-1}(E)\right)$. The third maximal operator involved in our main result is the Hardy-Littlewood operator on the space (X^{n}, d, μ^{n}). Precisely, for a Borel measurable function f on X^{n} we define, for $v \in X^{n}$,

$$
M_{n} f(v)=\sup _{r>0} \frac{1}{\mu^{n}(B(v, r))} \int_{B(v, r)}|f(y)| d \mu^{n}(y)
$$

Here $B(v, r)$ is the d-ball in X^{n}. Notice that $M_{0}=M$ under the standard assumption $X^{0}=X$ and $\mu^{0}=\mu$.
Theorem 3. There exists a geometric constant C such that the inequality

$$
M_{n} f\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)\right) \leq C \mathfrak{M}_{n}\left(M\left(f \circ \boldsymbol{\phi}^{n}\right)(z)\right)(\boldsymbol{i})
$$

holds for every $f \in L^{1}\left(X^{n}, \mu^{n}\right), z \in X, \boldsymbol{i} \in \mathfrak{I}^{n}$ and $n \in \mathbb{N}$, where $M\left(f \circ \boldsymbol{\phi}^{n}\right)(z)$ denotes the function g on \mathfrak{I}^{n} defined by $g(\boldsymbol{j})=M\left(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)(z)$.

Before proving Theorem 3 we shall collect in the next lemma some elementary properties of a system $((X, d, \mu), \Phi)$ satisfying (A) and (B) above. Item (1) in Lemma 4 is contained in [4, Theorem 2.1(III)], and Item (2b) is contained in [5, Lemma 2.4]. The proofs of (2a), (3)-(5) are given after the proof of Theorem 3.

Lemma 4. (1) The sequence $\left\{\left(X^{n}, d, \mu^{n}\right): n \in \mathbb{N}\right\}$ is a uniform family of spaces of homogeneous type. In other words, there exists a constant \tilde{A} such that

$$
0<\mu^{n}(B(x, 2 r)) \leq \tilde{A} \mu^{n}(B(x, r))
$$

for every $r>0, x \in X^{n}$ and $n \in \mathbb{N}$.
(2) Let $x_{0} \in U$ be fixed, and for each $n \in \mathbb{N}$ we consider the set $\Delta_{n}=\left\{\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(x_{0}\right): \boldsymbol{j} \in \mathfrak{I}^{n}\right\}$. Then
(a) for every $n \in \mathbb{N}$ we have that Δ_{n} is a $\delta \beta^{n}$-disperse set, with $\delta=\operatorname{dist}\left(x_{0}, \partial U\right)$. This means that $d\left(\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(x_{0}\right), \boldsymbol{\phi}_{\boldsymbol{i}}^{n}\left(x_{0}\right)\right) \geq \delta \beta^{n}$ for every $\boldsymbol{i} \neq \boldsymbol{j}$ in \mathfrak{I}^{n};
(b) $\left\{\left(\Delta_{n}, d\right.\right.$, card $\left.): n \in \mathbb{N}\right\}$ is a sequence of spaces of homogeneous type with a uniform doubling constant A.
(3) Given $a>0$, there exists a constant $N=N(a)$ such that $\operatorname{card}\left(\mathscr{B}\left(\boldsymbol{i}, a \beta^{n}\right)\right) \leq N$ for every $\boldsymbol{i} \in \mathfrak{I}^{n}$ and every $n \in \mathbb{N}$.
(4) For each $n \in \mathbb{N}$ we have that

$$
\mu^{n}(B(y, r)) \geq \frac{K_{1}}{H^{n}} \frac{r^{\gamma}}{\beta^{\gamma n}},
$$

for every $0<r \leq \beta^{n} / 2$ and every $y \in X^{n}$.
(5) If h is an integrable real function on (X, μ) then for each $n \in \mathbb{N}$ and $\boldsymbol{j} \in \mathfrak{I}^{n}$ the function $h \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n}$ is integrable on $\left(X_{\boldsymbol{j}}^{n}, \mu_{\boldsymbol{j}}^{n}\right)$ and

$$
\int_{X} h \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n} d \mu=\int_{X_{\boldsymbol{j}}^{n}} h d \mu_{\boldsymbol{j}}^{n}
$$

Proof of Theorem 3. Fix $n \in \mathbb{N}, z \in X$ and $\boldsymbol{i} \in \mathfrak{I}^{n}$. Notice that since $\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z) \in X^{n}, M_{n} f\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)\right)$ is well defined for any measurable function f on X^{n}. We shall estimate a general mean of the form

$$
\frac{1}{\mu^{n}\left(B\left(\boldsymbol{\phi}_{i}^{n}(z), r\right)\right)} \int_{B\left(\phi_{i}^{n}(z), r\right)}|f(y)| d \mu^{n}(y)
$$

for $0<r \leq 1$. Recall the fact that $B\left(\phi_{i}^{n}(z), r\right)$ is to be understood as the d-ball on X^{n}, or in an equivalent way one may think that is the d-ball on X since μ^{n} is supported on $X^{n} \subseteq X$. Let us divide our analysis in two cases depending on the relative sizes of r and β^{n}.

Assume first that $r \leq 3 \beta^{n}$. Let us start by estimating $\mu^{n}\left(B\left(\boldsymbol{\phi}_{i}^{n}(z), r\right)\right)$. Notice that

$$
\frac{c_{1}}{H^{n}} \frac{r^{\gamma}}{\beta^{\gamma n}} \leq \mu^{n}\left(B\left(\boldsymbol{\phi}_{i}^{n}(z), r\right)\right)
$$

for some constant c_{1}. In fact, to estimate $\mu^{n}\left(B\left(\phi_{i}^{n}(z), r\right)\right)$ we use property (4) in Lemma 4 when $r \leq \frac{\beta^{n}}{2}$. If $\frac{\beta^{n}}{2}<r \leq 3 \beta^{n}$, the estimates are trivial since

$$
\frac{K_{1}}{H^{n}} \frac{r^{\gamma}}{6^{\gamma} \beta^{\gamma n}} \leq \mu^{n}\left(B\left(\boldsymbol{\phi}_{i}^{n}(z), r / 6\right)\right) \leq \mu^{n}\left(B\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), r\right)\right)
$$

Then the desired inequality holds with $c_{1}=\min \left\{K_{1}, \frac{K_{1}}{6^{\gamma}}\right\}$.
To estimate $\int_{B\left(\phi_{i}^{n}(z), r\right)}|f(y)| d \mu^{n}(y)$ we shall use the adjacency property for Φ. If $\Im_{(i, z, r)}^{n}$ denotes the set of those \boldsymbol{j} in \mathfrak{I}^{n} for which X_{j}^{n} intersects $B\left(\boldsymbol{\phi}_{i}^{n}(z), r\right)$, we have that

$$
\begin{aligned}
\int_{B\left(\phi_{\boldsymbol{i}}^{n}(z), r\right)}|f(y)| d \mu^{n}(y) & =\frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathcal{S}_{(i, z, r)}^{n}} \int_{B\left(\phi_{\boldsymbol{i}}^{n}(z), r\right)}|f(y)| d \mu_{\boldsymbol{j}}^{n}(y) \\
& =\frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathcal{S}_{(i, z, r)}^{n}} \int_{B\left(\phi_{\boldsymbol{i}}^{n}(z), r\right) \cap x_{\boldsymbol{j}}^{n}}|f(y)| d \mu_{\boldsymbol{j}}^{n}(y) .
\end{aligned}
$$

Using the adjacency property (B2) of Φ for the domain of integration in the above integral, we get that

$$
\int_{B\left(\phi_{\boldsymbol{i}}^{n}(z), r\right)}|f(y)| d \mu^{n}(y) \leq \frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \tilde{J}_{(i, z, r)}^{n}} \int_{B\left(\phi_{\boldsymbol{j}}^{n}(z), c r\right) \cap X_{\boldsymbol{j}}^{n}}|f(y)| d \mu_{\boldsymbol{j}}^{n}(y) .
$$

Let us estimate any of the integrals in the last sum by "changing variables" in the sense of property (5) in Lemma 4. For $\boldsymbol{j} \in \mathfrak{I}_{(i, z, r)}^{n}$ we have that

$$
\begin{aligned}
\int_{B\left(\phi_{\boldsymbol{j}}^{n}(z), c r\right) \cap X_{\boldsymbol{j}}^{n}}|f(y)| d \mu_{\boldsymbol{j}}^{n}(y) & =\int_{X_{\boldsymbol{j}}^{n}} X_{B\left(\phi_{\boldsymbol{j}}^{n}(z), c r\right)}(y)|f(y)| d \mu_{\boldsymbol{j}}^{n}(y) \\
& =\int_{X} X_{B\left(\phi_{\boldsymbol{j}}^{n}(z), c r\right)}\left(\boldsymbol{\phi}_{\boldsymbol{j}}^{n}(u)\right)\left|\left(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)(u)\right| d \mu(u) \\
& =\int_{B\left(z, c r \beta^{-n}\right)}\left|\left(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)\right| d \mu .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{1}{\mu^{n}\left(B\left(\boldsymbol{\phi}_{i}^{n}(z), r\right)\right)} \int_{B\left(\phi_{i}^{n}(z), r\right)}|f(y)| d \mu^{n}(y) & \leq \frac{1}{c_{1}} \sum_{\boldsymbol{j} \in \jmath_{(i, z, r)}^{n}} \frac{\beta^{\gamma n}}{r^{\gamma}} \int_{B\left(z, \frac{c r}{\beta^{n}}\right)}\left|\left(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)\right| d \mu \\
& \leq \frac{c^{\gamma} K_{2}}{c_{1}} \sum_{j \in\}_{(i, z, r)}^{n}} M\left(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)(z) .
\end{aligned}
$$

Notice now that $\mathfrak{S}_{(i, z, r)}^{n} \subseteq \mathcal{B}\left(\boldsymbol{i}, 5 \beta^{n}\right)$. In fact, if $\boldsymbol{j} \in \mathfrak{I}^{n}$ is such that $B\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), r\right) \cap X_{\boldsymbol{j}}^{n} \neq \emptyset$, then there exists $y \in X_{\boldsymbol{j}}^{n}$ such that $d\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), y\right)<r$. Hence

$$
\begin{aligned}
d\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\left(x_{0}\right), \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(x_{0}\right)\right) & \leq d\left(\boldsymbol{\phi}_{i}^{n}\left(x_{0}\right), \boldsymbol{\phi}_{i}^{n}(z)\right)+d\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), y\right)+d\left(y, \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(x_{0}\right)\right) \\
& <\beta^{n}+r+\beta^{n} \\
& \leq 5 \beta^{n} .
\end{aligned}
$$

From property (3) in Lemma 4 we also have that $\operatorname{card}\left(\mathscr{B}\left(\boldsymbol{i}, 5 \beta^{n}\right)\right) \leq N$ for some constant N. So that

$$
\begin{aligned}
\frac{1}{\mu^{n}\left(B\left(\phi_{\boldsymbol{i}}^{n}(z), r\right)\right)} \int_{B\left(\phi_{\boldsymbol{i}}^{n}(z), r\right)}|f(y)| d \mu^{n}(y) & \leq \frac{N c^{\gamma} K_{2}}{c_{1} \operatorname{card}\left(\mathcal{B}\left(\boldsymbol{i}, 5 \beta^{n}\right)\right)} \sum_{\boldsymbol{j} \in \mathcal{B}\left(\mathbf{i}, 5 \beta^{n}\right)} M\left(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)(z) \\
& \leq c_{1}^{-1} c^{\gamma} K_{2} N \mathfrak{M}_{n}\left(M\left(f \circ \phi^{n}\right)(z)\right)(\boldsymbol{i}) .
\end{aligned}
$$

Assume next that $r>3 \beta^{n}$. Again we have to provide an adequate estimate for the mean value

$$
\frac{1}{\mu^{n}\left(B\left(\boldsymbol{\phi}_{i}^{n}(z), r\right)\right)} \int_{B\left(\phi_{i}^{n}(z), r\right)}|f(y)| d \mu^{n}(y) .
$$

Let us first get a lower bound for $\mu^{n}\left(B\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), r\right)\right)$. From the definition of μ^{n} we see that

$$
\begin{aligned}
\mu^{n}\left(B\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), r\right)\right) & =\frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathcal{J}^{n}} \mu\left(\left(\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)^{-1}\left(B\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), r\right)\right)\right) \\
& \geq \frac{1}{H^{n}} \operatorname{card}\left(\left\{\boldsymbol{j} \in \mathfrak{I}^{n}: X_{\boldsymbol{j}}^{n} \subseteq B\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), r\right)\right\}\right) .
\end{aligned}
$$

Let us observe that the dispersion property given in (2a) in Lemma 4 allows to regard the uniform homogeneity contained in (2b) of this lemma, as equivalent to the uniform homogeneity of the sequence ($\mathcal{J}^{n}, \tilde{d}$, card). Now, since in this case $\mathcal{B}(\boldsymbol{i}, r / 3) \subseteq\left\{\boldsymbol{j} \in \mathfrak{I}^{n}: X_{\boldsymbol{j}}^{n} \subseteq B\left(\phi_{\boldsymbol{i}}^{n}(z), r\right)\right\}$, we get that

$$
\mu^{n}\left(B\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), r\right)\right) \geq \frac{1}{H^{n}} \operatorname{card}(\mathcal{B}(\boldsymbol{i}, r / 3)) \geq \frac{1}{A^{3} H^{n}} \operatorname{card}(\mathcal{B}(\boldsymbol{i}, 2 r)) .
$$

On the other hand

$$
\begin{aligned}
\int_{B\left(\phi_{i}^{n}(z), r\right)}|f(y)| d \mu^{n}(y) & =\frac{1}{H^{n}} \sum_{j \in J_{(i, r, r)}^{n}} \int_{B\left(\phi_{j}^{n}(z), r\right) \cap X_{j}^{n}}|f(y)| d \mu_{j}^{n}(y) \\
& \leq \frac{1}{H^{n}} \sum_{j \in \int_{(i, i, r)}^{n}} \int_{X_{j}^{n}}|f(y)| d \mu_{j}^{n}(y) \\
& =\frac{1}{H^{n}} \sum_{j \in J_{(i, z, r)}^{n}} \int_{X}\left|f \circ \phi_{j}^{n}\right| d \mu \\
& \leq \frac{1}{H^{n}} \sum_{j \in J_{(i, r, r)}^{n}} M\left(f \circ \phi_{j}^{n}\right)(z) .
\end{aligned}
$$

So that, since $\mathfrak{J}_{(i, z, r)}^{n} \subseteq \mathcal{B}(\boldsymbol{i}, 2 r)$, we have

$$
\begin{aligned}
\frac{1}{\mu^{n}\left(B\left(\phi_{\boldsymbol{i}}^{n}(z), r\right)\right)} \int_{B\left(\phi_{\boldsymbol{i}}^{n}(z), r\right)}|f(y)| d \mu^{n}(y) & \leq \frac{A^{3}}{\operatorname{card}(\mathcal{B}(\boldsymbol{i}, 2 r))} \sum_{j \in \mathscr{B}(i, 2 r)} M\left(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)(z) \\
& \leq A^{3} \mathfrak{M}_{n}\left(M\left(f \circ \boldsymbol{\phi}^{n}\right)(z)\right)(\boldsymbol{i}) .
\end{aligned}
$$

Proof of Lemma 4. As we already said the proof of (1) is contained in [4], and the proof of (2b) in [5].
Let us prove that the OSC implies (2a). In fact, take $\boldsymbol{j}, \boldsymbol{i} \in\{1, \ldots, H\}^{n}$ with $\boldsymbol{j} \neq \boldsymbol{i}$, and set $x_{\mathbf{j}}^{n}=\boldsymbol{\phi}_{\mathbf{j}}^{n}\left(x_{0}\right)$ and $x_{\mathbf{i}}^{n}=\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\left(x_{0}\right)$. Since U is an open set, we have that $B\left(x_{0}, \delta\right) \subseteq U$, with $\delta=d\left(x_{0}, \partial U\right)$. Then

$$
\begin{aligned}
& B\left(x_{\mathbf{j}}^{n}, \delta \beta^{n}\right)=\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(B\left(x_{0}, \delta\right)\right) \subseteq \boldsymbol{\phi}_{\boldsymbol{j}}^{n}(U), \\
& B\left(x_{\mathbf{i}}^{n}, \delta \beta^{n}\right)=\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\left(B\left(x_{0}, \delta\right)\right) \subseteq \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(U),
\end{aligned}
$$

and since $\boldsymbol{\phi}_{\mathbf{j}}^{n}(U)$ and $\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(U)$ are disjoint, we have $B\left(x_{\mathbf{j}}^{n}, \delta \beta^{n}\right) \cap B\left(x_{\mathbf{i}}^{n}, \delta \beta^{n}\right)=\emptyset$. This implies that $d\left(x_{\mathbf{j}}^{n}, x_{\mathbf{i}}^{n}\right) \geq \delta \beta^{n}$.
The estimate in (3) is an immediate consequence of the results in [6]. Since the spaces (Δ_{n}, d, card) are uniformly of homogeneous type and the set Δ_{n} is $\delta \beta^{n}$-disperse, every d-ball of radius bounded above by a constant times β^{n} has at most N elements of Δ_{n}, where N is independent of n and of the center of the given ball. In other words, there exists a constant $N=N(a)$ such that

$$
\operatorname{card}\left(\mathscr{B}\left(\boldsymbol{i}, a \beta^{n}\right)\right) \leq N
$$

uniformly in n and $\boldsymbol{i} \in \mathfrak{I}^{n}$.
To prove (4), fix $n \in \mathbb{N}$ and take $y \in X^{n}$. Let $\boldsymbol{i} \in \mathfrak{I}^{n}$ be such that $y \in X_{\boldsymbol{i}}^{n}$. Since $\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\right)^{-1}(B(y, r))=B\left(\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\right)^{-1}(y), \frac{r}{\beta^{n}}\right)$, we have that

$$
\begin{aligned}
\mu^{n}(B(y, r)) & =\frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{I}^{n}} \mu\left(\left(\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\right)^{-1}(B(y, r))\right) \\
& \geq \frac{1}{H^{n}} \mu\left(B\left(\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\right)^{-1}(y), \frac{r}{\beta^{n}}\right)\right) \\
& \geq \frac{K_{1}}{H^{n}} \frac{r^{\gamma}}{\beta^{\gamma n}}
\end{aligned}
$$

The identity in (5) is a consequence of the fact that when h is the indicator function of a measurable set E, we have

$$
\int_{X} X_{E}\left(\phi_{\boldsymbol{j}}^{n}\right) d \mu(x)=\mu\left(\left(\phi_{\boldsymbol{j}}^{n}\right)^{-1}(E)\right)=\mu_{\boldsymbol{j}}^{n}(E)=\int_{X_{\boldsymbol{j}}^{n}} X_{E} d \mu_{\boldsymbol{j}}^{n}
$$

2. On the stability of Muckenhoupt classes

In the next result our setting is as in Section 1 , in other words (X, d, μ) satisfies (A) and $\boldsymbol{\Phi}=\left\{\boldsymbol{\phi}_{\boldsymbol{i}}^{n}: \boldsymbol{i} \in \mathfrak{I}^{n}, n \in \mathbb{N}\right\}$ satisfies (B). Given a Borel measure v on X, we define for each $n \in \mathbb{N}$

$$
S_{\boldsymbol{\Phi}}^{n}(v)(E)=\frac{1}{H^{n}} \sum_{i \in \mathcal{J}^{n}} v\left(\left(\phi_{i}^{n}\right)^{-1}(E)\right) .
$$

Theorem 5. If $w \in A_{p}(X, d, \mu)$ and $d v=w d \mu$, then there exists a constant C such that

$$
\begin{equation*}
\int_{X^{n}}\left|M_{n} f\right|^{p} d \nu^{n} \leq C \int_{X^{n}}|f|^{p} d \nu^{n} \tag{2.1}
\end{equation*}
$$

for every $n \in \mathbb{N}$ and every measurable function f in X^{n}, where $v^{n}=S_{\Phi}^{n}(v)$. Hence v^{n} is absolutely continuous with respect to μ^{n} and its Radon-Nikodym derivative belongs uniformly to $A_{p}\left(X^{n}, d, \mu^{n}\right)$.

Proof. Notice first that

$$
v^{n}(E)=\frac{1}{H^{n}} \sum_{i \in \mathfrak{J}^{n}} \int_{X}\left(X_{E} \circ \phi_{i}^{n}\right)(z) w(z) d \mu(z)
$$

Hence

$$
\int_{X^{n}} g d v^{n}=\frac{1}{H^{n}} \sum_{i \in \mathfrak{J}^{n}} \int_{X} g\left(\boldsymbol{\phi}_{i}^{n}(z)\right) w(z) d \mu(z) .
$$

Then, using the above remark, Theorem 3, the uniform L^{p} boundedness of $\mathfrak{M}_{2^{n}}$ with the counting measure and the $L^{p}(w d \mu)$ boundedness of M we obtain

$$
\int_{X^{n}}\left|M_{n} f\right|^{p} d \nu^{n}=\frac{1}{H^{n}} \sum_{i \in \mathfrak{I}^{n}} \int_{X}\left|M_{n} f\left(\phi_{i}^{n}(z)\right)\right|^{p} w(z) d \mu(z)
$$

$$
\begin{aligned}
& \leq \frac{C}{H^{n}} \sum_{i \in \mathcal{I}^{n}} \int_{X}\left|\mathfrak{M}_{n}\left(M\left(f \circ \boldsymbol{\phi}^{n}\right)(z)\right)(\boldsymbol{i})\right|^{p} w(z) d \mu(z) \\
& \leq \frac{C}{H^{n}} \int_{X} \sum_{i \in \mathcal{I}^{n}}\left|M\left(f \circ \boldsymbol{\phi}_{\boldsymbol{i}}^{n}\right)\right|^{p} w(z) d \mu(z) \\
& \leq \frac{C}{H^{n}} \int_{X} \sum_{i \in \mathfrak{I}^{n}}\left|f \circ \boldsymbol{\phi}_{\boldsymbol{i}}^{n}\right|^{p} w(z) d \mu(z) \\
& =C \int_{X^{n}}|f|^{p} d \nu^{n} .
\end{aligned}
$$

Since from (1) in Lemma 4 we have that the spaces (X^{n}, d, μ^{n}) are uniformly spaces of homogeneous type, we can conclude that ν^{n} is absolutely continuous with respect to μ^{n} and its Radon-Nikodym derivative belongs uniformly to $A_{p}\left(X^{n}, d, \mu^{n}\right)$.

3. Some examples

In this section we show how some classical fractals can be obtained through somehow non-standard IFSs satisfying the adjacency property (B2).

The classical Sierpinski IFSs can be slightly modified in order to preserve the adjacency. For the Sierpinski gasket, the usual IFS is $\Psi=\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$, with

$$
\psi_{1}(x, y)=\frac{1}{2}(x, y), \quad \psi_{2}(x, y)=\frac{1}{2}(x+1, y), \quad \psi_{3}(x, y)=\frac{1}{2}\left(x+\frac{1}{2}, y+\frac{\sqrt{3}}{2}\right)
$$

defined on the triangle X with vertices at $a=(0,0), b=(1 / 2, \sqrt{3} / 2)$ and $c=(1,0)$.
If ρ_{θ} denotes the rotation of θ radians about the origin of \mathbb{R}^{2} in the positive sense, we have that the IFS given by $\Phi=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$, where

$$
\begin{aligned}
\phi_{1}(x, y) & =\frac{1}{2}(x, y) \\
\phi_{2}(x, y) & =\frac{1}{2}\left(\rho_{4 \pi / 3}(x, y)\right)+\boldsymbol{v} \\
\phi_{3}(x, y) & =\frac{1}{2}\left(\rho_{2 \pi / 3}(x, y)\right)+\boldsymbol{v}
\end{aligned}
$$

with $\boldsymbol{v}=\left(\frac{3}{4}, \frac{\sqrt{3}}{4}\right)$, satisfies the adjacency property, the OSC and gives rise to the standard Sierpinski triangle (see Fig. 4).
Property (B2) for Φ follows from the following lemma, which can be applied also to some other fractals like the Sierpinski carpet after a redefinition of the IFS preserving adjacency.

Lemma 6. Let $\Phi=\left\{\phi_{1}, \ldots, \phi_{H}\right\}$ be a finite family of contractive similitudes on X with the same contraction rate β. Let us assume that Φ satisfies the following properties:
(1) if $x \in X_{i} \cap X_{j}$ then $d\left(x, \phi_{i}(z)\right)=d\left(x, \phi_{j}(z)\right)$ for every $z \in X$ and every $i, j \in\{1, \ldots, H\}$;
(2) for every $z \in X$ and every $r \leq \beta^{n}$ such that $B\left(\phi_{i}^{n}(z), r\right) \cap X_{j}^{n} \neq \emptyset$, we have that $X_{i}^{n} \cap X_{j}^{n} \cap B\left(\boldsymbol{\phi}_{i}^{n}(z), r\right) \neq \emptyset$.

Then for every $\mathbf{i}, \mathbf{j} \in \mathfrak{I}^{n}$ and every $n \in \mathbb{N}$, we have that
(i) if $x \in X_{i}^{n} \cap X_{j}^{n}$ then there exists $x_{0} \in X$ such that $x=\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\left(x_{0}\right)=\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(x_{0}\right)$;
(ii) if $x \in X_{i}^{n} \cap X_{j}^{n}$ then $d\left(x, \phi_{i}^{n}(z)\right)=d\left(x, \boldsymbol{\phi}_{j}^{n}(z)\right)$ for every $z \in X$;
(iii) $B\left(\phi_{\boldsymbol{i}}^{n}(z), r\right) \cap X_{j}^{n} \subseteq B\left(\phi_{j}^{n}(z), 3 r\right) \cap X_{j}^{n}$ for every $z \in X$.

Proof. Let us prove (i) by induction on n. For $n=1$, let us assume that $x=\phi_{i}\left(x_{0}\right)=\phi_{j}\left(x_{1}\right)$ for some $x_{0}, x_{1} \in X$. Applying hypothesis (1) with $z=x_{1}$ we have that $d\left(x, \phi_{i}\left(x_{1}\right)\right)=d\left(x, \phi_{j}\left(x_{1}\right)\right)=0$. Then $x=\phi_{i}\left(x_{1}\right)$, and we have $\phi_{i}\left(x_{1}\right)=x=\phi_{i}\left(x_{0}\right)$. Since ϕ_{i} is one to one we conclude that $x_{0}=x_{1}$. Let us now show that if (i) holds for n then also holds for $n+1$. In fact, take $x \in X_{\boldsymbol{k}}^{n+1} \cap X_{\ell}^{n+1}$. Then there exist $\boldsymbol{i}, \boldsymbol{j} \in \mathfrak{I}^{n}, k, \ell \in\{1, \ldots, H\}$ and $x_{1}, x_{2} \in X$ such that $x=\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\left(\phi_{k}\left(x_{1}\right)\right)=\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(\phi_{\ell}\left(x_{2}\right)\right)$. Since we are assuming (i) for n, there exists $x_{0} \in X$ such that $x=\boldsymbol{\phi}_{i}^{n}\left(x_{0}\right)=\boldsymbol{\phi}_{j}^{n}\left(x_{0}\right)$. Since $\boldsymbol{\phi}_{i}^{n}$ and $\boldsymbol{\phi}_{j}^{n}$ are one to one, we have that $x_{0}=\phi_{k}\left(x_{1}\right)=\phi_{\ell}\left(x_{2}\right)$. Then $x_{0} \in X_{k} \cap X_{\ell}$, so that there exists $\widetilde{x} \in X$ such that $x_{0}=\phi_{k}(\widetilde{x})=\phi_{\ell}(\tilde{x})$. Hence $x=\phi_{i}^{n}\left(\phi_{k}(\widetilde{x})\right)=\boldsymbol{\phi}_{j}^{n}\left(\phi_{\ell}(\widetilde{x})\right)$, which proves (i).

To prove (ii) we shall use (i) and the similarity condition of the IFS. Let us fix $z \in X$ and $x \in X_{\boldsymbol{i}}^{n} \cap X_{j}^{n}$. Let $x_{0} \in X$ such that $x=\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\left(x_{0}\right)=\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(x_{0}\right)$. Then

$$
d\left(x, \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)\right)=d\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}\left(x_{0}\right), \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)\right)=\beta^{n} d\left(x_{0}, z\right)
$$

Fig. 4. $X^{1}=\bigcup_{i=1}^{3} \phi_{i}(X)=\bigcup_{i=1}^{3} \psi_{i}(X)$.
and

$$
d\left(x, \boldsymbol{\phi}_{\boldsymbol{j}}^{n}(z)\right)=d\left(\boldsymbol{\phi}_{\boldsymbol{j}}^{n}\left(x_{0}\right), \boldsymbol{\phi}_{\boldsymbol{j}}^{n}(z)\right)=\beta^{n} d\left(x_{0}, z\right),
$$

so that $d\left(x, \phi_{i}^{n}(z)\right)=d\left(x, \phi_{j}^{n}(z)\right)$, and we prove (ii).
To prove (iii), let us assume that $B\left(\phi_{i}^{n}(z), r\right) \cap X_{j}^{n} \neq \emptyset$. If $r>\beta^{-n}$ the inclusion holds since $\operatorname{diam}\left(X_{j}^{n}\right)=\beta^{-n}$ implies $B\left(\phi_{j}^{n}(z), 3 r\right) \cap X_{j}^{n}=X_{j}^{n}$, so that we can assume $r \leq \beta^{-n}$. Fix $y \in B\left(\phi_{i}^{n}(z), r\right) \cap X_{j}^{n}$. From (2) there exists $x \in X_{i}^{n} \cap X_{j}^{n} \cap B\left(\phi_{i}^{n}(z), r\right)$, and from (ii) we have that $d\left(\boldsymbol{\phi}_{i}^{n}(z), x\right)=d\left(x, \phi_{\boldsymbol{j}}^{n}(z)\right)$. Then

$$
\begin{aligned}
d\left(y, \boldsymbol{\phi}_{\boldsymbol{j}}^{n}(z)\right) & \leq d\left(y, \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)\right)+d\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), x\right)+d\left(x, \boldsymbol{\phi}_{\boldsymbol{j}}^{n}(z)\right) \\
& =d\left(y, \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)\right)+d\left(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z), x\right)+d\left(x, \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)\right) \\
& <r+r+r \\
& =3 r .
\end{aligned}
$$

With this lemma, in order to prove that Φ satisfies the required properties to apply Theorem 3 to the Sierpinski gasket, we only need to check (1) and (2). Property (1) follows immediately. To verify (2) we only have to observe that for $r \leq 2^{-n}$, if a ball intersects two components of X^{n} and it is centered in one of them, then these two components share a vertex belonging to that ball.

Let us finally observe and depict an illustration of Theorem 5 for the Sierpinski carpet. Let Φ be the classical IFS for the Sierpinski carpet, and let $\Phi=\left\{\phi_{i}: 1 \leq i \leq 8\right\}$ be given by

$$
\begin{aligned}
& \phi_{1}(x, y)=\frac{1}{3}(x, y), \quad \phi_{2}(x, y)=T_{\frac{2}{3}, 0}\left(S_{2}\left(\phi_{1}(x, y)\right)\right), \\
& \phi_{3}(x, y)=T_{\frac{2}{3}, 0}\left(\phi_{1}(x, y)\right), \quad \phi_{4}(x, y)=T_{0, \frac{2}{3}}\left(S_{1}\left(\phi_{1}(x, y)\right)\right), \\
& \phi_{5}(x, y)=T_{\frac{2}{3}, \frac{2}{3}}\left(S_{1}\left(\phi_{1}(x, y)\right)\right), \quad \phi_{6}(x, y)=T_{0, \frac{2}{3}}\left(\phi_{1}(x, y)\right), \\
& \phi_{7}(x, y)=T_{\frac{2}{3}, \frac{2}{3}}\left(S_{2}\left(\phi_{1}(x, y)\right)\right), \quad \phi_{8}(x, y)=T_{\frac{2}{3}, \frac{2}{3}}\left(\phi_{1}(x, y)\right),
\end{aligned}
$$

defined on the unit square X of \mathbb{R}^{2} with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$, where $T_{a, b}(x, y)=(x+a, y+b)$, $S_{1}(x, y)=(x,-y)$ and $S_{2}(x, y)=(-x, y)$. The basic weight function considered is $w(x, y)=\left(x^{2}+y^{2}\right)^{-1 / 4}$ and the basic measure is $d \mu=d x d y$. The following figure illustrate the Radon-Nikodym derivatives w_{Ψ}^{1} and w_{Φ}^{1} of ν_{Ψ}^{1} and v_{Φ}^{1}.

Acknowledgments

The authors were supported by CONICET, CAI+D (UNL) and ANPCyT.

References

[1] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972) 207-226.
[2] R.R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974) 241-250.
[3] José García-Cuerva, José L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, in: North-Holland Mathematics Studies, vol. 116, NorthHolland Publishing Co., Amsterdam, 1985, p. 104. Notas de Matemática [Mathematical Notes].
[4] Hugo A. Aimar, Marilina Carena, Bibiana Iaffei, Boundedness of the Hardy-Littlewood maximal operator along the orbits of contractive similitudes, J. Geom. Anal., in press (http://dx.doi.org/10.1007/s12220-012-9309-1).
[5] Hugo A. Aimar, Marilina Carena, Bibiana Iaffei, Gradual doubling property on Hutchinson orbits, Preprint.
[6] Ronald R. Coifman, Guido Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, in: Lecture Notes in Mathematics, vol. 242, Springer-Verlag, Berlin, 1971. Étude de certaines intégrales singulières.

[^0]: * Corresponding author.

 E-mail addresses: haimar@santafe-conicet.gov.ar (H. Aimar), mcarena@santafe-conicet.gov.ar (M. Carena).

