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1 Introduction

Finite element solutions of boundary value problems involving
strain-softening materials are strongly affected by mesh-
dependency when the governing equations turn ill-posed. This is
related to the formation of spatial discontinuities of kinematic
fields and consequently, to a discontinuous bifurcation condition,
see among others, Nadai [1], Thomas [2], Hill [3], and Rudnicki
and Rice [4]. To reduce the loss of objectivity of the related com-
putational results, two strategies are at hand: to improve the finite
element technology or to regularize the description of the material
behavior at the constitutive level.

To solve the mesh sensitivity of the computational predictions
of strain softening material models, two possible strategies are at
hand. On one hand, to improve the finite element technology by
developing both standard finite element formulations, which are
able to follow the post-bifurcation localization using realignment
methods, and enhanced finite elements with discontinuous inter-
polation capabilities. On the other hand, to regularize the descrip-
tion of the material behavior at the constitutive level. However, a
combination of both approaches seems to be the most effective
one.

The regularization strategy leads to enriched material formula-
tions that are mostly based on nonlocal approaches. Thereby, the
gradients of the displacement function are evaluated in the vicin-
ity of the material point, thus a spatial average is taken into ac-
count to evaluate the point value. This is accomplished by defin-
ing suitable weighted averages (nonlocal formulations) or
gradients (gradient formulations) of a selection of thermodynamic
variables.

In the literature, gradient-dependent material theories have been
advocated within two different conceptual settings. On the one
hand, within the classical hypoelastic framework which does not
have a thermodynamic law, e.g., Zbib and Aifantis [5], Fleck and
Hutchinson [6], Zbib [7]. Related to this type of material formu-
lation Sluys et al. [8], de Borst et al. [9,10], and Pamin [11] have
proposed numerical algorithms for the stress integrations at the
local and finite element level.

On the other hand, gradient-dependent material formulations
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In this work the geometrical method for the assessment of discontinuous bifurcation
conditions is extended to encompass gradient-dependent plasticity. To this end, the
gradient-dependent localization condition is- cast in the form of an elliptical envelope
condition in the coordinates of Mohr. The results in this work demonsirate the capability
of thermodynamically consistent gradient-dependent elastoplastic model formulations to
suppress the localized failure modes of the classical plasticity that take place when the

hardening/softening modulus H equals the critical value for localization H » provided the
characteristic length I' remains positive. [DOL 10.1115/1.2202348]

were analyzed and advocated within a thermodynamic framework,
e.g., Valanis [12], Dillon and Kratochvil [13], and more recently
Valanis [14] and Svedberg and Runesson [15]. In this last case the
nonlocal character of the constitutive equations is restricted to the
internal variables, leading to an additive expression of the free
energy density.

A detailed discussion regarding the different gradient models of
plasticity is given in Fleck and Huichinson [16,17] and where the
subtle differences in regularizing softening and in introducing size
effects is highlighted.

In this work, the localization properties of the thermodynami-
cally consistent gradient-dependent J, plasticity model with iso-
tropic hardening/softening law are analyzed by means of the geo-
metrical method.

To this end, the gradient-dependent elastoplastic localization
properties are cast in the form of an elliptical envelope condition
in the oy— 7y coordinates of Mohr, see Pijaudier-Cabot and Be-
nallal [18], Liebe and Willam [19]. Therefore, the tangency con-
dition between the localization ellipse and the major principal
circle defines the existence of localized failure mode and the cor-
responding critical directions. In the present analysis, the geo-
metrical localization condition is defined in terms of the degree of
nonlocality of the constitutive model that in case of gradient plas-
ticity is represented by the characteristic length.

2 Gradient-Dependent Klastoplasticity

We follow the thermodynamically consistent gradient-
dependent material theory by Svedberg and Runesson [15]. After
reviewing the relevant thermodynamic and constitutive equations,
the J, gradient elastoplastic model is presented, in which the non-
local character is restricted to the internal plastic variables.

2.1 Thermodynamic Consistency. Under consideration of
small strain kinematics, the free energy density of a strain gradient
elastoplastic continuum can be expressed in an additive form as

,O\P(ﬁes K,VK) - p\ye(gﬂ + px\@rl),lac(K) + p@p,g(vk) (1)

where p is the material density. The elastic free energy density is
defined as pWe(e%)=(1/2)e°: B¢ &% &’ and E°¢ being the elastic
strain tensor and the fourth-order elastic operator, respectively.

The local and gradient free energy density contributions due to
inelastic strains W7!° and WP$ are expressed in terms of the
scalar hardening/softening variable x. We observe in Eq. (1) that
the gradient effects are only restricted to hardening/softening be-
havior via the inclusion of V.

From the Coleman’s relations follow the constitutive equations
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with the (outward) normal m to @),

2.2 Constitutive Equations

2.52.1. General Case. Considering a convex set B of plastically
admissible states defined as B={{0,K)|®(e,K) <0} with the
co*nve{: yield function ®=®(¢,K), and a dissipativé potential
E) =®(&,K), which twrns ® in case of associated plasticity
Then, the rate equations for the inelastic strains &P : :
hardening/softening variable «, take the forms

*

and the scalar

and Xa@*
K= A——
oK (6)

&P =)

where M is the rate of the plastic parameter.
Erom the Prandtl-Reuss additive decomposition of the total
strain rate tensor into the elastic and plastic components that char-

acterized the flow theory of plasticity and considering Egs. (2),
(4), and (6) follow the constitutive equations (in rate form)

U A
=g~ \E o with o°=FE%¢ (7)
: 0"
loc __ i
K*=-\H K (8)
and
o 9" L Pt
K‘Q:Z"VAHW[V)\ +\ — c
ax TMVE e ©)
which on the boundary turns
KD = _ oy g { A R
K +AVEK e (10)

11.1 the above equations, two types of state parameters were con-
sidered. On the one hand, the local hardening/softening modulus
H and, on the other hand, the second-order tensor of nonlocal
gradient state parameters H¢ defined as

N i
=pE T ——— (1n
FoVi) ® (V)
with
det(H?®) = 0 (12)

As gointed out by Svedberg and Runesson [15], there are three
possible interpretations for the characteristic length [ in Eq. (11):
as a convenient dimensional parameter which allows that both H
and H¥ get the same dimension, as a physical entity that defines
the characteristic measure of the microstructure, and as a param-
eter that brings numerical stabilization to the local constitutive
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hy re oo = . ..
VY & is the stress tensor and & the strain tensor, The dissi-

the dissipative siress due to the gradi-

theory.

The Kuhn—Tucker conditions complete the rate formulation of
the. grad@nﬁ-dependent plasticity in terms of hardening variables
which, similar to the local theory, are defined by

A=0 D(a.K) =<0 AB(7,K) =0 (13)

2.2.2 I, Material Model. The expression of the von Mises
yield criterium, corresponding to J, materials, yields

P(o.K)=0,~0,-K o,= \/gls] (14)

Wi([fﬂ g, the yield stress, K the dissipative stress and s the devia-
toric stress tensor

. o,
s=o-Io, with UO=?U and i=1,2,3 (15)

I being the second-order identity tensor.

The flow and hardening rules are of the associative type, there-
Tag 3 3 ’
fore the rate equations for the internal variables in Eq. (6) are

oy 28 oy
&= 20, and kK=-)\ (16)
The explicit expression of the dissipative stress K in Eq. (14)

follows from Egs. (3) and (4), where the local and gradient free
energy densities take the forms

pUPIC = Tl (17)

1
g~ 2%,
oW —21 Vo -HE. Tk (18)
Therefore, the components K'°° and K¢ of K result now
K= Hg (19)

K=V . (H% Vi) (20)

3 Condition for Localized Failure

From the continuum mechanic’s viewpoint, localized failure
modes are related to discontinuous bifurcations of the equilibrium
path, and lead to the loss of ellipticity of the equations that govern
the static equilibrium problem, )

The mhqmogeneous or localized deformation field exhibits a
plang .of discontinuity that can be identified by the singularity
condition of the acoustic or localization second-order Iengor see
Ottosen and Runesson [20] and Willam and Etse [21]. 7

Loca} and gradient flow theories of plasticity both result in the
tangential equation that reads

o=E"¢ (21)

where E denotes the elastoplastic material operator that can be
expressed by means of the encompassing equation

1
(h+ hy) Jor  IJor

with the local and nenlocal generalized plastic moduli

E° (22)

h=—FE5—+§H (23)

and
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0 for local plasticity
=y o il \? . .
;- HY -my 5 for gradient-dependent plasticity
(24)

& being the width of the localization zone, n; the normal direction
to the discontinuous surfaces, and

—or (25)
oK IK

— oN )

ngﬂg%;{;.% (26)

From Eq. (26) and for the particular case of gradient isotropy, we
obtain

HE = H1 (27)

with ¢ a positive, nonzero scalar. As m; is a unit vector, results

n,- HY - my=H* (28)
and, from the second equation in Eq. (24)
2

In case of localized failure forms associated with discon.tinuous
bifurcation we resort to the gradient elastoplastic localization ten-
sor defined as

P8 = Q° — a' ®a (30)
Q Q h+hé
with the elastic-localization tensor
Q°=n;-E°-n (31)
and
a'=—E°n (32)
s
0P
a=—FE m (33)
Jo

The localized failure condition in case of gradient-dependent elas-
toplasticity

det(QP8) =0 (34)

leads to the analysis of the spectral properties of Q2. Its smallest
eigenvalue, with respect to the metric defined by Q°, has the ex-
pression

{ g am) [Q“(m)]™"-a"(m) _
Mislo e

0 (35)

In case of gradient isotropy, the explicit form of Eq. (35) is

b* : B
7-(+(i{3:}<le:&(I —a-[Q"-a"=0 (36)
Jor oo
with
_(2m\* _
H:Hﬁ'(—Z—) LA, (37)

The localization condition in Eq. (36) serves as a basis f(_)r ana-
lytical and numerical evaluations of the localization dlrecu‘ons_ n,
and of the corresponding graphical maximum hardening/softening

parameters H,.(m;)=max[H(n;)] in case of local plasticity, and

H8(n))=max[H8(n,)] in gradient-dependent plasticity.
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4 Geometrical Localization Analysis

In this section, the geometrical method for localization ana}ysis
is derived for the thermodynamically consistent gradient-
dependent J, elastoplastic model formulation detailed in Sec.
2.2.2. The approach is based on the original proposal by Benalial
[22], which was further developed by Pijaudier-Cabot and Benal-
lal [18] and Liebe and Willam [19] for classical plasticn_y. .

Equation (36) defines an ellipse in the oy—7y coordinates of

Mohr

2Q
Oy=H1;c -0 S=D;-S-H (38)

2
= (0-8) - (- 8) = (a5 m)° (39)
The critical direction m;, normal to the plane where them Mghr
components are evaluated, and the maximum hardening/softening

parameters E’C and ﬁf for localization are obtained when the Mohr
circle of stresses

(oy—0) + 73y =R? (40)
contacts the elliptical localization envelope
2
(w00 7, (41)
AZ Bz

where the center and radius of the Mohr circle, Eq. (40), are

.= T+ Ts (42)
2
and
r=1"% > % (43)

with ¢ and o3, the major and minor principal stresses, respec-
tively, and the center oy and half axes A and B of the localization
ellipse are defined in the following.

5 Localization Properties of J, Gradieni-Dependent
Elastoplasticity

Considering for the elastic tensor E¢ the expression
E‘=2GL+AI®I (44)

with the shear module G and the Lamé’s constant A, the traction
vectors in Egs. (32) and (33) can then be rewritten as

a =a=2Gn; s (45)

and from Eq. (31), the inverse of the localization tensor ¢ shields

i
{@W=éﬁ~gigm®mj (46)

with the Poisson’s modulus v. Replacing Eq. (46) in Eq. (36), and
combining with Egs. (38) and (39), the center o and the half axes
A and B of the localization ellipse, Eq. (41), results

oy = %]l (47)
H
B =l =+ 1> (48)
(5
1— 2
A= Lp (49)
1-2v

In the particular case of classical elastoplasticity the inhomoge-
neous differential Eqg. (36) turns
O O

H=-—FE"—+a-[Q]" & (50)
¢ o o

therefore, the parameter B° representing the vertical axis of the
ellipse in Eq. (41) now takes now the form
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von Mises ellipse
Local Plasticity
Gradient Plasticity

2

Uy
()
i
|
4
~
L

(51
. So, the thermodynamically consistent gradiem—dependem plas-
ticity formulation allows a simple extension of the geometrical
localization method as demonstrated in this section, Thereby, the
nonlocal effects in terms of the characteristic Tength and of the
gradient hardening/softening modulus only affect the expression
of the localization ellipse half axes A and B

5.1 Graphical Analysis. The localization properties- of the
thermodynamically consistent gradient-dependent J, elastoplastic

model are analyzed for the plane strain condition when o, =(o,

+o0y,) and H=H, H being the particuiar hardening/softening

modulus of the gradient-dependent model and H.. the critical one
for localization of the local elastopiastic model. As follows from
Egs. (41), (48), and (37), the localization properties of the
gradient-dependent J, elastoplastic model depend on the ratio §/1.
As the purpose of this work is to evaluate the performance of the
condition for localized failure of the model by means of the geo-
metrical method and not the calibration of the model, the analysis
in this section will mainly focus on the sensitivity of the localized
failure indicator performance regarding the variation of the ratio
8/1 but not on the evaluation of the most appropriate value of this
ratio for different types of metals.

The results in terms of det(Q) are depicted in Fig. 1 in the

“ 77 Mobhr circle 1 det(Qep)/det(Qe)
‘ Local Plasticity — det(Qepg)/det(Qe) i
G - i

- Gradient Plasticity |

Mohr circle
Local Plasticity
[ Gradient Plasticity |

| —— det(Qepg)/det(Qe) |

Fig. 3 Geomeiric localization analysis at peak of the uniaxial
compression test. Locai and gradient-dependent plasticity. J,
material model.

principal stress space. The adopted internal material length equals
the width of the localization zone /= 8. As can be observed in Fig.
I, the gradient-regularized plasticity is able to suppress the fulfil-
ment of the localization condition, i.e., discontinuons bifurcation,
for the whole range of limit stress states of the von Mises mate-
rial, in the plane strain regime.

The geometrical localization analysis of the nonlocal gradient
J» material formulation is performed for the simple shear, uniaxial
compression, and uniaxial tensile tests and the results are shown
on the left side of Figs. 2-4, respectively. These results illustrate
the influence of the characteristic length / in the mode of failure.
When />0, no contact is observed between the Iocalization el-
fipses of the gradient-dependent plasticity model and the Mohr
circle corresponding to the analyzed limit stress state, Thus, dif-
fuse failure mode takes place for all three limit stress states. How-
ever, as I/8—0 the gradient-based localization ellipses ap-
proaches that of the local model which contacts the Mohr circle,
indicating that the localization condition is fuifilled and therefore,
discontinuous bifurcation takes place.

To verity the previous geometrical resulis regarding the capac-
ity of the /, gradient-dependent model to suppress discontinuous
bifurcations of the related local model formulation, a numerical
localization study is performed at the constitutive level. The dia-
grams in the right side of Figs. 2-4 show the variation of the
normalized localization indicator det{(Q%)/det(Q°) with the in-
plane failure angles at peak of the pure shear, uniaxial compres-
sion, and tensile test, respectively. Both the local and the no—iocal
gradient J, test are considered. These results demonstrate the ca-
pabilities of the J, gradient-dependent elastoplastic model formu-
lation to eliminate discontinuous bifurcation in the form of local-
ized failure.

T Mohr o ! detQonydaiicer
Mohr circle | det(Qep)/det(Qe)

| Local Plasticity | | — det{Qepg)/det(Qe) |

[ Gradient Plasticity 1

45 90 135 180
Failure Angle

Fig. 2 Geometlric and localization analysis at peak of the Fig. 4 Geomeiric localization analysis at peak of the uniaxial

simple shear test. Local and gradient-dependent piasticity. J, tensile test. Local and gradient-dependent plasticity. J, mate-
material model. rial model. )
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6 Conclusions

In this work the geometrical localization method was .extended
for the analysis of the discontinuous bifurcation 'pro.pert\es of .the
J, gradient-dependent elastoplasticity. The lof:allzatxon condmen
was expressed in terms of the coordinates o_T Mohr o obtain an
ellipse that represents the envelope of localization f(?r each par-
ticular state of stress. Thereby, localized failure mode is geometri-
cally signalized by the tangency condition between the Ioiallza-
tion eliipse and the major principle circle of Mohr, ‘whue the
critical localization direction is defined by the inclination of Fhe
Mohr circle radius to the tangential point with the localization
ellipse. L

The results of the geometrical localization analysis indicate that
the J, gradient-dependent elastoplastic formulation suppresses the
discontinuous bifurcations of the classical elastoplasticity when

the selected hardening/softening modulus H equals the critical one

for localization of the local material formulation H.. _

The regularization capability of the gradient formulation re-
duces as I/ §— 0. Therefore, the characteristic length [ defines the
level of diffusion of the failure mode. When [ approaches zero, a
continuous transition from non-local gradient to local elastoplas-
ticity is obtained. In the extreme case, when /=0, see Eqgs. (37),
(48), and (51), the local formulation is fully recovered.
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1 Introduction

During the last three decades several studies appeared concern-
ing the representation of the Navier-Stokes equations in terms of
non-primitive variables (namely the vorticity and the velocity po-
tentials) instead of the classical formulation in terms of the primi-
tive variables velocity and pressure. This family of approaches is
generally known as vorticity-stream function (e, #) methods.
More recently, together with those works on the vorticity-stream
function formulation and as a natural extension of them, a com-
paratively smaller number of studies were presented using a hy-
brid formulation in terms of the primitive and non-primitive vari-
ables velocity and vorticity. As several authors pointed out [1-3],
the vorticity-velocity (e,v) methods (as they are generally
known) present some advantages compared with the classical for-
mulation on primitive variables or with the vorticity-stream func-
tion methods, namely: (a) The pair of variables involved is par-
ticularly suited for a dynamic description of incompressible
viscous flows. The vorticity is governed by a well understood
dynamical equation while the velocity, which embodies the kine-
matical aspect of the problem, can be related to the. vorticity by a
simple elliptic equation. In vortex-dominated flows the vorticity
advection is a fundamental process determining the dynamics of
the flow, hence the vorticity-velocity description is closer to
physical reality. (b) The variety of boundary conditions that can be
chosen for the velocity potentials due to the nonuniqueness of the
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In this work, a novel procedure to solve the Navier-Stokes equations in the vorticity-
velocity formulation is presented. The vorticity transport equation is solved as an ordi-
nary differential equation (ODE) problem on each node of the spatial discretization.
Evaluation of the right-hand side of the ODE system is computed from the spatial soiu-
tion for the velocity field provided by a new partial differential equation expression called
the kinematic Laplacian equation (KLE). This complete decoupling of the two variables
in a vorticity-in-time/velocity-in-space split algorithm redices the mumber of unknowns to
solve in the time-integration process.and also favors the use of advanced ODE algo-
rithms, enhancing the efficiency and robustness of time integration. The issue of the
imposition of vorticity boundary conditions is addressed, and details of the implementa-
tion of the KLE by isoparametric finite element discretization are given. Validation results
of the KLE method applied to the study of the classical case of a circular cylinder in
impulsive-started pure-translational steady motion are presented. The problem is solved
at several Reynolds numbers in the range 5 <Re <180 comparing numerical results with
experimental measurements and flow visualization plates. Finally, a recent result from a
study on periodic vortex-array structures produced in the wake of forced-oscillating
cylinders is included. [DOYL: 10.1115/1.2198245]

velocity representation is avoided since the velocity is supple-
mented by unique boundary conditions. (c) In some specific situ-
ations like that of external flows, boundary conditions at infinity
are easier to implement for the vorticity than for the pressure. (d)
The noninertial effects only enter the solution procedure of the
(w,v) formulation via the proper implementation of the initial and
boundary conditions. Hence, the general applicability of an algo-
rithm based on the {e,v) formulation is enhanced because it is
independent of whether or not the frame of reference is ineitial.

The first uses of the (w,v) formulation of the incompressible
Navier-Stokes equations were reported by Fasel [4] who analyzed
the stability of boundary layers in two dimensions and by Dexnnis,
Ingham, and Cook [5] who derived a numerical method for com-
puting steady-state three-dimensional flows. Both approaches
were based on finite difference techniques. Since then several in-
vestigations have been conducted on incompressible hybrid vari-
able models using variations of the finite difference approach
(e.g., see [6-8], among others). A vorticity-velocity finite element
solution of the three-dimensional compressible Navier-Stokes
equations have been presented by Guevremont et al. [9] who in-
vestigated the steady state flow in a cubic cavity for several Mach
numbers. More recently Clercx [2], then Davies and Carpenter
[10], introduced pseudospectral procedures for the (e, v) formu-
lation. Lo and Young [11] presented an arbitrary Lagrangian-
Eulerian (e,v) method for two-dimensional free surface flow,
using finite difference discretization for the free surface and finite
element discretization for the interior of the domain.

A disadvantage of the vorticity-velocity formulation, compared
with the formulation in primitive variables, is that in the most
general three-dimensional case the (e,v) formulation requires a
total of six equations to be solved instead of the usual four of the
primitive-variable approach [2]. The objective of the present study
is to introduce a new method based on the (w,v) formulation
which aims to tackle this six-unknown question and to improve
some other aspects of the numerical implementation of the (w,v)
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