

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Pointwise estimate for the Hardy–Littlewood maximal operator on the orbits of contractive mappings

Hugo Aimar, Marilina Carena*

Instituto de Matemática Aplicada del Litoral (CONICET-UNL), Departamento de Matemática (FIQ-UNL), Santa Fe, Argentina

ARTICLE INFO

Article history: Received 30 June 2011 Available online 7 June 2012 Submitted by Pekka Koskela

Keywords: Hardy-Littlewood maximal operator Iterated function systems Hutchinson orbits Muckenhoupt weights

ABSTRACT

Let M_n denote the Hardy–Littlewood maximal operator on the *n*-th iteration of a given iterated function system (IFS). We give sufficient conditions on the IFS in order to obtain a pointwise estimate for M_n in terms of the composition of M_0 and a discrete Hardy–Littlewood type maximal operator. As a corollary we prove the uniform preservation of Muckenhoupt condition along the Hutchinson orbits induced by such an IFS.

© 2012 Elsevier Inc. All rights reserved.

0. Introduction

We shall start by introducing our result for the most elementary self-similar settings; the interval [0, 1]. The interval [0, 1] = X can be regarded as the Banach fixed point for the mapping *T* on the compact sets *K* of the real line defined as

$$T(K) = \psi_1(K) \cup \psi_2(K),$$

where $\psi_1(x) = \frac{x}{2}, \psi_2(x) = \frac{x}{2} + \frac{1}{2}$. The standard one dimensional Lebesgue length λ on [0, 1], can also be seen as the invariant measure induced by the IFS $\Psi = \{\psi_1, \psi_2\}$. In fact, λ is the fixed point of the mapping *S* on the Borel probabilities μ on [0, 1] defined by

$$S(\mu)(E) = \frac{1}{2}\mu\left(\psi_1^{-1}(E)\right) + \frac{1}{2}\mu\left(\psi_2^{-1}(E)\right),\,$$

for *E* a Borel subset of *X*.

The system $\Psi = \{\psi_1, \psi_2\}$ is by no means the only IFS producing [0, 1] as the self-similar set and λ as the invariant measure. Let us write T_{Ψ} and S_{Ψ} to denote the mappings T and S introduced above to emphasize its dependence on Ψ . The system $\Phi = \{\phi_1, \phi_2\}$ with $\phi_1(x) = \psi_1(x) = \frac{x}{2}$ and $\phi_2(x) = 1 - \frac{x}{2}$ (see Fig. 1), induces the mappings T_{Φ} and S_{Φ} changing ψ_i by ϕ_i . The fixed points for T_{Φ} and S_{Φ} are, again, [0, 1] and λ . It is easy to realize that the system Φ has some advantages over the system Ψ from the, let us say, analytical point of view. In fact, if μ is absolutely continuous with respect to λ with density w, i.e. $d\mu(x) = w(x)dx$, it is easy to check that $S_{\Psi}(\mu)$ is also absolutely continuous and that its Radon–Nikodym derivative is given by

$$w_{\Psi} = \begin{cases} w \circ \psi_1^{-1} & \text{on } X_1, \\ w \circ \psi_2^{-1} & \text{on } X_2, \end{cases}$$

^{*} Corresponding author.

E-mail addresses: haimar@santafe-conicet.gov.ar (H. Aimar), mcarena@santafe-conicet.gov.ar (M. Carena).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter 0 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2012.05.087

Fig. 2. Densities for $S_{\Psi}(\mu)$ and $S_{\Phi}(\mu)$.

where $X_i = \psi_i(X) = \psi_i([0, 1])$. Of course $S_{\phi}(\mu)$ has the density

$$w_{\Phi} = \begin{cases} w \circ \phi_1^{-1} & \text{on } X_1, \\ w \circ \phi_2^{-1} & \text{on } X_2. \end{cases}$$

It is easy to see that Φ is continuity preserving but Ψ is not, in the sense that $w_{\Phi}(x)$ if continuous if w is. The function $w_{\Psi}(x)$, instead, is generically discontinuous for w continuous.

Not only continuity is preserved by Φ but also some precise quantitative integral properties such as the Muckenhoupt conditions. Take μ to be an absolutely continuous measure on [0, 1] with a density belonging to a Muckenhoupt class. To fix ideas, take $d\mu(x) = \frac{1}{2}w(x)dx$, with $w(x) = x^{-1/2}$. Hence μ is a Borel probability measure on [0, 1]. Moreover, μ is doubling. In other words, regarding X = [0, 1] as a metric space with the restriction of the usual distance, we easily see that $\mu(B(x, 2r)) \leq 4\mu(B(x, r))$ for every $x \in X$ and every r > 0. Here B(y, s) is the open ball in [0, 1] centered at $y \in X$ with radius s > 0. Precisely, $B(y, s) = (y - s, y + s) \cap [0, 1]$. Actually the doubling property can be deduced from the fact that w(x) is an A_2 Muckenhoupt weight. We shall introduce later these classes of densities. Notice that while w_{Ψ} is no longer doubling, w_{Φ} is. In fact

$$2\sqrt{2} w_{\Psi}(x) = \begin{cases} x^{-1/2} & \text{if } 0 < x < 1/2, \\ \left(x - \frac{1}{2}\right)^{-1/2} & \text{if } 1/2 < x < 1, \end{cases}$$

(see Fig. 2), and

$$2\sqrt{2} w_{\Phi}(x) = \begin{cases} x^{-1/2} & \text{if } 0 < x < 1/2, \\ (1-x)^{-1/2} & \text{if } 1/2 < x < 1. \end{cases}$$

For our purposes, two facts deserve to be emphasized. First, these behaviors persist along the iterations S_{ψ}^n of S_{ψ} and S_{ϕ}^n (see Fig. 3). Second, the densities associated to the measures $S_{\phi}^n(\mu)$ are all A_2 -Muckenhoupt weights. Moreover, the A_2 constants are bounded uniformly with respect to n.

After the original work by Benjamin Muckenhoupt contained in [1] (see also [2,3]) it is well known that the Muckenhoupt condition on a density w reflects the behavior of the Hardy–Littlewood maximal operator on the spaces $L^p(\mu)$ with $d\mu(x) = w(x)dx$. Hence, it looks natural to ask whether the above observed behavior of $S_{\phi}^n(\mu)$ can be predicted from the analysis of Hardy–Littlewood maximal functions.

Fig. 3. Densities for $S^2_{\Psi}(\mu)$ and $S^2_{\Phi}(\mu)$.

To state our result in the setting defined by the IFS Φ on X = [0, 1], we start by some basic notation. For any Borel measurable function f on X and any $x \in X$, set

$$Mf(x) = \sup_{r>0} \frac{1}{\lambda(B(x,r))} \int_{B(x,r)} |f(y)| \, dy,$$

to denote the standard centered Hardy–Littlewood maximal function on *X*. Here, as before, λ denotes the one dimensional Lebesgue measure on *X* and $B(x, r) = (x - r, x + r) \cap X, x \in X$.

For a given (large) positive integer N, we may regard the set $I_N := \{1, 2, ..., N\}$ with the counting measure and the usual distance inherited from \mathbb{R}^1 , as a metric measure space. In such a setting the Hardy–Littlewood maximal operator is well defined. In fact, for g a real function (finite sequence) defined on I_N and let $i \in I_N$, the Hardy–Littlewood maximal function is given by

$$\mathfrak{M}_{N}g(i) = \sup_{r>0} \frac{1}{\operatorname{card}(\mathfrak{I}(i,r))} \sum_{j\in\mathfrak{I}(i,r)} |g(j)|,$$

where $\Im(i, r) = (i - r, i + r) \cap I_N$.

It is easy to see directly by the standard covering arguments or to deduce from the general setting of spaces of homogeneous type, that the operators \mathfrak{M}_N are uniformly of weak type (1, 1) and hence uniformly bounded on each $L^p(I_N, \text{ card})$ for 1 .

Notice that for each $n \in \mathbb{N}$ and for each $j = 1, 2, 3, ..., 2^n$ there exists one and only one sequence $\{\alpha_1, ..., \alpha_n\}$ with $\alpha_i \in \{1, 2\}$ such that $\phi_{\alpha_1} \circ \cdots \circ \phi_{\alpha_n}([0, 1]) = \begin{bmatrix} \frac{j-1}{2^n}, \frac{j}{2^n} \end{bmatrix}$. In fact, it is enough to take $\alpha_i = \beta_i + 1$, where $\beta_i, i = 1, ..., n$, are the *n* first terms in the binary expansion of any number in $\begin{bmatrix} \frac{j-1}{2^n}, \frac{j}{2^n} \end{bmatrix}$. This fact allows us to write

$$[0, 1] = \bigcup_{j=1}^{2^n} \left[\frac{j-1}{2^n}, \frac{j}{2^n} \right] = \bigcup_{j=1}^{2^n} X_j^n = \bigcup_{j=1}^{2^n} \phi_j^n(X), \quad \text{with } \phi_j^n = \phi_{\alpha_1} \circ \dots \circ \phi_{\alpha_n}$$

To simplify our statement, let us introduce the following notation. For a given Borel measurable f on [0, 1] and a fixed $z \in [0, 1]$, we write $M(f \circ \phi^n)(z)$ to denote the sequence $g_z(j) = M(f \circ \phi_j^n)(z)$, for $j \in I_{2^n} = \{1, 2, 3, ..., 2^n\}$.

(0.1)

Theorem 1. There exists a constant C such that the inequality

$$(Mf)(\phi_i^n(z)) \le C\mathfrak{M}_{2^n}[M(f \circ \phi^n)(z)](i)$$

holds for every $i = 1, 2, 3, ..., 2^n$, every $n \in \mathbb{N}$, every measurable function f defined on [0, 1] and every $z \in [0, 1]$.

Inequality (0.1) reads, somehow more explicitly

$$(Mf)(\phi_i^n(z)) \le C \sup_{r>0} \frac{1}{\operatorname{card}(\mathfrak{I}(i,r))} \sum_{j\in\mathfrak{I}(i,r)} M(f \circ \phi_j^n)(z).$$

Let us show here how to use (0.1) to prove that the Muckenhoupt classes are preserved along the Hutchinson orbits. Following [1] (see also [3]) we say that a non-negative integrable function w defined on [0, 1] is an $A_p = A_p([0, 1])$ Muckenhoupt weight, with 1 , if there exists a constant <math>C such that the inequality

$$\left(\int_{B(x,r)} w(y) \, dy\right) \left(\int_{B(x,r)} w^{-\frac{1}{p-1}}(y) \, dy\right)^{p-1} \le C \left(\lambda(B(x,r))\right)^p$$

holds for every $x \in X$ and r > 0. Here B(x, r) and λ have the same meaning as in the definition of the operator M.

Corollary 2. If $w \in A_p([0, 1])$ and dv = w(x)dx, then there exists a constant C such that

$$\int_{[0,1]} |Mf|^p \, d\nu_n \le C \int_{[0,1]} |f|^p \, d\nu_n, \tag{0.2}$$

for every $n \in \mathbb{N}$ and every measurable function f, where $v_n = S_{\phi}^n(v)$. Hence v_n is absolutely continuous with respect to dx and its Radon–Nikodym derivative belongs uniformly to $A_p([0, 1])$.

Proof. Notice first that with the above notation we have that $dv_n(x) = w_n(x)dx$ with $w_n = w \circ (\phi_j^n)^{-1}$ on $\left[\frac{j-1}{2^n}, \frac{j}{2^n}\right]$, for every $j = 1, ..., 2^n$. Hence for a given measurable function h we have

$$\int_{[0,1]} h \, d\nu_n = \sum_{i=1}^{2^n} \int_{X_i^n} h(z) w((\phi_i^n)^{-1}(z)) \, dz = \frac{1}{2^n} \sum_{i=1}^{2^n} \int_X h(\phi_i^n(x)) w(x) \, dx. \tag{0.3}$$

To prove (0.2) we apply (0.3), (0.1), the uniform L^p boundedness of \mathfrak{M}_{2^n} with the counting measure, the $L^p(wdx)$ boundedness of M and (0.3) again, as follows.

$$\begin{split} \int_{[0,1]} |Mf|^p \, d\nu_n &= \frac{1}{2^n} \sum_{i=1}^{2^n} \int_{[0,1]} |Mf(\phi_i^n(x))|^p w(x) \, dx \\ &\leq \frac{C}{2^n} \sum_{i=1}^{2^n} \int_{[0,1]} \left| \mathfrak{M}_{2^n} [M(f \circ \phi^n)(x)](i) \right|^p w(x) \, dx \\ &= \frac{C}{2^n} \int_{[0,1]} \left(\sum_{i=1}^{2^n} \left| \mathfrak{M}_{2^n} [M(f \circ \phi^n)(x)](i) \right|^p \right) w(x) \, dx \\ &\leq \frac{C}{2^n} \int_{[0,1]} \left(\sum_{i=1}^{2^n} \left| M(f \circ \phi_i^n)(x) \right|^p \right) w(x) \, dx \\ &= \frac{C}{2^n} \sum_{i=1}^{2^n} \int_{[0,1]} \left| M(f \circ \phi_i^n)(x) \right|^p w(x) \, dx \\ &\leq \frac{C}{2^n} \sum_{i=1}^{2^n} \int_{[0,1]} \left| (f \circ \phi_i^n)(x) \right|^p w(x) \, dx \\ &= C \int_{[0,1]} |f|^p \, d\nu_n. \end{split}$$

The constant *C* may change from line to line. The absolute continuity of v_n and the uniform Muckenhoupt condition for its Radon–Nikodym derivative follows from Muckenhoupt's theorem and the fact that the constant *C* in the above inequality does not depend on *n* and *f*. \Box

We shall obtain Theorem 1 as a consequence of the more general result contained in Theorem 3 which we state and prove, after some notation, in Section 1. In Section 2 we generalize Corollary 2, and in Section 3 we exhibit examples of the general results applied to some classical situations.

1. The main result

We shall describe the general setting from a somehow axiomatic point of view. The approach allows us to state and prove the main result in a concise and quite general form containing many classical situations.

(A) The underlying space (X, d, μ) . Let (X, d) be a compact metric space with diameter 1. Let μ be a Borel probability on X such that the functions of $r \in (0, 1]$ defined by $\mu_x(r) = \mu(B(x, r)), x \in X$, are uniformly equivalent to a positive power of r. Precisely, there exist constants K_1, K_2 and $\gamma > 0$ such that the inequalities

$$K_1 r^{\gamma} \leq \mu_x(r) \leq K_2 r^{\gamma}$$

hold for every $x \in X$ and $r \in (0, 1]$. Sometimes this property is called Ahlfors condition or is described by saying that (X, d, μ) is a *normal space* of dimension γ . In fact γ is the Hausdorff dimension of each ball in X. It is easy to see that if (X, d, μ) is a normal space, then (X, d, μ) is a *space of homogeneous type*. This means that there exists a constant $A \ge 1$ (called doubling constant) such that $0 < \mu_x(2r) \le A\mu_x(r) < \infty$ for every $x \in X$ and every r > 0.

(B) The family Φ of similar set $\Phi = \{\phi_i : X \to X, i = 1, 2, \dots, H\}$ of contractive similar with the same contraction rate is given. Precisely, each ϕ_i satisfies

$$d(\phi_i(x), \phi_i(y)) = \beta d(x, y)$$

for every $x, y \in X$ and some constant $0 < \beta < 1$. For $n \in \mathbb{N}$, set $\mathfrak{I}^n = \{1, 2, \ldots, H\}^n$. Given $\mathbf{i} = (i_1, i_2, \ldots, i_n) \in \mathfrak{I}^n$, we denote with $\boldsymbol{\phi}_i^n$ the composition $\phi_{i_n} \circ \phi_{i_{n-1}} \circ \cdots \circ \phi_{i_2} \circ \phi_{i_1}$. Then for any subset E of X we have $\boldsymbol{\phi}_i^n(E) = (\phi_{i_n} \circ \phi_{i_{n-1}} \circ \cdots \circ \phi_{i_2} \circ \phi_{i_1})$ (E). Set $X_i^n = \boldsymbol{\phi}_i^n(X)$ and $X^n = \bigcup_{i \in \mathfrak{I}^n} X_i^n$. We shall assume that Φ satisfies: (B1) Open Set Condition (OSC). There exists a non-empty open set $U \subset X$ such that

$$\bigcup_{i=1}^n \phi_i(U) \subseteq U,$$

and $\phi_i^{i=1}(U) \cap \phi_j(U) = \emptyset$ if $i \neq j$. We shall say that U is a set for the OSC for Φ . (B2) Adjacency. There exists a positive constant c such that the inclusion

$$B(\boldsymbol{\phi}_{i}^{n}(z), r) \cap X_{i}^{n} \subseteq B(\boldsymbol{\phi}_{i}^{n}(z), cr) \cap X_{i}^{n}$$

holds for every $n \in \mathbb{N}$, every $i, j \in \mathfrak{I}^n$, every r > 0 and every $z \in X$.

To avoid dilations for the statement of the general result, we only remark at this point that the setting X = [0, 1] with the usual distance and length, and $\Phi = \left\{ \phi_1(x) = \frac{x}{2}, \phi_2(x) = 1 - \frac{x}{2} \right\}$ presented in the introduction satisfies all these properties. Notice also that the system $\Psi = \{\psi_1(x) = \frac{x}{2}, \psi_2(x) = \frac{1}{2} + \frac{x}{2}\}$ satisfies all the above properties except (B2), which does not hold if n = 1 with i = 1, j = 2, z = 1 and r small. That is why we call it the "adjacency" property of the system.

We proceed to define precisely the three maximal operators involved. Let *h* be an integrable real function defined on *X*. The Hardy–Littlewood centered maximal function associated to *h* is given by

$$Mh(x) = \sup_{r>0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} |h(y)| \, d\mu(y)$$

To define a discrete version of the Hardy–Littlewood maximal operator, let us fix $x_0 \in U$ and for $i, j \in \mathcal{I}^n$ define $\tilde{d}(\boldsymbol{i}, \boldsymbol{j}) = d(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(x_{0}), \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(x_{0}))$. For $n \in \mathbb{N}, \boldsymbol{i} \in \mathfrak{I}^{n}$ and r > 0, set $\mathcal{B}(\boldsymbol{i}, r)$ to denote the \tilde{d} -ball of radius r in $(\mathfrak{I}^{n}, \tilde{d})$. More precisely, $\mathcal{B}(\mathbf{i}, r) = \{\mathbf{j} \in \mathfrak{I}^n : d(\mathbf{\phi}_{\mathbf{i}}^n(x_0), \mathbf{\phi}_{\mathbf{i}}^n(x_0)) < r\}$. As our second operator, we shall consider a Hardy–Littlewood type maximal function defined using the family $\mathcal{B}(\mathbf{i}, r)$. Precisely, given a real function g defined on \mathfrak{I}^n ,

$$\mathfrak{M}_n g(\mathbf{i}) = \sup_{r>0} \frac{1}{\operatorname{card}(\mathscr{B}(\mathbf{i},r))} \sum_{\mathbf{j}\in\mathscr{B}(\mathbf{i},r)} |g(\mathbf{j})|.$$

We have to point out that \tilde{d} and hence the \mathfrak{M}_n 's depend on $x_0 \in U$, but we shall fix it from now on.

To introduce the third Hardy-Littlewood maximal operator considered in this note, we shall make use of the natural "uniformly distributed" probability measure induced by μ on X^n given by

$$\mu^{n}(E) = \frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{I}^{n}} \mu\left((\boldsymbol{\phi}_{\boldsymbol{j}}^{n})^{-1}(E) \right)$$

for *E* a Borel set in X^n . In other words, $\mu^n = H^{-n} \sum_{j \in \mathbb{S}^n} \mu_j^n$, with $\mu_j^n(E) = \mu\left((\phi_j^n)^{-1}(E)\right)$. The third maximal operator involved in our main result is the Hardy-Littlewood operator on the space (X^n, d, μ^n) . Precisely, for a Borel measurable function f on X^n we define, for $v \in X^n$,

$$M_n f(v) = \sup_{r>0} \frac{1}{\mu^n(B(v,r))} \int_{B(v,r)} |f(y)| \, d\mu^n(y).$$

Here B(v, r) is the *d*-ball in X^n . Notice that $M_0 = M$ under the standard assumption $X^0 = X$ and $\mu^0 = \mu$.

Theorem 3. There exists a geometric constant C such that the inequality

 $M_n f\left(\boldsymbol{\phi}_i^n(z)\right) < C\mathfrak{M}_n\left(M(f \circ \boldsymbol{\phi}^n)(z)\right)(\boldsymbol{i})$

holds for every $f \in L^1(X^n, \mu^n), z \in X, i \in \mathfrak{I}^n$ and $n \in \mathbb{N}$, where $M(f \circ \phi^n)(z)$ denotes the function g on \mathfrak{I}^n defined by $g(\mathbf{j}) = M(f \circ \boldsymbol{\phi}_{\mathbf{i}}^n)(z).$

Before proving Theorem 3 we shall collect in the next lemma some elementary properties of a system $((X, d, \mu), \Phi)$ satisfying (A) and (B) above. Item (1) in Lemma 4 is contained in [4, Theorem 2.1(III)], and Item (2b) is contained in [5, Lemma 2.4]. The proofs of (2a), (3)–(5) are given after the proof of Theorem 3.

Lemma 4. (1) The sequence $\{(X^n, d, \mu^n) : n \in \mathbb{N}\}$ is a uniform family of spaces of homogeneous type. In other words, there exists a constant \tilde{A} such that

$$0 < \mu^{n}(B(x, 2r)) \leq \tilde{A}\mu^{n}(B(x, r))$$
for every $r > 0, x \in X^{n}$ and $n \in \mathbb{N}$.

- (2) Let $x_0 \in U$ be fixed, and for each $n \in \mathbb{N}$ we consider the set $\Delta_n = \{ \boldsymbol{\phi}_i^n(x_0) : \boldsymbol{j} \in \mathfrak{I}^n \}$. Then
 - (a) for every $n \in \mathbb{N}$ we have that Δ_n is a $\delta\beta^n$ -disperse set, with $\delta = \operatorname{dist}(x_0, \partial U)$. This means that $d(\phi_j^n(x_0), \phi_i^n(x_0)) \ge \delta\beta^n$ for every $\mathbf{i} \neq \mathbf{j}$ in \mathfrak{I}^n ;
 - (b) $\{(\Delta_n, d, \text{card}) : n \in \mathbb{N}\}$ is a sequence of spaces of homogeneous type with a uniform doubling constant A.
- (3) Given a > 0, there exists a constant N = N(a) such that $card(\mathcal{B}(\mathbf{i}, a\beta^n)) \leq N$ for every $\mathbf{i} \in \mathfrak{I}^n$ and every $n \in \mathbb{N}$.

(4) For each $n \in \mathbb{N}$ we have that

$$\mu^n(B(y,r)) \geq \frac{K_1}{H^n} \frac{r^{\gamma}}{\beta^{\gamma n}},$$

for every $0 < r \le \beta^n/2$ and every $y \in X^n$.

(5) If h is an integrable real function on (X, μ) then for each $n \in \mathbb{N}$ and $\mathbf{j} \in \mathfrak{I}^n$ the function $h \circ \boldsymbol{\phi}_i^n$ is integrable on (X_i^n, μ_i^n) and

$$\int_X h \circ \boldsymbol{\phi}_{\boldsymbol{j}}^n \, d\mu = \int_{X_{\boldsymbol{j}}^n} h \, d\mu_{\boldsymbol{j}}^n.$$

Proof of Theorem 3. Fix $n \in \mathbb{N}$, $z \in X$ and $i \in \mathcal{I}^n$. Notice that since $\phi_i^n(z) \in X^n$, $M_n f(\phi_i^n(z))$ is well defined for any measurable function f on X^n . We shall estimate a general mean of the form

$$\frac{1}{\mu^n(B(\boldsymbol{\phi}_{\boldsymbol{i}}^n(z),r))}\int_{B(\boldsymbol{\phi}_{\boldsymbol{i}}^n(z),r)}|f(y)|\,d\mu^n(y),$$

for $0 < r \le 1$. Recall the fact that $B(\phi_i^n(z), r)$ is to be understood as the *d*-ball on X^n , or in an equivalent way one may think that is the *d*-ball on X since μ^n is supported on $X^n \subseteq X$. Let us divide our analysis in two cases depending on the relative sizes of r and β^n .

Assume first that $r \leq 3\beta^n$. Let us start by estimating $\mu^n(B(\phi_i^n(z), r))$. Notice that

$$\frac{c_1}{H^n}\frac{r^{\gamma}}{\beta^{\gamma n}} \leq \mu^n(B(\boldsymbol{\phi}^n_{\boldsymbol{i}}(z),r)),$$

for some constant c_1 . In fact, to estimate $\mu^n(B(\phi_i^n(z), r))$ we use property (4) in Lemma 4 when $r \le \frac{\beta^n}{2}$. If $\frac{\beta^n}{2} < r \le 3\beta^n$, the estimates are trivial since

$$\frac{K_1}{H^n} \frac{r^{\gamma}}{6^{\gamma} \beta^{\gamma n}} \leq \mu^n(B(\boldsymbol{\phi}_{\mathbf{i}}^n(z), r/6)) \leq \mu^n(B(\boldsymbol{\phi}_{\mathbf{i}}^n(z), r)).$$

Then the desired inequality holds with $c_1 = \min \left\{ K_1, \frac{K_1}{6^{\gamma}} \right\}$.

To estimate $\int_{B(\boldsymbol{\phi}_{i}^{n}(z),r)} |f(y)| d\mu^{n}(y)$ we shall use the adjacency property for Φ . If $\mathfrak{I}_{(i,z,r)}^{n}$ denotes the set of those \boldsymbol{j} in \mathfrak{I}^{n} for which X_{i}^{n} intersects $B(\boldsymbol{\phi}_{i}^{n}(z), r)$, we have that

$$\begin{split} \int_{B(\phi_{i}^{n}(z),r)} |f(y)| \, d\mu^{n}(y) &= \frac{1}{H^{n}} \sum_{j \in \mathfrak{I}_{(i,z,r)}^{n}} \int_{B(\phi_{i}^{n}(z),r)} |f(y)| \, d\mu_{j}^{n}(y) \\ &= \frac{1}{H^{n}} \sum_{j \in \mathfrak{I}_{(i,z,r)}^{n}} \int_{B(\phi_{i}^{n}(z),r) \cap X_{j}^{n}} |f(y)| \, d\mu_{j}^{n}(y) \end{split}$$

Using the adjacency property (B2) of Φ for the domain of integration in the above integral, we get that

$$\int_{B(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z),r)} |f(y)| \, d\mu^{n}(y) \leq \frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{I}_{(\boldsymbol{i},\boldsymbol{z},r)}^{n}} \int_{B(\boldsymbol{\phi}_{\boldsymbol{j}}^{n}(z),cr) \cap X_{\boldsymbol{j}}^{n}} |f(y)| \, d\mu_{\boldsymbol{j}}^{n}(y).$$

Let us estimate any of the integrals in the last sum by "changing variables" in the sense of property (5) in Lemma 4. For $\mathbf{j} \in \mathfrak{I}^n_{(\mathbf{i}, \mathbf{z}, \mathbf{r})}$ we have that

$$\begin{split} \int_{B(\boldsymbol{\phi}_{j}^{n}(z),cr)\cap X_{j}^{n}} \left| f(\mathbf{y}) \right| d\mu_{j}^{n}(\mathbf{y}) &= \int_{X_{j}^{n}} \mathfrak{X}_{B(\boldsymbol{\phi}_{j}^{n}(z),cr)}(\mathbf{y}) |f(\mathbf{y})| d\mu_{j}^{n}(\mathbf{y}) \\ &= \int_{X} \mathfrak{X}_{B(\boldsymbol{\phi}_{j}^{n}(z),cr)}\left(\boldsymbol{\phi}_{j}^{n}(u)\right) \left| \left(f \circ \boldsymbol{\phi}_{j}^{n}\right)(u) \right| d\mu(u) \\ &= \int_{B(z,cr\beta^{-n})} \left| \left(f \circ \boldsymbol{\phi}_{j}^{n}\right) \right| d\mu. \end{split}$$

Hence

$$\begin{aligned} \frac{1}{\mu^n(B(\boldsymbol{\phi}_{\boldsymbol{i}}^n(z),r))} \int_{B(\boldsymbol{\phi}_{\boldsymbol{i}}^n(z),r)} |f(y)| \, d\mu^n(y) &\leq \frac{1}{c_1} \sum_{\boldsymbol{j} \in \mathfrak{I}_{(\boldsymbol{i},\boldsymbol{z},r)}^n} \frac{\beta^{\gamma n}}{r^{\gamma}} \int_{B\left(\boldsymbol{z},\frac{cr}{\beta^n}\right)} \left| \left(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^n\right) \right| \, d\mu \\ &\leq \frac{c^{\gamma} K_2}{c_1} \sum_{\boldsymbol{j} \in \mathfrak{I}_{(\boldsymbol{i},\boldsymbol{z},r)}^n} M(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^n)(z). \end{aligned}$$

Notice now that $\mathfrak{I}_{(i,z,r)}^n \subseteq \mathscr{B}(i, 5\beta^n)$. In fact, if $j \in \mathfrak{I}^n$ is such that $B(\phi_i^n(z), r) \cap X_j^n \neq \emptyset$, then there exists $y \in X_j^n$ such that $d(\phi_i^n(z), y) < r$. Hence

$$d(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(\boldsymbol{x}_{0}), \boldsymbol{\phi}_{\boldsymbol{j}}^{n}(\boldsymbol{x}_{0})) \leq d(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(\boldsymbol{x}_{0}), \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(\boldsymbol{z})) + d(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(\boldsymbol{z}), \boldsymbol{y}) + d(\boldsymbol{y}, \boldsymbol{\phi}_{\boldsymbol{j}}^{n}(\boldsymbol{x}_{0}))$$

$$< \beta^{n} + r + \beta^{n}$$

$$\leq 5\beta^{n}.$$

From property (3) in Lemma 4 we also have that $card(\mathcal{B}(\mathbf{i}, 5\beta^n)) \leq N$ for some constant *N*. So that

$$\frac{1}{\mu^{n}(\mathcal{B}(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z),r))} \int_{\mathcal{B}(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z),r)} |f(y)| d\mu^{n}(y) \leq \frac{Nc^{\gamma}K_{2}}{c_{1}\mathrm{card}(\mathcal{B}(\boldsymbol{i},5\beta^{n}))} \sum_{\boldsymbol{j}\in\mathcal{B}(\boldsymbol{i},5\beta^{n})} M(\boldsymbol{f}\circ\boldsymbol{\phi}_{\boldsymbol{j}}^{n})(z)$$
$$\leq c_{1}^{-1}c^{\gamma}K_{2}N\mathfrak{M}_{n}\left(M(\boldsymbol{f}\circ\boldsymbol{\phi}^{n})(z)\right)(\boldsymbol{i}).$$

Assume next that $r > 3\beta^n$. Again we have to provide an adequate estimate for the mean value

$$\frac{1}{\mu^n(B(\boldsymbol{\phi}_i^n(z),r))}\int_{B(\boldsymbol{\phi}_i^n(z),r)}|f(y)|\,d\mu^n(y).$$

Let us first get a lower bound for $\mu^n(B(\phi_i^n(z), r))$. From the definition of μ^n we see that

$$\mu^{n}(B(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z),r)) = \frac{1}{H^{n}} \sum_{\boldsymbol{j}\in\mathfrak{I}^{n}} \mu\left((\boldsymbol{\phi}_{\boldsymbol{j}}^{n})^{-1}(B(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z),r))\right)$$
$$\geq \frac{1}{H^{n}} \operatorname{card}\left(\{\boldsymbol{j}\in\mathfrak{I}^{n}: X_{\boldsymbol{j}}^{n}\subseteq B(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z),r)\}\right)$$

Let us observe that the dispersion property given in (2a) in Lemma 4 allows to regard the uniform homogeneity contained in (2b) of this lemma, as equivalent to the uniform homogeneity of the sequence $(\mathfrak{I}^n, \tilde{d}, \text{card})$. Now, since in this case $\mathscr{B}(\mathbf{i}, r/3) \subseteq \{\mathbf{j} \in \mathfrak{I}^n : X_{\mathbf{j}}^n \subseteq B(\boldsymbol{\phi}_{\mathbf{i}}^n(z), r)\}$, we get that

$$\mu^{n}(\mathcal{B}(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z),r)) \geq \frac{1}{H^{n}} \operatorname{card}(\mathcal{B}(\boldsymbol{i},r/3)) \geq \frac{1}{A^{3}H^{n}} \operatorname{card}(\mathcal{B}(\boldsymbol{i},2r)).$$

On the other hand

$$\begin{split} \int_{B(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z),r)} |f(\boldsymbol{y})| \, d\mu^{n}(\boldsymbol{y}) &= \frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{I}_{(\boldsymbol{i},\boldsymbol{z},r)}^{n}} \int_{B(\boldsymbol{\phi}_{\boldsymbol{j}}^{n}(z),r) \cap X_{\boldsymbol{j}}^{n}} |f(\boldsymbol{y})| \, d\mu_{\boldsymbol{j}}^{n}(\boldsymbol{y}) \\ &\leq \frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{I}_{(\boldsymbol{i},\boldsymbol{z},r)}^{n}} \int_{X_{\boldsymbol{j}}^{n}} |f(\boldsymbol{y})| \, d\mu_{\boldsymbol{j}}^{n}(\boldsymbol{y}) \\ &= \frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{I}_{(\boldsymbol{i},\boldsymbol{z},r)}^{n}} \int_{X} |f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n}| \, d\mu \\ &\leq \frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{I}_{(\boldsymbol{i},\boldsymbol{z},r)}^{n}} M(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^{n})(z). \end{split}$$

So that, since $\mathfrak{I}_{(\boldsymbol{i},\boldsymbol{z},r)}^n \subseteq \mathcal{B}(\boldsymbol{i},2r)$, we have

$$\frac{1}{\mu^n(\mathcal{B}(\boldsymbol{\phi}_{\boldsymbol{i}}^n(z),r))} \int_{\mathcal{B}(\boldsymbol{\phi}_{\boldsymbol{i}}^n(z),r)} |f(y)| \, d\mu^n(y) \leq \frac{A^3}{\operatorname{card}(\mathcal{B}(\boldsymbol{i},2r))} \sum_{\boldsymbol{j}\in\mathcal{B}(\boldsymbol{i},2r)} M(f \circ \boldsymbol{\phi}_{\boldsymbol{j}}^n)(z)$$
$$\leq A^3 \mathfrak{M}_n\left(M(f \circ \boldsymbol{\phi}^n)(z)\right)(\boldsymbol{i}). \quad \Box$$

632

Proof of Lemma 4. As we already said the proof of (1) is contained in [4], and the proof of (2b) in [5].

Let us prove that the OSC implies (2a). In fact, take $j, i \in \{1, \ldots, H\}^n$ with $j \neq i$, and set $x_i^n = \phi_i^n(x_0)$ and $x_i^n = \phi_i^n(x_0)$. Since U is an open set, we have that $B(x_0, \delta) \subseteq U$, with $\delta = d(x_0, \partial U)$. Then

$$B(\mathbf{x}_{\mathbf{j}}^{n}, \delta\beta^{n}) = \boldsymbol{\phi}_{\mathbf{j}}^{n} (B(\mathbf{x}_{0}, \delta)) \subseteq \boldsymbol{\phi}_{\mathbf{j}}^{n}(U),$$

$$B(\mathbf{x}_{\mathbf{i}}^{n}, \delta\beta^{n}) = \boldsymbol{\phi}_{\mathbf{i}}^{n} (B(\mathbf{x}_{0}, \delta)) \subseteq \boldsymbol{\phi}_{\mathbf{i}}^{n}(U),$$

and since $\phi_j^n(U)$ and $\phi_i^n(U)$ are disjoint, we have $B(x_j^n, \delta\beta^n) \cap B(x_i^n, \delta\beta^n) = \emptyset$. This implies that $d(x_j^n, x_i^n) \ge \delta\beta^n$. The estimate in (3) is an immediate consequence of the results in [6]. Since the spaces $(\Delta_n, d, \text{ card})$ are uniformly of homogeneous type and the set Δ_n is $\delta\beta^n$ -disperse, every *d*-ball of radius bounded above by a constant times β^n has at most N elements of Δ_n , where N is independent of n and of the center of the given ball. In other words, there exists a constant N = N(a) such that

$$\operatorname{card}(\mathcal{B}(\boldsymbol{i}, a\beta^n)) \leq N$$

uniformly in *n* and $\mathbf{i} \in \mathfrak{I}^n$.

To prove (4), fix $n \in \mathbb{N}$ and take $y \in X^n$. Let $\mathbf{i} \in \mathfrak{I}^n$ be such that $y \in X^n_{\mathbf{i}}$. Since $(\boldsymbol{\phi}^n_{\mathbf{i}})^{-1}(B(y, r)) = B\left((\boldsymbol{\phi}^n_{\mathbf{i}})^{-1}(y), \frac{r}{\beta^n}\right)$, we have that

$$\mu^{n}(B(y,r)) = \frac{1}{H^{n}} \sum_{\boldsymbol{j} \in \mathfrak{I}^{n}} \mu\left((\boldsymbol{\phi}_{\boldsymbol{j}}^{n})^{-1}(B(y,r))\right)$$
$$\geq \frac{1}{H^{n}} \mu\left(B\left((\boldsymbol{\phi}_{\boldsymbol{i}}^{n})^{-1}(y), \frac{r}{\beta^{n}}\right)\right)$$
$$\geq \frac{K_{1}}{H^{n}} \frac{r^{\gamma}}{\beta^{\gamma n}}.$$

The identity in (5) is a consequence of the fact that when h is the indicator function of a measurable set E, we have

$$\int_X \mathfrak{X}_E\left(\boldsymbol{\phi}_{\boldsymbol{j}}^n\right) \, d\mu(\boldsymbol{x}) = \mu\left(\left(\boldsymbol{\phi}_{\boldsymbol{j}}^n\right)^{-1}(E)\right) = \mu_{\boldsymbol{j}}^n(E) = \int_{X_{\boldsymbol{j}}^n} \mathfrak{X}_E \, d\mu_{\boldsymbol{j}}^n. \quad \Box$$

2. On the stability of Muckenhoupt classes

In the next result our setting is as in Section 1, in other words (X, d, μ) satisfies (A) and $\boldsymbol{\Phi} = \{\boldsymbol{\phi}_i^n : i \in \mathfrak{I}^n, n \in \mathbb{N}\}$ satisfies (B). Given a Borel measure ν on X, we define for each $n \in \mathbb{N}$

$$S^{n}_{\boldsymbol{\phi}}(\nu)(E) = \frac{1}{H^{n}} \sum_{i \in \mathfrak{I}^{n}} \nu\left(\left(\boldsymbol{\phi}^{n}_{i}\right)^{-1}(E)\right).$$

Theorem 5. If $w \in A_p(X, d, \mu)$ and $dv = w d\mu$, then there exists a constant C such that

$$\int_{X^{n}} |M_{n}f|^{p} d\nu^{n} \leq C \int_{X^{n}} |f|^{p} d\nu^{n},$$
(2.1)

for every $n \in \mathbb{N}$ and every measurable function f in X^n , where $v^n = S^n_{\Phi}(v)$. Hence v^n is absolutely continuous with respect to μ^n and its Radon–Nikodym derivative belongs uniformly to $A_p(X^n, d, \mu^n)$.

Proof. Notice first that

$$v^{n}(E) = \frac{1}{H^{n}} \sum_{i \in \mathcal{I}^{n}} \int_{X} (\mathfrak{X}_{E} \circ \boldsymbol{\phi}_{i}^{n})(z) w(z) d\mu(z).$$

Hence

$$\int_{X^n} g \, dv^n = \frac{1}{H^n} \sum_{i \in \mathfrak{I}^n} \int_X g(\boldsymbol{\phi}_i^n(z)) w(z) \, d\mu(z).$$

Then, using the above remark, Theorem 3, the uniform L^p boundedness of \mathfrak{M}_{2^n} with the counting measure and the $L^p(wd\mu)$ boundedness of M we obtain

$$\int_{X^n} |M_n f|^p \, d\nu^n = \frac{1}{H^n} \sum_{i \in \mathfrak{I}^n} \int_X \left| M_n f(\boldsymbol{\phi}_i^n(z)) \right|^p w(z) \, d\mu(z)$$

$$\leq \frac{C}{H^n} \sum_{i \in \mathfrak{I}^n} \int_X \left| \mathfrak{M}_n \left(M(f \circ \boldsymbol{\phi}^n)(z) \right) (\boldsymbol{i}) \right|^p w(z) \, d\mu(z) \right|$$

$$\leq \frac{C}{H^n} \int_X \sum_{i \in \mathfrak{I}^n} |M(f \circ \boldsymbol{\phi}^n_{\boldsymbol{i}})|^p w(z) \, d\mu(z)$$

$$\leq \frac{C}{H^n} \int_X \sum_{i \in \mathfrak{I}^n} |f \circ \boldsymbol{\phi}^n_{\boldsymbol{i}}|^p w(z) \, d\mu(z)$$

$$= C \int_{X^n} |f|^p \, d\nu^n.$$

Since from (1) in Lemma 4 we have that the spaces (X^n, d, μ^n) are uniformly spaces of homogeneous type, we can conclude that ν^n is absolutely continuous with respect to μ^n and its Radon–Nikodym derivative belongs uniformly to $A_n(X^n, d, \mu^n)$. \Box

3. Some examples

In this section we show how some classical fractals can be obtained through somehow non-standard IFSs satisfying the adjacency property (B2).

The classical Sierpinski IFSs can be slightly modified in order to preserve the adjacency. For the Sierpinski gasket, the usual IFS is $\Psi = \{\psi_1, \psi_2, \psi_3\}$, with

$$\psi_1(x,y) = \frac{1}{2}(x,y), \qquad \psi_2(x,y) = \frac{1}{2}(x+1,y), \qquad \psi_3(x,y) = \frac{1}{2}\left(x+\frac{1}{2},y+\frac{\sqrt{3}}{2}\right),$$

defined on the triangle X with vertices at $a = (0, 0), b = (1/2, \sqrt{3}/2)$ and c = (1, 0).

If ρ_{θ} denotes the rotation of θ radians about the origin of \mathbb{R}^2 in the positive sense, we have that the IFS given by $\Phi = \{\phi_1, \phi_2, \phi_3\},$ where

$$\phi_1(x, y) = \frac{1}{2} (x, y),$$

$$\phi_2(x, y) = \frac{1}{2} (\rho_{4\pi/3}(x, y)) + \mathbf{v}$$

$$\phi_3(x, y) = \frac{1}{2} (\rho_{2\pi/3}(x, y)) + \mathbf{v}$$

with $\mathbf{v} = \left(\frac{3}{4}, \frac{\sqrt{3}}{4}\right)$, satisfies the adjacency property, the OSC and gives rise to the standard Sierpinski triangle (see Fig. 4).

Property (B2) for Φ follows from the following lemma, which can be applied also to some other fractals like the Sierpinski carpet after a redefinition of the IFS preserving adjacency.

Lemma 6. Let $\Phi = \{\phi_1, \ldots, \phi_H\}$ be a finite family of contractive similitudes on X with the same contraction rate β . Let us assume that Φ satisfies the following properties:

(1) if $x \in X_i \cap X_j$ then $d(x, \phi_i(z)) = d(x, \phi_j(z))$ for every $z \in X$ and every $i, j \in \{1, ..., H\}$; (2) for every $z \in X$ and every $r \leq \beta^n$ such that $B(\phi_i^n(z), r) \cap X_j^n \neq \emptyset$, we have that $X_i^n \cap X_j^n \cap B(\phi_i^n(z), r) \neq \emptyset$.

Then for every $\mathbf{i}, \mathbf{j} \in \mathfrak{I}^n$ and every $n \in \mathbb{N}$, we have that

(i) if $x \in X_i^n \cap X_j^n$ then there exists $x_0 \in X$ such that $x = \phi_i^n(x_0) = \phi_j^n(x_0)$; (ii) if $x \in X_i^n \cap X_j^n$ then dry $\phi_i^n(z_1) = d(x \phi_i^n(z_1))$ for every $z \in X$:

(ii) if
$$x \in X_i^n \cap X_j^n$$
 then $d(x, \phi_i^n(z)) = d(x, \phi_j^n(z))$ for every $z \in X$

(iii) $B(\boldsymbol{\phi}_{i}^{n}(z), r) \cap X_{i}^{n} \subseteq B(\boldsymbol{\phi}_{i}^{n}(z), 3r) \cap X_{i}^{n}$ for every $z \in X$.

Proof. Let us prove (i) by induction on *n*. For n = 1, let us assume that $x = \phi_i(x_0) = \phi_i(x_1)$ for some $x_0, x_1 \in X$. Applying hypothesis (1) with $z = x_1$ we have that $d(x, \phi_i(x_1)) = d(x, \phi_i(x_1)) = 0$. Then $x = \phi_i(x_1)$, and we have $\phi_i(x_1) = x = \phi_i(x_0)$. Since ϕ_i is one to one we conclude that $x_0 = x_1$. Let us now show that if (i) holds for *n* then also holds for n + 1. In fact, take $x \in X_k^{n+1} \cap X_\ell^{n+1}$. Then there exists $i, j \in \mathfrak{I}^n$, $k, \ell \in \{1, \dots, H\}$ and $x_1, x_2 \in X$ such that $x = \boldsymbol{\phi}_i^n(\phi_k(x_1)) = \boldsymbol{\phi}_j^n(\phi_\ell(x_2))$. Since we are assuming (i) for n, there exists $x_0 \in X$ such that $x = \boldsymbol{\phi}_i^n(x_0) = \boldsymbol{\phi}_j^n(x_0)$. Since $\boldsymbol{\phi}_i^n$ and $\boldsymbol{\phi}_j^n$ are one to one, we have that $x_0 = \phi_k(x_1) = \phi_\ell(x_2)$. Then $x_0 \in X_k \cap X_\ell$, so that there exists $\tilde{x} \in X$ such that $x_0 = \phi_k(\tilde{x}) = \phi_\ell(\tilde{x})$. Hence $x = \boldsymbol{\phi}_{i}^{n}(\phi_{k}(\widetilde{x})) = \boldsymbol{\phi}_{i}^{n}(\phi_{\ell}(\widetilde{x}))$, which proves (i).

To prove (ii) we shall use (i) and the similarity condition of the IFS. Let us fix $z \in X$ and $x \in X_i^n \cap X_i^n$. Let $x_0 \in X$ such that $x = \phi_{i}^{n}(x_{0}) = \phi_{i}^{n}(x_{0})$. Then

$$d(x, \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)) = d(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(x_{0}), \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)) = \beta^{n} d(x_{0}, z),$$

Fig. 4. $X^1 = \bigcup_{i=1}^3 \phi_i(X) = \bigcup_{i=1}^3 \psi_i(X).$

and

$$d(x, \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)) = d(\boldsymbol{\phi}_{\boldsymbol{i}}^{n}(x_{0}), \boldsymbol{\phi}_{\boldsymbol{i}}^{n}(z)) = \beta^{n} d(x_{0}, z)$$

so that $d(x, \phi_i^n(z)) = d(x, \phi_i^n(z))$, and we prove (ii).

To prove (iii), let us assume that $B(\phi_i^n(z), r) \cap X_j^n \neq \emptyset$. If $r > \beta^{-n}$ the inclusion holds since diam $(X_j^n) = \beta^{-n}$ implies $B(\phi_j^n(z), 3r) \cap X_j^n = X_j^n$, so that we can assume $r \leq \beta^{-n}$. Fix $y \in B(\phi_i^n(z), r) \cap X_j^n$. From (2) there exists $x \in X_i^n \cap X_j^n \cap B(\phi_i^n(z), r)$, and from (ii) we have that $d(\phi_i^n(z), x) = d(x, \phi_j^n(z))$. Then

$$d(y, \boldsymbol{\phi}_{j}^{n}(z)) \leq d(y, \boldsymbol{\phi}_{i}^{n}(z)) + d(\boldsymbol{\phi}_{i}^{n}(z), x) + d(x, \boldsymbol{\phi}_{j}^{n}(z))$$

$$= d(y, \boldsymbol{\phi}_{i}^{n}(z)) + d(\boldsymbol{\phi}_{i}^{n}(z), x) + d(x, \boldsymbol{\phi}_{i}^{n}(z))$$

$$< r + r + r$$

$$= 3r. \Box$$

With this lemma, in order to prove that Φ satisfies the required properties to apply Theorem 3 to the Sierpinski gasket, we only need to check (1) and (2). Property (1) follows immediately. To verify (2) we only have to observe that for $r \leq 2^{-n}$, if a ball intersects two components of X^n and it is centered in one of them, then these two components share a vertex belonging to that ball.

Let us finally observe and depict an illustration of Theorem 5 for the Sierpinski carpet. Let Φ be the classical IFS for the Sierpinski carpet, and let $\Phi = \{\phi_i : 1 \le i \le 8\}$ be given by

$$\begin{split} \phi_1(x,y) &= \frac{1}{3} \left(x,y \right), \qquad \phi_2(x,y) = T_{\frac{2}{3},0}(S_2(\phi_1(x,y))), \\ \phi_3(x,y) &= T_{\frac{2}{3},0}(\phi_1(x,y)), \qquad \phi_4(x,y) = T_{0,\frac{2}{3}}(S_1(\phi_1(x,y))), \\ \phi_5(x,y) &= T_{\frac{2}{3},\frac{2}{3}}(S_1(\phi_1(x,y))), \qquad \phi_6(x,y) = T_{0,\frac{2}{3}}(\phi_1(x,y)), \\ \phi_7(x,y) &= T_{\frac{2}{3},\frac{2}{3}}(S_2(\phi_1(x,y))), \qquad \phi_8(x,y) = T_{\frac{2}{3},\frac{2}{3}}(\phi_1(x,y)), \end{split}$$

defined on the unit square X of \mathbb{R}^2 with vertices (0, 0), (1, 0), (1, 1) and (0, 1), where $T_{a,b}(x, y) = (x + a, y + b)$, $S_1(x, y) = (x, -y)$ and $S_2(x, y) = (-x, y)$. The basic weight function considered is $w(x, y) = (x^2 + y^2)^{-1/4}$ and the basic measure is $d\mu = dxdy$. The following figure illustrate the Radon–Nikodym derivatives w_{ψ}^1 and w_{ϕ}^1 of v_{ψ}^1 and v_{ϕ}^1 .

Acknowledgments

The authors were supported by CONICET, CAI+D (UNL) and ANPCyT.

References

- [1] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972) 207-226.
- R.R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974) 241-250. Ì2İ
- [3] José García-Cuerva, José L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, in: North-Holland Mathematics Studies, vol. 116, North-
- Holland Publishing Co., Amsterdam, 1985, p. 104. Notas de Matemática Mathematical Notes].
 Hugo A. Aimar, Marilina Carena, Bibiana laffei, Boundedness of the Hardy–Littlewood maximal operator along the orbits of contractive similitudes, J. Geom. Anal., in press (http://dx.doi.org/10.1007/s12220-012-9309-1).
- Hugo A. Aimar, Marilina Carena, Bibiana laffei, Gradual doubling property on Hutchinson orbits, Preprint. [5]
- [6] Ronald R. Coifman, Guido Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, in: Lecture Notes in Mathematics, vol. 242, Springer-Verlag, Berlin, 1971. Étude de certaines intégrales singulières.