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Abstract

We obtain a comparison of the level sets for two maximal functions on a space of homog
type: the Hardy–Littlewood maximal function of mean values over balls and the dyadic ma
function of mean values over the dyadic sets introduced by M. Christ in [M. Christ, AT (b) theorem
with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601
As applications to the theory ofAp weights on this setting, we compare the standard and the d
Muckenhoupt classes and we give an alternative proof of reverse Hölder type inequalities.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The partition process of a cube inRn involved in the original Calderón–Zygmund d
composition of the domain of a given integrable functionf , sometimes can be substitut
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by a selection method generally provided by a covering lemma. Spaces of homog
type are natural settings in which covering lemmas are available.

In some analytical problems the Calderón–Zygmund method needs to be applie
function defined in a given cube ofRn or a given ball of an abstract metric measure sp
Such is the case if we try to extend the proof given by Coifman and Fefferman [
reverse Hölder inequalities for Muckenhoupt weights.

The basic facts concerning MuckenhouptAp classes on the euclidean space for 1<

p < ∞, are consequences of the implicit reverse Hölder inequality contained in thAp

condition. From the technical point of view, dealing with the boundedness of oper
the basic fact used is that ifw ∈ Ap then there exists a positiveε, such thatw ∈ Ap−ε . The
proof of this fact is the key argument in [6] in order to show thatw ∈ Ap if and only if the
Hardy–Littlewood maximal function is bounded as an operator onLp(w).

To prove “Ap ⇒ Ap−ε ,” Calderón–Zygmund decomposition is the standard and p
erful tool. The Calderón–Zygmund decomposition is associated to the weightw and to a
special sequence of levels and has to be obtained on cubes or balls in an uniform w

The first generalization of the Muckenhoupt theory to the setting of quasi-metric
sure spaces with the additional assumption of continuity of the measure of balls as
tions of the radius, was given by Calderón in [3].

As it was pointed out by Macías and Segovia in [11], balls of a space of homoge
type need not be subspaces of homogeneous type with the inherited measure an
structures. Examples of parabolic distances onR2 for which the family of all balls is no
a uniform family of subspaces of homogeneous type are also given in [11]. Nevert
they are able to construct on a general space of homogeneous type(X,d,µ) another quasi
distanceδ equivalent tod (c1d � δ � c2d , for some constantsc1 andc2) in such a way tha
δ-balls are uniformly subspaces of homogeneous type. Therefore the Calderón–Zy
decomposition technique can be applied to functions given on balls with respect
new distance. Actually Macías and Segovia [11] use their above mentioned construc
give a proof of the reverse Hölder inequality in the setting of spaces of homogeneou
extending the technique introduced by Coifman and Fefferman in [6].

A different proof, of the sufficiency ofAp for theLp(w) boundedness of the Hardy
Littlewood maximal operator, avoiding reverse Hölder type inequalities, given by C
and Fefferman [5] in the euclidean case, can be rather easily adapted to the setting o
of homogeneous type (see [1]).

In this note we intend to get a Calderón–Zygmund decomposition that goes b
the original partitioning argument, even in metric measure spaces. This method is
in the construction of dyadic type families given by Christ in [4]. Our goal is to com
the level sets of the Hardy–Littlewood maximal function and the level sets of the d
maximal function, built on these dyadic families. As applications we shall compar
Muckenhoupt classes defined through thed-balls and through this dyadic sets and pro
reverse Hölder inequalities forAp weights on spaces of homogeneous type.

In Section 2 we give the construction, due to Christ [4], of the dyadic familyD in the
general measureless setting of quasi-metric spaces with finite Assouad metric dim
We also prove that for a doubling measureµ on (X,d), Christ’s construction is providing
tiling sequence of the space with the special property that the family{(Q,d,µ): Q ∈D} is
a uniform family of spaces of homogeneous type and we state the Calderón–Zygmu
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composition of the domain of a real integrable function. Section 3 contains the elem
but central comparison of level sets for the dyadic maximal and for the Hardy–Little
maximal functions. In Section 4 we introduce standard and dyadicAp-Muckenhoupt
weights, and we prove their equivalence under the assumption of the doubling pro
Section 5 is devoted to apply the result of Section 4 to prove reverse Hölder inequ
Even when the reverse Hölder inequality in the dyadic setting can be obtained fro
general results for martingales see [8], we give, for the sake of completeness, an e
tary proof in the spirit of [6].

2. Dyadic type partitions on spaces of homogeneous type

Let X be a set. A quasi-distance onX is a non-negative symmetric function defined
X × X such thatd(x, y) = 0 if and only if x = y and there exists a constantK such that
the inequality

d(x, y) � K
[
d(x, z) + d(z, y)

]
,

holds for everyx, y, z ∈ X.
A well-known result due to Macías and Segovia (see [10]) provides a distanceρ and a

real numberα, generally larger than one, such thatd is equivalent toρα =: d ′.
Since a quasi-distanced on X induces a topology through the neighborhood sys

{B(x, r): r > 0} of each pointx ∈ X (see [7]), we consider onX this topology. A basic
corollary of the above mentioned theorem of Macías and Segovia is the fact that f
quasi-distanced on X it is always possible to construct an equivalent quasi-distancd ′
such that everyd ′-ball is an open set.

Let us briefly introduce the Assouad dimension of a quasi-metric space. We sh
that a subsetA of X is ε-disperse (ε > 0) if d(x, y) � ε for everyx andy in A with x �= y.
The Assouad dimension ofX, dimA X, is the infimum of all those positive numberss such
that the inequality

#
(
B(x,λr) ∩ A

)
� Cλs

holds for some constantC, everyλ � 1, everyx ∈ X, everyr-disperse subsetA of X and
everyr > 0. It is not difficult to prove that dimA X < ∞ is equivalent to the fact that, fo
someN > 0, everyr-disperse subsetA of X has at mostN points in each ballB(x,2r)

for everyx ∈ X and everyr > 0.
Let (X,d) be a quasi-metric space with finite Assouad dimension. Assume that td-

balls are open sets. Take 0< δ < 1 andj ∈ Z. We shall say thatNj is aδj -net inX if Nj

is a maximalδj -disperse subset ofX. Notice that for everyj ∈ Z there exists a non-emp
δj -netNj , since of course we are assumingX �= ∅. We can writeNj = {xj

k : k ∈ K(j)},
whereK(j) is an initial interval of natural numbers that may coincide with all ofN. In fact
K(j) is finite for somej if and only if it is finite for everyj . Actually K(j) is finite for
somej if and only if (X,d) is bounded.

The first step in the Christ’s construction is to introduce a tree structure on the ind
A = ⋃

j∈Z
({j} ×K(j)) that is closely related to the metric structure onX.

Lemma 2.1 [4, Lemma 13]. There exists a partial order� onA satisfying the following
tree properties:
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(1) (j1, k1) � (j2, k2) impliesj2 � j1;
(2) for every(j1, k1) ∈ A and everyj2 � j1, there exists a uniquek2 ∈ K(j2) such that

(j1, k1) � (j2, k2);
(3) if (j1, k1) � (j1 − 1, k2), thend(x

j1
k1

, x
j1−1
k2

) < δj1−1;

(4) if d(x
j1
k1

, x
j1−1
k2

) < δj1−1

2K
, then(j1, k1) � (j1 − 1, k2).

For a helpful visualization we may thinkA as a family tree in which(j1, k1) � (j2, k2)

if and only if (j2, k2) is an ancestor of(j1, k1).
Now we are in position to construct the building blocks of the partitions. Define

(j, k) ∈A, the set

Q
j
k =

⋃
(i,l)�(j,k)

B
(
xi
l , aδi

)
(2.1)

for a positive numbera. Choosinga andδ appropriately, we get the desired dyadic pro
erties for the family{Qj

k : k ∈K(j), j ∈ Z}.

Theorem 2.2. Let (X,d) be a quasi-metric space with finite Assouad dimension such
thed-balls are open sets. Then there exista > 0, C > 0, and0 < δ < 1 such that the set
Q

j
k satisfy the following properties:

(D.1) Q
j
k is an open set for every(j, k) ∈A;

(D.2) B(x
j
k , aδj ) ⊂ Q

j
k , for every(j, k) ∈A;

(D.3) Q
j
k ⊂ B(x

j
k ,Cδj ), for every(j, k) ∈A;

(D.4) for every (j, k) ∈ A and everyi < j there exists a unique� ∈ K(i) such that
Q

j
k ⊆ Qi

�;

(D.5) for j � i then eitherQj
k ⊆ Qi

� or Q
j
k ∩ Qi

� = ∅, k ∈K(j) and� ∈ K(i);

(D.6) there exists a constantN such that#{k ∈ K(j): Q
j
k ⊂ Q

j−1
� } � N for every� ∈

K(j − 1) and everyj ∈ Z;
(D.7) for everyj ∈ Z, Q

j
k ∩ Q

j
� = ∅ for k �= � both inK(j) and the set

⋃
k∈K(j) Q

j
k is

dense inX;
(D.8) X is bounded if and only if there exists(j, k) ∈A such thatX = Q

j
k .

Proof. Notice that properties (D.2) to (D.5) can be proved as in [4] since there onl
finiteness of the Assouad dimension is actually used. Property (D.1) follow from th
that thed-balls are open sets. From (D.2) and (D.3) it follows that the sequence of poinx

j
k

such thatQj
k ⊂ Q

j−1
� is anaδj -disperse subset ofB(x

j−1
� ,Cδj−1). Since(X,d) has finite

Assouad dimension, we get (D.6). The first statement in (D.7) follows from the defin
of Q

j
k and (2) in Lemma 2.1. The second follows from the fact that beingNi is a maximal

δi -dense subset ofX for everyi ∈ Z, and
⋃

k∈K(j) Q
j
k ⊇ ⋃

i�j Ni . If X = B(x0,R), it is

possible to findj , negative enough, such that 2KR < aδj . For thisj and everyk ∈ K(j)

we haveB(x
j
k , aδj ) ⊃ B(x0,R). Since, from (D.2),Qj

k contains the ballB(x
j
k , aδj ), (D.8)

follows. �
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Let us denote byD the class of alldyadicsets defined by (2.1). WithDj = {Qj
k : k ∈

K(j)}, we have thatD = ⋃
j∈Z

Dj . GivenQ andQ′ two elements inD we say that they

are of the same level ifQ = Q
j
k , Q′ = Q

j

� for somej ∈ Z and somek, � ∈ K(j).

For a given positive numberR, we shall say that two dyadic setsQ
j
k andQ

j

� of the same

level j ∈ Z areR-neighbors if the inequalityd(x
j
k , x

j
� ) � Rδj holds.

The next result is elementary but useful for the subsequent development. Let u
NR(Q

j
k) to denote the set of allR-neighbors ofQj

k .

Lemma 2.3. For everyR > 0 there exists a numberM = M(R) such that the number o
elements ofNR(Q

j
k) is less than or equal toM for everyj ∈ Z and everyk ∈K(j).

Proof. Since the set{xj
� : Q

j
� ∈ NR(Q

j
k)} is δj -disperse and, from the definition of neig

boring, is contained in a ball with radiusRδj , the finiteness of the Assouad dimens
gives the desired estimate. Moreover we can takeM � N1+log2 R , whereN is the constan
associated to the finiteness of the metric dimension.�

Let (X,d) be a quasi-metric space with finite Assouad dimension such that thed-balls
are open sets. If the space(X,d) is complete, in the Cauchy sense, we can apply the re
of Vol’berg and Konyagin [13], Wu [14] and Luukkainen and Saksman [9] to get a B
measureµ onX satisfying the doubling condition

0< µ
(
B(x,2r)

)
� Aµ

(
B(x, r)

)
< ∞ (2.2)

for some constantA, everyx ∈ X and everyr > 0. As usual we shall say that(X,d,µ) is
a space of homogeneous type if(X,d) is a quasi-metric space andµ is a measure define
on aσ -algebraΣ containing thed-balls that satisfies (2.2). We will refer to the triang
constantK and the doubling constantA as thegeometric constantsof the space.

Let us notice that if(X,d,µ) is a space of homogeneous type then the fact that(X,d)

has finite Assouad dimension is proved in [7]. So that in a space of homogeneous ty
above construction of dyadic sets is available. But as Christ shows in [4], a result st
than (D7) holds in this case: the measure of the boundaries of dyadic sets vanishes

Theorem 2.4 [4]. Let(X,d,µ) be a space of homogeneous type such thatd-balls are open
sets and continuous functions are dense inL1(X), then

µ
(
∂Q

j
k

) = 0 for every(j, k) ∈A,

where∂Q
j
k is the boundary ofQj

k .

We would like to observe that under metric completeness the density of Lipschβ

functions with compact support, for someβ > 0, can actually be obtained (see [2] a
[12]).

In the next lemma we sketch the proof of an interesting additional feature of these d
families: {(Q,d,µ): Q ∈ D} is a uniform family of spaces of homogeneous type for
doubling Borel measureµ on (X,d).



110 H. Aimar et al. / J. Math. Anal. Appl. 312 (2005) 105–120

ts

ty
t

sume

e

com-
Lemma 2.5. Let (X,d,µ) be a space of homogeneous type with geometric constanK

andA such thatd-balls are open sets. LetD be a dyadic family with constantsC,a andδ.
Then there exists a constantÃ (depending only onK,A,C,a and δ), such that for every
(j, k) ∈A, (Q

j
k, d,µ) is a space of homogeneous type with geometric constantsK andÃ.

Proof. Notice first that if a Borel measureν is given on a quasi-metric space(Y,ρ)

with open balls and it satisfies the doubling property, with a doubling constantA0, for
the balls centered on a dense subset ofY , then ν also satisfies the doubling proper
for every ball with a constant̃A0 that depends only onA0 and the triangle constan
for ρ. With this fact in mind, takex ∈ Q\⋃

Q′∈D ∂Q′ for a fixed but generalQ ∈ D.
Let r be a positive given number. Assume thatQ belongs to the levelj0 ∈ Z, that is
Q = Q

j0
k0

∈ Dj0 for somek0 ∈ K(j0). With BQ(x, r) we shall denote thed-balls of the

space(Q,d,µ). Observe that ifr � 2KCδj0, we have thatBQ(x, r) = BQ(x,2r) = Q, so
that the doubling property trivially holds with constant equal to one. Let us, then as
that 0< r < 2KCδj0. Pickj1 � j0 such that 2KCδj1+1 � r < 2KCδj1. Letk1 ∈ K(j1+1)

be such thatx ∈ Q
j1+1
k1

⊂ Q. Then

B
(
x

j1+1
k1

, aδj1+1) ⊂ Q
j1+1
k1

⊂ BQ(x, r).

On the other hand,

BQ(x,2r) ⊂ B

(
x

j1+1
k1

,CK

(
4K

δ
+ 1

)
δj1+1

)
.

Thus

µ
(
BQ(x,2r)

)
� µ

(
B

(
x

j1+1
k1

,CK

(
4K

δ
+ 1

)
δj1+1

))

� Ãµ
(
B

(
x

j1+1
k1

, aδj1+1))
� Ãµ

(
BQ(x, r)

)
,

with Ã depending only onK,A,C,a andδ, not onQ. Let us finally observe that sinc
BQ(x,2r) is an open set, we have thatµ(BQ(x,2r)) > 0 and sinceBQ(x, r) is bounded,
µ(BQ(x, r)) is finite. �

Let us finish this section by proving a dyadic version of Calderón–Zygmund de
position. We shall use the standard notation for mean values:mQ(f ) = 1

µ(Q)

∫
Q

f dµ, for

Q ∈D andmX(f ) = 1
µ(X)

∫
X

f dµ if µ(X) < ∞ andmX(f ) = 0 if µ(X) = +∞.

Theorem 2.6. Let (X,d,µ) be a space of homogeneous type such thatd-balls are open
sets. Letf � 0 be aµ-integrable function defined onX and λ a positive number with
λ � mX(f ). Then there exists a familyF ⊂ D such that

if Q andQ′ are distinct elements ofF , thenQ ∩ Q′ = ∅; (2.3a)

mQ(f ) > λ for everyQ ∈F; (2.3b)

m ˜ (f ) � λ for everyQ̃ ∈D such thatQ̃ � Q for someQ ∈F; (2.3c)

Q
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mQ′(f ) � λ for everyQ′ ∈ D such thatQ′ ∩
( ⋃

Q∈F
Q

)
= ∅. (2.3d)

Proof. Let H be the family of all dyadic setsQ ∈ D for which mQ(f ) > λ. If H = ∅,
takingF = ∅ we trivially have that (2.3a–d) hold true for everyQ′ ∈ D = Fc. Let us then
assume thatH �= ∅. For eachQ ∈ H, the class of all dyadic sets̄Q in H such thatQ̄ ⊃ Q

is bounded above. Of course this is true if(X,d) is bounded. For the unbounded case
f ∈ L1(X,µ), mQ′(f ) � 1

µ(Q′)‖f ‖1 tends to zero if the diameter the dyadic setQ′ grows

to infinity andQ′ ⊃ Q. So that for eachQ ∈ H there is a unique cubēQ ∈ D which is
maximal with the properties̄Q ∈ H andQ̄ ⊃ Q. Let F be the class of thosēQ. In other
words,

F = {
Q̄: Q̄ is maximal with the propertymQ̄(f ) > λ

}
.

Properties (2.3a–d) for this classF follow directly from its definition. �

3. Comparison of the level sets of the dyadic and the standard maximal functions

Let (X,d,µ) be a space of homogeneous type. The non-centered Hardy–Little
maximal function is defined by

Mf (x) = sup
x∈B

1

µ(B)

∫
B

|f |dµ,

for a given locally integrable functionf .
Taking d ′ a quasi-distance onX equivalent tod such that thed ′-balls are open sets

we have a dyadic familyD satisfying the results of the previous section. For a loc
integrable functionf we define its dyadic maximal function by

Mdyf (x) = sup
x∈Q∈D

1

µ(Q)

∫
Q

∣∣f (y)
∣∣dµ(y),

for x ∈ ⋃
Q∈D Q andMdyf (x) = 0 otherwise.

The basic facts concerning boundedness of the dyadic maximal operator are co
in the next result.

Theorem 3.1. With the notation introduced above we have

(a) For every integrable functionf and every positive real numberλ there exists a disjoin
familyF ⊂ D such that{

x ∈ X: Mdyf (x) > λ
} =

⋃
Q∈F

Q.

(b) The weak type(1,1) inequality

µ
({

x ∈ X: Mdyf (x) > λ
})

� 1

λ

∫
|f |dµ,
X
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(c) If 1< p � ∞, there exists a constantCp > 0 such that the inequality

‖Mdyf ‖p � Cp‖f ‖p,

holds for every locally integrablef .

Proof. (a) Let λ > 0 andf an integrable function. Ifλ � mX(|f |) we can apply The
orem 2.6 to|f | andλ in order to obtain a familyF of disjoint dyadic cubes satisfyin
(2.3a–d). If, on the other hand,λ < mX(|f |), this is only becauseµ(X) < ∞. Sinceµ

is doubling we have thatX is bounded and, from (D.8)X = Q
j
k for some(j, k) ∈ A.

In this case we take asF the family which contains only the elementQ
j
k . Notice now

that {Mdyf > λ} = ⋃
Q∈F Q. In fact,F is empty if and only ifMdyf � λ. If F has the

only elementQj
k = X, then both sets are the wholeX. For the generic case, notice that

x ∈ Q ∈ F , Mdyf (x) � mQ(|f |) > λ. Given now a pointx such thatMdyf (x) > λ, we
havemQ(|f |) > λ for someQ ∈ D with x ∈ Q. From the construction ofF there exists a
cubeQ′ ⊃ Q, Q′ ∈ F , hencex is an element of the set

⋃
Q∈F Q.

(b) From (a) we easily obtain

µ
({

x ∈ X: Mdyf (x) > λ
}) =

∑
Q∈F

µ(Q) � 1

λ

∫
⋃

Q∈F Q

|f |dµ � 1

λ

∫
X

|f |dµ.

(c) From Marcinkiewicz interpolation, we get theLp boundedness ofMdy for 1 <

p � ∞. �
Of course, inequalities of type (b) and (c) follow also from the inequalityMdyf �

C Mf which follows from (D2), (D3) and the doubling property forµ. Observe that the
pointwise inequality in the opposite sense is not possible in general, but as the nex
rems show a control of the level sets ofMf in terms of those ofMdyf is still possible.

Theorem 3.2. Let (X,d,µ) be a space of homogeneous type andMf the non-centered
Hardy–Littlewood maximal function. Letd ′ be any quasi-distance onX equivalent tod for
which the balls are open sets. LetD be any dyadic family on(X,d ′,µ) as in Section2.
Then there existR0 > 0 andL > 0 such that for every locally integrable functionf and
every positive real numberλ, we have that{

x: Mf (x) > Lλ
} ⊆

⋃
Q∈F

( ⋃
Q′∈NR0(Q)

Q′
)

∪Z, (3.1)

whereF is the family associated tof andλ given in Theorem3.1, NR0(Q) denotes the
R0-neighbors ofQ defined in Section2 andZ = ⋃

Q∈D ∂Q is a set of zeroµ-measure.

Proof. Let us first notice that by takingL large enough it suffices to prove (3.1) for t
centered maximal function

Mcf (x) = sup
r>0

1

µ(B(x, r))

∫
|f |dµ
B(x,r)
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instead ofMf (x) and for the case in which actually thed-balls are open sets. The consta
R0 andL will become explicit at the end of our estimates. Let us take a pointx which does
not belong to the set

⋃
Q∈F (

⋃
Q′∈NR0(Q) Q

′) ∪ Z . In order to obtain an upper estima

for theMcf (x), let us pick a ballB(x, r) centered atx with positive radiusr and let us
estimatemB(x,r)(|f |). Takej ∈ Z such thatδj+1 � r < δj . Define the subclass of dyad
sets

G(x, r) = {
Q̃ ∈Dj : Q̃ ∩ B(x, r) �= ∅}

.

Claim. No Q̃ ∈ G(x, r) is contained in aQ ∈ F .

Let us assume that the claim is proved. The familyD can be partitioned in two disjoin
subfamiliesD1 = {Q ∈ D: mQ(|f |) > λ} andD2 = {Q ∈ D: mQ(|f |) � λ}. From the
claim and Theorem 2.6 we see thatG(x, r) ⊂ D2. Notice also that the number of elemen
of the classG(x, r) is bounded by a constantM1 which does not depend onx or r > 0.
Hence

1

µ(B(x, r))

∫
B(x,r)

|f |dµ = 1

µ(B(x, r))

∑
Q̃∈G(x,r)

∫
B(x,r)∩Q̃

|f |dµ

�
∑

Q̃∈G(x,r)

µ(Q̃)

µ(B(x, r))
m

Q̃

(|f |)
� M1A2λ,

whereA2 satisfiesµ(Q̃) � A2µ(B(x, r)), which follows from the fact that̃Q is contained
in the ball centered atx with radiusCr for some fixedC. So, we have thatMcf (x) � Lλ

with L = M1A2. Let us, finally, prove the claim. Let us assume there existQ̃ ∈ G(x, r)

and Q ∈ F such thatQ̃ ⊂ Q. SinceQ is also a dyadic set, we have thatQ = Qi
l for

somei � j and somel ∈ K(i). Let us show that for an appropriate choice of the cons
R0, we have the contradiction:x ∈ ⋃

Q′∈NR0(Q) Q
′. Take a pointy ∈ Q̃ ∩ B(x, r), then

d(x, xi
l ) � K[d(x, y) + d(y, xi

l )] < K(r + Cδi) < K(δj + Cδi) � K(1 + C)δi . In other
wordsx is a point in the ballB(xi

l ,K(1 + C)δi) which does not belong to the residu
boundariesZ . Hencex ∈ Qi

m for somem ∈K(i). So that from (D.3)d(x, xi
m) < Cδi then,

d
(
xi
m, xi

l

)
� K

(
d
(
xi
m, x

) + d
(
x, xi

l

))
< K

(
Cδi + K(1+ C)δi

)
= K

(
C + K(1+ C)

)
δi .

In other wordsx ∈ Qi
m and Qi

m and Q = Qi
l are R0-neighbors withR0 = K(C +

K(1+ C)). �
Theorem 3.2 allows us to obtain distribution function estimates for the Ha

Littlewood maximal function in terms of the dyadic maximal function for a given doub
measureν onX which is absolutely continuous with respect toµ.
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from

f

Theorem 3.3. Let (X,d,µ), Mf , d ′ andD as in Theorem3.2. Let ν � µ be a doubling
measure. Then there exist two positive and finite constantsL andC such that the inequality

ν∗({Mf > Lλ}) � Cν
({Mdyf > λ}),

holds for every locally integrablef and everyλ > 0, whereν∗(E) = inf ν(F ) with F ⊃ E

andF ∈ Σ .

Proof. Let L andR0 be the numbers given by Theorem 3.2. Let us first observe that,
Lemma 2.3, (D2) and (D3), there exists a constantA(ν,R0) such that the inequality

ν

( ⋃
Q′∈NR0(Q)

Q′
)

� A(ν,R0)ν(Q)

holds for everyQ ∈D. From this inequality and (3.1) we have that

ν∗({Mf > Lλ}) � ν

( ⋃
Q∈F

( ⋃
Q′∈NR0(Q)

Q′
))

+ ν(Z)

�
∑
Q∈F

ν

( ⋃
Q′∈NR0(Q)

Q′
)

� A(ν,R0)
∑
Q∈F

ν(Q)

= A(ν,R0)ν

( ⋃
Q∈F

Q

)

= A(ν,R0)ν
({Mdyf > λ}),

and the result holds withC = A(ν,R0). �

4. Ap and dyadic-Ap Muckenhoupt weights on space of homogeneous type

A non-negative, measurable and locally integrable functionw defined on the space o
homogeneous type(X,d,µ), is said to be a Muckenhoupt weight of classAp(X,d,µ) (1<

p < ∞) if the inequality(∫
B

w dµ

)(∫
B

w
− 1

p−1

)p−1

� Cµ(B)p, (4.1)

holds for some constantC and every ballB in X. We say thatw ∈ A1(X,d,µ) if there
exists a constantC such that the inequality

1

µ(B)

∫
B

w dµ � C ess infBw, (4.2)

holds for every ballB in X. Let us observe that the definitions of theAp classes are
invariant by change of equivalent quasi-distances.
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Assuming thatη is a quasi-distance onX such thatη-balls are open sets and(X,η,µ) is
a space of homogeneous type, we have dyadic familiesD = D(η) given by the sets define
in (2.1). It is easy to see that ifw ∈ Ap(X,d,µ), then the measurew(x)dµ(x) is doubling.

We say that a non-negative, measurable and locally integrable functionw is a dyadic
Muckenhoupt weight of classAdy

p (X,η,µ)1 < p < ∞ (respectivelyp = 1) with respect
to D, if (4.1) (respectively (4.2)) holds withQ ∈D instead ofB.

Let us notice thatAp(X,d,µ) impliesA
dy
p (X,d ′,µ) for d ′ � d with thed ′-balls open

sets. In fact, ifw ∈ Ap(X,d,µ) andQ
j
k is any dyadic set inD, we have

(∫
Q

j
k

w dµ

)(∫
Q

j
k

w
− 1

p−1

)p−1

�
( ∫

B(x
j
k ,Cδj )

w dµ

)( ∫
B(x

j
k ,Cδj )

w
− 1

p−1

)p−1

� Cµ
(
B

(
x

j
k ,Cδj

))p

� C̃µ
(
B

(
x

j
k , aδj

))p

� C̃
(
µ

(
Q

j
k

))p
.

The converse is generally false. For example the function defined onR by w(x) = 1 if
x < 0 andw(x) = x1/2 if x > 0 belongs toAdy

2 but not toA2 with respect to the usua
dyadic intervals onR.

The purpose of this section is to prove the next result.

Theorem 4.1. Let(X,d,µ) be a space of homogeneous type. Ifν � µ is doubling measure
on (X,d) such that for somed ′ � d with thed ′-balls being open sets we have thatw =
dν
dµ

∈ A
dy
p (X,d ′,µ), thenw ∈ Ap(X,d,µ).

Proof. Sincew ∈ A
dy
p (X,d ′,µ), by Hölder inequality we get that, for everyQ ∈D,

1

µ(Q)

∫
Q

|f |dµ � 1

µ(Q)

(∫
Q

|f |pw dµ

)1/p(∫
Q

w
− 1

p−1 dµ

)1/p′

� C

(
1

w(Q)

∫
Q

|f |pw dµ

)1/p

,

wherew(Q) = ∫
Q

w dµ. Then we get that

Mdyf (x) � C
[
Mdy

w

(|f |p)
(x)

]1/p
, (4.3)

whereMdy
w g(x) = supx∈Q,Q∈D 1

w(Q)

∫
Q

|g|w dµ for everyx ∈ ⋃
Q∈D Q andMdyg(x) = 0

otherwise. Now, from Theorem 3.3, (4.3) and, sinceν is doubling, applying Theorem 3.1(b
in the space of homogeneous type(X,d, ν), we get
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ν∗({Mf > λ}) � ν

({
Mdyf >

λ

L

})
� ν

({
Mdy

w

(|f |p)
>

(
λ

CL

)p})

� CpLp

λp

∫
X

|f |pw dµ

for all locally integrablef and all λ > 0. Then, by standard arguments we obtain t

w ∈ Ap(X,d,µ). In fact, let us consider a ballB andf = w
− 1

p−1 χB . Then

B ⊂
{
Mf >

1

µ(B)

∫
B

w
− 1

p−1 dµ − ε

}
,

for all ε > 0. So that∫
B

w dµ = ν(B) � ν∗
({

Mf >
1

µ(B)

∫
B

w
− 1

p−1 dµ − ε

})

� C( 1
µ(B)

∫
B

w
− 1

p−1 dµ − ε
)p

∫
B

w
− 1

p−1 dµ,

for all ε > 0. Then lettingε → 0 we are done. �
Notice that Theorem 4.1 proves that, under the hypothesis of doubling for a

weightw, the Muckenhoupt character ofw can be described through its behavior on a
dyadic systemD(η) with η � d . Since doubling condition onw, in Theorem 4.1, involve
the family of all balls on(X,d), one may think that the Muckenhoupt character ofw is
not completely described by a dyadic family of the typeD(η). But if we look at the actua
estimate in the proof of Theorem 3.3, we see that the doubling property used involve
dyadic sets. Moreover what matters is the boundedness of the measure of neighb
dyadic setQ in terms of the measure ofQ itself. Nevertheless is not difficult to prove th
this notion of doubling is equivalent to the standard one, so that all the information
Muckenhoupt character of a weightw can be given in terms of its behavior on the dya
sets. Let us state this remark in the next result.

Corollary 4.2. Let (X,d,µ) be a space of homogeneous type such thatd-balls are open
sets and letD = D(d). Letw be a non-negative locally integrable function defined onX.
Thenw ∈ Ap(X,d,µ) if and only ifw ∈ A

dy
p (X,d,µ) and for eachR > 0 there exists a

constantA(w,R) such that the inequality

w(Q′) � A(w,R)w(Q) (4.4)

holds for everyQ′ ∈ NR(Q) and for everyQ ∈D.

Proof. Since it is clear from the definition ofR-neighbors of a givenQ ∈ D, that the
doubling condition implies (4.4), from Theorem 4.1, we only have to show the conv
Given r > 0, let j ∈ Z be such thatK(1 + C)δj < r � K(1 + C)δj−1 whereK is the
triangle constant ofd andC is the constant in Theorem 2.2. It is easy to see that there e
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s

if

t

nother
� ∈ Z such thatQj
� ⊂ B(x, r) sinceNj is maximal with the property ofδj -dispersion. We

shall prove that there existsR0 such that

B(x,2r) ⊂
( ⋃

Q∈NR0(Q
j
� )

Q

)
∪Z,

whereZ = X \ ⋃
k∈K(j) Q

j
k . To prove this fact, takey ∈ B(x,2r) −Z . Then, there exist

m ∈ K(j) such thaty ∈ Q
j
m. Notice that

d
(
x

j
m, x

j
�

)
� K

[
d
(
x

j
m, y

) + d
(
y, x

j
�

)]
� K

[
Cδj + K

[
d(y, x) + d

(
x, x

j
�

)]]
� K(Cδj + 3Kr)

�
[
KC + 3K3(1+ C)/δ

]
δj .

Then choosingR0 = KC + 3K3(1 + C)/δ, we get thatQj
m ∈ NR0(Q

j
�). Now, by

Lemma 2.3,

ν
(
B(x,2r)

)
� ν

( ⋃
Q∈NR0(Q

j
� )

Q

)
+ ν(Z) � Cν

(
Q

j
�

)
� ν

(
B(x, r)

)
. �

Let us finally observe that (4.4) is not the “dyadic doubling” obtained naturally fromA
dy
p

relating the measure of a dyadic set to the measure of its father (first ancestor):Q =
Q

j
k ∈ D andQ̃ = Q

j−1
� are such that̃Q ⊇ Q, then

w(Q̃) � Cw(Q). (4.5)

In fact, from theAdy
p condition, the doubling property forµ and Hölder inequality, we ge

the following inequalities:(∫
Q̃

w dµ

)(∫
Q̃

w
− 1

p−1 dµ

)p−1

� C
[
µ(Q̃)

]p � C̃
[
µ(Q)

]p

� C̃

(∫
Q

w dµ

)(∫
Q

w
− 1

p−1 dµ

)p−1

� C̃

(∫
Q

w dµ

)(∫
Q̃

w
− 1

p−1 dµ

)p−1

,

which give us (4.5).

5. Application to reverse Hölder inequalities

As it was mentioned in the introduction, we shall use the above results to give a
proof of the next theorem.
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Theorem 5.1. Let(X,d,µ) be a space of homogeneous type such that continuous func
are dense inL1(X) and letw ∈ Ap(X,d,µ), then there exists a positiveε such thatw ∈
Ap−ε(X,d,µ).

To prove the theorem let us take a quasi-distanced ′ equivalent tod such thatd ′-
balls are open sets and let us construct a dyadic familyD = D(d ′) associated to thi
new quasi-distance. As we have observed in Section 4, sincew ∈ Ap(X,d,µ), then

w ∈ A
dy
p (X,d ′,µ). If we prove the desired result in the dyadic setting, i.e.: there e

a positiveε such thatw ∈ A
dy
p−ε(X,d ′,µ) we are done, since we can apply Theorem

becausew dµ is a doubling measure. On the other hand, in order to proveA
dy
p ⇒ A

dy
p−ε , it

will suffice to obtain a reverse Hölder inequality in the dyadic context.
Even when the remaining dyadic reverse Hölder inequality could be obtained fro

martingale setting [8], we shall briefly sketch how the result follows from the analy
tools given in Theorem 2.6 (Calderón–Zygmund decomposition) and Lemma 2.5 ap
mutatis mutandithe technique introduced by Coifman and Fefferman in [6].

Lemma 5.2 (Reverse Hölder inequality). Assume that the space satisfies the hypothes
Theorem5.1 and that each ball is an open set. Given a weightw ∈ A

dy
p with 1 � p < ∞

there exist positive constantsC and δ depending only onp, theA
dy
p constant forw and

the geometric constants such that the inequality

(
1

µ(Q)

∫
Q

[
w(x)

]1+δ
dµ(x)

) 1
1+δ

� C

µ(Q)

∫
Q

w(x)dµ(x) (5.1)

holds for everyQ ∈D.

Proof. Let w be a weight inAdy
p , let Q be a given dyadic set inD and let{λm: m =

0,1, . . .} be an increasing sequence withλ0 = mQ(w). Since(Q,d,µ) is a space of homo
geneous type (Lemma 2.5) we can apply Theorem 2.6 withX = Q, f = w andλ = λm in
order to obtain a familyFm ⊂ D satisfying (2.3a) to (2.3d). SetΩm = ⋃

Q′∈Fm
Q′. Notice

thatΩm+1 ⊆ Ωm, for everym = 0,1,2, . . . . The desired inequality (5.1) will follow from
the next statement.

Claim. For eachα ∈ (0,1), we can choose two numbersM > 1 andβ ∈ (0,1) such that
λm = λ0M

m and both inequalities

µ(Ωm) � αmµ(Ω0) and (5.2a)

w(Ωm) � βmw(Ω0) (5.2b)

hold for everyQ and everym = 0,1,2, . . . .
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Assuming our claim, let us finish the proof of the lemma. Pickδ > 0 such thatβMδ < 1.
Let us estimate the desired mean value ofw1+δ over the setQ,∫

Q

w1+δ dµ =
∫

Q−Ω0

w1+δ dµ +
∞∑

m=0

∫
Ωm−Ωm+1

w1+δ dµ +
∫

⋂∞
m=1 Ωm

w1+δ dµ.

From the first assertion in our claim, we see that the last term above vanishes. For t
and the second terms we use (2.3d), the Lebesgue Differentiation Theorem and the
assertion in the claim in order to get

∫
Q

w1+δ dµ � λδ
0w(Q) +

∞∑
m=0

λδ
m+1w(Ωm) �

(
λδ

0 +
∞∑

m=0

λδ
m+1β

m

)
w(Q)

= λδ
0

(
1+

∞∑
m=0

Mδ(m+1)βm

)
w(Q) = C

(
w(Q)

µ(Q)

)1+δ

µ(Q).

Let us finally sketch the proof of the claim. TakeQ ∈ D andα ∈ (0,1). As in the euclidean
case, it is enough to show that there exits a constantM such that withλm = λ0M

m we have
the inequalities

µ(Ωm+1 ∩ Q′) � αµ(Q′) (5.2c)

for everyQ′ ∈ Fm and everym = 0,1,2, . . . . Once (5.2c) is proved, from the standa
A

dy∞ -type inequality, we also have

w(Ωm+1 ∩ Q′) � βw(Q′), (5.2d)

for someβ < 1. Adding, overQ′ ∈ Fm, in the inequalities (5.2c) and (5.2d), and th
iterating, we obtain (5.2a) and (5.2b).

Let us sketch the proof of (5.2c). TakeQ′ ∈ Fm. Since we are dealing with the dyad
sets inD, the intersection ofQ′ and Ωm+1 is the disjoint union of those dyadic se
Q′′ ∈ Fm+1, which are contained inQ′. From property (2.3b) of the Calderón–Zygmu
decomposition at levelλm+1, we have

µ(Ωm+1 ∩ Q′) =
∑

{Q′′∈Fm+1: Q′′⊆Q′}
µ(Q′′) <

1

λm+1

∑
{Q′′∈Fm+1: Q′′⊆Q′}

∫
Q′′

w dµ

� 1

λm+1

∫
Q′

w dµ.

Let us now consider the first ancestorQ̃ of Q′, applying (2.3c), and using the fact thatQ̃

andQ′ have comparableµ-measures, we get

µ(Ωm+1 ∩ Q′) � C
λm

λm+1
µ(Q′),

which becomes (5.2c) provided thatλm = (
C
α

)m
λ0 or, in other wordsM = C

α
. �
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