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Abstract
A standard engineering procedure for approximating the solutions of an infinite-
dimensional inverse problem of the form Ax = y, where A is a given compact
linear operator on a Hilbert space X and y is the given data, is to find a sequence
{XN } of finite-dimensional approximating subspaces of X whose union is dense
in X and to construct the sequence {xN } of least-squares solutions of the
problem in XN . In 1980, Seidman showed that if the problem is ill-posed, then,
without any additional assumptions on the exact solution or on the sequence of
approximating subspaces XN , it cannot be guaranteed that the sequence {xN }
will converge to the exact solution. In this paper, this result is extended in the
following sense: it is shown that if X is separable, then for any y ∈ X, y �= 0
and for any arbitrarily given function s : N → R

+ there exists an injective,
compact linear operator A and an increasing sequence of finite-dimensional
subspaces XN ⊂ X such that ‖xN − A−1y‖ � s(N) for all N ∈ N, where xN

is the least-squares solution of Ax = y in XN .

1. Introduction

A wide variety of applied problems lead to equations of the form

Ax = y (1)

where x is an unknown element of a certain infinite-dimensional space, y is the data, supposed
to be known up to a certain degree of noise and A is a given operator used for modelling the
system under consideration. Very often, A†, the Moore–Penrose generalized inverse of A, is
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unbounded and therefore the inverse problem (1) is ill-posed. It is well known that the best
approximate solution, i.e. the least-squares solution of minimum norm of (1), is x† = A†y
(see [2]). In the application of the least-squares method to any concrete infinite-dimensional
problem, discretization usually starts by choosing an increasing sequence of finite-dimensional
subspaces XN of X whose union is dense in X, and then the sequence {xN }∞N=1, with xN ∈ XN

minimizing ‖Ax − y‖2 over XN , is constructed.
Luecke and Hickey [3] characterized the strong convergence to x† of the sequence

{xN }∞N=1 of least-squares solutions of (1). They proved that if A is a continuous linear
operator and y ∈ D(A†), then xN → x† if and only if lim supN→∞ ‖xN‖ � ‖x†‖. They also
found a sufficient condition for convergence which does not require any a priori knowledge
about the norm of the true solution. More precisely, they showed that if y ∈ D(A†) then
xN → x† provided that supN

∥∥(A†
N

)∗
xN

∥∥ < ∞ (or equivalently supN‖(A∗
N)†xN‖ < ∞),

where AN
.= APXN

with PXN
being the orthogonal projection of X onto XN . Moreover, they

proved that if A is compact and it has infinite rank, then this condition is not necessary for
convergence. As a corollary, they established that the uniform boundedness of the sequence{∥∥A†

N

∥∥}∞
N=1 is also a sufficient condition for the strong convergence of xN to x†.

On the other hand, Luecke and Hickey [3] also showed that the boundedness of the
sequence {‖xN‖}∞N=1 is not sufficient to guarantee strong convergence. However, Groetsch
and Neubauer [4] proved that if y ∈ D(A†) then that condition is sufficient and, moreover
necessary, for weak convergence. As a corollary of this result, they were also able to derive
in a much more comprehensive manner the necessary and sufficient condition for strong
convergence established earlier by Luecke and Hickey.

In order to guarantee convergence, it is necessary that the subspaces XN be carefully
chosen. For example, if A is compact and the XN are the eigenspaces associated with the
singular value decomposition of A, Luecke and Hickey [3] showed that one always has that
xN → x†. They also proved that this convergence is guaranteed if A is bounded and the
subspaces XN are chosen so that they all reduce A (in the sense that A(XN) ⊂ XN and
A(X⊥

N) ⊂ X⊥
N for every N).

In contrast, if the subspaces XN are carelessly chosen, e.g. when the XN are poorly or
inadequately associated with the operator A, then almost anything can happen. For instance in
[1] Seidman proved that if problem (1) is ill-posed, then without any additional assumptions
on x† it cannot be guaranteed that xN → x† and that it is possible for ‖xN − x†‖ to increase
without bound. In this paper, we further show that if the subspaces XN are not carefully
chosen, then things might not only go wrong with the application of the least-squares method,
but also they can go arbitrarily bad. In fact, it will be shown that it is possible for ‖xN − x†‖
to go to infinity at any arbitrary rate.

2. Preliminaries

The following result can be immediately derived from example 3.1 in [1]:

Theorem 2.1. Let X be an infinite-dimensional separable Hilbert space, B
.= {en}∞n=1 an

orthonormal basis of X and XN
.= span{e1, . . . , eN }. Then, there exist a linear, injective,

compact, self-adjoint operator A : X → X whose range is dense in X and b ∈ R(A) with
b = Ax∗ for some x∗ ∈ X, such that if xN is the least-squares solution of Ax = b in XN , then
‖xN − x∗‖ → ∞.

Remark 2.2. The operator A0 : X → X of example 3.1 in [1] is not necessarily self-adjoint.
If {(σn; vn, un)} denotes the singular system associated with the compact operator A0 and
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U : X → X is the linear unitary operator defined by Uvn = un, then the linear operator
A

.= U−1A0, besides being compact, injective and having dense range, is self-adjoint and
‖A0x − y‖ = ‖Ax − U−1y‖ for every y ∈ X.

Corollary 2.3. Let X and Y be infinite-dimensional Hilbert spaces, X separable, B
.= {en}∞n=1

an orthonormal basis of X and XN
.= span{e1, . . . , eN }. Then, there exist a linear, injective,

compact operator A : X → Y whose range is dense in Y and an element b ∈ R(A), b = Ax∗

for some x∗ ∈ X, such that if xN is the least-squares solution of Ax = b in XN , then
‖xN − x∗‖ → ∞.

Proof. From theorem 2.1 there exist A0 : X → X and b0 ∈ R(A0), b0 = A0x
∗ for some

x∗ ∈ X, such that
∥∥x0

N − x∗∥∥ → ∞, where x0
N is the least-squares solution of A0x = b0 in

XN . Let V : X → Y be an arbitrary unitary operator and let us define A
.= V A0 and b

.= V b0.
Then, it follows immediately that the operator A : X → Y is linear, compact, injective, with
range dense in Y and b ∈ R(A). Let xN be the least-squares solution of Ax = b in XN . Since
‖Ax − b‖Y = ‖A0x − b0‖X, then it turns out that x0

N is also the least-squares solution of
Ax = b in XN , that is, x0

N = xN . Therefore, ‖xN − x∗‖ → ∞. �

3. Main results

In this section, we will prove some results that are more general than those of theorem 2.1
and corollary 2.3. More precisely, we will show that for any infinite-dimensional separable
Hilbert space X, for any b ∈ X, b �= 0, and for any arbitrarily given function s : N → R

+,
it is possible to find an injective operator A and a sequence of subspaces XN ⊂ X such that
‖xN −A−1b‖ � s(N) for all N ∈ N, where xN is the least-squares solution of Ax = b in XN .
The following definitions will be needed.

Definition 3.1. Let X be an infinite-dimensional separable Hilbert space and B
.= {en}∞n=1

an orthonormal basis of X. An element x ∈ X is said to be ‘degenerate with respect to B’
if x can be written as a finite linear combination of elements of B. Otherwise we say that x
is ‘non-degenerate with respect to B’. In particular, if 〈x, en〉 �= 0 ∀n ∈ N then we say that
x is ‘strongly non-degenerate with respect to B’. If 〈x, en〉 �= 0 for infinitely many n, then
we say that x is ‘weakly non-degenerate with respect to B’. Clearly, if an element is strongly
non-degenerate with respect to a basis, then it is also weakly non-degenerate with respect to
the same basis.

The following results will also be needed later.

Lemma 3.2. Let X be an infinite-dimensional separable Hilbert space and b ∈ X, b �= 0.
Then there exists an orthonormal basis B of X such that b is strongly non-degenerate with
respect to B.

Proof. Given b ∈ X, b �= 0, let {gn}∞n=1 be an orthonormal basis of [span{b}]⊥ and define
fn

.= b + gn, n ∈ N. Suppose that for a certain sequence of scalars α1, α2, . . . , one has

0 =
∑

n

αnfn =
(∑

n

αn

)
b +
∑

n

αngn.

Since {b}∪{gn}∞n=1 is an orthogonal system, it is linearly independent and, therefore, the above
equation implies αn = 0 for every n ∈ N. Hence, fn are linearly independent.
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We will now use the Gram–Schmidt process (see [5]) to construct an orthonormal system
starting from fn (note that 〈fi, fj 〉 = ‖b‖2 + δi,j for i, j ∈ N). For that, let us define

e1
.= f1

‖f1‖ ,

and for n � 2, define en recursively by

en
.=
fn −

n−1∑
j=1

〈fn, ej 〉ej

∥∥∥∥∥∥fn −
n−1∑
j=1

〈fn, ej 〉ej

∥∥∥∥∥∥
−1

.

Then, it turns out that

span {fn}∞n=1 = span {en}∞n=1 (2)

and {en}∞n=1 is an orthonormal system in X (see [5]). Moreover, this system is complete in X.
In fact, suppose there exists y1 ∈ X such that 〈y1, en〉 = 0 for every n ∈ N. This implies that
〈y1, fn〉 = 0 for every n ∈ N by virtue of (2) and therefore

〈y1, gn〉 = −〈y1, b〉 for every n ∈ N. (3)

But, since {gn}∞n=1 is an orthonormal system in X, the sequence {〈y1, gn〉}∞n=1 must be in �2.
Thus, since by (3) that sequence is constant, we must have 〈y1, gn〉 = 0 for every n ∈ N

which, again by virtue of (3), also implies that 〈y1, b〉 = 0. Thus, y1 = 0 since {b, g1, g2, . . .}
is complete in X. Hence, {en}∞n=1 is a complete orthonormal system in X.

Next, we will show that b is strongly non-degenerate with respect to the basis B
.= {en}∞n=1.

In contrast, suppose there exists n∗ ∈ N such that 〈en∗ , b〉 = 0 and 〈en, b〉 �= 0 for all n < n∗.
Since 〈e1, b〉 = ‖f1‖−1‖b‖2 �= 0 we must have that n∗ � 2. Let Fn

.= span{f1, . . . , fn} and
En

.= span{e1, . . . , en}. Since {fn}∞n=1 is a linearly independent set by the Gram–Schmidt
process, it turns out that Fn = En for all n ∈ N (see [5]). Let now PFn

and PEn
denote the

orthogonal projections of X onto Fn and En, respectively. Since 〈en∗ , b〉 = 0, it follows that

PFn∗ b = PEn∗ b = PEn∗−1b = PFn∗−1b,

and therefore 〈fn∗ , b〉 = 0. But this contradicts the fact that 〈fn∗ , b〉 = 〈b, b〉 + 〈gn∗ , b〉 =
‖b‖2 �= 0. Thus, such an n∗ does not exist and 〈en, b〉 �= 0 for every n ∈ N. We therefore
conclude that b is strongly non-degenerate with respect to the basis B of X. �

The following lemma is based upon the ideas presented in example 3.1 in [1].

Lemma 3.3. Let X be an infinite-dimensional separable Hilbert space, B
.= {en}∞n=1 an

orthonormal basis of X and let {αn}∞n=1, {βn}∞n=1 be two sequences in �2 satisfying

αn �= 0 ∀n ∈ IN, β1 = 0, βn �= 0 ∀n � 2. (4)

Then, given x =∑∞
n=1 ξnen ∈ X, the linear operator A : X → X defined by

Ax
.=

∞∑
n=1

(αnξn + βnξ1)en (5)

is compact, injective and its range is dense in X.

Proof. We will first show that this operator is compact. For each N ∈ N, let ÃN : X → XN

be the operator defined by ÃNx
.= ∑N

i=1(αiξi + βiξ1)ei , where x = ∑∞
i=1 ξiei ∈ X and
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XN
.= span{e1, . . . , eN }. For each N ∈ N, ÃN is compact since it is clearly a finite rank

operator. Moreover,

‖Ax − ÃNx‖2 =
∥∥∥∥∥

∞∑
i=N+1

(αiξi + βiξ1)ei

∥∥∥∥∥
2

=
∞∑

i=N+1

(αiξi + βiξ1)
2

� ‖x‖2

( ∞∑
i=N+1

α2
i + 2

∞∑
i=N+1

αiβi +
∞∑

i=N+1

β2
i

) (
since ξ 2

i � ‖x‖2 ∀i ∈ N
)

� ‖x‖2

 ∞∑
i=N+1

α2
i + 2

( ∞∑
i=N+1

α2
i

) 1
2
( ∞∑

i=N+1

β2
i

) 1
2

+
∞∑

i=N+1

β2
i


(by Cauchy–Schwartz).

Since the sequences {αn}∞n=1, {βn}∞n=1 are both in �2, it then follows that ‖A − ÃN‖ → 0 as
N → ∞. Hence, A, being uniform limit of compact operators, is itself compact.

We will now check that the operator A is injective. Let x = ∑∞
i=1 ξiei ∈ X and

suppose Ax = 0, then
∑∞

i=1 αiξiei = −∑∞
i=1 βiξ1ei . Equating coefficients of e1 we have

that α1ξ1 = −β1ξ1. Since β1 = 0 and α1 �= 0 it follows that ξ1 = 0. Similarly for all
i � 2, αiξi = −βiξ1 = 0 which implies ξi = 0 since ξ1 = 0 and αi �= 0. Hence, x = 0 and
the operator A is injective.

Next, we will show that R(A) is dense in X. Let x = ∑∞
i=1 ξiei ∈ X. For each N ∈ N,

there are scalars c1, c2, . . . , cN such that zN
.=∑N

i=1 ciei ∈ XN satisfies

AzN =
N∑

i=1

(αici + βic1)ei =
N∑

i=1

ξiei .

In fact, equating the coefficients of ei, i = 1, . . . , N, in this expression and recalling that
β1 = 0 and αi �= 0 for all i ∈ N, we immediately obtain c1 = ξ1

α1
and ci = α−1

i

(
ξi − βiξ1

α1

)
for

2 � i � N . Moreover,

‖x − AzN‖2 =
∥∥∥∥∥

∞∑
i=N+1

ξiei

∥∥∥∥∥
2

=
∞∑

i=N+1

ξ 2
i ,

and since {ξi}∞i=1 is a sequence in �2 we conclude that ‖x − AzN‖ → 0 as N → ∞. Hence,
R(A) is dense in X. This finishes the proof of the lemma. �

In the following result, we show that for any arbitrary infinite-dimensional separable
Hilbert space X and for any non-zero element b ∈ X, there exists a linear operator A such that
the least-squares solutions of the problem Ax = b in XN diverge from the exact solution with
arbitrarily large speed. More precisely, we have the following theorem.

Theorem 3.4. Let X be an infinite-dimensional separable Hilbert space and s : N → R
+

an arbitrary nonnegative increasing function. Then for each b ∈ X, b �= 0, there exist an
increasing sequence of subspaces XN whose union is dense in X and a linear, compact, injective
operator A = A(b, s) : X → X, whose range is dense in X, such that b = Ax∗ for some
x∗ ∈ X, and if xN denotes the least-squares solution of Ax = b in XN , then ‖xN −x∗‖ � s(N)

for every N ∈ N.
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Proof. Let b ∈ X, b �= 0. From lemma 3.2 there exists an orthonormal basis B
.= {en}∞n=1 of

X such that b is strongly non-degenerate with respect to B. Define XN
.= span{e1, . . . , eN },

let {αn}∞n=1, {βn}∞n=1 be any two sequences in �2 satisfying (4) and let A be the linear operator
defined in (5). By virtue of lemma 3.3 A is compact, injective and its range is dense in X.

Next, we will show that given any element b ∈ X, strongly non-degenerate with respect
to B, i.e. such that bn

.= 〈b, en〉 �= 0 for every n ∈ N, it is possible to choose the sequences
{αn}∞n=1, {βn}∞n=1 ∈ �2 in such a way that, besides satisfying (4), one has b ∈ R(A), and if xN

denotes the least-squares solution of Ax = b in XN , then ‖xN − A−1b‖ � s(N) for every
N ∈ N.

The sequences {αn}∞n=1 and {βn}∞n=1 shall be constructed recursively as follows:

Step 1. Choose α1 arbitrary, α1 �= 0 and β1
.= 0.

Step 2. α2
.= 1

2 ,

β2
.=


α1b2
2b1

, if b2 = α2

2
2
2 +1

= 1
8 ,

α1
b1

(
b2 − α2

2
2
2 +1

)
= α1

b1

(
b2 − 1

8

)
, in other case.

It suffices to choose β2 �= 0 such that b1β2

α1
∈ (b2 − α2

2
2
2
, b2
)
.

Step 3. α4
.= 1

4 ,

β4
.=


α1b4
2b1

, if b4 = α4

2
4
2 +1

= 1
32 ,

α1
b1

(
b4 − α4

2
4
2 +1

)
= α1

b1

(
b4 − 1

32

)
, in other case.

Also here, it suffices to choose β4 �= 0 such that b1β4

α1
∈ (b4 − α4

2
4
2
, b4
)
.

Step 4. α6
.= 1

6 ,

β6
.=


α1b6
2b1

, if b6 = α6

2
6
2 +1

= 1
96 ,

α1
b1

(
b6 − α6

2
6
2 +1

)
= α1

b1

(
b6 − 1

96

)
, in other case.

As before, it suffices to choose β6 �= 0 such that b1β6

α1
∈ (b6 − α6

2
6
2
, b6
)
. For simplicity, let us

denote K
.= α2

1

[
1 + b−2

1

(
5
4‖b‖2 +

√
2‖b‖ + 2

)]
.

Step 5. α3 is chosen according to the sign of b3 as follows:

• If b3 < 0, then

α3
.= min

{
1

3
;
∣∣∣∣α1b3β6

b1

∣∣∣∣ (b6 − β6b1

α1

)
[Ks(4)]−1

}
> 0. (6)

Note that α3 > 0 since K > 0, and by the selection of β6 made in step 4 we have that
b6 − β6b1

α1
> 0.

• If b3 > 0, then we define

α3
.= min

1

3
; 2

3
2 b3; b3

[
Ks(4)∣∣α1β6

b1

∣∣(b6 − β6b1

α1

) + 2− 3
2

]−1
 > 0. (7)



Arbitrary divergence speed of the least-squares method 617

In (6) and (7), it actually suffices to pick α3 as any positive number less than or equal to the
respective minimum.

Step 6.

β3
.=


α1b3
2b1

, if b3 = α3

2
3
2 +1

,

α1
b1

(
b3 − α3

2
3
2 +1

)
, in other case.

Here, again it suffices to choose β3 �= 0 such that b1β3

α1
∈ (b3 − α3

2
3
2
, b3
)
.

Steps similar to 4, 5 and 6 are followed to construct α2j , β2j and α2j−3, β2j−3 for j � 4.
More precisely:

Step 7. For all j � 4, define

α2j
.= 1

2j
, β2j

.=
{

α1b2j

2b1
, if b2j = α2j

2j+1 ,

α1
b1

(
b2j − α2j

2j+1

)
, in other case.

Here, it suffices to choose β2j �= 0 such that b1β2j

α1
∈ (b2j − α2j

2j , b2j

)
.

Step 8. For all j � 4, α2j−3 is chosen according to the sign of b2j−3 as follows:

• If b2j−3 < 0, define

α2j−3
.= min

{
1

2j − 3
;
∣∣∣∣α1b2j−3β2j

b1

∣∣∣∣ (b2j − β2j b1

α1

)
[Ks(2j − 2)]−1

}
> 0. (8)

Note that α2j−3 > 0 since, by the choice of β2j in step 7, we have that b2j − β2j b1

α1
> 0.

• If b2j−3 > 0, define

α2j−3
.= min

 1

2j − 3
; 2

2j−3
2 b2j−3; b2j−3

 Ks(2j − 2)∣∣∣ α1β2j

b1

∣∣∣(b2j − β2j b1

α1

) + 2− 2j−3
2

−1
 > 0. (9)

In (8) and (9), it suffices to choose α2j−3 to be any positive number less than or equal to the
respective minimum.

Finally, define

β2j−3
.=


α1b2j−3

2b1
, if b2j−3 = α2j−3

2
2j−3

2 +1
,

α1
b1

(
b2j−3 − α2j−3

2
2j−3

2 +1

)
, in other case.

(10)

It suffices to choose β2j−3 �= 0 such that b1β2j−3

α1
∈ (b2j−3 − α2j−3

2
2j−3

2
, b2j−3

)
.

Figure 1 depicts the recursion order used for the construction of the sequences {αn}∞n=1
and {βn}∞n=1. It is easy to check that these sequences satisfy conditions (4) and are both in �2.
In fact,

∑∞
n=1 α2

n �
∑∞

n=1
1
n2 < ∞, since 0 < αn � 1

n
for every n ∈ N due to the choice of αn.

On the other hand, by our choice of the sequence {βn}∞n=1, it follows that

∞∑
n=1

β2
n �

∞∑
n=1

(
α1bn

2b1

)2

+
∞∑

n=1

(
α1

b1

)2 (
bn − αn

2
n
2 +1

)2

= α2
1

b2
1

[
1

4

∞∑
n=1

b2
n +

∞∑
n=1

(
b2

n − bnαn

2
n
2

+
α2

n

2n+2

)]
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.

α2
.
= 1

2

β2

β4

α4
.
= 1

4

α6
.
= 1

6

β6

α3

β3

...

β2j

α2j

α2j−3

β2j−3

α1 �= 0

β1
.
= 0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Figure 1. Recursion order used for the construction of the sequences {αn} and {βn}.

� α2
1

b2
1

5

4
‖b‖2 +

( ∞∑
n=1

b2
n

) 1
2
( ∞∑

n=1

α2
n

2n

) 1
2

+
∞∑

n=1

α2
n


(by Cauchy–Schwartz and since 2n+1 > 1 ∀n ∈ N)

� α2
1

b2
1

5

4
‖b‖2 + ‖b‖

( ∞∑
n=1

1

n2

) 1
2

+
∞∑

n=1

1

n2

 (
since αn � 1

n
and 2n > 1 ∀n ∈ N

)

� α2
1

b2
1

(
5

4
‖b‖2 +

√
2‖b‖ + 2

) (
since

∞∑
n=1

1

n2
= π2

6
< 2

)
= K − α2

1 < ∞. (11)

We will check now that b ∈ R(A), i.e., that there exists x∗ = ∑∞
n=1 ξ ∗

n en ∈ X such that
Ax∗ = b. In order to do that, we will show that the system of equations derived from the
equality

∑∞
n=1(αnξ

∗
n + βnξ

∗
1 )en = ∑∞

n=1 bnen has a unique solution {ξ ∗
n } ∈ �2. Equating first

the coefficients of e1 we have α1ξ
∗
1 + β1ξ

∗
1 = b1. Since β1 = 0, it follows that ξ ∗

1 = b1
α1

.
Similarly, equating the coefficients of en for n � 2 it follows that αnξ

∗
n + βnξ

∗
1 = bn, which
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implies

ξ ∗
n =

(
bn − b1βn

α1

)
α−1

n . (12)

Hence,

∞∑
n=1

ξ ∗
n

2 =
(

b1

α1

)2

+
∞∑

n=2

(
bn − b1βn

α1

)2

α−2
n

=
(

b1

α1

)2

+
∞∑

n = 2
bn = αn

2
n
2 +1

(
bn − b1βn

α1

)2

α−2
n +

∞∑
n = 2

bn �= αn

2
n
2 +1

(
bn − b1βn

α1

)2

α−2
n

=
(
b1

α1

)2

+
∞∑

n = 2
bn = αn

2
n
2 +1

(
bn − bn

2

)2

α−2
n +

∞∑
n = 2

bn �= αn

2
n
2 +1

(
αn

2
n
2 +1

)2

α−2
n (by our choice of βn)

�
(

b1

α1

)2

+
∞∑

n=2

1

2n+4
+

∞∑
n=2

1

2n+2
< ∞.

Thus, {ξ ∗
n }∞n=1 ∈ �2, x∗ =∑∞

n=1 ξ ∗
n en ∈ X and b = Ax∗ ∈ R(A).

Let now xN be the least-squares solution of Ax = b in XN and write xN = ∑N
n=1 ξnen.

We will show that ‖xN − x∗‖ � s(N) for every N ∈ N. Defining the functional
J (xN)

.= 1
2‖AxN − Ax∗‖2 and equating to zero each one of its partial derivatives with

respect to ξi, i = 1, . . . , N (for the sake of brevity we skip the details here), it follows
immediately that

ξ1 = ξ ∗
1 +

∑∞
n=N+1 αnβnξ

∗
n

α2
1 +
∑∞

n=N+1 β2
n

,

ξn = ξ ∗
n − βn

αn

(ξ1 − ξ ∗
1 ) for 2 � n � N.

Therefore,

‖xN − x∗‖2 =
(∑∞

n=N+1 αnβnξ
∗
n

)2(
α2

1 +
∑∞

n=N+1 β2
n

)2
(

1 +
N∑

n=2

β2
n

α2
n

)
+

∞∑
n=N+1

ξ ∗
n

2

�
(∑∞

n=N+1 αnβnξ
∗
n

)2(
α2

1 +
∑∞

n=N+1 β2
n

)2 N∑
n=2

β2
n

α2
n

. (13)

Hence,

(a) For N even,

‖xN − x∗‖2 �
(
αN+2βN+2ξ

∗
N+2

)2(
α2

1 +
∑∞

n=N+1 β2
n

)2 β2
N−1

α2
N−1

= β2
N+2

(
bN+2 − b1βN+2

α1

)2(
α2

1 +
∑∞

n=N+1 β2
n

)2 β2
N−1

α2
N−1

(by replacing ξ ∗
N+2 by (12)). (14)
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(a.1) If bN−1 < 0, then by the selection of βn we have b1βN−1

α1
< bN−1 < 0 and therefore

β2
N−1 >

(
α1bN−1

b1

)2
, which, together with our choice of αN−1 (see (8) in step 8), implies

that

‖xN − x∗‖2 � [s(N)]2 K2(
α2

1 +
∑∞

n=N+1 β2
n

)2
�

[s(N)]2 (α2
1 +
∑∞

n=1 β2
n

)2(
α2

1 +
∑∞

n=N+1 β2
n

)2 (from (11))

� [s(N)]2 .

(a.2) If bN−1 > 0, since αN−1 was chosen so that αN−1 � 2
N−1

2 bN−1 (see (9) in step 8), and
recalling our choice of βN−1 (see (10)), it follows that 0 � bN−1 − αN−1

2
N−1

2
<

b1βN−1

α1
.

Then, β2
N−1 >

α2
1

b2
1

(
bN−1 − αN−1

2
N−1

2

)2
. Substituting with this into (14), we finally obtain

that

‖xN − x∗‖2 �
[
βN+2

(
bN+2 − b1βN+2

α1

)]2(
α2

1 +
∑∞

n=N+1 β2
n

)2 α2
1

b2
1

(
bN−1 − αN−1

2
N−1

2

)2 1

α2
N−1

=
[
βN+2

(
bN+2 − b1βN+2

α1

)]2(
α2

1 +
∑∞

n=N+1 β2
n

)2 α2
1

b2
1

(
bN−1

αN−1
− 1

2
N−1

2

)2

� [s(N)]2 K2(
α2

1 +
∑∞

n=N+1 β2
n

)2 (from (9))

� [s(N)]2(
α2

1 +
∑∞

n=N+1 β2
n

)2
(

α2
1 +

∞∑
n=1

β2
n

)2

(from (11))

� [s(N)]2 .

(b) For N odd, it follows from (13) that

‖xN − x∗‖2 �
(
αN+3βN+3ξ

∗
N+3

)2(
α2

1 +
∑∞

n=N+1 β2
n

)2 β2
N

α2
N

.

Following similar steps as in the previous case (N even), it follows easily that now
‖xN − x∗‖2 � [s(N + 1)]2 � [s(N)]2, where the last inequality follows from the fact that s is
an increasing function. This completes the proof of the theorem. �

Later on, in corollary 3.7, we will see that under certain general additional assumptions
on b, the operator A in the previous theorem can be constructed to further be self-adjoint.

For our next corollary, the following lemma will be needed.

Lemma 3.5. Let X be a Hilbert space, H a closed subspace of X,A : X → X a bounded
linear operator, M a closed subspace of X such that M and M⊥ are invariant under A and
b ∈ M . If x∗ is the least-squares solution of Ax = b in H, then the least-squares solution of
Ax = b in H ∩ M is PMx∗, where PM is the orthogonal projection of X onto M.

Proof. Let us suppose that PMx∗ is not the least-squares solution of Ax = b in H ∩M . Then,
there exists z ∈ H ∩ M, z �= PMx∗, such that

‖Az − b‖ < ‖APMx∗ − b‖. (15)
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Let x̃∗ .= z + PM⊥x∗ ∈ H . Since z �= PMx∗, it turns out that x̃∗ �= x∗. Then, since
b ∈ M, z ∈ M and M,M⊥ are both invariant under A, we have that

‖Ax̃∗ − b‖2 = ‖Az + APM⊥x∗ − b‖2

= ‖Az − b‖2 + ‖APM⊥x∗‖2

< ‖APMx∗ − b‖2 + ‖APM⊥x∗‖2 (from (15))

= ‖Ax∗ − b‖2,

which is a contradiction since x̃∗ ∈ H and x∗ is the least-squares solution of Ax = b in H.
Hence, PMx∗ is the least-squares solution of Ax = b in H ∩ M . �

In actual applications of the least-squares method, the basis B = {en}∞n=1 of X is usually
given and XN is chosen as span{e1, . . . , eN }. In the next corollary, we shown that in this
case, for any b ∈ X weakly non-degenerate with respect to that basis and for any function
s : N → R

+ as before, it is also possible to construct an operator A = A(b, s) such that the
least-squares solutions in XN of Ax = b diverge from the exact solution with speed greater
than or equal to s.

Corollary 3.6. Let X be an infinite-dimensional separable Hilbert space, s : N → R
+ an

arbitrary nonnegative increasing function, B
.= {en}∞n=1 an orthonormal basis of X, b ∈ X

weakly non-degenerate with respect to B and XN
.= span{e1, . . . , eN }. Then there exists a

linear, compact, injective operator A = A(b, s) : X → X, whose range is dense in X, such
that b = Ax̂ for some x̂ ∈ X, and if xN is the least-squares solution of Ax = b in XN , then
‖xN − x̂‖ � s(N) for every N ∈ N.

Proof. Let us define

�
.= {n ∈ N : 〈b, en〉 �= 0}, 	

.= N \ �,

B� .= {enj
: nj ∈ �

}
, B	 .= {emj

: mj ∈ 	
}
, (16)

and let Xb
.= span B�. Clearly,

span B	 = X⊥
b (17)

and b is strongly non-degenerate with respect to the basis B� of Xb. Since Xb is an infinite-
dimensional separable Hilbert space, theorem 3.4 implies that there exists a compact, injective,
linear operator A� : Xb → Xb whose range is dense in Xb such that b = A�x̂ for some
x̂ ∈ Xb, and if x�

M is the least-squares solution of A�x = b in

X�
M

.= span
{
enj

}M
j=1 ⊂ Xb, (18)

then ∥∥x�
M − x̂

∥∥ � s̃(M)∀M ∈ N, (19)

where s̃ : N → R
+ is defined by s̃(j )

.= s(nj+1).
Next, the operator A will be constructed by appropriately extending A� to the whole

space X. The way in which this extension is made depends upon the cardinality of the set 	

defined in (16).

Case I. The set 	 is not finite. In this case, X⊥
b is an infinite-dimensional separable Hilbert

space. Let {γn}∞n=1 be any sequence in �2 such that γn �= 0 ∀ n ∈ N and define b̃
.=∑n∈	 γnen.

Clearly, b̃ is strongly non-degenerate with respect to the basis B	 of X⊥
b . By virtue of

theorem 3.4, there exists a compact, injective linear operator A	 : X⊥
b → X⊥

b whose range is
dense in X⊥

b such that b̃ = A	x̃ for some x̃ ∈ X⊥
b . We then define A as follows:

Ax
.= A�x1 + A	x2, (20)
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where x = x1 + x2 with x1 ∈ Xb and x2 ∈ X⊥
b .

Case II. The set 	 is finite. In this case, we simply define A as

Ax
.= A�x1 + x2, (21)

where as before x = x1 + x2, with x1 ∈ Xb and x2 ∈ X⊥
b .

It is clear that in both cases the operator A so defined is linear. Let us now prove that this
operator is also injective, compact and that its range is dense in X.

Let us first consider case I (see (20)). If Ax = 0, then A�x1 = −A	x2. Since A�x1 ∈ Xb

and −A	x2 ∈ X⊥
b we have that A�x1 = −A	x2 = 0 and therefore x1 = x2 = 0 since A� and

A	 are both injective operators. Thus, x = x1 + x2 = 0 and therefore A is injective.
Let us now show that R(A) is dense in X. By definition of A and due to the fact that

R(A�) ⊂ Xb and R(A	) ⊂ X⊥
b , it follows that R(A�) and R(A	) are subspaces of X which

are orthogonal to each other. Therefore, R(A) = R(A�) ⊕ R(A	). Then,

R(A) = R(A�) ⊕ R(A	)

= (Xb ∩ R(A�)) ⊕ (X⊥
b ∩ R(A	)

) (
since R(A�) ⊂ Xb and R(A	) ⊂ X⊥

b

)
= R(A�)

Xb ⊕ R(A	)
X⊥

b

= Xb ⊕ X⊥
b

(
since R(A�) and R(A	) are dense in Xb and X⊥

b , respectively
)

= X.

Therefore, R(A) is dense in X.
To show that A is compact, we note that A can be written in the form

A = A�PXb
+ A	PX⊥

b
,

where PXb
and PX⊥

b
are the orthogonal projections of X onto the subspaces Xb and X⊥

b ,
respectively. Since A� and A	 are both compact and PXb

and PX⊥
b

are both bounded, it
follows that A, being the sum of two compact operators, is compact.

Consider now case II, that is, when A is defined by (21). The operator A is injective.
In fact, if Ax = 0 then A�x1 = −x2 and since A�x1 ∈ Xb and −x2 ∈ X⊥

b we have that
A�x1 = −x2 = 0. Due to the fact that A� is injective it follows that x1 = 0, and therefore
x = x1 + x2 = 0.

Let us now check that R(A) is dense in X. By definition of A, and since R(A�) ⊂ Xb, if
follows that R(A�) and X⊥

b are subspaces of X orthogonal to each other. Then,

R(A) = R(A�) ⊕ X⊥
b

= (Xb ∩ R(A�)) ⊕ X⊥
b

(
since R(A�) ⊂ Xb and X⊥

b is closed
)

= R(A�)
Xb ⊕ X⊥

b

= Xb ⊕ X⊥
b (since R(A�) is dense in Xb)

= X.

We will now show that in this case also the operator A is compact. For that we write
A = A�PXb

+ PX⊥
b

. Since in this case 	 is finite, if follows from (16) and (17) that PX⊥
b

is
a finite rank operator and, therefore, compact. Then, A is compact since it is the sum of two
compact operators.

Let us now check that in both cases (I and II) b ∈ R(A). Since x̂ ∈ Xb and A�x̂ = b, it
follows from (20) and (21) that Ax̂ = A�x̂ + A	0 = b in case I and Ax̂ = A�x̂ + 0 = b in
case II.
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Finally, let xN denote the least-squares solution of Ax = b in XN
.= span{e1, . . . , eN },

xN =∑N
j=1 ξj ej . We will show that ‖xN − x̂‖ � s(N) for every N ∈ N:

‖xN − x̂‖2 =
∥∥∥∥∥∥

N∑
j=1

ξj ej − x̂

∥∥∥∥∥∥
2

=
∥∥∥∥∥∥

N∑
j=1,j∈�

ξj ej +
N∑

j=1,j∈	

ξj ej − x̂

∥∥∥∥∥∥
2

=
∥∥∥∥∥∥

N∑
j=1,j∈�

ξj ej − x̂

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
N∑

j=1,j∈	

ξj ej

∥∥∥∥∥∥
2

(
since

∑N
j=1,j∈� ξj ej − x̂ ∈ Xb and

∑N
j=1,j∈	 ξj ej ∈ X⊥

b

)
�

∥∥∥∥∥∥
N∑

j=1,j∈�

ξj ej − x̂

∥∥∥∥∥∥
2

. (22)

For every N ∈ N, define kN
.= max{j : nj � N} or, equivalently, kN

.= #{ej : j � N,

ej ∈ B�} = #
(
BN ∩ B�

)
, where BN

.= {e1, . . . , eN }. It follows from (18) that X�
kN

= span{
enj

}kN

j=1. Since Xb is a closed subspace of X such that Xb and X⊥
b are invariant under A and b ∈

Xb, it follows from lemma 3.5 that the least-squares solution of Ax = b in Xb ∩ XN = X�
kN

is

PXb
xN = PX�

kN

xN =
N∑

j=1,j∈�

ξj ej ,

where xN =∑N
j=1 ξj ej is the least-squares solution of Ax = b in XN .

Now, since A|Xb
= A� and X�

kN
⊂ Xb, it follows that Aη = A�η ∀η ∈ X�

kN
and therefore∑N

j = 1
j ∈ �

ξj ej is also the least-squares solution of A�x = b in X�
kN

, that is, x�
kN

= ∑N
j = 1
j ∈ �

ξj ej

(see (18)). Then, substituting with this into (22) and using (19) it follows that

‖xN − x̂‖2 �
∥∥x�

kN
− x̂
∥∥2 � [s̃(kN)]2 = [s(nkN +1

)]2
. (23)

Now, by definition of kN , if j0 ∈ N and nj0 � N then kN � j0. Therefore, the inequality
nkN +1 � N would imply that kN � kN + 1, which is a contradiction. Hence, nkN +1 > N or,
equivalently, nkN +1 � N + 1.

Since s is increasing and nonnegative, it follows that[
s
(
nkN +1

)]2 � [s(N + 1)]2 � [s(N)]2. (24)

From (23) and (24), we finally conclude that ‖xN − x̂‖ � s(N)∀N ∈ N. �

Next, we show that the operator A both in theorem 3.4 and corollary 3.6 can be chosen to
further be self-adjoint.

Corollary 3.7. Let X be an infinite-dimensional separable Hilbert space, B
.= {en}∞n=1 an

orthonormal basis of X, b ∈ X non-degenerate with respect to B,XN
.= span{e1, . . . , eN }

and s : N → R
+ an arbitrary nonnegative increasing function. Then, there exist a compact,

self-adjoint, injective, linear operator A = A(b, s) : X → X, whose range is dense in X, and
a unitary operator V : X → X such that b∗ .= V b ∈ R(A), and if xN is the least-squares
solution of Ax = b∗ in XN , then ‖xN − A−1b∗‖ � s(N) for every N ∈ N.
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Proof. Since b ∈ X is non-degenerate with respect to B, it follows from corollary 3.6
that there exists a compact, injective, linear operator Ã = Ã(b, s) whose range is dense
in X such that b ∈ R(Ã), and if xN denotes the least-squares solution of Ãx = b in XN ,
then ‖xN − Ã−1b‖ � s(N) for every N ∈ N. Let {(σn; vn, un)} be the singular system
associated with the compact operator Ã and V : X → X the linear unitary operator defined
by V un = vn. Then, it can be easily proved that the linear operator A

.= V Ã, besides being
compact, injective and having range dense in X, is self-adjoint. This follows immediately from
the fact that V Ãvn = Ã

∗
V ∗vn for all n ∈ N.

Since b ∈ R(Ã), we have that b∗ .= V b ∈ R(A). Now, since ‖Ax − b∗‖ = ‖Ãx − b‖,
it follows that xN is also the least-squares solution of Ax = b∗ in XN . Therefore,
s(N) � ‖xN − Ã−1b‖ = ‖xN − A−1b∗‖ for every ∈ N. �

One may think that the result of corollary 3.6 has little relevance from a practical point
of view since it could happen that, in a neighbourhood of b, the only element η ∈ R(A) for
which the least-squares solution in XN of Ax = η satisfying ‖xN − A−1η‖ � s(N) for every
N ∈ N is precisely η = b. However, this is not the case. In fact, it can be easily proved
that in every reduced neighbourhood of b of radius δ there exists a sequence

{
bδ

k

}∞
k=1 ⊂ R(A)

such that bδ
k → b as k → ∞ and

∥∥xk
N − A−1bδ

k

∥∥ � s(N) for every N ∈ N, where xk
N is the

least-squares solution of Ax = bδ
k in XN . That is, for each element of the sequence

{
bδ

k

}∞
k=1

(i.e., for each fixed k), the approximating least-squares solutions
{
xk

N

}∞
N=1 also diverge from

the exact solution with speed arbitrarily large, in the same way that the least-squares solutions
obtained with data equal b do.

Up to now we have only considered problems with exact data, that is, equations of the
form Ax = b∗, where b∗ .= Ax∗ and x∗ is the exact solution. As it is to be expected, the
nonconvergence in corollary 3.6 can also occur with noisy data. Seidman [1] showed that if
the operator A : X → X is compact (besides being linear, injective, positive, self-adjoint and
with dense range), then for each increasing sequence of finite-dimensional subspaces {XN }
whose union is dense in X and for each b∗ ∈ R(A) there exists a sequence bN → b∗ for which
the least-squares solution xN of Ax = bN in XN satisfy ‖xN − x∗‖ → ∞, where Ax∗ = b∗.
In a certain sense, the next corollary generalizes this result. More precisely, it is shown that
also for the case of noisy data the careless application of the least-squares method can lead to
arbitrary rates of divergence.

Corollary 3.8 (arbitrary divergence rate with noisy data). Let X be an infinite-dimensional
separable Hilbert space, B

.= {en}∞n=1 an orthonormal basis of X, b ∈ X non-degenerate
with respect to B,XN

.= span{e1, . . . , eN }, s : N → R
+ an arbitrary nonnegative increasing

function and A = A(b, s) the operator whose existence was proved in corollary 3.6. Then
∀α ∈ (0, 1) there exists a sequence {bN }∞N=1 ⊂ R(A) such that bN → b as N → ∞ and
the least-squares solution xN of Ax = bN in XN satisfies ‖xN − A−1b‖ � αs(N) for every
N ∈ N.

Proof. Let {αN } ⊂ R be a sequence such that αN �= 0 and

|1 − αN | � min

{
1

‖x∗
N‖ ,

(1 − α)s(N)

‖x∗
N‖

}
, (25)

where x∗
N is the least-squares solution of Ax = b in XN . By corollary 3.6,

‖x∗
N − A−1b‖ � s(N)∀N ∈ N, (26)

then ‖x∗
N‖ → ∞, which implies that |1 − αN | → 0 and, therefore, αN → 1 as N → ∞.

Let us define bN
.= αNb for each N ∈ N. Then, bN → b and since R(A) is a subspace of
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X, {bN }∞N=1 ⊂ R(A). Since the least-squares solution xN of Ax = bN = αNb in XN is αNx∗
N ,

it follows that

‖xN − A−1b‖ � ‖x∗
N − A−1b‖ − ‖x∗

N − xN‖
= ‖x∗

N − A−1b‖ − |1 − αN | ‖x∗
N‖

� s(N) − (1 − α)s(N) (from (25) and (26))

= αs(N). �

Remark 3.9. During the proof above we made use of the following result: if xN is the
least-squares solution of Ax = b in XN , then σxN , with σ �= 0, is the least-squares solution
of Ax = σb in XN .

For simplicity, we have only considered the case in which X and Y are real Hilbert spaces.
However, all results in this paper carry over to the case of complex Hilbert spaces with the
obvious modifications. Also, a procedure similar to the one employed in corollary 3.6 can be
used to show that the hypothesis of separability can be neglected.

4. Conclusions

In this paper, we have considered the application of the least-squares method to inverse ill-
posed problems of the form Ax = y where A is a compact linear invertible operator on a
separable Hilbert space X. It was shown that under no additional assumptions on the finite-
dimensional subspaces there is no guarantee that the corresponding sequence of approximating
least-squares solutions will converge to the true solution. Moreover, it was shown that it is
possible for the approximating solutions to diverge from the exact solution at any arbitrary
speed, both for the case of exact and noisy data. In particular, theorem 3.4 and corollary 3.6
extend the original result of Seidman ([1], example 3.1). The main difficulty that arises in these
extensions resides in the construction, starting from the element b ∈ X and the function s(·), of
the sequences {αn}∞n=1 and {βn}∞n=1 in such a way that they satisfy the constraints (4) and such
that the operator A defined from them by (5) satisfies b ∈ R(A) and ‖xN − A−1b‖ � s(N)

for all N ∈ N.

The use of general residual minimization procedures, such as the least-squares method,
is very common in practice and it constitutes a widely used standard approach. Although
the operators A constructed in theorem 3.4 and corollary 3.6 are somewhat artificial, they do
serve to prove that in the case of ill-posed problems the convergence of the finite-dimensional
approximating solutions obtained by direct application of the least-squares method is far from
being automatically guaranteed and that, without any rigorous mathematical justification of
this convergence, it is a completely unacceptable procedure. It is important to emphasize here
that the lack of convergence of the sequence of least-squares solutions is not a consequence
of the least-squares method, but rather the result of a very poor choice of the approximating
spaces XN , without taking into account the operator A which defines the ill-posed problem.
Therefore, if the infinite-dimensional problem is ill-posed, extreme care must be taken during
discretization and finite-dimensional approximation of the solutions in order to guarantee
convergence.

If the operator A : X → X is given, as it happens most of the times in practice, then
Seidman [1] showed that for almost any b ∈ R(A) there exists a sequence of subspaces
XN such that the corresponding sequence {xN } of least-squares solutions of Ax = b is
unbounded. Although we strongly believe that the results in this paper can also be extended
to this case, i.e., that arbitrary rates of divergence can be obtained by the application of the
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least-squares method when the operator A is given, we are not able to provide a rigorous proof
of this conjecture at this time. Efforts in this direction are underway.
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