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Abstract

The aim of this paper is to show that the integral and derivative operators defined
by local regularities are homeomorphisms for generalized Besov and Triebel-
Lizorkin spaces with local regularities. The underlying geometry is that of
homogeneous type spaces and the functions defining local regularities belong
to a larger class of growth functions than the potentialstα, related to classi-
cal fractional integral and derivative operators and Besov and Triebel-Lizorkin
spaces.

1. Introduction

The Besov and Triebel-Lizorkin spaces arise from the unified study of most of the
classical function spaces, provided by the theory of Littlewood-Paley. By means of this
theory, Lebesgue spaces, Hardy spaces, different kind of Lipschitz spaces and BMO

are characterized through the action of an appropriate class of operators. There is a
formula, due to Calderón, that allows to describe those spaces as special cases of the
Besov and Triebel-Lizorkin spaces. (For an insight on these topics, see, for example
[3], [15], [12], [13] and [14]).

In the more general setting of spaces of homogeneous type, in [1], David, Journé
and Semmes established the Littlewood-Paley theory for Lp, 1 < p < ∞. Han and
Sawyer, in [6], defined discrete in the time variable versions of the homogeneous Besov
and Triebel-Lizorkin spaces. To develop Littlewood-Paley characterizations on these
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Argentina.

1



2 Hartzstein and Viviani

spaces the authors proved a Calderón-type reproduction formula in terms of the dif-
ference operators Dk = Sk − Sk−1 where {Sk}k∈Z is an approximation to the identity.
Deng and Han, in [2], proved a continuous version of that formula in terms of the de-
rivative operators Qt = −t∂St∂t of an approximation to the identity {St}t>0 and defined
time-continuous versions of the spaces equivalent to the ones given in [6].

In the context of Rn it is a known result that the fractional integral operator Iα is
an isomorphism between the Besov spaces Ḃβ,q

p and Ḃα+β,q
p and between the Triebel-

Lizorkin spaces Ḟ β,qp and Ḟα+β,q
p and its inverse is the fractional derivative operator

Dα. An application of this fact is the identification, with equivalence of norms, between
the fractional Sobolev space L̇pα, of all tempered distributions f such that Dαf ∈ Lp,
and the space Ḟα,2p , (see [3]).

We are interested in a larger class of Besov and Triebel-Lizorkin spaces, with the
underlying structure of spaces of homogeneous type. For this class, defined in [7], local
regularity is determined by more general ’moduli of continuity’ than the potentials tα.
Those are growth functions ψ(t) as, for instance, tβ log(1 + t) or max(tα, tβ). In the
range of these spaces can be characterized, for example, the Lipschitz space Λ̇ψ = {f :
X → C, |f(x)− f(y)| ≤ Cψ(δ(x, y))}, where ψ belongs to a class (defined later in this
work) of non-negative and quasi-increasing function such that limt→0+ ψ(t) = 0 and
limt→∞ ψ(t) = ∞.

In order to find the natural isomorphisms mapping one space of local regularity
ψ1, onto another of regularity ψ2 we defined, in [8], operators named -in analogy with
the classical ones- Integral and Derivative operators of ’functional order’ φ, Iφ and
Dφ, following an idea of Gatto, Segovia and Vági in [4] for the definition of fractional
integral and derivative operators on spaces of homogeneous type. We proved their
continuity between generalized Lipschitz, Besov and Triebel-Lizorkin spaces, with the
integral operator increasing regularity and the derivative operator decreasing it.

Seeking for the invertibility of these operators, we considered the composition
Tφ = Dφ ◦ Iφ and Sφ = Iφ ◦Dφ. We proved in [9] that they are Calderón - Zygmund
operators bounded on the generalized Besov and Triebel-Lizorkin spaces.

We prove in this work that the operator Tφ (and the same proof applies to Sφ)
is invertible on the Besov and Triebel-Lizorkin spaces Ḃψ,q

p and Ḟψ,qp respectively, over
normal spaces of homogeneous type, for an adequate relation between the types of the
functions φ and ψ. From the identification between L2 and Ḟ 0,2

2 we recover the results
of invertibility on L2 proved in [4] when φ(t) = tα and ψ(t) = 1.

Moreover, we also prove that T−1
φ and S−1

φ also are Calderón-Zygmund operators
in the classical sense. In this way, even though Tφ and Sφ are not the identity, for
an appropriate class of functions φ we show that they ’almost’ are. From the above
results follows that Iφ and Dφ are homeomorphisms.

This paper is organized in the following way: in Section 2 are defined growth
functions (subsection 2.1), spaces of homogeneous type and approximations to the
identity (subsection 2.2), Lipschitz, molecular, Besov and Triebel-Lizorkin spaces (sub-
section 2.3) and Calderón-Zygmund operators and T1-theorem stated and proved in
[7] (subsection 2.4). Section 3 is devoted to the definition of the integral and deriva-
tive operators Iφ and Dφ and a survey of known results on them. Main theorems are
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stated in Section 4. Lemmas and proofs of the theorems are in Section 5 and, finally,
an application of the results is in Section 6.

2. Previous definitions and known results

2.1. Quasi-increasing and quasi-decreasing functions

Let first define the class of functions related to the operators defined in this work.
A function φ(t) defined on t > 0 is said to be quasi-increasing if there is a positive

constant C such that if t1 < t2 then φ(t1) ≤ Cφ(t2).
Analogously, φ(t) is quasi-decreasing if there is a positive constant C such that if

t1 < t2 then φ(t2) ≤ Cφ(t1).
A non-negative function φ is said to be of lower type β, 0 ≤ β, if there is a constant

C > 0 such that
φ(uv) ≤ Cuβφ(v) for u < 1 and all v > 0. (2.1)

The condition (2.1) is equivalent to the condition

φ(uv) ≥ 1
C
uβφ(v), for u ≥ 1 and all v > 0.

A non-negative function φ(t) is of upper type α, 0 ≤ α if there is a constant C > 0
such that

φ(uv) ≤ Cuαφ(v) for u ≥ 1 and all v > 0. (2.2)

The condition (2.2) is equivalent to the condition

φ(uv) ≥ 1
C
uαφ(v), for u < 1, v > 0.

Clearly, the potential tα, with α ≥ 0, is of lower and upper type α. The functions
max(tα, tβ) and min(tα, tβ), with α < β, are both of lower type α and upper type β.
Also, tβ(1 + log+ t), with β ≥ 0, is of lower type β and of upper type β + ε, for every
ε > 0.

A straightforward proof shows that if φ(t) is of both lower type β and upper type
α then β ≤ α.

Also, if φ(t) is quasi-increasing then φ(t) is of lower-type 0 and, reciprocally, if
φ(t) is of lower type β ≥ 0 then it is quasi-increasing.

Finally, if φ(t) is of lower type β and ξ(t) is of upper type λ ≤ β then φ(t)/ξ(t) is
quasi-increasing.

We say that two functions ψ(t) and φ(t) are equivalent, and we denote it ψ ' φ,
if there are positive constants C1 and C2 such that C1 ≤ φ/ψ ≤ C2. Lower and upper
types are clearly invariant by equivalence of functions. That is, if φ is of lower (upper)
type δ and ψ ' φ then ψ is of lower (upper) type δ.

If φ(t) is of lower type β > 0 then φ(t)/tγ is quasi-increasing for each γ ≤ β,
nevertheless, the function

φ̃(t) = tγ sup
s≤t

φ(s)
sγ

is equivalent to φ and φ̃(t)/tγ is nondecreasing. Moreover, if φ also is of upper type α
and γ < β then there exists a function φγ equivalent to φ which is differentiable and
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such that φγ(t)/tγ is nondecreasing. More precisely, the function

φγ(t) = tγ
∫ t

0

φ(u)
uγ+1

du (2.3)

satisfies

φγ(t) =
∫ 1

0

φ(tu)
uγ+1

du ≤ C1φ(t)
∫ 1

0
uβ−γ

du

u
= C1

φ(t)
β − γ

and also

φγ(t) ≥ C2φ(t)
∫ 1

0
uα−γ

du

u
= C2

φ(t)
α− γ

.

Analogously, if φ is of upper type α then φ(t)/tδ is quasi-decreasing for δ ≥ α.
Nevertheless,

φ̄δ(t) = tδ sup
s≥t

φ(s)
sδ

(2.4)

is equivalent to φ and φ̄δ(t)/tδ is non-increasing. If, in addition, φ is of lower type β
and δ > α then,

φ̌(t) = tδ
∫ ∞

t

φ(s)
sδ+1

ds

is a differentiable function, equivalent to φ such that φ̌(t)/tδ is non-increasing.
Let denote C the class of all non-negative functions φ of positive lower type and

upper type lower than 1. Let also denote A the class of functions φ(t) defined on t > 0
such that

φ(t) = φ(1)e
R t
1 (η(s))/s ds (2.5)

where η(t) is a measurable function defined on t > 0 and β ≤ η(t) ≤ α for some
0 < β ≤ α < 1. �

The following lemma, proved in [10], shows that there is an identification between
the classes A and C.

Lemma 2.1

The class A is included in the class C and for every function in C there is an

equivalent function in A.

Moreover, if φ(t) = φ(1)e
R t
1 (η(s))/s ds and β ≤ η(t) ≤ α, then for s < 1

φ(t)sα ≤ φ(st) ≤ φ(t)sβ , (2.6)

and, for s > 1,

φ(t)sβ ≤ φ(st) ≤ φ(t)sα. (2.7)

Proof. Indeed, if φ(t) ∈ A then, for s < 1 we have

φ(st) = φ(1)e
R st
1 (η(τ))/τ dτ = φ(1)e

R t
1 (η(τ))/τ dτ−

R t
st (η(τ))/τ dτ

= φ(t)e−
R t
st (η(τ))/τ dτ ≤ φ(t)eβ ln s = φ(t)sβ .

A similar proof shows that φ(st) ≥ φ(t)sα. For s > 1, by splitting t = s−1(st) and
using (2.6), follows (2.7).
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On the other hand, if φ is of lower type β > 0 and of upper type α < 1 then, by
choosing the function φ̄α equivalent to φ as in (2.4), we can suppose that φ(t)/tα is
non-increasing. Then, taking φγ(t) as in (2.3), equivalent to φ if γ < β, we have that

φγ(t) = tγ
∫ t

0

φ(s)
sα+1−α+γ

ds ≥ tγ
φ(t)
tα

∫ t

0

dt

t1−α+γ
=

φ(t)
α− γ

. (2.8)

Then

φ′γ(t) = γtγ−1
∫ t
0
φ(s)
s1+γ

ds+ φ(t)
t = γ

φγ(t)
t

+
φ(t)
t

≤ γ
φγ(t)
t + (α− γ)φγ(t)

t = α
φγ(t)
t

and also,

φ′γ(t) ≥ γ
φγ(t)
t

.

Hence, φγ is a function equivalent to φ which belongs to A since

γ ≤ η(t) =
tφ′γ(t)
φγ(t)

≤ α. �

2.2. Spaces of homogeneous type and approximations to the identity

Let define the structure of space of homogeneous type, which is the underlying
geometry for the test functions we shall consider. Given a set X and a real valued
function δ(x, y) defined on X×X, we say that δ is a quasi-distance on X if there exists
a positive constant A such that for all x, y, z ∈ X it verifies:

δ(x, y) ≥ 0 and δ(x, y) = 0 if and only if x = y

δ(x, y) = δ(y, x)

δ(x, y) ≤ A[δ(x, z) + δ(z, y)].

In a set X endowed with a quasi-distance δ(x, y), the balls Bδ(x, r) = {y : δ(x, y) < r}
form a basis of neighborhoods of x for the topology induced by the uniform structure
on X.

Let µ be a positive measure on a σ- algebra of subsets of X which contains the
open set and the balls Bδ(x, r). The triple X := (X, δ, µ) is a space of homogeneous
type if there exists a finite constant A′ > 0 such that

µ(Bδ(x, 2r)) ≤ A′µ(Bδ(x, r))

for all x ∈ X and r > 0. Maćıas and Segovia in [11], showed that it is always possible
to find a quasi-distance d(x, y) equivalent to δ(x, y) and 0 < θ ≤ 1, such that

|d(x, y)− d(x′, y)| ≤ Cr1−θd(x, x′)θ (2.9)

holds whenever d(x, y) < r and d(x′, y) < r. If δ satisfies (2.9) then X is said to be of
order θ. Furthermore, X is a normal space if A1r ≤ µ(Bδ(x, r)) ≤ A2r for every x ∈ X
and r > 0 and some positive constants A1 and A2.

In this work X := (X, δ, µ) means a normal space of homogeneous type of order θ
and A denotes the constant of the triangular inequality associated to δ.
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Let now define an approximation to the identity of Coifman type, as in [4]:
A family {St}t>0 of operators is an approximation to the identity if there exist ε ≤ θ

and C,C1 and C2 < ∞ such that for all t > 0 and all x, x′, y and y′ ∈ X, the kernel
st(x, y) of St, are functions from X ×X into R satisfying:

st(x, y) = 0 for δ(x, y) > b1t, (2.10)
C2

t
< st(x, y) if δ(x, y) < b2t; , (2.11)

|st(x, y)| ≤
C1

t
, (2.12)

|st(x, y)− st(x′, y)|+ |st(y, x)− st(y, x′)| ≤ C
δ(x, x′)ε

t1+ε
, (2.13)∫

st(x, y)dµ(y) =
∫
st(x, y)dµ(x) = 1, and (2.14)

st(x, y) is continuously differentiable in t. (2.15)

In addition we also require the kernels to be positive and symmetric, that is, for all
t > 0, x and y ∈ X

st(x, y) ≥ 0; (2.16)

st(x, y) = st(y, x). (2.17)

Denote
qt(x, y) = −t ∂

∂t
st(x, y) (2.18)

and Qt be the operator defined by

Qtf(x) =
∫
X
qt(x, y)f(y)dµ(y),

for f ∈ L1
loc and t > 0. The family {Qt}t>0 satisfies the condition

∫∞
0 Qt

dt
t = I in L2

in the sense that

lim
ε→0,R→∞

∥∥∥∫ R

ε
Qtf

dt

t
− f

∥∥∥
2

= 0.

This collection of operators will perform a crucial roll in the undergoing definitions
and statements.

2.3. Lipschitz functions, molecules, Besov and Triebel-Lizorkin spaces

Let now consider a positive and quasi-increasing function η(t) defined on t > 0
such that limt→0 η(t) = 0. The Lipschitz space Λη is the class of all functions f : X → C
such that

|f |η = sup
x 6=y

|f(x)− f(y)|
η(δ(x, y))

<∞.

The quantity |f |η defines a semi-norm on Λη, since |f |η = 0 for all constants functions
f . Given a ball B in X, Λη(B) denotes the set of functions f ∈ Λη with support in B.
Since a function belonging to this space is bounded, the number

‖f‖η = ‖f‖∞ + |f |η,

defines a norm that gives a Banach structure to Λη(B). We say that a function f

belongs to Λη0 iff f ∈ Λη(B) for some ball B. The space Λη0 is the inductive limit of
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the Banach spaces Λη(B). Finally, (Λη0)
′ will stand for the dual space of Λη0.

Another suitable class of test functions was defined in [6].
Let 0 < β ≤ 1, γ > 0 and x0 ∈ X be fix. A function f is a smooth molecule of

type (β, γ) of width d centered in x0, if there exists a constant C > 0 such that

|f(x)| ≤ C
dγ

(d+ δ(x, x0))1+γ
, (2.19)

|f(x)− f(x′)| ≤ C
δ(x, x′)β

dβ

(
dγ

(d+ δ(x, x0))1+γ
+

dγ

(d+ δ(x′, x0))1+γ

)
, (2.20)∫

f(x)dµ(x) = 0, (2.21)

hold for every x ∈ X.
If the norm ‖f‖(β,γ) is defined by the lowest of the constants appearing in (2.19)

and (2.20), the set M(β,γ,x0,d) of all smooth molecules of type (β, γ) of width d centered
in x0 is a Banach space. By fixing x0 ∈ X and d = 1, that space will be named M(β,γ),
and its dual space, (M(β,γ))′. Along this work < h, f > denotes the natural application
of h ∈ (M(β,γ))′ to f ∈M(β,γ).

Local regularity of Besov and Triebel-Lizorkin spaces is associated to a function
ψ being represented as the quotient of two quasi-increasing functions.

More precisely, in the sequel ψ = ψ1/ψ2, where ψ1(t) and ψ2(t) are quasi-
increasing functions of upper types s1 < ε and s2 < ε, respectively, where ε ≤ θ is
the order of regularity of {St}t>0. (With this election of ψ dual spaces are enclosed in
the definitions and also are recovered the range of spaces of order α with −ε < α < ε,
as defined in [2]).

For f ∈ (M(β,γ))′, with 0 < β, γ < ε, a norm is defined by

‖f‖
Ḃψ,qp

=
(∫ ∞

0

( 1
ψ(t)

‖Qtf‖p
)q dt

t

)1/q

if 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, (2.22)

with the obvious change for the case q = ∞. By interchanging the order of the norms
in Lp and lq it is also defined the norm

‖f‖
Ḟψ,qp

=

∥∥∥∥∥
(∫ ∞

0

( 1
ψ(t)

|Qtf |
)q dt

t

)1/q
∥∥∥∥∥
Lp

, if 1 < p, q <∞. (2.23)

The Besov space of order ψ, Ḃψ,q
p , for 1 ≤ p, q ≤ ∞, is the set of all f ∈

(
M(β,γ)

)′
,

with β > s1 and γ > s2, such that

‖f‖
Ḃψ,qp

<∞ and |〈f, h〉| ≤ C‖f‖
Ḃψ,qp

‖h‖(β,γ),

for all h ∈M(β,γ).
Analogously, the Triebel–Lizorkin space of order ψ, Ḟψ,qp , with 1 < p, q < ∞, is

the set of all f ∈
(
M(β,γ)

)′
, with β > s1 and γ > s2, such that

‖f‖
Ḟψ,qp

<∞, and |〈f, h〉| ≤ ‖f‖
Ḟψ,qp

‖h‖(β,γ),
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for all h ∈M(β,γ). A similar proof to that in [2] shows that these norms are equivalent
to those given in [8] or [9] in terms of the differences of a discrete approximation to
the identity {Sk}k∈Z .

When ψ(t) = tα we recover the spaces of order α, Ḃα,q
p and Ḟα,qp with defined in

[6] and [2].
By using the properties of the function ψ, and in the way it is proved in [6],

follows that the classes Ḃψ,q
p , 1 ≤ p, q <∞ and Ḟψ,qp , 1 < p, q <∞ are Banach spaces

and their dual spaces are Ḃ1/ψ,q′

p′ and Ḟ
1/ψ,q′

p′ respectively, with 1/p + 1/p′ = 1 and
1/q + 1/q′ = 1.

Moreover, the molecular space M(β,γ) is embedded in Ḃψ,q
p and Ḟψ,qp when s1 < β

and s2 < γ and M(ε′,ε′) is dense in Ḃψ,q
p and Ḟψ,qp for all ε′, such that max(s1, s2) <

ε′ < ε.

2.4. Singular integral operators and T1-theorem

A continuous complex-valued function K(x, y) defined on Ω = {(x, y) ∈ X ×X :
x 6= y} is called a standard kernel if there exist 0 < ε ≤ θ, and C < ∞ such that for
all x, y ∈ X with x 6= y,

|K(x, y)| ≤ Cδ(x, y)−1, for every x 6= y; (2.24)

and

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ Cδ(x, x′)ε/δ(x, y)1+ε, (2.25)

for δ(x, y) > 2Aδ(x, x′).
A continuous linear operator T : Λβ0 → (Λβ0 )′ is a singular integral operator if

there is a standard kernel K such that

< Tf, g >=
∫ ∫

K(x, y)f(y)g(x)dµ(y)dµ(x)

for all f, g ∈ Λβ0 with supp f∩ supp g = ∅. We then write T ∈ CZK(ε).
A singular integral operator T is a Calderón-Zygmund operator if it can be ex-

tended to a bounded operator on L2. For such operators T we write T ∈ CZ0.
To state a T1-theorem on spaces we need to define the weak boundedness property

of an operator: A singular integral operator T is weakly bounded if there exist β,
0 < β ≤ 1, and C <∞ such that

|〈Tf, g〉| ≤ Cµ(B)1+2β‖f‖β‖g‖β, (2.26)

for all f and g in Λβ(B) and each ball B ⊆ X.
The following is a version, for CZK(ε) operators, of the T1-theorems proved in

[7] needed to establish our results. In that work the theorem was proved under weaker
conditions of smoothness and size on the kernel.
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Theorem 2.2 [7]

Let T be a CZK(ε′) operator for some 0 < ε′ ≤ ε, which is weakly bounded. If

T1 = T ∗1 = 0 then T can be extended to a bounded linear operator on Ḃ
ψ1/ψ2,q
p ,

1 ≤ p, q <∞, and on Ḟ
ψ1/ψ2,q
p , 1 < p, q <∞, if max(s1, s2) < ε′.

Since the theory of Littlewood-Paley on spaces of homogeneous type proved in [6]
provides, the identification between L2 and Ḟ t

0,2
2 , it follows as a particular case that

T is a CZO.
It is worthy mention that the constant of continuity obtained in the above theorem

only depends of the constants appearing in (2.24), (2.25) and (2.26).

3. Integral and derivative operators of order φ

The fractional integral and derivative operators Iα and Dα defined on the context of
Rn are associated to the kernels |x−y|α−n, and |x−y|−α−n, respectively, for 0 < α < n.
To set the general idea of what follows later, set n = 1. Then, one can feature the
kernel |x − y|α−1 in terms of an approximation to the identity in the following way:
for x 6= y and −∞ < α < 1,

|x− y|α−1 = (α− 1)
∫ ∞

|x−y|
tα−2dt

= (α− 1)
∫ ∞

0
tα−1t−1χB(0,t)(|x− y|)dt

= 2(α− 1)
∫ ∞

0
tα−1st(x− y)dt, (3.27)

where the family of kernels st(x − y) = (2t)−1χB(0,t)(|x − y|), t > 0 determines an
approximation to the identity, namely, limt→0+ st ∗ f = f and limt→∞ st ∗ f = 0, both
limits in L2(R).

In the setting of spaces of homogeneous type, Gatto, Segovia and Vági, in [4],
defined kernels δα(x, y)α−1 with similar features, by means of an approximation to the
identity.

If we consider a function φ(t) instead of the potential tα, (α > 0), we aim to define
the kernel associated to the integral operator of order φ resembling φ(δ(x, y))/δ(x, y),
as well as the kernel of the derivative operator should resemble (φ(δ(x, y))δ(x, y))−1.
On the other hand, it makes sense to replace the function tα−1 or t−α−1 on the right
side of (3.27) by d

dtφ(t) or d
dt(1/φ(t)). In the fashion of [4] and for φ ∈ C, the kernels

associated to our operators were defined in [8]. To prove the invertibility results we
need to restrict our attention to the class A.

Let, then, consider a positive and symmetric approximation to the identity of
order ε ≤ θ, {St}t>0 associated to the family of kernels st(x, y), t > 0, as defined in
Section 2.2.

Let also consider φ ∈ A, that is

φ(t) = φ(1)e
R t
1 (η(s))/s ds, (3.28)
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with η a measurable function such that 0 < β ≤ η ≤ α < 1.
Let define

s(φ) = sup
t>0

η(t) = sup
t>0

tφ′(t)
φ(t)

,

and
i(φ) = inf

t>0
η(t).

It follows from (2.6) and (2.7) that φ is of lower-type i(φ) and upper-type s(φ).
Set

Kφ(x, y) =
∫ ∞

0

φ(t)η(t)
t

st(x, y)dt for x 6= y. (3.29)

The application Kφ has the representation in terms of a quasi-metric we are
seeking for. Indeed, since η(t) ≤ α < 1 then φ(t)/t is continuous, strictly decreasing
and invertible on R+ and, since the integral in (3.29) is positive then it is possible to
define a nonnegative application δφ(x, y) as the unique solution of the equation

φ(δφ(x, y))
δφ(x, y)

= Kφ(x, y) for x 6= y, and

δφ(x, y) = 0 for x = y.

In fact, it follows from the properties of φ(t)/t and st that the δφ(x, y) defines a quasi-
metric equivalent to the natural quasi-metric δ of X and, also, φ(δφ(x, y))/δφ(x, y) is
equivalent to φ(δ(x, y))/δ(x, y).

The integral operator Iφ will be defined for f ∈ Λξ ∩ L1, where ξ is a quasi-
increasing function of upper-type s > 0, as follows:

Iφf(x) =
∫
X
Kφ(x, y)f(y)dµ(y). (3.30)

There is also an extension of this operator to the entire space Λξ: If α + s < θ and
f ∈ Λξ then

Ĩφf(x) :=
∫
X

(Kφ(x, y)−Kφ(x0, y))f(y)dµ(y), (3.31)

for every x ∈ X and an arbitrary fix x0 ∈ X.

We now define the kernel associated to the derivative operator of order φ as:

K1/φ(x, y) =
∫ ∞

0

η(t)
φ(t)t

st(x, y)dt for x 6= y.

Reasoning as before, there is a quasi-distance δ1/φ(x, y), equivalent to δ, defined as the
unique solution of(

φ(δ1/φ(x, y))δ1/φ(x, y)
)−1 = K1/φ(x, y) for x 6= y and

δ1/φ(x, y) = 0 for x = y.

Moreover, K1/φ(x, y) is equivalent to (φ(δ(x, y))δ(x, y))−1.
Thus, for f ∈ Λξ ∩ L∞, where ξ is a function of positive lower-type ι and upper-

type s, and α < ι, we define the derivative operator by

Dφf(x) =
∫
X
K1/φ(x, y)(f(y)− f(x))dµ(y). (3.32)
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Its extension to Λξ is given by

D̃φf(x) =
∫
X

(K1/φ(x, y)(f(y)− f(x))

−K1/φ(x0, y)(f(y)− f(x0)))dµ(y) (3.33)

for each x ∈ X and an arbitrary, but fix, x0 ∈ X.
To study the action of these operators on Lipschitz spaces, and on Besov and

Triebel-Lizorkin spaces, we need to know regularity conditions of their kernels. These
properties, and also a cancellation one for Kφ, are obtained from conditions (2.10) to
(2.17), of st, and properties of φ, given in Section 2.

Since the molecules are integrable and bounded Lipschitz functions and, further-
more, they are dense on Besov and Triebel-Lizorkin spaces, we are able to extend the
definitions and to study the action of both operators on those spaces. The results
obtained in [8] in this direction, with φ ∈ C, are the following ones:

Theorem 3.1

Let φ be of lower type β > 0 and upper type α < ε ≤ θ. If s1 + α < ε and

s2 + α − β < ε, then Iφ is a linear continuous operator from Ḃψ,q
p to Ḃφψ,q

p and from

Ḟψ,qp to Ḟ φψ,qp .

Also, if s1 < ε and s2 + α < ε then Dφ maps with continuity Ḃψ,q
p on Ḃ

ψ/φ,q
p , and

from Ḟψ,qp to Ḟ
ψ/φ,q
p s

In studying the composition Tφ = Dφ ◦Iφ, the following result was obtained in [9]:

Theorem 3.2

Let φ be of positive lower type and of upper type α such that α < ε.

If max(s1, s2) +α < ε then Tφ = Dφ ◦ Iφ is a Calderón-Zygmund operator bounded on

Ḟψ,qp and Ḃψ,q
p .

Since Iφ and Dφ are self-adjoint, (see [8]) then Sφ = Iφ◦Dφ is the adjoint operator
of Tφ and the statement of Theorem 3.2 is also true for Sφ.

4. Main theorems

Let denote ψ = ψ1/ψ2, where ψ1 and ψ2 are quasi-increasing functions of upper types
s1 and s2 respectively and denote

Tφ = Dφ ◦ Iφ.

Our main results are the following.
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Theorem 4.1

Let φ ∈ A and denote α = s(φ). If max(s1, s2) + α < ε then the inverse operator

T−1
φ exists and is bounded on Ḃψ,q

p , 1 ≤ p, q < ∞ and Ḟψ,qp , 1 < p, q < ∞ for α > 0
small enough.

Theorem 4.2

Let φ ∈ A and denote α = s(φ). If max(s1, s2) + α < ε then T−1
φ is a singular

integral operator, for α small enough. More precisely, T−1
φ ∈ CZO(ε′) for every 0 <

ε′ < ε.

From the above theorems follows that T−1
φ is a Calderón–Zygmund operator

bounded on Besov and Triebel-Lizorkin of order ψ. The assertions in Theorem 4.1
and Theorem 4.2 follow in the same way for Sφ = Iφ ◦Dφ.

Furthermore, it also follows that Iφ and Dφ are both invertible and their inverses,
given by

I−1
φ = T−1

φ ◦Dφ = Dφ ◦ S−1
φ

and
D−1
φ = S−1

φ ◦ Iφ = Iφ ◦ T−1
φ ,

are continuous linear operators. From the previous result and Theorem 3.1, it follows
that.

Theorem 4.3

Let φ ∈ A and denote α = s(φ) and suppose that max(s1, s2) + α < ε. There is

α0 > 0 such that if 0 < α < α0 then Iφ is an homeomorphism from Ḃψ,q
p onto Ḃφψ,q

p

and from Ḟψ,qp onto Ḟ φψ,qp . Analogously, Dφ is an homeomorphism from Ḃφψ,q
p onto

Ḃψ,q
p and from Ḟ φψ,qp onto Ḟψ,qp .

5. Main lemmas and proofs of Theorem and Theorem

Let φ ∈ A and denote α = s(φ) and β = i(φ).
Let also {St}t>0 be an approximation to the identity of order ε.
In the next lemmas we obtain representation formulas, as in [4], for Iφ, Dφ and

Tφ in terms of the family of operators Qt = −t ∂∂tSt, (t > 0), defined in 2.2.
The letter C will denote a constant that may change from step to step.

Lemma 5.1

Let f be a smooth molecule of type (η, γ), γ > 0. The following formulas hold

punctually and in the weak sense:

if α+ η ≤ ε then

Iφf(x) =
∫ ∞

0
φ(t)Qtf(x)

dt

t
; (5.34)

if 0 < α < η ≤ ε then

−Dφf(x) =
∫ ∞

0

1
φ(t)

Qtf(x)
dt

t
; (5.35)
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and if η ≤ ε then

f(x) =
∫ ∞

0
Qtf(x)

dt

t
. (5.36)

Proof. In fact, by Definition 3.30 and Fubini’s theorem we have that

Iφf(x) =
∫
X

∫ ∞

0

φ(t)η(t)
t

st(x, y)f(y)dtdµ(y)

=
∫ ∞

0

φ(t)η(t)
t

u(x, t)dt,

where u(x, t) := Stf(x) =
∫
st(x, y)f(y)dy.

If we denote v(x, t) = −t ∂∂tu(x, t), since φ(t)η(t)
t = d

dtφ(t) then integration by parts
gives

Iφf(x) = lim
a→0,b→∞

(φ(b)u(x, b)− φ(a)u(x, a)) +
∫ ∞

0
φ(t)v(x, t)

dt

t
.

But, by (2.12) and the fact that φ is of upper type α < 1 we have

lim
b→∞

φ(b)|u(x, b)| ≤ lim
b→∞

φ(b)
b
‖f‖1 = 0 (5.37)

and, on the other hand, lima→0 φ(a) = 0 and u(x, a) is bounded since, by (2.10) and
(2.12)

|u(x, a)− f(x)| ≤
∫
|sa(x, y)||f(y)− f(x)|dµ(y)

≤ C‖f‖(η,γ)

∫
|sa(x, y)|δ(x, y)ηdµ(y)

≤ C‖f‖(η,γ)a
η. (5.38)

Thus, since v(x, t) = Qtf(x) we get equation (5.34).
Analogously, since η(t)

tφ(t) = d
dt(

−1
φ(t)) then

Dφf(x) =
∫ ∞

0

η(t)
tφ(t)

(u(x, t)− f(x))dt

= −
∫ ∞

0

1
φ(t)

v(x, t)
dt

t
,

by (2.12), (5.38) and the fact that aη/φ(a) ≤ Caη−α for a < 1.
Finally equation (5.36) is the known identity of Coifman.
The identities in the weak sense

lim
a→0,b→∞

∫ b

a
φ(t) < Qtf, g >

dt

t
=< Iφf, g >

and

lim
a→0,b→∞

∫ b

a
(φ(t))−1 < Qtf, g >

dt

t
=< Dφf, g >

follow from observing that the double integrals∫ ∞

0

∫
φ(t)Qtf(x)g(x)dµ(x)

dt

t
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and ∫ ∞

0

∫
(φ(t))−1Qtf(x)g(x)dµ(x)

dt

t
�

converge absolutely for all g ∈M(ρ,γ). �

In the sequel, we use the notation

χ(E) := χE(x, y) =
{

1 if (x, y) ∈ E
0 if (x, y) /∈ E,

and a ∧ b = min(a, b), a ∨ b = max(a, b).
In view of (2.10) to (2.17), the kernel qt(x, y) of Qt, defined in (2.18), is symmetric

and also satisfy

qt(x, y) = 0 for δ(x, y) > b1t, (5.39)

|qt(x, y)| ≤
C

t
for all (x, y), (5.40)

|qt(x, y)− qt(x′, y)|+ |qt(y, x)− qt(y, x′)| ≤ C
δ(x, x′)ε

t1+ε
, (5.41)∫

qt(x, y)dµ(y) =
∫
qt(y, x)dµ(y) = 0 for all x ∈ X and t > 0. (5.42)

The operator QsQt has kernel

qsqt(x, y) =
∫
X
qs(x, z)qt(z, y)dµ(z).

Given m = 1, 2, . . . the operator Qu1Qu1v1 ◦ · · · ◦QumQumvm has associated the kernel

qu1qu1v1 . . . qumqumvm(x, y) =∫
. . .

∫
qu1qu1v1(x, z1)qu2qu2v2(z1, z2) . . . qumqumvm(zm−1, y)dµ(z1) . . . dµ(zm−1).

The following estimates are continuous versions of those given in [6] smoothness),
in page 17 –for size– and page 25 –for smoothness–, of [6].

Lemma 5.2

There is a constant C > 0 such that for every 0 < γ < ε∫ ∞

0
|qu1qu1v1 . . . qumqumvm(x, y)|du1

u1
. . .

dum
um

≤ C2mm2Am
((

v1 ∧
1
v1

)
. . .

(
vm ∧ 1

vm

))γ

δ(x, y)−1

(5.43)

for x 6= y, and v1 > 0, . . . , vm > 0.



Homeomorphisms acting on Besov and Triebel-Lizorkin spaces 15

For every 0 < ε′ < ε, there exist γ, with 0 < γ < ε such that∫ ∞

0
|qu1qu1v1 . . . qumqumvm(x, y)− qu1qu1v1 . . . qumqumvm(x, y′)|

+|qu1qu1v1 . . . qumqumvm(y, x)− qu1qu1v1 . . . qumqumvm(y′, x)|du1

u1
. . .

dum
um

≤ C2mmMAm
((

v1 ∧
1
v1

)
. . .

(
vm ∧ 1

vm

))γ

δ(y, y′)ε
′
δ(x, y)−(1+ε′),

(5.44)

for δ(x, y) > 2Aδ(y, y′), some M > 0 and v1 > 0, . . . , vm > 0.

We now give a representation formula for Tφ, analogous to that given in [4],
applying Lemma 5.1 and Theorem 2.2.

Lemma 5.3

Let φ ∈ A and denote α = s(φ), then the following formulae hold for all f ∈
M(η,ρ), with α+ η < ε and ρ > 0 and all g ∈M(η′,ρ′), 0 < η′ < ε and ρ′ > 0:

< Tφf, g >= −
∫ ∞

0

∫ ∞

0

φ(t)
φ(s)

< QsQtf, g >
dt

t

ds

s
(5.45)

and, for all 0 < η < ε

< f, g >=
∫ ∞

0

∫ ∞

0
< QsQtf, g >

dt

t

ds

s
. (5.46)

Proof. Let first see that the integral in the right side of (5.45) converges absolutely for
f ∈ Ḃψ,q

p (Ḟψ,qp ) and g ∈ Ḃ
1/ψ,q′

p′ (Ḟ 1/ψ,q′

p′ ). Making the change of variable s = u and
t = uv in (5.45) and (5.46), we obtain∫ ∞

0

(∫ ∞

0

φ(uv)
φ(u)

< QuQuvf, g >
du

u

)
dv

v
(5.47)

and ∫ ∞

0

(∫ ∞

0
< QuQuvf, g >

du

u

)
dv

v
. (5.48)

The estimates given in Lemma 5.2 for the case m = 1, the weak boundary property
-which follows from continuous versions of inequalities (2.52) and (2.53) in [6]-, the
fact that QuQuv1 = 0 and (QuQuv)∗1 = QuvQu1 = 0, and Theorem 2.2 show that:

For every 0 < ε′ < ε such that max(s1, s2) < ε′ there exists γ, with 0 < γ < ε,
and a constant C > 0 such that, for all v > 0,∫ ∞

0
| < QuQuvf, g > |du

u
≤ C

(
v ∧ 1

v

)γ

‖f‖V ‖g‖V ′ , (5.49)

where V = Ḃψ,q
p (Ḟψ,qp ) and V ′ = Ḃ

1/ψ,q′

p′ (Ḟ 1/ψ,q′

p′ ).
Now using estimates (2.6) and (2.7), and denoting α = s(φ), β = i(φ), we have

that
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∫ ∞

0

∫ ∞

0

φ(uv)
φ(u)

| < QuQuvf, g > |du
u

dv

v

≤ C

∫ ∞

0
(vβ ∨ vα)

(
v ∧ 1

v

)γ dv

v
‖f‖V ‖g‖V ′ ,

the last integral being finite if 0 ≤ β ≤ α < γ. Thus, (5.47) and the integral in (5.45)
are absolutely convergent. Also, (5.49) gives absolute convergence for (5.48) and thus,
for (5.46).

The identities (5.45) and (5.46) now follow easily using Lemma 5.1, from the fact
that < QsQtf, g >=< Qtf,Qsg >.

5.1. Proof of Theorem 4.1

By a density argument it is enough to show that for every 0 < r < 1 there exists
α0 < ε such that

‖(I + Tφ)f‖ < r

for every α = s(φ) < α0 and f ∈M(ε′,ε′) such that α+max(s1, s2) < ε′ < ε, where the
norm is taken in either any of our spaces and I denotes the identity operator. From
identities (5.47) and (5.48) we can write

(I + Tφ)f =
∫ ∞

0

∫ ∞

0

(
1− φ(uv)

φ(v)

)
QuQuvf(x)

du

u

dv

v
. (5.50)

Notice first that from (2.6) and (2.7) follows that,∣∣∣1− φ(uv)
φ(u)

∣∣∣ ≤ |1− vα| . (5.51)

Hence, we have

‖(I + Tφ)f‖ ≤ C

∫ ∞

0
|1− vα|

(
v ∧ 1

v

)γ dv

v
‖f‖ . (5.52)

But it is proved in [4] that there exists α0 < γ such that for every α < α0

C

∫ ∞

0
|1− vα|

(
v ∧ 1

v

)γ dv

v
< r. (5.53)

Indeed, there exists N big enough such that∫ 1/N

0
(1− vα)vγ

dv

v
<

r

3C
uniformly in α. On the other hand for all α ≤ α1 < γ,∫ ∞

N
(vα − 1)v−γ

dv

v
≤

∫ ∞

N
(vα1 − 1)v−γ

dv

v
≤

∫ ∞

N
vα1−γ dv

v
<

r

3C
for N ≥ N0. Once N is fixed , we can choose α0 < γ such that if α < α0 then∫ 1

1/N
(1− vα)vγ

dv

v
+

∫ N

1
(vα − 1)v−γ

dv

v
=

∫ N

1
(vα − v−α)v−γ

dv

v

≤ (Nα −N−α)
∫ ∞

1
v−γ

dv

v
<

r

3C
.

Thus the theorem is proved. �
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5.2. Proof of Theorem 4.2

In view of Theorem 4.1, since ‖I+Tφ‖ < 1 for α = s(φ) small enough, we consider
the von Neumann representation of the operator T−1

φ as

−T−1
φ =

∞∑
m=0

(I + Tφ)m. (5.54)

Denote

Tvf =
∫ ∞

0

(
1− φ(uv)

φ(v)

)
QuQuvf

du

u
, (v > 0). (5.55)

From (5.50) and (5.55), for each m ∈ N we have,

(I + Tφ)m =
∫ ∞

0
. . .

∫ ∞

0
Tv1 ◦ · · · ◦ Tvm

dv1
v1

. . .
dvm
vm

(5.56)

where

Tv1 ◦ · · · ◦ Tvm =∫ ∞

0
. . .

∫ ∞

0

(
1− φ(u1v1)

φ(u1)

)
. . .

(
1− φ(umvm)

φ(um)

)
Qu1Qu1v1 ◦ · · · ◦QumQumvm

du1

u1
. . .

dum
um

. (5.57)

Let denote

Kv1...vm(x, y) =∫ ∞

0
. . .

∫ ∞

0

(
1− φ(u1v1)

φ(u1)

)
. . .

(
1− φ(umvm)

φ(um)

)
qu1qu1v1 . . . qumqumvm(x, y)

du1

u1
. . .

dum
um

, (5.58)

Km(x, y) =
∫ ∞

0
. . .

∫ ∞

0
Kv1...vm(x, y)

dv1
v1

. . .
dvm
vm

, (5.59)

and

K−1
φ (x, y) = −

∞∑
m=0

Km(x, y) . (5.60)

Applying inequalities (5.51) and (5.43), from (5.59) and (5.58), for every 0 < γ < ε

we have that

|Km(x, y)|
≤ C2mm2Amδ(x, y)−1

×
∫ ∞

0
. . .

∫ ∞

0
|1− vα1 | . . . |1− vαm|

((
v1 ∧

1
v1

)
. . .

(
vm ∧ 1

vm

))γ dv1
v1

. . .
dvm
vm

= C2mm2Am
(∫ ∞

0
|1− vα|

(
v ∧ 1

v

)γ dv
v

)m

δ(x, y)−1. (5.61)
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Analogously, by (5.51) and (5.44), for all ε′ < ε there exists γ < ε such that

|Km(x, y)−Km(x, y′)|
+ |Km(y, x)−Km(y′, x)|

≤ C2mmMAm
(∫ ∞

0
|1− vα|

(
v ∧ 1

v

)γ dv
v

)m

δ(y, y′)ε
′
δ(x, y)−(1+ε′); (5.62)

for δ(x, y) > 2Aδ(y, y′).
Choosing a constant C̄ such that max(m2,mM ) ≤ C̄m, denoting

µ =
∫ ∞

0
|1− vα|

(
v ∧ 1

v

)γ dv
v

and reasoning as in Theorem 4.1, there exists α0 < ε such that r = C2C̄Aµ < 1, for
each α < α0.

Hence, for α < α0

|Km(x, y)| ≤ rmδ(x, y)−1, x 6= y. (5.63)

and,

|Km(x, y)−Km(x, y′)|+ |Km(y, x)−Km(y′, x)|

≤ rmδ(x, y)−(1+ε′)δ(y, y′)ε
′
, (5.64)

for δ(x, y) > 2Aδ(y, y′). From (5.60), adding on m in (5.63) and (5.64) we get the
assertion of the theorem. �

6. Application

In this section we obtain an identification between the Sobolev-type space Lp,φ and
the inhomogeneous Triebel-Lizorkin space F φ,2p in the context of normal spaces of
homogeneous type.

This result was first prove in [5] for the case φ(t) = tα. Our proof is shorter after
using Theorem 4.3.

Let X be a normal space of homogeneous type and φ ∈ A, 0 < α = s(φ) < θ,
satisfying (2.6). We extend the definition of Dφ to functions in Lp, 1 < p <∞, in the
following way.

Definition 6.1. Let f ∈ Lp, 1 < p < ∞, if there exists a function g ∈ Lp such that
< f,Dφh >=< g, h > for all h ∈ Λβ0 , θ ≥ β > α, then we define g = Dφf .

Definition 6.2. Let 1 < p < ∞ and φ ∈ A. The space Lp,φ is the set of all f ∈ Lp

with Dφf in Lp, with the norm

‖f‖Lp,φ = ‖f‖Lp + ‖Dφf‖Lp .

Definition 6.3. Let 1 < p < ∞ and φ ∈ A. The space F φ,2p is the set of functions
f ∈ Lp for which ‖f‖

Ḟφ,2p
<∞, with the norm

‖f‖
Fφ,2p

= ‖f‖Lp + ‖f‖
Ḟφ,2p

.
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Theorem 6.1.

For 1 < p <∞ and φ ∈ A, there exists α0 > 0 such that for s(φ) < α0, L
p,φ = F φ,2p

and the corresponding norms are equivalent.

Proof. Since Lp,φ and F φ,2p both are Banach spaces and the space Λβ0 is dense in them
for s(φ) < β ≤ θ, it is enough to show that for f ∈ Λβ0 ,

‖Dφf‖Lp ' ‖f‖
Ḟφ,2p

. (6.65)

But by the Littlewood-Paley theory developed in [6] and in view of Theorem 3.1 we
have

‖Dφf‖Lp ' ‖Dφf‖Ḟ 0,2
p

' ‖f‖
Ḟφ,2p

, (6.66)

since Dφ is an homeomorphism from Ḟ φ,2p onto Ḟ 02
p , for sφ small enough. �
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