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ON RIESZ TRANSFORMS AND MAXIMAL FUNCTIONS
IN THE CONTEXT OF GAUSSIAN HARMONIC ANALYSIS

H. AIMAR, L. FORZANI, AND R. SCOTTO

Abstract. The purpose of this paper is twofold. We introduce a general maxi-
mal function on the Gaussian setting which dominates the Ornstein-Uhlenbeck
maximal operator and prove its weak type (1, 1) by using a covering lemma
which is halfway between Besicovitch and Wiener. On the other hand, by tak-
ing as a starting point the generalized Cauchy-Riemann equations, we intro-
duce a new class of Gaussian Riesz Transforms. We prove, using the maximal
function defined in the first part of the paper, that unlike the ones already
studied, these new Riesz Transforms are weak type (1, 1) independently of
their orders.

1. Introduction and main results

Hermite polynomials play a central role in the context of Gaussian Harmonic
Analysis. They are also the building blocks for the eigenfuctions of the harmonic
oscillator in Quantum Mechanics. In this context (see [16]), let us denote by P the
one-dimensional momentum operator defined on a test function u as Pu = −i∂u

∂x
and by Q the position operator defined by Qu = xu. When solving the harmonic
oscillator the underlying Hamiltonian is essentially given by

1
2
(P2 + Q2),

the quantum mechanical problem is then to find all the eigenvalues and eigenfunc-
tions of the differential operator

1
2

[
− d2

dx2
+ x2

]
.

Its eigenfunctions are e−x2/2Hk, where Hk denotes the Hermite polynomial of de-
gree k. They can be defined through the Rodrigues formula as

Hk(x) = (−1)kex2 dk

dxk
e−x2

for x ∈ R and k = 0, 1, . . .. They are also the eigenfunctions of the differential
operator

1
2

d2

dx2
− x

d

dx
=

1
2
ex2 d

dx
(e−x2 d

dx
).
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2138 H. AIMAR, L. FORZANI, AND R. SCOTTO

The n-dimensional Hermite polynomial of order α = (α1, . . . , αn) ∈ N
n
0 and de-

gree |α| =
∑n

j=1 αj , denoted by Hα, is defined as the tensor product of the one-
dimensional ones,

Hα(x) =
n⊗

j=1

Hαj
(xj)

with x ∈ R
n. They are orthogonal with respect to the Gaussian measure

dγ(x) = e−|x|2dx.

Let us consider the normalization hα of Hα given by hα(x) = Hα(x)
(
√

πα!2|α|)1/2 , then
the set F = {hα}α∈N

n
0

turns out to be an orthonormal basis in L2(dγ).
Let f ∈ L2(dγ), then f =

∑
α aαhα with aα =

∫
fhαdγ . It can be proved that

Abel’s expansion
∑

α e−|α|taαhα converges absolutely to the Ornstein-Uhlenbeck
semigroup

T tf(x) =
∫

Rn

M(t, x, y)f(y) dy

for almost every x ∈ R
n, where

M(t, x, y) =
∑
α

e−|α|thα(x)hα(y)

= π−n/2(1 − e−2t)−n/2e
− |e−tx−y|2

1−e−2t , t > 0;

M(t, x, y) is called the Mehler kernel (see [14]).
By writing u(x, t) = T tf(x), u turns out to be the solution of the parabolic

partial differential equation

∂u

∂t
=

1
2
∆u − x · ∇u

with initial data f ∈ L2(dγ).
The Ornstein-Uhlenbeck differential operator is defined by L = 1

2∆− x · ∇, with
∆ the Laplace operator and ∇ = ( ∂

∂x1
, . . . , ∂

∂x1
) the gradient. Thus T t = eLt. The

n-dimensional Hermite polynomials are the eigenfunctions of L, i.e., Lhα = −|α|hα.
The Ornstein-Uhlenbeck semigroup T t as well as L are selfadjoint operators with
respect to the Gaussian measure.

If we reparametrize T t with r = e−t and use the same notation for the reparame-
trized operator, then we have

T rf(x) =
e|x|

2

π1/2(1 − r2)n/2

∫
Rn

e
− |x−r y|2

1−r2 f(y) dγ(y).

In 1969, C. Calderón [1] proved that the multiparametric maximal operator

T ∗f(x) = sup
0<r1<1

.

.

.
0<rn<1

∣∣∣∣∣ e
|x|2

πn/2

n∏
i=1

1
(1 − r2

i )1/2

∫
Rn

e
−
∑n

i=1
(xi − ri yi)

2

1−r2
i f(y) dγ(y)

∣∣∣∣∣
is bounded in Lp(Rn, dγ), p > 1. From this result, the Lp(Rn, dγ) strong type
property p > 1 for the one-parameter maximal operator

T ∗f(y) = sup
0<r<1

|T rf(y)|
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ON GAUSSIAN RIESZ TRANSFORMS AND MAXIMAL FUNCTIONS 2139

follows. It is worth mentioning that this result also follows from the general theory
of symmetric diffusion semigroups and in this case the Lp constant obtained is
independent of dimension. It is known that, for n > 1, T ∗ is not weak type
(1,1) with respect to the Gaussian measure. The same question for T ∗, with n >
1, was an open problem until 1984, when P. Sjögren [22], proved that T ∗ is γ-
weak type (1,1). Sjögren’s proof does not give pointwise estimates by means of
average maximal operators on the global part; covering results, such as Besicovitch
or Wiener Lemmas, are not used either. These are the basic classical tools used on
the approximations of the identity with the Lebesgue measure and with doubling
measures.

The ad hoc method developed by Sjögren is very useful and was used by other
people in order to prove weak type inequalities of certain singular integral operators
associated with this semigroup. But there are operators which cannot be handled
likewise since their kernels exceed the bounds necessary to apply his “forbidden
region” technique.

S. Pérez in [19], whose goal was to study the operators which could not be
handled by Sjögren’s technique, came back to the Ornstein-Uhlenbeck semigroup
and gave an explicit formula for the maximal kernel of this semigroup and with
that she associated the right geometry to get the weak type inequality.

Later on, P. Sjögren, with this explicit formula of the maximal kernel, gave a
very simple and elegant proof of the weak-type (1, 1) of T ∗ which can be found in
[24].

In 1988 C. Gutiérrez and W. Urbina [13] came back to the problem of pointwise
estimates for T ∗ and proved that

T ∗f(y) ≤ Mγf(x) + max(2 , |x|n)e|x|
2
||f ||1,γ ,

where

Mγf(x) = sup
r>0

1
γ(B(x, r))

∫
B(x,r)

|f | dγ

is the centered Gaussian Hardy-Littlewood maximal function. By using Besicov-
itch’s covering lemma, the γ-weak type (1,1) of Mγ follows. Nevertheless, this
estimate does not give the weak type (1,1) inequality with respect to the Gaussian
measure for T ∗ except for n = 1.

Since for r and x fixed, the maximum of the kernel of the operator T r is attained
at y = x/r, the centered maximal operator does not seem to be the best average
maximal function to be used in order to get the γ-weak type (1,1) inequality.

We can estimate T ∗ by the non-centered Gaussian Hardy-Littlewood maximal
function, but P. Sjögren proved in [23] that this maximal function is not weak
type (1,1). The main difficulty with this maximal operator is that we cannot use
Wiener’s covering lemma since γ is far from being a doubling measure.

The first of the two basic goals of this article is to prove the weak type (1,1)
inequality for T ∗ with respect to the Gaussian measure by using a covering lemma
which is halfway between Besicovitch and Wiener and whose origin goes back to
the Doctoral Dissertation of L. Forzani in [3]. We will prove something stronger
than the weak type (1, 1) inequality for T ∗. First let us define

MΦf(x) = sup
0<r<1

1

γ((1 + δ)B(x
r , |x|

r (1 − r)))

∫
Rn

Φ
(
|x − r y|√

1 − r2

)
|f(y)| dγ(y)
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2140 H. AIMAR, L. FORZANI, AND R. SCOTTO

where Φ : R
+
o → R

+
o is a non-increasing function such that

S =
∑
ν≥1

Φ(
1
2
(ν − 1)) ν2n < ∞ and δ = δr,x =

r

|x|(1 − r)
min{ 1

|x| ,
√

1 − r}.

Now by taking Φ(t) = 1
πn/2 exp (−t2), it will be proved that

T ∗f(x) ≤ CMΦf(x)

(see the proof of Corollary 1.1 in §4).
In §2 we will prove the following theorem and its corollary in §4.

Theorem 1.1. There exists a constant C depending only on S and n, such that
for all f ∈ L1(dγ), λ > 0, we have

γ{x ∈ R
n : MΦf(x) > λ} ≤ C

λ

∫
Rn

|f(y)| dγ(y),

i.e., MΦf is γ-weak type (1, 1).

Corollary 1.1. T ∗ is γ-weak type (1,1).

This result relies strongly on the following subtle covering lemma which will be
proved in §4, where a polynomial growth for the overlapping of a special family of
dilations for the covering balls is obtained.

Lemma 1.1. Let A = {xα : α ∈ I} be a subset of R
n \ B̄(0, 2ζ), with ζ > 2 fixed

and I a finite set of indices. For each x ∈ A a number r = r(x) ∈ ( 3
4 , 1 − ζ2

|x|2 ) is

given. Let Bj and Bν
j be the balls B(xj

rj
,
|xj |
rj

(1 − rj)) and B(xj

rj
, νρj) respectively,

with ν ≥ 1 and ρj =
√

1 − rj, and δj = rj

|xj |(1−rj)
min{ 1

|xj | ,
√

1 − rj} = rj

|xj |2ρ2
j
.

Then there exist a positive constant C, depending only on n, and a subset J of I
such that

i) A ⊂
⋃

j∈J (1 + δj) Bj ;
ii)

∑
j∈J χBν

j
(z) ≤ C ν2 n.

On the other hand, the proof of Corollary 1.1 is based on the following lemma
where we compute explicitly the Gaussian measure of a ball.

Lemma 1.2. There exists a constant C depending on n such that for all x ∈
R

n \ {0}, r ∈ (1/2, 1) and s ∈ (0, 1/2) the following inequality holds:

γ

(
B

(
x

r
,
|x|
r

s

))
≤ C s

n−1
2 exp

(
−|x|2

r2
(1 − s)2

)
min

{
1

|x|2 , s
1
2

}
.

Let us now introduce the second problem of this paper.
At the end of the last century great efforts have been made in order to get a

general singular integral theory in the context of the Ornstein-Uhlenbeck differential
operator L. By analogy with the classical harmonic analysis the Gaussian Riesz
Potentials were defined as Iη = (−L)−η with η > 0 over the orthogonal complement
of the eigenspace associated with the eigenvalue 0. Formally,

Iη =
1

Γ(η)

∫ ∞

0

tη−1T t dt.

These operators turned out to be not weak type (1, 1) (see [8]). They are indeed
bounded on Lp(dγ) for 1 < p < ∞ but, unlike the classical Riesz Potentials, these
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do not improve integrability on the Lp scale. They do though on the LpLogL scale
(see [6]).

By following [25] it is possible to define the higher order Riesz Transforms as

Rαf(x) = (−1)|α|dαI|α|/2f(x)

with α = (α1, . . . , αn) ∈ N
n
0 , |α| =

∑n
j=1 αj , and dα = ∂|α|

∂
α1
x1 ···∂αn

xn
. These operators

were proved to be bounded on Lp(dγ) by several people from different points of
view; see [17], [10], [21], [26], [11], [12], [19], and [7]. But surprisingly the weak type
(1, 1) case of these operators need not be true for all α. These operators are weak
type (1, 1) if and only if |α| ≤ 2; see [18], [5], [2], [19], [9], and [4].

Let us go back and review the relationship between L, the infinitesimal generator
of T t, and the derivative operator d which defines the higher order Riesz Transforms
Rα through the potentials I |α|

2
.

B. Muckenhoupt in [18] defined in this context the Poisson integral u and its
conjugate function v in L2 through Hermite expansions, and as integral operators
otherwise, so that they satisfy the following generalized Cauchy-Riemann equations{ ∂u

∂x = −∂v
∂t

∂u
∂t = 1

2ex2 ∂
∂x (e−x2

v)

with u verifying the following second order elliptic differential equation

∂2u

∂t2
+ Lu = 0.

In [15], K. Itô factors L out in terms of two derivative operators which are
in duality with respect to the Gaussian measure, L = δ d, which in the finite
dimensional case d is just the usual gradient and δ = 1

2e|x|
2
d e−|x|2 is the Gaussian

gradient. If we use δ instead of d in Muckenhoupt’s approach, we get the new
generalized Cauchy-Riemann system{

δū = −∂v̄
∂t ,

∂ū
∂t = dv̄,

with the function ū satisfying the second order partial differential equation

∂2ū

∂t2
+ L̄ū = 0,

where L̄ = L − I = d δ.
From the Quantum Mechanics point of view, what we are doing is substituting

the pair of operators (P,Q) by the real one (iP − 2Q, iP) = (δ, d). Since the
commutator [δ, d] is the identity operator, we again have that L̄ = d δ.

If in the construction of the Gaussian Riesz Transforms we use δ instead of d
and L̄ instead of L, we obtain an awesome result: the Riesz transforms associated
with these new operators are all weak type (1, 1) independently of their orders.

For 1 < p < ∞, the Lp(dγ) boundedness of these new operators follows from
P. A. Meyer’s Multiplier Theorem in [17], which cannot be applied to prove the
weak type (1, 1) inequality.

If in R
n we use the gradient

δα =
1

2|α| e
|x|2dαe−|x|2
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and the Riesz potentials associated with L̄, then these new singular integral oper-
ators are defined by

R̄αf(x) = (−1)|α|δα(−L̄)−|α|/2f(x).

The action of one of these operators over a Hermite polynomial is as follows:

R̄αHβ =
(−1)|α|

2|α|(|β| + 1)|α|/2
e|x|

2
dα(e−|x|2Hβ(x))

=
(−1)|α+β|

2|α|(|β| + 1)|α|/2
e|x|

2
dα+β(e−|x|2)(1.1)

=
1

2|α|(|β| + 1)|α|/2
Hα+β(x).

On the first line we use that

L̄Hβ = −(|β| + 1)Hβ and (−L̄)−|α|/2Hβ =
1

(|β| + 1)|α|/2
Hβ .

The singular integral operators R̄α are weak type (1, 1) for all α. More precisely,
in §3 we will prove the following theorem.

Theorem 1.2. There exists a constant C depending only on n and α such that for
all f ∈ L1(dγ), λ > 0, we have

γ{x ∈ R
n : R̄αf(x) > λ} ≤ C

λ

∫
Rn

|f(y)| dγ(y),

i.e., R̄αf is γ-weak type (1, 1).

The main feature, in order to prove this theorem, will be to apply Theorem 1.1
with a special Φ.

2. A new maximal function MΦ

In this section we will prove the γ-weak type of the operator

MΦf(x) = sup
0<r<1

1

γ((1 + δ)B(x
r , |x|

r (1 − r)))

∫
Rn

Φ
(
|x − r y|√

1 − r2

)
|f(y)| dγ(y)

where Φ : R
+
o → R

+
o is a non-increasing function such that

S =
∑
ν≥1

Φ(
1
2
(ν − 1)) ν2n < ∞ and δ = δr,x =

r

|x|(1 − r)
min{ 1

|x| ,
√

1 − r}.

Proof of Theorem 1.1. We consider only r > 3
4 , since the maximal operator is triv-

ially γ-weak type (1,1) for 0 < r ≤ 3
4 (see [3]). Let us denote with the same letter

MΦ the maximal operator restricted to the interval 3
4 < r < 1, with M1

Φ the maxi-
mal operator for 3

4 < r < 1− ζ2

|x|2 and M2
Φ the corresponding one for 1− ζ2

|x|2 < r < 1.
(ζ is the constant chosen in Lemma 1.1).

First we will prove that for |x| ≤ 2ζ, MΦf(x) ≤ CMγf(x), where Mγ is the
centered Gaussian Hardy-Littlewood maximal function and which is known to be
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γ-weak type (1, 1). Indeed, let us denote Rx,r = |x|
r (1−r)+min{ 1

|x| ,
√

1 − r}. Then
for |x| ≤ 2ζ,

MΦf(x) = sup
3/4<r<1

1
γ(B(x

r , Rx,r))

∫
Rn

Φ
(
|x − r y|√

1 − r2

)
|f(y)| dγ(y)

≤ C sup
3/4<r<1

e|x|
2

|B(x, Rx,r)|

∞∑
ν=0

∫
νRx,r≤|y− x

r |≤(ν+1)Rx,r

Φ
(

r|y − x
r |√

1 − r2

)

|f(y)|dγ(y)

≤ C
∞∑

ν=0

Φ(ν/8ζ)(ν + 2)n

sup
3/4<r<1

1
γ(B(x, (ν + 2)Rx,r))

∫
B(x,(ν+2)Rx,r)

|f(y)| dγ(y)

≤ CMγf(x).

For |x| ≥ 2ζ, MΦf(x) ≤ M1
Φf(x) + M2

Φf(x) and the γ-weak type (1, 1) of MΦ will
follow once we prove that both M1

Φ and M2
Φ are γ-weak type (1, 1).

In order to prove the weak type (1,1) of M1
Φ it is enough to prove that

γ(E1,λ
N ) ≤ C

λ

∫
Rn

|f(y)| dγ(y),

with the constant C independent of N and f , where

E1,λ
N = {x ∈ R

n : |x| ≥ 2ζ and M1
Φf(x) > λ} ∩ B(0, N).

For each x ∈ E1,λ
N there exists a r = r(x) ∈ ( 3

4 , 1 − ζ2

|x|2 ) such that

(2.1)
1

γ((1 + δ)B(x
r , |x|

r (1 − r)))

∫
Rn

Φ
( |r y − x|√

1 − r2

)
|f(y)|dγ(y) ≥ λ.

For every x ∈ E1,λ
N , we have that |x| 1−r

r is bounded above and below by positive
numbers, and the centers x

r are a bounded subset of R
n. Hence, there exists ε > 0

such that for all 0 < α < 1,

γ

(
B(

x

r
, (1 + α)|x|1 − r

r
+ ε)

)
≤ 2γ

(
B(

x

r
, (1 + α)|x|1 − r

r
)
)

for all x ∈ E1,λ
N . Let A be a subset of E1,λ

N which is a maximal set with the
property |x − x̄| > ε

2 for x 
= x̄, x ∈ A, x̄ ∈ A. Since E1,λ
N is bounded, A is a

finite set A = {y1, . . . , yL}. If we apply Lemma 1.1 to the set A, we get a family of
balls

{
Bj = B(xj

rj
, |xj |1−rj

rj
)
}

j∈J⊂{1,...,L}
such that A ⊂

⋃
j∈J (1 + δj)Bj and ii) of

Lemma 1.1 also holds. Thus,

E1,λ
N ⊂

⋃
j∈J

B

(
xj

rj
, (1 + δj)

|xj |
rj

(1 − rj) + ε

)
.

Then

γ(E1,λ
N ) ≤ 2

∑
j∈J

γ

(
B(

xj

rj
, (1 + δj)|xj |

1 − rj

rj
)
)

.
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From (2.1), since Φ is a non-increasing function such that∑
v≥1

Φ(
1
2
(v − 1))v2n < ∞,

we have, using ii) of Lemma 1.1, that

γ(E1,λ
N ) ≤ 2

∑
j≥1

γ((1 + δj)Bj)

≤ C

λ

∑
j≥1

∫
Rn

Φ

(
|rjy − xj |
(1 − r2

j )1/2

)
|f(y)| dγ(y)

≤ C

λ

∑
j≥1

∑
ν≥1

∫
B(

xj
rj

,νρj)−B(
xj
rj

,(ν−1)ρj)

Φ

(
|rjy − xj |
(1 − r2

j )1/2

)
|f(y)| dγ(y)

=
C

λ

∑
j≥1

∑
ν≥1

Φ(
1
2
(ν − 1))

∫
Bν

j

|f(y)| dγ(y)

≤ C

λ

∫
Rn

∑
ν≥1

Φ(
1
2
(ν − 1))

∑
j

χBν
j
(y)|f(y)| dγ(y)

≤ C

λ

∫
Rn

∑
ν≥1

Φ(
1
2
(ν − 1))ν2n|f(y)| dγ(y)

≤ C

λ

∫
Rn

|f(y)| dγ(y).

Now, we will prove that M2
Φ is weak type (1,1). First, let us observe that, if

r > 1 − ζ2

|x|2 , then, for all y ∈ (1 + δ)B(x
r , |x|

r (1 − r)) = B(x
r , |x|

r (1 − r) +
√

1 − r),

the values of e−|y|2 are equivalent.
Now, let us define

E2,λ
N = {x ∈ R

n : |x| ≥ 2ζ and M2
Φf(x) > λ} ∩ B(0, N).

The weak type (1,1) for M2
Φ follows once we prove the inequality

(2.2) γ(E2,λ
N ) ≤ C

λ
||f ||1,γ

with C being a constant independent of N and f.

For each x ∈ E2,λ
N , we have γ((1+ δ)B(x

r , |x|
r (1− r))) � e−|x|2(1− r)

n
2 . To prove

(2.2), we will divide the integral in M2
Φf into two parts: one given by |y−x| < 2 C

|x|r
and the other one by |y − x| > 2 C

|x|r .
For the first region we have

e|x|
2

(1 − r)
n
2

∫
|y−x|<2 C

|x|r

Φ
(
|ry − x|√

1 − r2

)
|f(y)| dγ(y)

≤ C
e|x|

2

(1 − r)
n
2

∫
|y−x|<C

√
1−r
r

|f(y)| dγ(y)(2.3)

+C
e|x|

2

(1 − r)
n
2

∫
C

√
1−r
r <|y−x|<2 c

r|x|

Φ
(

c
|y − x|√
1 − r2

)
|f(y)| dγ(y)

≤ CMT f(x),
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with MT the truncated non-centered Gaussian maximal function defined by

MT f(x) = sup
x∈B(y,t)

0<t<min{1, 1
|x|}

e|x|
2

ωntn

∫
B(y,t)

|f(z)| dγ(z),

where ωn is the volume of the unit ball in R
n. The first inequality follows from the

fact that Φ is bounded and |ry − x| ≥ r|y − x| − (1 − r)|x| ≥ r
2 |y − x|. The second

inequality follows from the fact that Φ is a Lebesgue integrable, non-increasing
function and hence, it is a good approximation of the identity.

The truncated non-centered Gaussian maximal function is bounded by the cen-
tered Gaussian Hardy-Littlewood maximal function and therefore is γ-weak type
(1,1).

For the second region, we have that |ry − x| > C|y − x|. Therefore,

1
(1 − r2)

n
2

Φ
(
|ry − x|√

1 − r2

)
≤ 1

|y − x|n

(
|y − x|√
1 − r2

)n

Φ
(

c|y − x|√
1 − r2

)

≤ C
(
√

1 − r2)n

|y − x|2n

≤ C

|x|n|y − x|2n
,

since Φ( 1
2 (ν − 1)) ≤ S.

Then,

e|x|
2

(1 − r)
n
2

∫
|y−x|>2 c

|x|r

Φ
(
|ry − x|√

1 − r2

)
|f(y)| dγ(y)

≤ C
e|x|

2

|x|n
∫
|y−x|>2 c

|x|

|f(y)|
|y − x|2n

dγ(y),

but

e|x|
2

|x|n
∫
|y−x|>2 c

|x|

|f(y)|
|y − x|2n

dγ(y) ∈ L1(dγ).

So, inequality (2.2) follows. �

3. New higher order Gaussian Riesz Transforms

The new higher order Gaussian Riesz Transforms are defined as

R̄αf(x) = p.v. e|x|
2
∫

Rn

K̄α(x, y)f(y) dγ(y)

where

K̄α(x, y) = Cα

∫ 1

0

(
− log r

1 − r2

) |α|−2
2

Hα

(
x − ry√
1 − r2

)
e
− |x−ry|2

1−r2

(1 − r2)
n
2 +1

dr.

Licensed to Instituto de Matematica Aplicada Litoral IMAL. Prepared on Thu May 10 15:39:22 EDT 2012 for download from IP 200.9.237.254.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2146 H. AIMAR, L. FORZANI, AND R. SCOTTO

Formally K̄α is obtained by differentiating with the dual derivative the kernel
corresponding to the Riesz potentials associated with L̄,

(−L̄)−|α|/2f(x) =
1

Γ(|α|/2)

∫ 1

0

(− log r)
|α|
2 −1T rf(x)dr

= C̃αe|x|
2
∫

Rn

⎛
⎝∫ 1

0

(− log r)
|α|−2

2
e
− |x−ry|2

1−r2

(1 − r2)
n
2

dr

⎞
⎠ f(y) dγ(y).

Proof of Theorem 1.2. For each x ∈ R
n we view this operator as the sum of two

operators which are obtained, as is usual in this context, by splitting R
n into a

local part, Bx, the Euclidean ball centered at x and radius min (1, 1
|x| ), and its

complement called the global part. Thus,

R̄αf(x) = R̄α,lf(x) + R̄α,gf(x)

where R̄α,lf(x) = R̄α(fXBx
) and

R̄α,gf(x) = R̄α(f(1 −XBx
)).

We will prove that these two operators are γ-weak type (1,1) and so will be R̄α.
In order to prove that R̄α,l is γ-weak type (1,1) we state the following theorem

whose proof can be found in either [6] or [20].

Theorem 3.1. Let K(x, y) be a C1 function off the diagonal of R
n × R

n which
satisfies

|K(x, y)| ≤ C

|x − y|n and |DyK(x, y)| ≤ C

|x − y|n+1

for |x − y| ≤ min (1, 1
|x| ), and the principal value of the integral operator T with

kernel K is bounded on Lp(dγ) for some 1 < p < ∞. Then Tl, defined as Tl(f)(x) =
T (fBx)(x), is γ-weak type (1, 1).

In our case
Tf(x) = p.v.

∫
K(x, y)f(y)dy

with

K(x, y) = e|x|
2
K̄α(x, y)e−|y|2

= Cα

∫ 1

0

(
− log r

1 − r2

) |α|−2
2

Hα

(
x − ry√
1 − r2

)
e
− |rx−y|2

1−r2

(1 − r2)
n
2 +1

dr

and, therefore,

∂K
∂yj

(x, y) = 2Cα

∫ 1

0

(
− log r

1 − r2

) |α|−2
2

[
−rαj√
1 − r2

Hα−ej

(
x − ry√
1 − r2

)
(x − ry)√

1 − r2

+Hα

(
x − ry√
1 − r2

)
(rxj − yj)

1 − r2

]
e
− |rx−y|2

1−r2

(1 − r2)
n
2 +1

dr.

�
In the following two claims we will show that the hypotheses of Theorem 3.1 are

fulfilled for this operator.

Claim 1. On Bx, |K(x, y)| ≤ C
|x−y|n and | ∂K

∂yj
(x, y)| ≤ C

|x−y|n+1 .
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Proof. For every y ∈ Bx there exists a constant C > 0 such that C−1 ≤ e|y|
2−|x|2 ≤

C, then

|K(x, y)| ≤ C|e−|x|2+|y|2K(x, y)| = C|Kα(x, y)|

and ∣∣∣∣ ∂K∂yj
(x, y)

∣∣∣∣ ≤ C

∣∣∣∣e−|x|2+|y|2 ∂K
∂yj

(x, y)
∣∣∣∣ .

On the other hand, on Bx,

e
−c |x−ry|2

1−r2 = e
−c |x−y|2

1−r2 e−c 1−r
1+r |y|2e−c (x−y)·y

1−r ≤ Ce−c |x−y|2
1−r ,

and thus with this inequality and taking into account that tme−ct2 ≤ C, ∀t ≥ 0,
we get

∣∣∣∣Hα

(
x − ry√
1 − r2

)∣∣∣∣ e− |x−ry|2
1−r2 ≤ C

|α|∑
m=0

∣∣∣∣ x − ry√
1 − r2

∣∣∣∣
m

e
− |x−ry|2

2(1−r2) e
− |x−ry|2

2(1−r2) ≤ Ce−c |x−y|2
1−r .

Therefore, by combining all the above remarks, on Bx we have

|K(x, y)| ≤ C

∫ 1

0

(
− log r

1 − r2

) |α|−2
2 e−c |x−y|2

1−r

(1 − r)
n
2 +1

dr

≤ C

⎡
⎣∫ 1

2

0

(− log r)
|α|−2

2 dr +
∫ 1

1
2

e−c |x−y|2
1−r

(1 − r)
n
2 +1

dr

⎤
⎦

≤ C

(
1 +

1
|x − y|n

)
≤ C

|x − y|n

and

∣∣∣∣ ∂K∂yj
(x, y)

∣∣∣∣ ≤ C

∫ 1

0

(
− log r

1 − r2

) |α|−2
2 e−c |x−y|2

1−r

(1 − r)
n+3
2

dr

≤ C

⎡
⎣∫ 1

2

0

(− log r)
|α|−2

2 dr +
∫ 1

1
2

e−c |x−y|2
1−r

(1 − r)
n+3
2

dr

⎤
⎦

≤ C

(
1 +

1
|x − y|n+1

)
≤ C

|x − y|n+1
.

�

Claim 2. The operator T = R̄α is bounded on L2(dγ).

Proof. Let f ∈ L2(dγ), f =
∑

β aβhβ with aβ =
∫

fhβ dγ. From the action of R̄α

over Hermite polynomials (1.1),

R̄αhβ(x) =

[∏n
j=1

∏αj−1
k=0 (βj + αj − k)

(2(|β| + 1))|α|

] 1
2

hβ+α(x)
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and, therefore,

‖R̄αf‖2
L2(dγ) =

∑
β

∏n
j=1

∏αj−1
k=0 (βj + αj − k)

(2(|β| + 1))|α| |aβ|2

≤
∑

β

n∏
j=1

(1 + αj)αj |aβ|2

≤ (1 + |α|)|α|
∑

β

|aβ|2 = C‖f‖2
L2(dγ).

Now if we apply these two claims to Theorem 3.1, the γ-weak type (1,1) of R̄α,l

follows. �

In order to prove that R̄α,g is also γ-weak type (1,1) we will prove

Claim 3. On R
n \ Bx, |R̄α,gf(x)| ≤ CMΦf(x) with Φ(t) = e−ct2 .

This together with Theorem 1.1 give the weak type (1,1) inequality for R̄α,g.

Proof of Claim 3.

|K̄α(x, y)| =

∣∣∣∣∣∣
∫ 1

0

(
− log r

1 − r2

) |α|−2
2

Hα

(
x − ry√
1 − r2

)
e
− |x−ry|2

1−r2

(1 − r2)
n
2 +1

dr

∣∣∣∣∣∣
≤ C

∫ 3
4

0

(− log r)
|α|−2

2
e
− |x−ry|2

2(1−r2)

(1 − r2)
n
2

dr

+C

∫ 1−ζ/|x|2

3
4

e
− |x−ry|2

2(1−r2)

(1 − r2)
n−1

2

(|x| ∨ (1 − r2)−
1
2 )

dr

|x|(1 − r2)3/2

+C

∫ 1

1−ζ/|x|2

e
−c |x−ry|2

1−r2

(1 − r2)
n−1

2

(|x| ∨ (1 − r2)−
1
2 )

e−c̄ |x−y|2
1−r

1 − r
dr

= C
(
K̄1

α(x, y) + K̄2
α(x, y) + K̄3

α(x, y)
)

where the inequality is obtained by annihilating the Hermite polynomial with part of
the exponential, then splitting the unit interval of the integral into three subintervals
[0, 3/4], [3/4, 1 − ζ/|x|2], and [1 − ζ/|x|2, 1] and taking into account that on the
second one |x|∨ (1−r2)−1/2 ≥ |x|, on the third one |x|∨ (1−r2)−1/2 ≥ (1−r2)−1/2

and |x − ry| ≥ c̄|x − y|, and on the last two intervals − log r/(1 − r2) is bounded
by a constant.

Thus, by using the definition of kernels K̄j
α with j = 1, 2, 3, interchanging the

order of integration on each operator R̄j
α,g with j = 1, 2, 3, using Lemma 1.2 and
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setting in this context Φ(t) = e−ct2 , we get

R̄1
α,gf(x) = e|x|

2
∫

Rn

K̄1
α(x, y) |f(y)| dγ(y)

= e|x|
2
∫

Rn

∫ 3
4

0

(− log r)
|α|−2

2
e
− |x−ry|2

2(1−r2)

(1 − r2)
n
2

dr |f(y)| dγ(y)

=
∫ 3

4

0

(− log r)
|α|−2

2 e|x|
2
∫

Rn

e
− |x−ry|2

2(1−r2)

(1 − r2)
n
2
|f(y)| dγ(y) dr

≤ C

∫ 3
4

0

(− log r)
|α|−2

2 dr MΦf(x)

≤ C MΦf(x),

R̄2
α,gf(x) = e|x|

2
∫

Rn

K̄2
α(x, y) |f(y)| dγ(y)

= e|x|
2
∫

Rn

∫ 1−ζ/|x|2

3
4

e
− |x−ry|2

2(1−r2)

(1 − r2)
n−1

2

(|x| ∨ (1 − r2)−
1
2 )

dr

|x|(1 − r2)3/2

|f(y)| dγ(y)

=
∫ 1−ζ/|x|2

3/4

e|x|
2
∫

Rn

e
−c |x−ry|2

(1−r2)

(1 − r2)(n−1)/2
(|x| ∨ (1 − r2)−1/2)|f(y)|dγ(y)

dr

|x|(1 − r2)3/2

≤ C
1
|x|

∫ 1−ζ/|x|2

3/4

dr

(1 − r)3/2
MΦf(x)

≤ C MΦf(x),

and, finally,

R̄3
α,gf(x) = e|x|

2
∫

Rn

K̄3
α(x, y) |f(y)| dγ(y)

= e|x|
2
∫

Rn

∫ 1

1−ζ/|x|2

e
−c |x−ry|2

1−r2

(1 − r2)
n−1

2

(|x| ∨ (1 − r2)−
1
2 )

e−c̄ |x−y|2
1−r

1 − r
dr |f(y)| dγ(y)

=
∫ 1

1−ζ/|x|2
e|x|

2
∫

Rn

e
−c |x−ry|2

(1−r2)

(1 − r2)(n−1)/2
(|x| ∨ (1 − r2)−1/2)

e−c̄ |x−y|2
1−r

1 − r
|f(y)| dγ(y) dr

≤
∫ 1

1−ζ/|x|2
e|x|

2
∫

Rn

e
−c |x−ry|2

(1−r2)

(1 − r2)(n−1)/2
(|x| ∨ (1 − r2)−1/2)

Licensed to Instituto de Matematica Aplicada Litoral IMAL. Prepared on Thu May 10 15:39:22 EDT 2012 for download from IP 200.9.237.254.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2150 H. AIMAR, L. FORZANI, AND R. SCOTTO

1
|x − y|2 |f(y)| dγ(y) dr

≤ C|x|2
∫ 1

1−ζ/|x|2
dr MΦf(x)

≤ C MΦf(x).

So, since |R̄α,gf(x)| ≤ Cα

∑3
j=1 R̄j

α,gf(x), Claim 3 holds. �

4. Proof of Lemmas 1.1 and 1.2 and Corollary 1.1

Proof of Lemma 1.1. Let I1 = I, α1 ∈ I1 such that |xα1 | = min{|xα| : α ∈ I1}. Let
x1 = xα1 and B1 = Bα1 . Let I1, . . . , Ik−1; x1, . . . , xk−1; B1, . . . , Bk−1 be chosen;
we define Ik = {α ∈ I : xα /∈

⋃k−1
j=1 (1 + δj)Bj}, and we choose αk ∈ Ik such that

|xαk
| = min {|xα| : α ∈ Ik}. Let xk = xαk

and Bk = Bαk
. Let J = {α1, . . . , αN}

where N is the first integer for which IN+1 = ∅. Then i) is immediate. Before
proving ii) let us make some remarks.

(1) xj was chosen so that xj /∈ (1 + δs)Bs for all s < j. Hence

∣∣∣∣xs

rs
− xj

∣∣∣∣
2

=
|xs|2
r2
s

+ |xj |2 − 2|xj |
|xs|
rs

cos〈xs

rs
, xj〉

≥ R2
s(1 + δs)2;

(2) |xj | ≥ |xs| for s < j; i.e., |xj | is increasing with j;
(3) |xs

rs
− xj

rj
|2 ≥ 1

rj
[ |xs|2

r2
srj

(rj − rs)2 + 2 (1−rs)
rs

] ≥ θ2 max2(ρj , ρs) for s < j. In

fact, using (1) and (2), and that 2R2
sδs = 2 (1−rs)

rs
,

∣∣∣∣xs

rs
− xj

rj

∣∣∣∣
2

=
|xs|2
r2
s

+
|xj |2
r2
j

− 2
|xj |
rj

|xs|
rs

cos〈xs

rs
,
xj

rj
〉

≥ |xs|2
r2
s

+
|xj |2
r2
j

+
1
rj

[R2
s(1 + δs)2 − |xj |2 −

|xs|2
r2
s

]

=
1
rj

R2
s(1 + δs)2 −

1
rj

[−|xj |2(
1 − rj

rj
) +

|xs|2
r2
s

(1 − rj)]

≥ 1
rj

[R2
s(1 + δs)2 + |xs|2(1 − rj)[

1
rj

− 1
r2
s

]]

≥ 1
rj

[
|xs|2
r2
s

(1 − rs)2 + 2
(1 − rs)

rs
+ |xs|2(1 − rj)[

1
rj

− 1
r2
s

]]

=
1
rj

[
|xs|2
r2
srj

(rj − rs)2 + 2
(1 − rs)

rs
]

≥ θ2max2(ρj , ρs).

To obtain the last inequality we consider two cases:

i) ρ2
s ≥ 1

2ρ2
j . Because of ρ2

s = (1− rs) and the nonnegativity of the first term, the
inequality follows.
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ii) ρ2
j ≥ 2ρ2

s. We have that (rj − rs)2 = (ρ2
j − ρ2

s)2 ≥ 1
4ρ4

j . Using the fact that

|xs|ρs ≥ ζ the inequality follows. (Recall that by hypothesis rs ≤ 1 − ζ2

|xs|2 .)

Now in order to prove ii) we define

I1 = {j : j ∈ J and νρj ≥ κ},

I2 = {j : j ∈ J and
Rj

2
< νρj < κ},

I3 = {j : j ∈ J and νρj ≤ Rj

2
},

where Rj = |xj |
rj

(1 − rj).
We will prove

(4.1)
∑
j∈Ii

χBν
j
(z) ≤ Cν2n for i = 1, 2, 3,

from which ii) follows.
Now we prove (4.1). Let us consider I1(z) = {j ∈ I1 : z ∈ Bν

j }. In order to
obtain the desired estimate all we need is to find a sequence of pairwise disjoint
measurable sets {Sj}j∈I1(z) such that

(4) Sj ⊂ B(z, Cν);
(5) |Sj | ≥ C

νn for some constant C.
The case i = 1 in (4.1) follows from (4) and (5).
We define Sj = B(xj

rj
; θ

2ρj); (5) is immediate since j ∈ I1 which implies ρj ≥ κ
ν .

In order to get (4) let us take h ∈ Sj . Since z ∈ Bν
j , we have

|h − z| ≤ |h − xj

rj
| + |xj

rj
− z|

≤ θ

2
ρj + νρj

≤ Cν.

That {Sj}j∈I1(z) is a family of pairwise disjoint sets follows from (3).
Now, consider I2(z) = {j ∈ I2 : z ∈ Bν

j }. In order to obtain the desired estimate
we just need to find a sequence of pairwise disjoint measurable sets {Sj}j∈I2(z) such
that

(6) Sj ⊂ B(z, Cν2);
(7) |Sj | � 1 for some constant C.

The case i = 2 in (4.1) follows from (6) and (7).
We define Sj = B(z + (xj

rj
− z) |xj |

rj
, C), therefore, (7) is immediate. Let us

prove (6). Take h ∈ Sj , using the fact that z ∈ Bν
j and Rj

2 ≤ νρj or equivalently

ρj
|xj |
rj

≤ 2ν, we get

|h − z| ≤ C + |(xj

rj
− z)| |xj |

rj

≤ C + νρj
|xj |
rj

≤ C + 2ν2

≤ Cν2.
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To prove that the Sj are pairwise disjoint we will use consecutively the following
facts:

i) |xs

rs
− xj

rj
| ≥ θρs;

ii) |xs|ρs ≥
√

ζ;
iii) |xj

rj
− z| ≤ νρj ≤ κ (j ∈ I2); and

iv) | |xs|
rs

− |xj |
rj

| ≤ |xs

rs
− xj

rj
≤ |νρs + νρj ≤ 2κ.

So ∣∣∣∣(xj

rj
− z)

|xj |
rj

− (
xs

rs
− z)

|xs|
rs

∣∣∣∣ ≥ |xs|
rs

∣∣∣∣xj

rj
− xs

rs

∣∣∣∣−
∣∣∣∣xj

rj
− z

∣∣∣∣
∣∣∣∣ |xs|

rs
− |xj |

rj

∣∣∣∣
≥

√
ζ

θ

rs
− 2 κ2

≥ C

after choosing ζ and κ properly.
Finally, consider I3(z) = {j ∈ I3 : z ∈ Bν

j }. In order to obtain the desired
estimate all we need is to find a sequence of pairwise disjoint measurable sets
{Sj}j∈I3(z) such that

(8) Sj ⊂ B(z, Cνρτ );
(9) |Sj | ≥ Cρn

τ for some constant C, where ρτ = ρmin{j: j∈I3(z)}.

The case i = 3 in (4.1) follows from (8) and (9).
We define Sj = B(xj

rj
, θ

2ρj) . We will prove that

(4.2)
1
2
ρτ ≤ ρj ≤ 3

2
ρτ for all j ∈ I3(z).

From (4.2) we have (8) and (9). That Sj are disjoint follows from (3).

Let us prove (4.2). From (3), |xτ

rτ
− xj

rj
|2 ≥ 1

rj

[
|xτ |2
r2

τ rj
(rj − rτ )2 + 2 (1−rτ )

rτ

]
, then

|xj

rj
− xτ

rτ
|2 ≥ |xτ |2

r2
τ

(ρ2
j − ρ2

τ )2 and since τ, j ∈ I3(z), we have |xτ |
rτ

≥ 2 ν
ρτ

. Therefore,

(νρj + νρτ )2 ≥ |xj

rj
− xτ

rτ
|2

≥ |xτ |2
r2
τ

(ρ2
j − ρ2

τ )2

≥ 4
ν2

ρ2
τ

(ρ2
j − ρ2

τ )2.

Then 1 ≥ 2 |ρj−ρτ |
ρτ

. Now, this inequality is equivalent to |ρj − ρτ | ≤ 1
2ρτ which in

turn is equivalent to (4.2). �

Proof of Lemma 1.2. We can write every y ∈ R
n as y = (ξ + |x| 1−s

r ) x
|x| + v, with

〈v, x〉 = 0. It is clear that y ∈ B(x
r , |x|

r s) if and only if ξ ∈ (0, 2s |x|
r ) and |v| <
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2 |y|

r s ξ − ξ2. Then, using this fact we have that

γ
(
B(

x

r
,
|x|
r

s)
)

=
∫

B( x
r , |x|

r s)

e−|y|2 dz

= e−
|x|2
r2 (1−s)2

∫ 2s |x|
r

0

e−2ξ |x|
r (1−s) e−|ξ|2

∫
{v∈Rn−1: |v|<

√
2 |x|

r s ξ−ξ2}
e−|v|2 dv dξ

≤ Cne−
|x|2
r2 (1−s)2

∫ 2s |x|
r

0

e−2ξ|x| 1−s
r (2

|x|
r

s ξ − ξ2)
n−1

2

dξ

≤ Cne−
|x|2
r2 (1−s)2 s

n−1
2

∫ 2s |x|
r

0

e−2ξ|x| 1−s
r (2

|x|
r

ξ)
n−1

2

dξ

≤ Cne−
|x|2
r2 (1−s)2 s

n−1
2

|x|(1 − s)
n+1

2

∫ 4s |x|2
r2 (1−s)

0

e−t t
n−1

2 dt

≤ Cne−
|x|2
r2 (1−s)2 s

n−1
2

|x| min (1, s|x|2)

≤ Cne−
|x|2
r2 (1−s)2 s

n−1
2 min (

1
|x| , s |x|)

≤ Cne−
|x|2
r2 (1−s)2 s

n−1
2 min (

1
|x| , s

1
2 ).

�

Proof of Corollary 1.1. We choose Φ(t) = 1
πn/2 e−t2 . From Lemma 1.2,

γ((1 + δ)B(
x

r
,
|x|
r

(1 − r)) ≤ C e−|x|2(1 − r)
n
2 .

Then T ∗f ≤ CMΦf(x), and therefore the γ-weak type (1,1) inequality for T ∗

follows from Theorem 1.1. �
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[15] Itô K. Malliavin’s C∞ Functionals of a Centered Gaussian System. IMA Preprint Series 327,

(1987), University of Minnesota.
[16] Messiah A. Quantum Mechanics. Vol. I. North-Holland, Publishing Co., Amsterdam.

MR0129790 (23:B2826)
[17] Meyer P.A. Transformations de Riesz pour les lois gaussiennes. Seminar on probabil-

ity, XVIII, 179–193, Lecture Notes in Math., 1059, Springer, Berlin, 1984. MR0770960
(86i:60150)

[18] Muckenhoupt B. Hermite conjugate expansions. Trans. Amer. Math. Soc. 139 (1969), 243–
260. MR0249918 (40:3159)
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