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Propiedades de regularidad homológica de variedades de banderas cuánticas y
álgebras asociadas

Los objetos de estudio de esta tesis pertenecen a dos familias de ”variedades no
conmutativas”, es decir álgebras N-graduadas conexas noetherianas a las que consid-
eramos, siguiendo la perspectiva de la geometrı́a no conmutativa, como análogos de
anillos de coordenadas homogéneas sobre ciertas variedades proyectivas.

La primera familia es la de las variedades tóricas cuánticas, subálgebras graduadas
de toros cuánticos. Clasificamos estas álgebras y estudiamos en detalle sus propieda-
des de regularidad homológica, definidas por Artin-Schelter, Zhang, Van den Bergh,
etc. La segunda familia es la de las álgebras conocidas como variedades de banderas
cuánticas y otras álgebras asociadas, análogos no conmutativos de las álgebras de
coordenadas homogeneas de las variedades de banderas y de sus subvariedades de
Schubert. Demostramos que los miembros de esta segunda familia pueden filtrarse de
forma que sus álgebras graduadas asociadas son variedades tóricas cuánticas. Luego
probamos que las propiedades de regularidad homológica de las álgebras de las va-
riedades de bandera y de Schubert cuánticas se deducen de las propiedades de las
variedades tóricas cuánticas.

Palabras clave: Variedades de banderas cuánticas, variedades tóricas cuánticas,
Cohen-Macaulay, Gorenstein, complejos dualizantes



Homological regularity properties of quantum flag varieties and related algebras

The objects of study of this thesis are two families of ”noncommutative varieties”,
that is noetherian connected N-graded algebras which, following the general notions
of noncommutative geometry, we regard as analogues of homogeneous coordinate
rings of certain projective varieties.

The first family is that of quantum toric varieties, which are graded subalgebras
of quantum tori. We classify these algebras and study their homological regularity
properties as defined by Artin-Schelter, Zhang, Van den Bergh, etc. The second family
is that of quantum flag varieties and associated algebras, noncommutative analogues
of the homogeneous coordinate rings of flag varieties and their Schubert subvarieties.
We show that the members of this second family can be endowed with a filtration such
that their associated graded algebras are quantum toric varieties. We then show that
the homological regularity properties of quantum flag and Schubert varieties can be
deduced from those of quantum toric varieties.

Keywords: Quantum flag varieties, quantum toric varieties, Cohen-Macaulay al-
gebras, Gorenstein algebras, dualizing complexes.



Régularité homologique des variétés de drapeaux quantiques et de quelques algèbres
liées.

Deux familles d’algèbres noethériennes connexes constituent les objets d’étude de
cette thèse; on les regarde, suivant les idées générales de la géométrie non commuta-
tive, comme des anneaux de coordonnées homogènes de certaines variétés projectives.

La première famille est celle des variétés toriques quantiques, autrement dit les
sousalgèbres graduées de tores quantiques. Nous classifions ces algèbres et nous
étudions ses propriétés de régularité homologique suivant notamment Artin-Schelter,
Zhang et Van den Bergh. La deuxième famille est celle des variétés de drapeaux quan-
tiques et leurs sousvariétés de Schubert. Nous démontrons que les algèbres appar-
tenant a cette deuxième famille possèdent une filtration tel que leur graduée associé
est une variété torique quantique. En suite nous démontrons que les propriétés de
régularité homologique des variétés de drapeaux quantiques et des variétés de Schu-
bert se déduisent de celles des variétés toriques quantiques.

Mots clés: Variétés des dreapeaux quantiques, variétés toriques quantiques, algèbres
du type Cohen-Macaulay, algèbres du type Gorenstein, complexe dualisant.
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Introducción

Este trabajo está escrito bajo la perspectiva conocida informalmente como ”geometrı́a
proyectiva no conmutativa”, es decir, la idea de que las álgebras N-graduadas aso-
ciativas pero no necesariamente conmutativas pueden ser consideradas álgebras de
coordenadas homogéneas sobre ”variedades proyectivas no conmutativas”. A partir
de este principio general se intenta adaptar las técnicas del caso conmutativo, conser-
vando en la medida de lo posible la intuición geométrica, al no conmutativo. Muchos
ejemplos de álgebras a las que se aplica esta idea se obtienen a través del proceso
conocido como cuantización. Otra vez de manera informal, un álgebra conmutativa
se ”cuantiza” deformando su multiplicación a través de un parámetro continuo, lo
cual resulta muchas veces en álgebras no conmutativas. El álgebra original puede
recuperarse tomando el lı́mite cuando el parámetro de deformación tiende a 0.

Un ejemplo clásico de este proceso son las variedades de banderas sobre un cuerpo
k, o más precisamente sus álgebras de coordenadas homogéneas. Una variedad de
bandera (generalizada) es el cociente de un grupo algebraico semisimple G por un
subgrupo parabólico P; el ejemplo clásico es el de G = SLn(k) y P el subgrupo de
las matrices triangulares inferiores en G. El nombre proviene del hecho que en este
caso el cociente G/P es una variedad proyectiva y sus puntos están en correspon-
dencia biyectiva con las banderas completas del espacio kn; otras elecciones de G y
P parametrizan ciertos tipos de banderas especı́ficas dentro del mismo espacio. Las
variedades de bandera más sencillas son, además del ejemplo ya mencionado, las
grassmanianas, que parametrizan los subespacios de kn de una dimensión fija. Todas
estas variedades tienen inmersiones naturales en espacios proyectivos, llamadas in-
mersiones de Plücker. El anillo de coordenadas homogéneas O[G/P] correspondiente
a la inmersión de Plücker puede realizarse de manera natural como una subálgebra
del álgebra de funciones regulares sobre G, que por resultados clásicos puede identifi-
carse con el dual de Hopf del álgebra U(g), donde g es el álgebra de Lie del grupo G.
Las variedades de bandera, o mejor dicho sus álgebras de coordenadas homogéneas,
tienen versiones cuánticas definidas de forma independiente por Ya. Soı̆bel′man en
[Soı̆92] y por V. Lakshmibai y N. Reshetikin en [LR92], como ciertas subálgebras del
dual de Hopf del álgebra envolvente cuántica Uq(g). Recordamos los detalles de esta
definición en el capı́tulo 6.

Las variedades de banderas son consideradas uno de los principales ejemplos de
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variedades proyectivas. Su estudio es un punto de encuentro entre la geometrı́a alge-
braica, la teorı́a de representaciones (de grupos finitos, grupos algebraicos, álgebras
de Lie...) y la combinatoria1. La topologı́a y la geometrı́a de estas variedades han
sido ampliamente estudiadas a través de sus subvariedades de Schubert y Richardson
(una variedad de Richardson es la intersección de una variedad de Schubert con una
variedad de Schubert opuesta), las cuales también poseen versiones cuánticas.

Siguiendo el principio general que afirma que las propiedades homológicas son
”invariantes por deformación”, conjeturamos que las variedades de banderas cuánticas
y sus respectivas subvariedades de Schubert y Richardson deberı́an tener propiedades
de regularidad homológica similares a las de sus contrapartes clásicas. Dado que las
definiciones y las técnicas clásicas no se aplican directamente a los objetos cuánticos,
para convertir esta idea general en un enunciado formal es necesario adaptar ambas
al contexto no conmutativo.

Recordemos algunas de las técnicas clásicas desarrolladas para el estudio de las
variedades de banderas. El estudio sistemáticos de los anillos de coordenadas ho-
mogéneas correspondientes a las inmersiones de Plücker de las grassmanianas en
espacios proyectivos fue iniciado por Hodge y desarrollado por de Concini, Eisen-
bud y Procesi en [DCEP] (la introducción de esta referencia tiene una excelente reseña
histórica), dando origen tiempo después a la actual Teorı́a de Monomios Estándar,
cuyo objetivo es extender el trabajo de Hodge a inmersiones arbitrarias de varieda-
des de banderas y subvariedades de Schubert, e inclusive variedades proyectivas más
generales, en espacios proyectivos. La idea original de Hodge fue aprovechar la es-
tructura combinatoria subyacente a las relaciones de Plücker; Eisenbud llamó straight-
ening laws (literalmente ”leyes de enderezamiento”, aunque en esta introducción nos
referiremos a ellas como ”reglas de reescritura”) a las relaciones con restricciones com-
binatorias similares, y definió la clase de Álgebras con Reglas de Reescritura (a partir
de ahora ASLs por su sigla en inglés), axiomatizando el análisis de Hodge.

En base a estos y otros resultados de la Teorı́a de Monomios Estándar, Gonciulea
y Lakshmibai [GL96] encontraron una deformación de las grassmanianas clásicas en
variedades tóricas afines, con el objetivo explı́cito de estudiar las propiedades estables
por deformación de las variedades originales a través de sus degeneraciones tóricas2.
En términos puramente algebraicos esto se corresponde con definir una filtración sobre
el álgebra de coordenadas homogéneas de las inmersiones de Plücker de las grassma-
nianas de forma que el álgebra graduada asociada sea un álgebra de semigrupo. Esta
construcción fue generalizada después a ciertas variedades de Schubert en artı́culos
de R. Chirivi [Chi00], R. Dehy y R. Yu [DY01], y finalmente por P. Caldero [Cal02] a
todas las subvariedades de Schubert de la variedad de banderas completas.

1Una muestra de esto es que el libro ”Flag Varieties” [BL09], cuyo objetivo principal es presentar
los resultados más básicos del estudio de las variedades de bandera, define qué es una grassmaniana
después de ciento cincuenta páginas de preliminares.

2Una variedad tórica es una variedad algebraica con un toro denso, cuya acción sobre sı́ mismo se
extiende a toda la variedad.
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En el artı́culo [LR06], T. Lenagan y L. Rigal definieron la clase de quantum graded
ASLs (Álgebras graduadas cuánticas con leyes de reescritura, para nosotros simple-
mente ASL cuánticas) con el objetivo de estudiar las deformaciones cuánticas de las
grassmanianas de tipo A y sus subvariedades de Schubert. Las ASL cuánticas son
una versión no conmutativa de las ASL: a las leyes de reescritura clásicas se agre-
gan ciertas leyes de conmutación, con restricciones combinatorias muy similares a las
de aquellas. El programa original de esta tesis era demostrar que esta estructura
combinatoria se puede utilizar para adaptar el método de degeneración de Gonci-
ulea y Lakshmibai y ası́ continuar con el estudio de las subvariedades de Richardson
de las grassmanianas cuánticas, principalmente sus propiedades de regularidad ho-
mológicas, y eventualmente generalizar este método a otras variedades de banderas
cuánticas. Las propiedades de regularidad en las que estamos interesado son las de
AS-Cohen-Macaulay, AS-Gorenstein y AS-regular, generalizaciones de las nociones
clásicas de Cohen-Macaulay, Gorenstein y regular para anillos conmutativos locales,
(ver el capı́tulo 3 para la definición de estas propiedades) y la de poseer un complejo
dualizante balanceado (ver capı́tulo 4).

La ejecución de este programa puede dividirse en tres etapas. La primera fue
mostrar que el método de degeneración era adecuado para el estudio de las propieda-
des homológicas que nos interesan. La solución de este problema resultó ser técnica
pero directa. El contexto es el siguiente: partimos de un álgebra graduada (nuestra
”variedad no conmutativa”) con una filtración por espacios vectoriales graduados, y
queremos estudiarla a partir de su álgebra graduada asociada (nuestra ”variedad de-
generada”). Notar que el álgebra graduada asociada es bi-graduada: la primera com-
ponente de la bi-graduación proviene del hecho de que es un álgebra graduada aso-
ciada, y la segunda de la graduación del álgebra original, que permanece precisamente
porque las capas de nuestra filtración son subespacios graduados. Demostramos la ex-
istencia de una sucesión espectral que relaciona los funtores Ext del álgebra graduada
asociada con los de la original, que además es compatible con ambas graduaciones.
Los principales resultados son el Teoremas 2.4.8, que describe la sucesión espectral, y
los Teoremas 3.2.13 y 4.2.12 donde se demuestra que las propiedades de regularidad
homológica que nos interesan se transfieren de la variedad degenerada a la original.

El paso siguiente fue encontrar las filtraciones adecuadas para las variedades de
banderas cuánticas. Esta fue la etapa más sencilla. Ya en su trabajo [Cal02], P. Caldero
demuestra la existencia de una degeneración de las variedades de Schubert de la va-
riedad de banderas completas filtrando la variedad de banderas completas cuántica
y demostrando que esta filtración es compatible con la especialización al caso clásico.
Podrı́amos decir que las variedades de banderas cuánticas estaban simplemente es-
perando ser degeneradas. El método de Gonciulea y Lakshmibai requiere de un poco
más de trabajo para ser adaptado al caso cuántico, pero casi todos los resultados nece-
sarios se encuentran en los artı́culos [LR06] y [LR08]. Nos interesaba adaptar ambos
métodos dado que el enfoque de Caldero funciona para las variedades de Schubert
cuánticas arbitrarias, pero solamente sobre cuerpos de caracterı́stica cero y parámetro
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trascendentes sobre Q, mientras que el de Gonciulea y Lakshmibai funciona solo para
variedades de Richardson de grassmanianas de tipo A, pero en cuerpos de cualquier
caracterı́stica y con parámetro de deformación arbitrario. Los resultados principales
son el Teorema 6.1.5, sobre la degeneración de las variedades de Richardson cuánticas
de las grassmanianas de Tipo A, y el Corolario 6.2.4 sobre la degeneración de las
variedades de Schubert de las variedades de banderas arbitrarias.

La última etapa fue el estudio de las variedades degeneradas. Este resultó ser
el paso más complicado, y la mayor parte de la tesis está dedicada a desarrollar las
herramientas necesarias para ello. Como dijimos antes, las variedades de banderas
cuánticas y sus variedades asociadas efectivamente degeneran, pero ¿qué se obtiene al
final de este proceso? La respuesta es que uno obtiene un análogo cuántico de las va-
riedades tóricas que se obtenı́an al degenerar las variedades de banderas clásicas (qué
más si no...). Una variedad tórica afı́n es el espectro de un álgebra de semigrupo k[S],
donde S es un subsemigrupo finitamente generado de Zr+1, con r ≥ 0; estos semigru-
pos son llamados afines. Las variedades tóricas afines cuánticas son deformaciones no
conmutativas de las álgebras de estos semigrupos; merecen este nombre porque tienen
un ”toro cuántico denso”, es decir que si invertimos todos los elementos homogéneos
no nulos de este álgebra, que resultan ser normales y regulares, obtenemos un toro
cuántico3.

Fijemos un semigrupo afı́n S y consideremos su álgebra de semigrupo k[S], donde
k es un cuerpo cualquiera (si el cuerpo no es algebricamente cerrado entonces puede
haber más variedades tóricas además de los espectros de áglebras de semigrupos).
Dado un 2-cociclo sobre S con coeficientes en k×, que notamos α, podemos construir
una variedad tórica afı́n cuántica que notamos kα[S]; de esta manera se obtienen todas
las variedades tóricas afines cuánticas, la demostración de este hecho se encuentra en
el capı́tulo 5. Dado que estamos considerando al álgebra k[S] como el anillo de co-
ordenadas homogéneas de una variedad proyectiva, este posee una graduación natu-
ral sobre N, y las propiedades en las que nos interesamos (Cohen-Macaulay, Goren-
stein, regularidad, etc.) son propiedades de la categorı́a de k[S]-módulos Z-graduados,
ModZ k[S]. Las propiedades análogas para álgebras no conmutativas, presentadas en
los capı́tulos 3 y 4, dependen de la categorı́a ModZ kα[S] (el álgebra kα[S] tiene el mismo
espacio vectorial graduado subyacente que k[S]). En este momento nos encontramos
frente a un problema porque no conocemos ninguna forma de transferir información
entre las categorı́as ModZ k[S] y ModZ kα[S] directamente.

Sin embargo las álgebras k[S] y kα[S] tienen una Zr+1-graduación, más fina que
la original, y podemos considerar las categorı́as de módulos Zr+1-graduados sobre
ellas. Por un teorema de J. Zhang, las categorı́as ModZ

r+1
k[S] y ModZ

r+1
kα[S] son

isomorfas. A continuación, tomando una construcción debida a A. Polishchuk y L.
Positselski [PP11], en la que a cada morfismo ϕ : Zr+1 −→ Z le asignan tres funtores

3Señalamos que no somos los primeros en considerar estos objetos. En el preprint [Ing], C. Ingalls
demuestra resultados similares trabajando sobre cuerpos algebraicamente cerrados usando técnicas muy
distantas a las nuestras.
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ϕ!,ϕ∗ : ModZ
r+1
k −→ ModZ k y ϕ∗ : ModZ k −→ ModZ

r+1
k, llamados funtores de cambio

de graduación, que inducen funtores correspondientes entre las categorı́as de k[S] y
kα[S]-módulos graduados. Ası́ obtenemos el siguiente diagrama:

ModZ
r

k[S]
..

ϕ∗




ϕ!

��

ModZ
r

kα[S]nn

ϕ!




ϕ∗
��

ModZ k[S]

ϕ∗

OO

ModZ kα[S]

ϕ∗

OO

Los funtores de cambio de graduación son exactos, y ϕ∗ es adjunto a derecha de ϕ!

y a izquierda de ϕ∗, lo que permite transferir mucha información entre las categorı́as
de objetos Zr+1 y Z-graduados. Por ejemplo, demostramos que la dimensión global y
la dimensión inyectiva de k[S] (o de kα[S]) pueden leerse en ambas categorı́as. Otros
invariantes más sutiles (dimensión local finita, propiedad χ) también pueden leerse al
nivel de la categorı́a de módulos Zr+1-graduados.

Vemos entonces que si bien no hay un camino a través del cual transferir la infor-
mación directamente entre ModZ k[S] y ModZ kα[S], podemos construir uno pasando
por las categorı́as ModZ

r+1
k[S] y ModZ

r+1
kα[S]. En este caso el principio general de

la estabilidad de las propiedades homológicas por deformación se puede expresar de
manera muy concreta: toda propiedad que pueda leerse en la categorı́a de módulos
Zr+1-graduados es invariante por deformación por 2-cociclos. Los funtores de cam-
bio de graduación son una herramienta muy útil para entender cómo se refleja una
propiedad Z-graduada al nivel Zr+1-graduado. El principal resultado en este sentido
es la Proposición 5.2.12, donde se resumen las propiedades de regularidad de las va-
riedades tóricas cuánticas.

Después de este resumen global de la estrategia, señalamos que el principal resul-
tado de la tesis es el Corolario 5.3.8, que afirma que las álgebras con degeneraciones
tóricas, en particular las variedades de banderas cuánticas, heredan las propiedades
de regularidad homológicas de las variedades tóricas clásicas asociadas, las cuales a
su vez dependen únicamente del semigrupo subyacente.

A continuación detallamos los contenidos de cada capı́tulo.

El capı́tulo 1 incluye algunos resultados clásicos de álgebra homológica y teorı́a de
semigrupos. El objetivo de este capı́tulo es servir de referencia para los resultados más
utilizados en capı́tulos poseriores y fijar notación a ser usada en el resto de la tesis.

El capı́tulo 2 trata sobre k-álgebras graduadas sobre un grupo cualquiera G. Fi-
jada una k-álgebra graduada A, primero recordamos los resultados generales sobre la
categorı́a de A-módulos G-graduados, que notamos ModGA. A continuación recor-
damos varias construcciones sobre estas categorı́as. La primera es la de los twists
de Zhang, una generalización de las torciones por 2-cociclos que a partir de A y un
cierto sistema de automorfismos deA comoG-espacio vectorial graduado produce una
nueva álgebra τA, con el mismo espacio vectorial graduado subyacente que A y cate-
gorı́a de módulos G-graduados isomorfa a la de A, pero una multiplicación distinta.
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Luego definimos los funtores de cambio de graduación en este contexto general, donde
cualquier morfismo de grupos ϕ : G −→ H induce una H-graduación en A y funtores
como los mencionados anteriormente. Recordamos también la definición de funtores
de torsión asociados a un ideal graduado a, y estudiamos invariantes homológicos del
par (A, a); utilizando los funtores de cambio de graduación demostramos que estos
invariantes puede leerse tanto en la categorı́a ModGA como en ModHA. Terminamos
el capı́tulo con la definición de las álgebras GF, es decir álgebras N-graduadas con una
filtración cuyas capas son subespacios vectoriales graduados. Redemostramos algunos
resultados clásicos de la teorı́a de álgebras filtradas en este contexto, llegando final-
mente a la sucesión espectral que relaciona los espacios Ext graduados del álgebra GF
con los de su álgebra graduada asociada.

En el capı́tulo 3 nos restringimos a trabajar sobre álgebras Nr+1-graduadas conexas,
es decir, de componente (0, . . . , 0) igual a k. Después de repasar las propiedades
principales de las álgebras Nr+1-graduadas conexas (completamente análogas a las de
las N-graduadas conexas) recordamos la definición de las propiedades de AS-Cohen-
Macaulay, AS-Gorenstein y AS-regular para álgebras N-graduadas conexas, y pro-
ponemos análogos Nr+1-graduados. Demostramos que estas propiedades son inva-
riantes por cambio de graduación (es decir que un álgebra A tiene alguna de estas
propiedades si y solo si el álgebra ϕ!(A) la tiene) y que son estables por deformación
(es decir que si el álgebra graduada asociada tiene alguna de estas propiedades, el
álgebra original también la tiene).

El capı́tulo 4 se ocupa de una noción de regularidad mucho más técnica, la de
poseer un complejo dualizante balanceado. Un complejo dualizante es un objeto de la
categorı́a derivada D(ModZ

r+1
A⊗A◦), ası́ que comenzamos repasando generalidades

sobre categorı́as derivadas (estos resultados solo se utilizan en este capı́tulo). A con-
tinuación adaptamos la definición de complejos dualizantes al contexto de álgebras
Nr+1-graduadas y señalamos muchas de sus propiedades básicas. Demostramos que
la propiedad de poseer un complejo dualizante balanceado es invariante por cam-
bio de graduación. Demostramos además en el Corolario 4.2.8 un criterio de exis-
tencia de complejos dualizantes balanceados idéntico al de M. Van den Bergh (ver
[VdB97, Proposition 6.3]) para el caso Nr+1-graduado conexo, que deducimos del cri-
terio para álgebras N-graduadas y del hecho de que poseer un complejo dualizante
balanceado es invariante por cambio de graduación. Con este criterio demostramos
que poseer un complejo dualizante balanceado también es una propiedad invariante
por twists de Zhang y estable por deformación.

En el capı́tulo 5 presentamos la noción de una degeneración tórica cuántica. Co-
menzamos con un repaso general de las propiedades de las variedades tóricas afines,
y definimos las variedades tóricas afines cuánticas como las álgebras Zr+1-graduadas
cuyo anillo de fracciones homogéneas es isomorfo a un toro cuántico. Clasificamos
las variedades tóricas afines cuánticas y probamos que esta clase coincide con la de
los twists de Zhang Zr+1-graduados de las álgebras de semigrupo afines. Por los
resultados demostrados en los capı́tulos anteriores, las propiedades de una variedad
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tórica afı́n cuántica son las mismas que las de su correspondiente variedad tórica afı́n
clásica. Luego presentamos la noción de una S-álgebra, donde S es un semigrupo
afı́n positivo (es decir, contenido en Nr+1). Los semigrupos afines positivos tienen una
única presentación minimal, y una S-álgebra es un álgebra con relaciones cuya forma
está dictada por esta presentación minimal, siguiendo el modelo de las ASLs. Toda
S-álgebra graduada es una álgebra GF, y su álgebra graduada asociada es isomorfa a
una variedad tórica afı́n cuántica regraduada. Una vez más usamos los resultados de
los capı́tulos anteriores para deducir las propiedades homológicas de las S-álgebras
a partir de las propiedades de las álgebras de semigrupo conmutativas. Concluimos
definiendo dos familias particulares de S-álgebras, las ASL cuánticas simétricas y las
álgebras con una S-base homogénea.

Finalmente en el capı́tulo 6 recordamos la definición de las variedades de ban-
deras cuánticas y de sus subvariedades de Schubert y Richardson. Probamos que las
grassmanianas de tipo A y sus subvariedades de Schubert y Richardson son ASLs
cuánticas simétricas sobre un cuerpo cualquiera y un parámetro de deformación ar-
bitrario, y que las variedades de Schubert de variedades de banderas arbitrarias, son
álgebras con S-bases homogéneas cuando el cuerpo de base es de caracterı́stica cero y
el parámetro de deformación es trascendente sobre Q.
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Introduction

The results in this thesis belong to the theory informally known as noncommutative
projective geometry, that is, the study of not necessarily commutative N-graded alge-
bras by applying techniques borrowed from the commutative world. The name arises
from the fact that commutative noetherian N-graded algebras correspond to projective
varieties over the ground field, which gives the subject a distinctively geometric flavor.

A typical example of a classical object that guides the study of a quantum ana-
logue are flag varieties and the associated Schubert and Richardson varieties. Their
noncommutative analogues4 are called quantum flag varieties. Following the general
principle that ”homological properties are stable under quantization”, one is led to
consider these properties for quantum flag varieties. We expect them to be analogous
in some sense to those of (coordinate rings of) flag varieties, but in order to prove that
this is the case we have to adapt our techniques to the quantum setting.

Flag varieties are widely considered some of the most important examples of pro-
jective varieties. Their study lies at the intersection of algebraic geometry, representa-
tion theory (of finite groups, algebraic groups, Lie algebras) and combinatorics.5 At
the same time, their topology and geometry is well understood in terms of its Schu-
bert and Richardson subvarieties (a Richardson variety is the intersection of a Schubert
variety with an opposite Schubert variety). Quantum flag varieties were introduced
independently by Ya. Soı̆bel′man in [Soı̆92] and by V. Lakshmibai and N. Reshetikin
in [LR92]. See chapter 6 for the definition of quantum flag, Schubert and Richardson
varieties.

The systematic study of the homogeneous coordinate rings corresponding to the
Plücker embedding of grassmannians in projective space was started by Hodge and
continued by de Concini, Eisenbud and Procesi in [DCEP] (see the introduction of this
book for the history of the subject), and eventually gave birth to the still active field
of Standard Monomial Theory, which extends Hodge’s work to the study of arbitrary
flag varieties and their Schubert subvarieties. The idea behind this approach is to take
advantage of strongly combinatorial conditions in the Plücker relations; Eisenbud calls

4That is, quantizations of their homogeneous coordinate rings.
5It seems quite telling that a recent book dedicated to the study of flag varieties only introduces

grassmannians after a hundred and fifty pages of preliminaries.
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relations obeying such combinatorial constraints straightening relations, and introduced
the notion of an Algebra with Straightening Laws (henceforth ASL) as an abstraction
of Hodge’s analysis.

Applying these and other results from Standard Monomial Theory, Gonciulea and
Lakshmibai found a deformation of classical grassmannians into toric varieties in
[GL96], with the explicit objective of studying deformation invariant properties of
the former by analyzing the latter; in purely algebraic terms this amounted to find-
ing a filtration on the corresponding homogeneous coordinate ring whose associated
graded ring is a semigroup ring. This construction was later generalized by several
people such as R. Chirivi [Chi00], R. Dehy and R. Yu [DY01] and P. Caldero [Cal02].

In the article [LR06] T. Lenagan and L. Rigal introduced the notion of a quantum
graded algebra with a straightening law in order to study quantum grassmannians and
their quantum Schubert varieties. This is a noncommutative version of classical ASLs
in the sense that, along with straightening relations, the algebras are also endowed
with commutation relations which obey similar combinatorial constraints. The original
program for this thesis was to prove that this combinatorial structure could be used to
adapt the degeneration method of Gonciulea and Lakshmibai to the study of quantum
grassmannians, mainly of their homological regularity properties (see chapters 3 and
4 for details), and eventually to more general quantum flag varieties.

The task was divided in three stages. The first was to show that the degeneration
method was well suited for the study of the homological properties we were interested
in. This turned out to be a straightforward, though slightly technical, question: there
is a spectral sequence relating the degenerated noncommutative projective varieties
to the original ones. Since we are filtering a graded algebra the associated graded
algebra has two gradings, one arising from the filtration and the other coming from
the grading of the original algebra. The fact that the mentioned spectral sequence is
compatible with both gradings is essential for the proofs.

The next step was to prove that quantum flag and Schubert varieties have an ad-
equate filtration, but this turned out to be the simplest part of the problem. Caldero
proved in [Cal02] that the complete flag varieties and their Schubert varieties have
toric degenerations by filtering the quantum flag variety and then showing that this
filtration behaves well with respect to specialization, so in a sense quantum flag va-
rieties were waiting to be degenerated. Gonciulea and Lakshmibai’s method requires
more work in order to be adapted to the quantum setting, but most of this is already
done in [LR06]. We extended both methods since Caldero’s proof works for all quan-
tum Schubert varieties of arbitrary quantum flag varieties, but under the hypothesis
that the underlying field is a transcendental extension of Q, while Lakshmibai and
Gonciulea’s idea works in arbitrary characteristic, but only for quantum Schubert and
Richardson subvarieties of quantum grassmannians in type A.

The last step, the study of the degenerated varieties, turned out to be more com-
plicated and the technical bulk of the thesis is dedicated to developing the necessary
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tools. As we said before, quantum flag varieties and their associates do degenerate,
but into what? Since classical flag varieties degenerate into affine toric varieties, the
answer is: into quantum affine toric varieties (of course). An affine toric variety is the
spectrum of a semigroup algebra k[S] where S is a finitely generated subsemigroup
of Zr+1 for some r ≥ 0; such semigroups are called affine. Quantum affine toric vari-
eties are noncommutative deformations of semigroup algebras; they are worthy of the
name since they have a ”dense quantum torus”, in the sense that localizing at the set
of its homogeneous elements, which happen to be normal and regular, one obtains a
quantum torus.6.

Consider an affine semigroup S and its semigroup algebra k[S], where k is a field
(if k is not algebraically closed then there may be other toric varieties aside from the
spectra of semigroup rings). Given a 2-cocycle over S with coefficients in k× which
we denote α, there is a corresponding quantum toric variety denoted kα[S] and all
quantum affine toric varieties are of this form, see chapter 5 for details. Since we
are thinking of k[S] as the homogeneous coordinate ring of a projective variety, it is
naturally N-graded, and the properties we are interested in (Cohen Macaulayness,
Gorensteinness, smoothness...) are read from the category of Z-graded k[S]-modules
ModZ k[S]. The analogous properties for noncommutative algebras are introduced in
chapters 3 and 4, and are read from the category ModZ kα[S], with the N-grading of
kα[S] induced by that of k[S]. We run into a problem here since there is a priori no link
between the categories ModZ k[S] and ModZ kα[S].

However the algebras k[S] and kα[S] are also Zr+1-graded so we may consider Zr+1-
graded modules over them. By a theorem due to J. Zhang, the categories ModZ

r+1
k[S]

and ModZ
r+1
kα[S] are isomorphic. In order to relate Z-graded and Zr+1-graded ob-

jects we borrow a construction due to A. Polishchuk and L. Positselski from [PP11],
where to every group morphism ϕ : Zr+1 −→ Z we assign three functors, ϕ!,ϕ∗ :

ModZ
r+1
k −→ ModZ k and ϕ∗ : ModZ k −→ ModZ

r+1
, known as the change of grading

functors which induce corresponding functors between the categories of graded k[S]
and kα[S] modules. We obtain a diagram as follows:

ModZ
ir+1 k[S]

..

ϕ∗
��

ϕ!

��

ModZ
r+1
kα[S]nn

ϕ!

��
ϕ∗
��

ModZ k[S]

ϕ∗

OO

ModZ kα[S]

ϕ∗

OO

The change of grading functors are exact, and furthermore ϕ∗ is right adjoint to ϕ!

and left adjoint to ϕ∗, which allows to transfer a lot of information between the cat-
egories of Z-graded and Zr+1-graded modules. For example, they allow us to prove
that the global and injective dimension of k[S] (or kα[S]) can be checked in either cate-

6Incidentally, we were not the first to consider such objects. In the widely circulated preprint [Ing], C.
Ingalls finds similar results over algebraically closed fields, although the techniques used there are quite
different.
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gory. More subtle invariants (property χ, finite local dimension) are also shown to be
readable at the Zr+1-graded level.

So even though there is no direct road from ModZ k[S] to ModZ kα[S], there is a way
to transfer information from one category to the other. In this instance the general
principle that ”homological properties are stable under quantization” can be given a
very concrete meaning: it is enough for the homological property, usually read from
the category ModZ k[S], to be visible at the level of Zr+1-graded modules since at these
level both algebras behave identically. The change of grading functors provide a good
tool to see how a Z-graded property reflects in the Zr+1-graded context.

We now give an outline of the structure of the thesis:

Chapter 1 sets notation that will be used for the rest of the thesis and recalls some
general results for further reference.

In chapter 2 we work with algebras graded over an arbitrary group G. After re-
viewing the general properties of the category of G-graded modules, we introduce
several constructions. We first recall some results on Zhang twists, which are cer-
tain systems of graded automorphisms which allow to ”twist” the multiplication of
a G-graded algebra A to obtain a new algebra τA, whose category of G-graded mo-
dules is isomorphic to that of A. Then we introduce the change of grading func-
tors, and finally to each G-graded ideal a of A we associate the a-torsion functor
Γa : ModGA −→ ModGA, and prove that it commutes with twisting of modules and
with ϕ! and ϕ∗. From this we deduce that several cohomological invariants of the pair
(A, a) are invariant by twisting and by change of grading. We finish the chapter by
re-proving several known results for filtered algebras in the case where the original
algebra is graded and the filtration is by graded subspaces.

In chapter 3 we recall the notions of AS-Cohen-Macaulay, AS-Gorenstein and AS-
regular algebras, which were originally defined for connected N-graded algebras. We
propose analogous conditions forNr+1-graded algebras and show that these conditions
are stable by change of grading and by twisting.

Chapter 4 is dedicated to a much more technical notion, that of a dualizing com-
plex. Since this is an object of the derived category D(ModZ

r+1
A⊗A◦), we begin with

some general results on derived categories and extend the change of grading functors
to this setting. After introducing dualizing complexes, we prove that the property of
having a (balanced) dualizing complex is invariant by twists and also by change of
grading.

In chapter 5 we introduce quantum toric degenerations. We begin with a general
discussion of quantum affine toric varieties and characterize them as twists of affine
semigroup algebras, so by the results of previous chapters they inherit good homo-
logical properties from the corresponding commutative objects. We then introduce a
class of connected N-graded algebras, which we call S-algebras, with a presentation
modelled on that of an affine semigroup S in the spirit of quantum graded ASLs. An
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S-algebra has a natural filtration whose associated graded ring is a quantum toric vari-
ety, so it inherits the nice homological properties of the latter. We finish by presenting
two subfamilies of the class of S-algebras, symmetric quantum ASLs and algebras with
an S-basis.

Finally in chapter 6 we review the definitions of quantum flag varieties and their
Schubert and Richardson varieties. We prove that grassmannians and their Schubert
and Richardson varieties in type A are symmetric quantum ASLs for an arbitrary field
and quantum parameter. Assuming the underlying field is a transcendental extension
of Q, we also show that arbitrary quantum flag and Schubert varieties have S-bases,
and hence they degenerate to quantum affine toric varieties.
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Chapter 1

Generalities

In this chapter we fix the notation and some general results of homological
algebra we will use in the sequel.

We denote by Z,Q,R,C the ring of integers, and the fields of rational, real and
complex numbers respectively. We denote by N the set of natural numbers, which
includes 0, and by N∗ the set of positive natural numbers. Given a finite set I, we
denote its cardinality by |I|.

Throughout this document k denotes a field. All vector spaces are k-vector spaces
and unadorned tensor products are always over k. Unless explicitly stated, all algebras
are unital associative k-algebras. Modules will always be left modules unless otherwise
specified. Ideals on the other hand will be two-sided ideals.

Given n ∈ N and O ∈ {k,N,Z,Q,R,C, . . .}, we denote by ei ∈ On the n-uple with
a 1 in the i-th coordinate and 0’s in all others. The set {e1, . . . , en} is called simply the
canonical basis of On.

1.1 Semigroups

A semigroup is a set S with an associative binary operation and a neutral element.
A semigroup morphism is a function between two semigroups that is compatible with
the operations and neutral elements in the obvious sense. Even though many of the
statements in this section hold for arbitrary semigroups, we will use additive notation
because it is better suited for the subject at hand. Also, all the semigroups that appear
in the sequel are commutative, and this will save us from translating multiplicative
notation to additive notation later on.

Definition 1.1.1. Given a semigroup S, a congruence on S is an equivalence relation
R ⊂ S× S such that for every s ∈ S and every (t, t ′) ∈ R, it is (s+ t, s+ t ′) ∈ R and
(t+ s, t ′ + s) ∈ R.
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Given a semigroup S and a congruence R on it, the quotient semigroup S/R is defined
as the set of equivalence classes of this relation with the operation [s] + [s ′] = [s+ s ′],
where [s] denotes the class of s in S/R. There is a semigroup morphism from S to S/R,
with the obvious universal property. Given a set L ⊂ S× S, the set R(L) of congruence
relations containing L is nonempty, so we define the congruence relation generated by L
as 〈L〉 =

⋂
R∈R(L) R. For more details, see [CP61, section 1.5].

Given a set X, the free semigroup on X, which we denote by F(X), is the set of words
on X with concatenation as the operation. A semigroup is said to be finitely generated
if it is isomorphic to a semigroup of the form F(X)/R with X finite and R a congruence
on F(X). If R is generated by a finite subset L, then the semigroup is said to be finitely
presented.

A group G is called the enveloping group of S if there is a semigroup morphism
i : S −→ G such that for every group H and every semigroup morphism f : S −→ H,
there exists a unique morphism f̃ : G −→ H such that f = f̃ ◦ i.

Any semigroup has an enveloping group; it can be presented as the free group
generated by the underlying set of S divided by the normal semigroup generated by
all the elements of the form s+ s ′ − s ′′, with s ′′ = s+ s ′ in S. Since the enveloping
group solves a universal problem, it is unique up to isomorphism.

A semigroup is said to be left cancellative if s+ s ′ = s+ s ′′ implies s ′ = s ′′. Right
cancellative semigroups are defined analogously. A cancellative semigroup is both left
and right cancellative. A commutative semigroup S is cancellative if and only if the
canonical morphism from S into its enveloping group is injective, see [CP61, section
1.10].

1.2 Homological matters

We assume the general theory of derived functors and homological algebra as devel-
oped in [Wei94]. We quote some well known results for future reference.

Throughout this section A,B, C and D denote abelian categories. We use cohomo-
logical notation, i.e. increasing indices, for complexes over abelian categories. Given a
left, resp. right, exact functor F : A −→ B, for every i ≥ 0 we denote by RiF, resp. LiF,
the i-th right, resp. left, derived functor of F if it exists. We say that F reflects exactness
if given a complex A• of objects of A, F(A•) is exact if and only if A• is exact.

Given a diagram of functors and abelian categories as follows

A F //

S

��

B
T

��
C G // D,
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we will say that the diagram commutes if there exists a natural isomorphism T ◦ F ∼=
G ◦ S.

The following proposition recalls two classical results due to Grothendieck.

Proposition 1.2.1. If A has arbitrary coproducts, then it has arbitrary direct limits. If A has
arbitrary coproducts and a projective generator, and direct limits over A are exact, then A has
enough projective and injective objects.

Proof. See [Gro57, sections 1.8 - 1.10].

If A has enough projective, resp. injective, objects, then every object A of A has
a projective, resp. injective, resolution. The projective dimension of A, denoted by
pdimAA, is the minimal length of a projective resolution of A. The injective dimension
of A, denoted by injdimAA, is defined analogously.

Given left exact functors F : A −→ B and G : B −→ C, the derived functors of the
composition G ◦ F are related to the composition of the derived functors by a spectral
sequence. We will not use this result in all its generality, and instead prove a simple
special case for future reference.

Lemma 1.2.2. Suppose the categories A and B have enough injective objects. Let F : A −→ B
and G : B −→ C be two covariant left exact functors. If F is exact and sends injective objects
to G-acyclic objects, then Ri(G ◦ F) ∼= RiG ◦ F for all i ≥ 0.

Proof. Given an object A of A, choose an injective resolution A −→ I•. Since F is exact
and sends injective objects to G-acyclic objects, F(A) −→ F(I•) is a G-acyclic resolution
of F(A), so by definition Ri(G ◦ F)(A) ∼= Hi(G(F(I•))) ∼= RiG(F(A)). The naturality of
this isomorphism is a consequence of the general theory of δ-functors.

We say that a functor F̃ : A −→ B extends F : C −→ D, or that F induces F̃, if there is
a commutative diagram of functors as follows

A F̃ //

O

��

B
O ′

��
C F // D,

where O and O ′ reflect exactness.

Proposition 1.2.3. Suppose F̃ extends F. If F is left exact then F̃ is also left exact, and if
furthermore O sends injective objects to F-acyclic objects, then for every i ≥ 0 the following
diagram commutes.

A RiF̃ //

O
��

B
O ′

��
C RiF // D.
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Proof. Since F is left exact and O reflects exactness, F ◦O = O ′ ◦ F̃ is left exact. Now
since O ′ reflects exactness, F̃ is left exact. Finally, since O is exact, Ri(O ′ ◦ F̃) =
O ′ ◦ RiF̃, and since O sends injective objects to F-acyclic objects, Lemma 1.2.2 implies
that Ri(O ′ ◦ F̃) = Ri(F ◦O) ∼= RiF ◦O.

Given two functors S : A −→ B and T : B −→ A, we say that (S, T) is an adjoint pair
of functors, or that S is a left adjoint for T , or that T is a right adjoint for S, if for every
pair of objects A of A and B of B there exists a natural isomorphism

HomB(S(A),B) ∼= HomA(A, T(B)).

The following is a well known characterization of adjoint pairs of functors.

Proposition 1.2.4. Let S : A −→ B and T : B −→ A be two functors. The following
conditions are equivalent:

1. The pair (S, T) is a pair of adjoint functors.

2. There exist natural transformations η : IdA ⇒ TS and ε : ST ⇒ IdB, such that for every
object A of A and every object B in B the transformations

S(A)
S(η) // STS(A)

εS // S(A) T(B)
ηT // TST(B)

T(ε) // T(B)

are identities.

Proof. See [Wei94, Theorem A.6.2].

The natural transformations η and ε of Proposition 1.2.4 are called the unit and
counit of the adjoint pair (S, T), respectively.

Next we summarize some general properties of adjoint pairs of functors.

Proposition 1.2.5. Let S : A −→ B and T : B −→ A be two functors such that (S, T) is an
adjoint pair. Then

1. The functor S is right exact and preserves direct limits. The functor T is left exact and
preserves inverse limits.

2. If T is exact then S sends projective objects to projective objects. If S is exact then T sends
injective objects to injective objects.

3. If A and B have enough projective objects, resp. injectives, and S, resp. T , is exact,
then for every object A of A, resp B of B, we have pdimB S(A) ≤ pdimAA, resp.
injdimA T(B) ≤ injdimB B.

Proof. 1. See [Wei94, Theorems 2.6.1 and 2.6.10].
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2. Let P be a projective object of A. By hypothesis, there is an isomorphism
HomB(S(P),−) ∼= HomA(P, T(−)). Since T is exact by hypothesis, this is an exact
functor, which implies that S(P) is a projective object of B. A similar reasoning
works for the other case.

3. Let A be any object of A, and let P• −→ A be a projective resolution of A of
length pdimAA. Since S is exact, the previous item implies that the complex
S(P•) −→ S(A) is a projective resolution of S(A) in B of length pdimAA, which
proves the desired inequality. A similar argument works for T and injective
dimension.
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Chapter 2

Graded and filtered algebras

In this chapter we study G-graded algebras, where G is an arbitrary group.
In the next chapters we will only work with Zr+1-graded algebras for some
r ≥ 0, but we prove here several results which are valid in this general
context.

The chapter is organized as follows: section 2.1 reviews the main de-
finitions and basic properties of G-graded algebras and the category of
G-graded modules. In section 2.2 we associate to any group morphism
ϕ : G −→ H three functors between the categories of G and H-graded mo-
dules over a G-graded algebra and study their homological properties, and
in section 2.3 we associate to each graded ideal a graded torsion functor.
All these functors feature prominently in the following chapters. Finally
Section 2.4 extends some classical results from the theory of filtered alge-
bras to N-graded algebras filtered by graded vector spaces.

Throughout this chapter, G denotes a group and G◦ denotes its opposite group. Also
for every algebra A we denote its opposite algebra by A◦.

2.1 Graded rings and modules

In this section we review some basic facts on graded algebras and graded modules
over them. We follow the presentation given in [NVO04].

Definition 2.1.1. A G-graded algebra is an algebra A together with a set of vector sub-
spaces {Ag | g ∈ G}, such that A =

⊕
g∈GAg and AgAg ′ ⊂ Agg ′ for all g,g ′ ∈ G.

If A is a G-graded algebra, a G-graded A-module, or simply a graded module if
A and G are clear from the context, is an A-module M together with a set of vector
subspaces {Mg | g ∈ G}, such that M =

⊕
g∈GMg and AgMg ′ ⊆Mgg ′ for all g,g ′ ∈ G.
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We consider k to be a G-graded algebra with k1G = k.

For the rest of this section A denotes a G-graded algebra. Setting A◦g = Ag−1 for
every g ∈ G gives A◦ the structure of a G◦-graded algebra. Thus a right G-graded
A-module is the same as a left G◦-graded A◦-module, and all definitions and results
in the sequel apply to right graded modules.

2.1.1 The category of graded modules

In this subsection we review some facts on the category of G-graded modules over A.
For proofs and more details, see [NVO04, Chapter 2].

Let M be a G-graded A-module. For every g ∈ G the subspace Mg ⊂ M is
called the homogeneous component of degree g of M. We say that M is locally finite
if Mg is finite dimensional for all g ∈ G. The support of the module M is the set
suppM = {g ∈ G | Mg 6= 0}. If the support of A is contained in a subsemigroup
S ⊂ G, we will make a slight abuse of notation and say that A is an S-graded algebra.

An element m ∈ M is said to be homogeneous if m ∈ Mg for some g ∈ G; in this
case we say that g is the degree of m, which we denote by degm. Any element m ∈M
can be written in a unique way as a finite sum

∑
g∈Gmg, where mg is a homogeneous

element of degree g. The support of m is the set suppm = {g ∈ G | mg 6= 0}, and these
elements mg with g ∈ suppm are called the homogeneous components of m. Since the
support of any element is finite, M is finitely generated as an A-module if and only if
it has a finite set of homogeneous generators.

Let M be a G-graded A-module and let M ′ ⊂ M be a submodule. We say that
M ′ is a graded submodule if M ′ =

⊕
g∈GM

′ ∩Mg, or equivalently if M ′ has a set
of homogeneous generators. Setting M ′g = M ′ ∩Mg for every g ∈ G gives M ′ the
structure of a G-graded module. A graded ideal of A is an ideal that is also a graded
submodule of A.

The algebra A is said to be graded left noetherian if every graded left ideal of A
is finitely generated. If A is left noetherian and graded, then clearly it is graded
left noetherian. By [CQ88, Theorem 2.2], if G is a polycyclic-by-finite group then the
converse is also true, that is, if A is graded left noetherian then it is left noetherian.
Recall that a group G is said to be polycylic-by-finite if there exists a finite chain of
groups {e} = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G such that Gi /Gi+1 for all i and Gi+1/Gi is
either a finite group or isomorphic to Z.

Given two G-graded A-modules N and M, an A-linear morphism f : N −→ M is
said to be homogeneous of degree g if f(Ng ′) ⊆Mg ′g for all g ′ ∈ G. We denote by ModGA
the category of G-graded A-modules with homogeneous A-linear morphisms of de-
gree 1G, and by modGA the full subcategory of finitely generated objects of ModGA.
The direct sum of two G-graded A-modules has a natural G-graded module structure,
and so do kernels and cokernels of homogeneous morphisms, so ModGA is an abelian
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category. Given two objects M and N of ModGA we write HomGA(N,M) for the vector
space HomModGA(N,M).

Any f ∈ HomGA(N,M) induces a linear map fg : Ng −→Mg for every g ∈ G, which
we call its homogeneous component of degree g. Let K be another object of ModGA. A

sequence of morphisms K f
−→ N

f ′
−→M in ModGA is exact if and only if it is exact as a

sequence ofA-modules, if and only if its homogeneous components Kg
fg
−→ Ng

f ′g
−→Mg

form an exact sequence of vector spaces for all g ∈ G. In particular, f is a monomor-
phism if and only if each of its homogeneous components is a monomorphism, and
similar statements hold for epimorphisms and isomorphism.

Denote by O : ModGA −→ ModA the forgetful functor that sends each object M of
ModGA to its underlying A-module. By the discussion in the previous paragraph, the
functor O reflects exactness.

Lemma 2.1.2. Let A be a G-graded algebra.

1. The category ModGA has arbitrary direct and inverse limits.

2. The functor O is exact and has an exact right adjoint. In particular, it commutes with
direct limits and sends projective objects to projective objects.

3. Direct limits are exact in ModGA.

Proof. 1. By Proposition 1.2.1, it is enough to show that ModGA has arbitrary direct
sums and products. Given a family of objects M = {Mi}i∈I, for every g ∈ G we
define Sg =

⊕
i∈IM

i
g and Pg =

∏
i∈IM

i
g. Let S =

⊕
g∈G Sg and let P =

⊕
g∈G Pg.

Since S =
⊕
i∈IO(Mi), S has a natural A-module structure, and P is an A-

submodule of
∏
i∈IO(Mi). It is immediate that the previous decompositions

turn S and P into G-graded A-modules. The fact that S is a direct sum and P a
direct product for the familyM in ModGA can be checked directly.

2. See [NVO04, Theorem 2.5.1]. We prove a generalization of this result in Proposi-
tion 2.2.6.

3. Since O reflects exactness and commutes with direct limits, the result follows
from the fact that direct limits are exact in ModA.

For every g ∈ G we denote by M[g] the object of ModGA whose underlying A-
module is equal to M and whose homogeneous components are given by M[g]g ′ =
Mg ′g for every g ′ ∈ G. We refer to this new object as the g-shift of M. For any
morphism f ∈ HomGA(N,M), the morphism f[g] ∈ HomGA(N[g],M[g]) is the A-linear
map with homogeneous components f[g]g ′ = fg ′g. The functor −[g] : ModGA −→ ModGA
is an autoequivalence.
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An A-linear morphism f : N −→ M is homogeneous of degree g if and only if
f ∈ HomGA(N,M[g]). This allows us to consider homogeneous morphisms of arbitrary
degree as morphisms of ModGA, and inspires the following definition.

Definition 2.1.3. For any two objects N and M of ModGA, set

HomGA(N,M) =
⊕
g∈G

HomGA(N,M[g]) ⊆ HomA(O(N),O(M)).

The vector space HomGA(N,M) is thus a G-graded vector space, called the enriched
homomorphism space of ModGA.

A G-graded A-module M is said to be graded-free if it is isomorphic to a direct
sum of shifts of A. Graded-free modules are projective objects of ModGA and in
fact

⊕
g∈GA[g] is a projective generator of ModGA. By Proposition 1.2.1 and item 3

of Lemma 2.1.2, the category ModGA has enough projective and injective objects. It
is clear from Definition 2.1.3 that M is projective, resp. injective, in ModGA if and
only if the functor HomGA(M,−), resp. HomGA(−,M), is exact. We write pdimG

A M and
injdimG

A M for the projective and injective dimensions of M in ModGA, respectively. The
graded global dimension of A is the supremum of the projective dimensions of objects of
ModGA.

By abuse of notation, we also denote by O the forgetful functor from ModG k to
Modk. The following lemma is a well known result, see for example [NVO04, Corol-
lary 2.4.7].

Lemma 2.1.4. Let N and M be G-graded A-modules and suppose N is finitely generated.
Then

O(HomGA(N,M)) = HomA(O(N),O(M))

If A is left noetherian, there exist natural isomorphisms of vector spaces

O(RiHomGA(N,M)) ∼= ExtiA(O(N),O(M)).

We will generalize this result in Proposition 2.2.11.

2.1.2 Graded bimodules

It is a well known fact that a G-graded algebra A is a comodule algebra over the Hopf
algebra k[G], and that G-graded A-modules are relative (A,k[G])-Hopf modules, see
[Mon93, Example 8.5.3]. The tensor product over A of two relative (A,k[G])-Hopf
modules has a natural k[G]-comodule structure, that is, it is again G-graded. Given
a left G-graded A-module M and a right G-graded A-module N, the homogeneous
components of N⊗AM are given by

(N⊗AM)g =
〈
n⊗Am | n ∈ Ng ′ ,m ∈Mg ′′ such that g ′g ′′ = g

〉
for all g ∈ G.
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For any i ≥ 0, the i-th derived functor of the tensor product in ModGA is denoted
by TorAi . The usual adjunction is valid in ModGA, that is, if O is any G-graded vector
space then

HomGk (N⊗AM,O) ∼= HomGA(M,HomGk (N,O)).

For a proof of this fact see [NVO04, Proposition 2.4.9].

In particular, the enveloping algebra Ae = A⊗A◦ has a natural G-grading, so we
may consider G-graded Ae-modules, or equivalently G-graded A-bimodules. There
are obvious functors Λ : ModGAe −→ ModGA and P : ModGAe −→ ModGA◦ which
assign to every G-graded A-bimodule M its underlying left or right A-module, respec-
tively.

Lemma 2.1.5. The functors Λ and P reflect exactness, and send projective objects to projective
objects, and injective objects to injective objects.

Proof. It is clear from the definition that Λ reflects exactness. Consider Ae as a graded
Ae−A-bimodule. Given an Ae-bimoduleM, the G-graded vector-space HomGAe(A

e,M)
has a left A-module structure induced by the right A-module structure of Ae, and the
natural map HomGAe(A

e,M) −→ Λ(M) is an isomorphism of G-graded left A-modules.
In particular Λ has a left adjoint, given by Ae⊗A−. Since Ae is free over A, this functor
is exact, so by item 2 of Proposition 1.2.5, Λ sends injective objects to injective objects.
Again, since Ae is free over A, every projective Ae-module is projective as a left A-
module, so Λ maps projective objects to projective objects. An analogous argument
works for P.

Let B and C stand for either A or k. Let N be an A⊗ B◦-module and M a A⊗C◦-
module. Then the B ⊗ C◦-module structure of HomGA(N,M) is compatible with its
G-grading. This functor is different from the usual HomGA, since its domain is different.
However, the following proposition justifies in some measure the abuse of notation.

Proposition 2.1.6. Let B and C denote either A or k, and let N be an A⊗ B◦-module and M
be an A⊗C◦-module. We denote by O, resp O ′, the functor that sends A⊗B◦-modules, resp.
A⊗C◦-modules, to their underlying A-modules.

The G-graded B⊗C◦-module RiHomGA(N,M) is naturally isomorphic as a G-graded B-
module to RiHomGA(N,O ′(M)), as a G-graded C◦-module to RiHomGA(O(N),M), and as a
G-graded vector space to HomGA(O(N),O ′(M)).

Proof. Notice that when B = A, the functor O is equal to Λ, while for A = k it is simply
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IdGA. The following diagram commutes

ModGA⊗C◦
HomGA(N,−) //

O
��

ModG B⊗C◦

O ′

��
ModGA

HomGA(O(N),O ′(−))

// ModG k,

and we may apply Proposition 1.2.3 because in either case O sends injective A⊗ B◦-
modules to injective A-modules. The isomorphism along with the naturality on the
second variable follow from said Proposition. To obtain the naturality on the first
variable, consider the corresponding diagram leaving M fixed and follow the same
reasoning.

2.1.3 Zhang twists

In this subsection we review a construction by J. Zhang from [Zha96], where the reader
can find the missing proofs and further information. This construction can be seen as
a generalization of twisting graded algebras by 2-cocycles as defined in Section 5.2.1.
The main definition is that of a twisting system on A, which allows one to define a
new graded algebra structure on the underlying graded vector space of A, with the
property that the category of G-graded modules of this new algebra is isomorphic to
that of A. We will use these results in the following chapters to study the homological
regularity properties of a family of algebras related to 2-cocycle twists of semigroup
algebras.

Definition 2.1.7. [Zha96, Definitions 2.1, 4.1] A left twisting system on A is a set τ =
{τg | g ∈ G} of G-graded k-linear automorphisms of A, such that for all g,g ′,g ′′ ∈ G

τg ′′(τg ′(a)a
′) = τg ′g ′′(a)τg ′′(a

′) for all a ∈ Ag,a ′ ∈ Ag ′ . (†)

A right twisting system is defined analogously with the previous condition replaced by

τg ′′(aτg(a
′)) = τg ′′(a)τg ′′g(a

′).

If τ is a left twisting system on A, then it is a right twisting system on A◦ with its
G◦-graded structure. Thus every result on left twisting systems has an analogue for
right twisting systems.

Given a left twisting system τ on A, one can define a new G-graded algebra τA

with the same underlying G-graded vector space as A and multiplication given by

a ·τ a ′ = τg ′(a)a ′ for all g ′ ∈ G,a ∈ A, a ′ ∈ Ag ′ .

The unit of the algebra τA is τ−11G(1). Of course, condition (†) is tailor-made so that this
new product is associative. The algebra τA is called the left twist of A by τ.
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For each object M of ModGA there is a corresponding object of ModG τA, denoted
by τM, with the same underlying G-graded vector space as M and τA-module struc-
ture given by

a ·τm = τg ′(a)m for all g ′ ∈ G,a ∈ A, m ∈Mg ′ .

Once again, condition (†) guarantees that this action is associative. If f : M −→ M ′ is
a homogeneous morphism of G-graded A-modules, then the same function defines a
homogeneous τA-linear morphism from τM to τM ′. Thus this construction defines a
functor F τ : ModGA −→ ModG τA.

If B = τA, then τ−1 = {τ−1g | g ∈ G} is a left twisting system on B, and in fact
τ−1B = A. Furthermore, F τ and F τ−1 are inverses of each other. This is the main
result of this section, so we state it as a theorem.

Theorem 2.1.8. The functor F τ : ModGA −→ ModG τA is an isomorphism of categories.

Proof. See [Zha96, Theorem 3.1].

Finally we quote a result that allows to study right G-graded τA-modules as right
twists of G-graded A-modules.

Theorem 2.1.9. Suppose τ is a left twist on A. For every g,g ′ ∈ G, and every a ∈ Ag set

νg ′(a) = τ(g ′g)−1τ
−1
g−1

(a).

The set ν = {νg | g ∈ G} is a right twisting system on A, and

θ : τA −→ Aν

a ∈ τAg 7−→ τg−1(a) ∈ Aνg

is a G-graded algebra isomorphism.

Proof. See [Zha96, Theorem 4.3].

The isomorphism θ induces an isomorphism between the categories of right G-
graded τA-modules and the category of right G-graded Aν-modules, which is itself
isomorphic to ModG

◦
A◦. Given a right G-graded A-module M, we write Mν

θ for the
right τA-module with action defined by

m ·τA a = m ·Aν θ(a) = mνg ′(θ(a)) for all a ∈ τA, m ∈Mg ′ .

In particular, the induced right τA-module Aνθ is isomorphic to τA. This fact is part of
the proof of [Zha96, Theorem 4.3]. This isomorphism will play an important role in
Chapter 3, where we will prove that certain homological properties of A that depend
on the categories of right and left A-modules transfer to left twists of A.
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2.2 Change of grading functors

Throughout this section, G and H denote groups, ϕ : G −→ H is a group morphism,
and L = kerϕ. We will now introduce three functors between the categories of G and
H-graded vector spaces.

2.2.1 Change of grading for vector spaces

Let M be a G-graded vector space. The morphism ϕ induces an H-grading on the
underlying vector space of M, and we denote this new H-graded vector space by
ϕ!(M). Its homogeneous component of degree h ∈ H is given by

ϕ!(M)h =
⊕

g∈ϕ−1(h)

Mg.

If M ′ is another G-graded vector space and f :M −→M ′ is a homogeneous morphism
of degree 1G, we denote by ϕ!(f) the morphism from ϕ!(M) to ϕ!(M

′) with the same
underlying linear transformation as f. It is immediate to check that this is a morphism
of H-graded vector spaces; its homogeneous components are ϕ!(f)h =

⊕
g∈ϕ−1(h) fg for

every h ∈ H.

Next, we define ϕ∗(M) to be the H-graded vector space with homogeneous com-
ponent of degree h given by

ϕ∗(M)h =
∏

g∈ϕ−1(h)

Mg,

and ϕ∗(f) : ϕ∗(M) −→ ϕ∗(M ′) to be the morphism whose homogeneous components
are ϕ∗(f)h =

∏
g∈ϕ−1(h) fg for every h ∈ H.

Finally, given an H-graded vector space N, let ϕ∗(N) be the G-graded vector space
with homogeneous components ϕ∗(N)g = Nϕ(g)ug for every g ∈ G, where ug is
simply a placeholder to keep track of the degree of an element in ϕ∗(N). If N ′ is
another H-graded vector space and f : N −→ N ′ is a homogeneous morphism of
degree 1H, we define ϕ∗(f) : ϕ∗(N) −→ ϕ∗(N ′) to be the morphism with homogeneous
components given by the assignation

nug ∈ ϕ∗(N)g 7−→ f(n)ug ∈ ϕ∗(N ′)g for every g ∈ G.

It is clear that these three assignations are functorial. We refer to the functors
ϕ!,ϕ∗ : ModG k −→ ModH k and ϕ∗ : ModH k −→ ModG k as the change of grading
functors. In the next section we will show that similar functors exist for graded A-
modules, where A is a G-graded algebra.

Now we provide a few simple examples of the behavior of the change of grading
functors.
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Example 2.2.1. 1. Ifϕ : G −→ {e} is the trivial morphism, thenϕ! : ModG k −→ Modk
is the forgetful functor that assigns to each G-graded vector space its underlying
vector space. Evidently ϕ∗ assigns to every G-graded vector space the product
of its homogeneous components. Finally ϕ∗ assigns to each vector space a G-
graded vector space such that each homogeneous component is a copy of the
original space.

2. If r ≥ 1, ϕ : Zr −→ Z is the morphism that sends each r-uple (ξ1, . . . , ξr) to
ξ1 + . . .+ ξr and A = k[x1, . . . xr] with the natural Zr-grading, then ϕ!(A) is the
polynomial algebra in r variables graded by total degree. On the other hand,
ϕ∗(k[x]) is isomorphic to the Zr-graded subspace of k[x±11 , . . . , x±1r ] spanned by
elements of total degree greater than or equal to 0.

We begin our study of the change of grading functors with a basic proposition.

Proposition 2.2.2. The change of grading functors reflect exactness.

Proof. Since a complex of G-graded vector spaces is exact if and only if it is exact as a
complex of vector spaces, and ϕ! does not change the underlying linear structures of
objects and morphisms, it reflects exactness. Since complexes of graded vector spaces
are exact if and only if they are exact at each homogeneous component, ϕ∗ also reflects
exactness. Finally, using the fact that direct products reflect exactness over Modk, we
see that ϕ∗ also reflects exactness.

Definition 2.2.3. A G-graded A-module M is said to be ϕ-finite if for every h ∈ H the
set suppM∩ϕ−1(h) is finite.

There is a natural transformation η : ϕ! ⇒ ϕ∗. For every G-graded vector space M
and each h ∈ H, the map η(M)h : ϕ!(M)h −→ ϕ∗(M) is given by the natural inclusion
of the direct sum of a family into its direct product. Evidently η is an isomorphism if
and only if M is ϕ-finite.

Remark 2.2.4. As we mentioned before, the category ModG k is equivalent to the cat-
egory of comodules over the group coalgebra k[G], and any morphism ϕ : G −→ H

induces a coalgebra morphism ϕ : k[G] −→ k[H] in an obvious way. In [Doi81], Y. Doi
assigns to each morphism of coalgebras ϕ : A −→ B two functors, −ϕ : CoModA −→
CoModB and −ϕ : CoModB −→ CoModA; if A = k[G] and B = k[H] then −ϕ = ϕ!

and −ϕ = ϕ∗. The functor ϕ∗ was introduced by A. Polishchuk and L. Positselski in
[PP11], along with the notation we use for the change of grading functors.

2.2.2 Change of grading for A-modules

Throughout this subsection A denotes a G-graded algebra. Applying ϕ!, we obtain
the H-graded algebra ϕ!(A). We will usually write A for ϕ!(A), since the context will
always make it clear which grading we are considering.
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We denote by FG : ModGA −→ ModG k the functor that sends a G-graded A-module
to its underlying G-graded vector space. Evidently this functor reflects exactness.
Given an object M and a morphism f of ModGA, we write ϕ!(M) for ϕ!(F

G(M)), and
ϕ!(f) for ϕ!(F

G(f)). A similar convention applies to ϕ∗ and ϕ∗.

We denote by ϕA! (M) the object of ModHA with underlying H-graded vector space
ϕ!(M) and the same A-module structure as M. If f is a morphism of ModGA, then
ϕ!(f) is a homogeneous A-linear morphism, so setting ϕA! (f) = ϕ!(f), we have defined
a functor ϕA! : ModGA −→ ModHA.

The vector space ϕ∗(M) can also be endowed with an A-module structure. Recall
that for every h,h ′ ∈ H, an element a ∈ Ah can be written as a finite sum

∑
g∈ϕ−1(h) ag,

with ag ∈ Ag, and an element m ∈ ϕ∗(M)h ′ is given by a family m = (mg ′)g ′∈ϕ−1(h ′)

with mg ′ ∈ Mg ′ . Thus it is enough to define the action of the homogeneous element
ag on m, which is defined to be

ag ·m = (agmg ′)g ′∈ϕ−1(h ′).

Since ϕ is a morphism, this is an element of ϕ∗(M)hh ′ so the action is homogeneous.
We denote thisH-gradedA-module byϕA∗ (M). We also setϕA∗ (f) = ϕ∗(f). Since f isA-
linear so is ϕA∗ (f), and once again we have defined a functor ϕA∗ : ModGA −→ ModHA.

Finally, given an object N of ModHA, the H-graded vector space ϕ∗(N) can be
endowed with an A-module structure, defined as follows: Given g,g ′ ∈ G, for every
a ∈ Ag and nug ′ ∈ ϕ∗(N)g ′ we set a(nug ′) = (an)ugg ′ . Notice that a ∈ Aϕ(g) and by
definition n ∈ Nϕ(g ′), so an ∈ Nϕ(gg ′) and the action is well defined. If f is a morphism
of ModHA, we set ϕ∗A(f) = ϕ∗(f), and once again the A-linearity of f implies that of
ϕ∗A(f). We have thus defined a functor ϕ∗A : ModHA −→ ModGA.

We also refer to ϕA! , ϕA∗ and ϕ∗A as the change of grading functors. They fit into a
nice triad of commutative diagrams

ModGA
ϕA! //

FG

��

ModHA

FH

��

ModGA
ϕA∗ //

FG

��

ModHA

FH

��

ModHA
ϕ∗A //

FH

��

ModGA

FG

��
ModG k

ϕ! // ModH k, ModG k
ϕ∗ // ModH k, ModH k

ϕ∗ // ModG k.

Since the forgetful functors FG and FH reflect exactness, and so do the change of grad-
ing functors ϕ!, ϕ∗ and ϕ∗, the same is true for ϕA! , ϕA∗ and ϕA∗ . There is also a natural
transformation ηA : ϕA! −→ ϕA∗ such that FH(ηA(M)) = η(FH(M)), and η(M) is an
isomorphism if and only if M is a ϕ-finite A-module.

Recall that we have set L = kerϕ. We begin our study of the change of grading
functors over A with the following lemma.

Lemma 2.2.5. Let M be an object of ModGA.
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1. There exist natural isomorphisms

ϕ∗Aϕ
A
! (M) ∼=

⊕
l∈L
M[l] and ϕ∗Aϕ

A
∗ (M) ∼=

∏
l∈L
M[l].

2. For every g ∈ G, we have

ϕA! (M[g]) = ϕA! (M)[ϕ(g)], ϕA∗ (M[g]) = ϕA∗ (M)[ϕ(g)] and
ϕ∗A(N)[g] = ϕ∗A(N[ϕ(g)]).

Proof. We write ≡L for equivalence mod L, that is, given g,g ′ ∈ G we write g ≡L g ′ if
and only if ϕ(g) = ϕ(g ′).

1. By definition, for every g ∈ G there are vector space isomorphisms

ϕ∗Aϕ
A
! (M)g =

 ⊕
g≡Lg ′

Mg ′

ug =

(⊕
l∈L

Mgl

)
ug ∼=

⊕
l∈L

M[l]g =

(⊕
l∈L

M[l]

)
g

,

ϕ∗Aϕ
A
∗ (M)g =

 ∏
g≡Lg ′

Mg ′

ug =

(∏
l∈L

Mgl

)
ug ∼=

∏
l∈L

M[l]g =

(∏
l∈L

M[l]

)
g

.

Their naturality is clear from the definitions, and it is routine to prove that they
are A-linear.

2. Fix h ∈ H. By definition,

ϕA! (M)[ϕ(g)]h = ϕA! (M)hϕ(g) =
⊕

g ′∈ϕ−1(h)

Mg ′g = ϕ
A
! (M[g])h.

The proofs of the other claims are analogous.

In the next proposition we prove that ϕA! and ϕA∗ are left and right adjoints to ϕ∗A,
respectively. This result is stated in [PP11, section 2.5]. The fact that ϕ! is left adjoint
to ϕ∗ was proved in [Doi81, Proposition 6].

Proposition 2.2.6. Let A be a G-graded algebra and ϕ : G −→ H a group morphism.

1. The functor ϕA! is left adjoint to ϕ∗A.

2. The functor ϕA∗ is right adjoint to ϕ∗A.

Proof. We will use Proposition 1.2.4, and prove the existence of a unit and a counit for
both adjunctions. We denote the identity functor of ModGA by IdGA.
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1. We define a unit ι : IdGA ⇒ ϕ∗Aϕ
A
! and a counit π : ϕA! ϕ

∗
A ⇒ IdHA. Set ι(M) and

π(N) to be the morphisms whose homogeneous components are

ι(M)g :Mg −→ ϕ∗Aϕ
A
! (M)g π(N)h : ϕA! ϕ

∗
A(N)h −→ Nh

m 7−→ mug
∑

g ′∈ϕ−1(h)

ng ′ug ′ 7−→ ∑
g ′∈ϕ−1(h)

ng ′

for every g ∈ G and h ∈ H. Notice that using the isomorphism of item 1 of
Lemma 2.2.5, ι(M) is the natural inclusion of M in the direct sum

⊕
l∈LM[l].

With these definitions naturality is obvious, and the homogeneous components
of the corresponding unit and counit equations are

ϕA! (M)h
ϕA! (ι(M))

// ϕA! ϕ
∗
Aϕ

A
! (M)h

π(ϕA! (M))
// ϕA! (M)h

m =
∑

g∈ϕ−1(h)

mg
� //

∑
g∈ϕ−1(h)

mgug
� //

∑
g∈ϕ−1(h)

mg = m,

ϕ∗A(N)g
ι(ϕ∗A(N))

// ϕ∗Aϕ
A
! ϕ
∗
A(N)g

ϕ∗A(π(N))
// ϕ∗A(N)g

nug
� // (nug)ug

� // π(nug)ug = nug.

The result follows.

2. Again, we define a unit ν : IdHA ⇒ ϕA∗ϕ
∗
A and a counit ρ : ϕ∗Aϕ

A
∗ ⇒ IdGA. Using

item 1 of Lemma 2.2.5 we see that every homogeneous element m ∈ ϕ∗AϕA∗ (M)g
of degree g ∈ G is of the form (mgl)l∈Lug, with mgl ∈ Mgl. We define the
homogeneous components of ν(N) and π(M) as

ν(N)h : Nh −→ ϕA∗ϕ
∗
A(N)h ρ(M)g : ϕ

∗
Aϕ

A
∗ (M)g −→Mg

n 7−→ (nug ′)g ′∈ϕ−1(h) (mgl)l∈Lug 7−→ mg

for every g ∈ G and h ∈ H.

Once again naturality is immediate, and the homogeneous components of the
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corresponding unit and counit equations are given by

ϕ∗A(N)g
ϕ∗A(ν(N))

// ϕ∗Aϕ
A
∗ϕ
∗
A(N)g

ρ(ϕ∗A(N))
// ϕ∗A(N)g

nug
� // (nugl)l∈Lug

� // nug

ϕA∗ (M)h
ν(ϕA∗ (M)) // ϕA∗ϕ

∗
Aϕ

A
∗ (M)h

ϕA∗ (ρ(M)) // ϕA∗ (M)h

(mg ′)g ′∈ϕ−1(h)
� // ((mg ′)g ′∈ϕ−1(h)ug ′′)g ′′∈ϕ−1(h)

� // (mg ′′)g ′′∈ϕ−1(h),

so we are done.

The following corollary restates the adjunctions between the change of grading
functors in terms of the spaces of enriched homomorphisms of ModGA and ModHA.

Corollary 2.2.7. Let M be an object of ModGA and let N be an object of ModHA. There exist
natural isomorphisms

ϕ∗(HomHA(ϕ
A
! (M),N)) ∼= HomGA(M,ϕ∗A(N)),

ϕ∗(HomHA(N,ϕA∗ (M))) ∼= HomGA(ϕ
∗
A(N),M).

Proof. By Proposition 2.2.6 and item 2 of Lemma 2.2.5, for every g ∈ G there exist
natural isomorphisms

ϕ∗(HomHA(ϕ
A
! (M),N))g = HomHA(ϕ

A
! (M),N[ϕ(g)]) ∼= HomGA(M,ϕ∗A(N[ϕ(g)]))

∼= HomGA(M,ϕ∗A(N)[g]) = HomGA(M,ϕ∗A(N))g.

ϕ∗(HomHA(N,ϕA∗ (M)))g = HomHA(N,ϕA∗ (M)[ϕ(g)]) ∼= HomHA(N,ϕA∗ (M[g]))

∼= HomGA(ϕ
A
∗ (N),M[g]) = HomGA(ϕ

A
∗ (N),M)g.

Remark 2.2.8. The functor ϕA! is evidently a generalization of the forgetful functor
O : ModGA −→ ModA, so it might seem strange that it is left adjoint to ϕ∗A, which
is in a sense a ”free object functor”. This can be explained by the fact that the G-
graded structure comes from the k[G]-comodule structure ofM. It is quite common for
comodule categories to exhibit a behavior that is dual to that of module categories. For
example, free comodules are injective objects, and Hom functors have right adjoints.
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By item 3 of Proposition 1.2.5, the fact that ϕA! is left adjoint to ϕ∗A implies that it
sends projective objects to projective objects, and since ϕA∗ is right adjoint to the same
functor, it sends injective objects to injective objects. The following proposition refines
these results.

Proposition 2.2.9. Let M be an object of ModGA. The following hold:

pdimH
Aϕ

A
! (M) = pdimG

AM injdimH
Aϕ

A
! (M) ≥ injdimG

AM

pdimH
Aϕ

A
∗ (M) ≥ pdimG

AM injdimH
Aϕ

A
∗ (M) = injdimG

AM.

If M is ϕ-finite, equality holds in all cases.

Proof. Since ϕA! and ϕ∗A have exact right adjoints, item 3 of Proposition 1.2.5 implies
that

pdimG
Aϕ

∗
Aϕ

A
! (M) ≤ pdimH

Aϕ
A
! (M) ≤ pdimG

AM.

By item 1 of Lemma 2.2.5, there is an isomorphism ϕ∗Aϕ
A
! (M) ∼=

⊕
l∈LM[l]. Since

pdimG
AM = pdimG

AM[l] for all l ∈ L, and the projective dimension of a direct sum is
the supremum of the projective dimensions of the summands, the projective dimen-
sion of ϕ∗Aϕ

A
! (M) equals that of M, so all inequalities in the previous sequence are in

fact equalities. Using again Proposition 1.2.5 and the fact that M is a direct factor of
ϕ∗Aϕ

A
! (M), we see that injdimH

Aϕ
A
! (M) ≥ injdimG

Aϕ
∗
Aϕ

A
! (M) ≥ injdimG

AM.

The last two formulas can be proved by dual arguments, using the isomorphism
ϕ∗Aϕ

A
∗ (M) ∼=

∏
l∈LM[l] from item 1 of Lemma 2.2.5. If M is ϕ-finite then ϕA! (M) =

ϕA∗ (M), so equality holds in all cases.

The following example shows that the inequalities proved in Proposition 2.2.9 are
sharp.

Example 2.2.10. Let A = k[x, x−1] with the obvious Z-grading. This algebra is graded-
simple, so all objects of ModZA are projective and injective. On the other hand, since
A is a PID, an A-module is injective if and only if it is divisible, which is clearly not
the case for k[x, x−1]. Hence ϕA! (A) is not an injective object of ModA. Also ϕA∗ (A) is
not a projective object of ModA, since the element (xn)n∈Z ∈ ϕA∗ (A) is annihilated by
x− 1 ∈ A, and projective objects of ModA are torsion free. Finally, since ϕ∗Aϕ

A
! (A) is

projective and ϕ∗Aϕ
A
∗ (A) is injective in ModZA, the inequalities obtained for ϕ∗A from

item 3 of Proposition 1.2.5 are also sharp.

We summarize the results of the previous proposition in Table 2.1.

We finish this section relating the derived functors of HomGA with those of HomHA
through the change of grading functors.
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ϕ! ϕ∗ ϕ∗

pdim is preserved may increase may decrease
(preserved for ϕ-finite)

injdim may increase is preserved may decrease
(preserved for ϕ-finite)

Table 2.1: Homological behaviour of the change of grading functors

Proposition 2.2.11. Let M and N be objects of ModGA. For every i ≥ 0 there exists a
morphism

Di(N,M) : ϕ!(RiHomGA(N,M)) −→ RiHomHA(ϕA! (N),ϕA! (M)),

which is natural in both variables. If N is finitely generated, D0(N,M) is an isomorphism,
and if furthermore A is noetherian, Di(N,M) is an isomorphism for all i ≥ 0.

Proof. Let D(N,M) : ϕ!(Hom
G
A(N,M)) −→ HomHA(ϕ

A
! (N),ϕA! (M)) be the morphism

given by the inclusion of H-graded vector spaces

ϕ!(Hom
G
A(N,M)) ⊂ HomHA(ϕ

A
! (N),ϕA! (M)),

i.e. a G-homogeneous morphism f : N −→ M is sent to ϕA! (f). Since this is an
inclusion, it is obviously natural in both variables.

Fix N for a moment. By the dual version of [Wei94, Theorem 2.4.7], the family of
functors {Riϕ!(Hom

G
A(N,−))} is a universal cohomological δ-functor, and hence there

exists a unique natural transformation

Di(N,−) : ϕ!(RiHomGA(N,−)) −→ RiHomHA(ϕA! (N),ϕA! (−))

such that D0(N,−) = D(N,−) (We have used the fact that Riϕ!(Hom
G
A(N,M)) =

ϕ!(RiHomGA(N,M)) since ϕ! is exact).

We now show how to find the morphisms Di explicitly. Let P• be a projective
resolution of N in ModGA. The natural transformation D induces a morphism of
complexes

D(P•,M) : ϕ!(Hom
G
A(P

•,M)) −→ HomHA(ϕ
A
! (P

•),ϕA! (M)).

Since ϕA! is exact and sends projective objects to projective objects, ϕA! (P
•) is a projec-

tive resolution of ϕA! (N) in ModHA, so taking the cohomology of bothe complexes we
obtain a morphism

Hi(D(P•,M)) : ϕ!(RiHomGA(N,M)) −→ RiHomHA(ϕA! (N),ϕA! (M))

(do not confuse the cohomology functors Hi with the group H!) which is natural in M
because both D(P•,−) and Hi are natural. Thus the family of natural transformations
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{Hi(D(P•,−))} is a morphism of cohomological δ-functors extending H0(D(P•,−)) =
D(N,−), and hence can be identified with Di(N,M) as presented above. In particular,
it is independent of the chosen resolution. If f ′ : N −→ N ′ is a morphism of G-graded
A-modules, choosing a projective resolution Q• −→ N ′ and lifting f to a morphism
f̃ : P• −→ Q•, it is easy prove that the morphism is also natural in the first variable.

Finally, if N is finitely generated then D(N,M) is an isomorphism by Lemma 2.1.4.
Furthermore, if A is noetherian we can choose the resolution P• to consist of finitely
generated projective modules, in which case the morphism D(P•,M) is an isomor-
phism of complexes since the inclusion ϕ!(Hom

G
A(P

i,M)) ⊂ HomHA(ϕ
A
! (P

i),ϕA! (M)) is
an equality for all i ≤ 0. Thus under these conditions, Di(N,M) is an isomorphism
for all i ≥ 0.

The following corollary states that the map of the last proposition is also compati-
ble with possible extra structures on the HomGA modules.

Corollary 2.2.12. Let B and C be either A or k, and let N be an A⊗ B◦-module and M an
A⊗C◦-module. Then for every i ≥ 0 there exists a natural morphism of B⊗C◦-modules.

Ei(N,M) : ϕB⊗C
◦

! (RiHomGA(N,M)) −→ RiHomHA(ϕA⊗B◦! (N),ϕA⊗C
◦

! (M)).

If N is finitely generated as a left A-module then E0(N,M) is an isomorphism, and if further-
more A is noetherian Ei(N,M) is an isomorphism for all i ≥ 0.

Proof. Notice that there is an inclusion of H-graded B⊗C◦-modules

ϕB⊗C
◦

! (HomGA(N,M)) ⊂ HomHA(ϕ
A⊗B◦
! (N),ϕA⊗C

◦

! (M)).

Denote by FG : ModG B⊗C◦ −→ ModG k the obvious forgetful functor, and by O, resp.
O ′ the functor assigning to each A⊗ B◦-module, resp. A⊗ C◦-module, its underly-
ing A-module. Recall from Lemma 2.1.5 that given a projective resolution P• of N as
G-graded A⊗ B◦-module, O(P•) is a projective resolution of O(N). The natural trans-
formation Ei(N,M) can be defined adapting the arguments of the proof of Proposition
2.2.11, and it follows from the definitions that FG(Ei(N,M)) = Di(O(N),O ′(M)) for all
i ≥ 0. The rest of the statement follows from Proposition 2.2.11.

2.3 Torsion and local cohomology

We keep the notation from the previous sections, so G denotes a group and A denotes
a G-graded algebra. We fix a G-graded two-sided ideal a ⊂ A, and for every G-graded
A-module M we define its a-torsion submodule as

ΓGa (M) = {x ∈M | anx = 0 for n� 0}.
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An element x ∈ ΓGa (M) is said to be an a-torsion element of M.

Since an is a graded ideal for all n ∈ N, the torsion module ΓGa (M) is a graded
submodule of M. If f : N −→ M is a morphism of G-graded A-modules then
f(ΓGa (N)) ⊂ ΓGa (M), so we set ΓGa (f) : ΓGa (N) −→ ΓGa (M) to be the restriction and
corestriction of f to the torsion submodules of N and M, respectively. This assignation
defines the a-torsion functor ΓGa : ModGA −→ ModGA.

Definition 2.3.1. For every i ≥ 0, the i-th derived functor of ΓGa is called the i-th local
cohomology functor with respect to a. For every G-graded A-module M, we refer to
RiΓGa (M) as its i-th local cohomology module with respect to a.

We denote by ΓGa◦ the analogous functor defined for G-graded right A-modules. As
usual, we only work with left modules.

If M is a G-graded A-bimodule then the set of a-torsion elements of M is a sub
bimodule of M, so taking left a-torsion submodules defines a functor Γ : ModGAe −→
ModGAe. Using the notation from subsection 2.1.2 it is clear that Λ ◦ Γ = ΓGa ◦Λ, so
by Proposition 1.2.3 the underlying G-graded left A-module of RiΓ(M) is naturally
isomorphic to RiΓGa (Λ(M)) for all i ≥ 0. Thus we can make a slight abuse of notation
and write ΓGa for Γ .

2.3.1 Local cohomology

From this point on to the end of this section B stands for either A or k, and in both
cases we will denote by ΓGa the torsion functor over ModGA⊗ B◦. The following is a
standard result.

Lemma 2.3.2. The torsion functor ΓGa : ModGA⊗B◦ −→ ModGA⊗B◦ is left exact, and for
every i ≥ 0 there exists an isomorphism

RiΓGa ∼= lim
−→
n

RiHomGA(A/an,−).

Proof. Let M be a G-graded A⊗B◦ module and fix n ∈ N. For every a ∈ A we denote
by [a] its class modulo an. Let εn(M) : HomGA(A/an,M) −→ ΓGa (M) be the A⊗ B◦-
linear morphism that to each f ∈ HomGA(A/an,M) assigns f([1]). This is well defined
since anf([1]) = f(an[1]) = f([0]) = 0. The morphism f is determined by its value at
[1], so the assignation εn(M) is injective. Thus εn is a natural transformation from
HomGA(A/an,−) to ΓGa .

On the other hand, for every x ∈ ΓGa (M) there exists n ∈ N such that anx = 0, so
there is an A-linear morphism fx : A/an −→ M such that fx([1]) = x, i.e. x is in the
image of εn for n� 0. This shows that the natural map

ε(M) = lim
−→
n

εn(M) : lim
−→
n

HomGA(A/an,M) −→ ΓGa (M)
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is both injective and surjective, which proves the case i = 0. Since HomGA(A/an,−) is
left exact for every n and direct limits are exact over ModGA⊗ B◦, the torsion functor
is left exact.

Finally, ε is a natural isomorphism between left exact functors, so for every i ≥ 0
there exists an isomorphism between the derived functors

RiΓGa ∼= Ri lim
−→
n

HomGA(A/an,−) ∼= lim
−→
n

RiHomGA(A/an,−),

where the second isomorphism holds because direct limits are exact over ModGA⊗
B◦.

Let H be a group and let ϕ : G −→ H be a group morphism. Notice that a is also an
H-graded ideal for the H-grading induced by ϕ on A. The following lemma examines
the relation between the change of grading functors from section 2.2 and the derived
functors of ΓGa .

Proposition 2.3.3. Write ΓHa for the a-torsion functor on H-graded A⊗ B◦-modules.

1. There exists a natural transformation ϕA⊗B
◦

! ◦ RiΓGa ⇒ RiΓHa ◦ ϕA⊗B◦! , which is an
isomorphism for i = 0. If A is noetherian then it is an isomorphism for all i ≥ 0, that is,
the following diagram commutes

ModGA⊗ B◦ R
iΓGa //

ϕA⊗B
◦

!
��

ModGA⊗ B◦

ϕA⊗B
◦

!
��

ModHA⊗ B◦ R
iΓHa // ModHA⊗ B◦

2. For every i ≥ 0, the following diagram of functors commutes

ModGA⊗ B◦ R
iΓGa // ModGA⊗ B◦

ModHA⊗ B◦ R
iΓHa //

ϕ∗A⊗B◦

OO

ModHA⊗ B◦

ϕ∗A⊗B◦

OO

Proof. 1. Let M be a G-graded A ⊗ B◦-module. Since ϕA⊗B
◦

! (M) has the same
underlying A ⊗ B◦-module structure as M, it is clear that ΓHa (ϕA⊗B

◦

! (M)) =

ϕA⊗B
◦

! (ΓGa (M)); the functor ϕA⊗B
◦

! does not change the underlying linear func-
tions of morphisms, so ΓHa ◦ ϕA⊗B

◦

! = ϕA⊗B
◦

! ◦ ΓGa . From this we immediately
deduce that Ri(ΓHa ◦ ϕA⊗B

◦

! ) ∼= Ri(ϕA⊗B
◦

! ◦ ΓGa ) ∼= ϕA⊗B
◦

! ◦ RiΓGa for all i ≥ 0,
where the last equallity follows from the fact that ϕA⊗B

◦

! is exact.

38



Now suppose A is noetherian. Let J be an injective G-graded A⊗B◦-module. By
Corollary 2.2.12, for all i,n ≥ 0 there exists an isomorphism

ϕA⊗B
◦

! (RiHomGA(A/an, J))
∼=

−→ RiHomHA(ϕA⊗B◦! (A/an),ϕA⊗B
◦

! (J)).

By Lemma 2.1.5 J is injective when considered as a left A-module, and by Propo-
sition 2.1.6 the modules displayed above are equal to zero for all n and all i ≥ 1.
Now using Lemma 2.3.2 we get

RiΓHa (ϕA⊗B
◦

! (J)) ∼= lim
−→
n

RiHomHA(ϕA⊗B
◦

! (A/an),ϕA⊗B
◦

! (J)) = 0,

for all i ≥ 1, so ϕA⊗B
◦

! (J) is a ΓHa -acyclic object. Thus we may apply Lemma 1.2.2
to obtain the last step in the following chain of isomorphisms

ϕA⊗B
◦

! ◦ RiΓGa ∼= Ri(ϕA⊗B
◦

! ◦ ΓGa ) ∼= Ri(ΓHa ◦ϕA⊗B
◦

! ) ∼= RiΓHa ◦ϕA⊗B
◦

! .

2. We first claim that ϕ∗A⊗B◦ ◦ ΓHa = ΓGa ◦ϕ∗A⊗B◦ . For any H-graded A⊗ B◦-module
N choose a homogeneous element xug ∈ ϕ∗A⊗B◦(N)g. Then xug is a-torsion if
and only if there exists n ≥ 0 such that for every homogeneous element a ∈ an

of degree g ′ it is a(xug) = (ax)ug ′g = 0, which happens if and only if ax = 0

for any homogeneous element of an. Since an is generated by homogeneous
elements this happens if and only if x ∈ N is a-torsion. It is routine to verify the
equality of both compositions on morphisms.

Since ϕ∗A⊗B◦ is an exact functor that sends injective objects to injective objects
(see Propositions 1.2.5 and 2.2.6), we may apply Lemma 1.2.2 as in the previous
item.

We now introduce some invariants associated to local cohomology. Let M be a
G-graded A-module. The depth and local dimension of M with respect to a are defined
as

depthGa M = inf{i ∈ N | RiΓGa (M) 6= 0}
ldimG

a M = sup{i ∈ N | RiΓGa (M) 6= 0}.

The local a-dimension of A as a graded algebra is

lcdGa A = sup{ldimG
a M |M is an object of ModGA}.

From item 1 of Proposition 2.3.3 it follows that if A is noetherian then depth and ldim
are independent of the gradings, and lcdGa A ≤ lcdHa A. The following lemma refines
this result.

Lemma 2.3.4. Suppose A is noetherian.

39



1. We have an equality lcdHa A = lcdGa A.

2. Local cohomology functors commute with direct sums.

3. If lcdGa A is finite, then lcdGa A = ldimG
AA.

Proof. 1. Suppose there exists an H-graded A-module N such that RiΓHa (N) is not
zero. Then there exists h ∈ H with RiΓHa (N)h 6= 0. Since HomA and injective
limits commute with shifts, Lemma 2.3.2 implies that so do local cohomology
functors. Using Proposition 2.3.3 we obtain

RiΓGa (ϕ∗A(N[h]))1G
∼= ϕ∗A(RiΓHa (N[h]))1G

∼= RiΓHa (N[h])1H
∼= RiΓHa (N)h 6= 0,

which proves that lcdHa A ≤ lcdGa A; notice that the hypothesis of noetherianity is
not used.

On the other hand if A is noetherian and there exists a G-graded A-module M
such that RiΓGa (M) 6= 0, then RiΓHa (ϕA! (M)) = ϕA! (RiΓGa (M)) 6= 0, which proves
the other inequality.

2. Let {Mt}t∈T be a family of G-graded A-modules. It is routine to check that
ΓGa (

⊕
t∈TMt) =

⊕
t∈T Γ

G
a (Mt). Now since A is noetherian, the direct sum of

graded injective modules is again graded injective (the proof found in [Lam99,
Theorem 3.46] adapts readily to the graded case), so choosing for each Mt an
injective resolution I•t , we see that

⊕
t I
•
t is an injective resolution of

⊕
t∈LMt.

Thus for each i ≥ 0.

RiΓGa

(⊕
t∈T
Mt

)
∼= Hi

(
ΓGa

(⊕
t∈T
I•t

))
=
⊕
t∈T
Hi(ΓGa (I

•
t ))

∼=
⊕
t∈T

(RiΓGa (Mt)).

3. Let N be a graded A-module such that n = ldimG
a N = lcdGa A. There is a short

exact sequence of graded A-modules 0 −→ K −→ F −→ N −→ 0 with F graded
free. Looking at the associated long exact sequence for local cohomology, we
obtain

RnΓGa (F) −→ RnΓGa (N) −→ Rn+1ΓGa (K) = 0.
In particular RnΓGa (F) 6= 0, and since local cohomology functors commute with
direct sums, ldimG

a F = ldimG
a A = n.

We finish this section considering the relation between local cohomology and
Zhang twists. Recall that given a twisting system τ over A, there exists an isomor-
phism of abelian categories F τ : ModGA −→ ModG τA.
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Proposition 2.3.5. Let τ be a twisting system on A, and let b = τa. For every i ≥ 0 the
following diagram commutes

ModGA
RiΓGa //

Fτ
��

ModGA

Fτ
��

ModG τA
RiΓGb // ModG τA.

Proof. It is immediate from the definitions that ΓGb ◦ F τ = F τ ◦ ΓGa . Since F τ is exact,
Ri(Γb ◦ Fτ) = Ri(F τ ◦ ΓGa ) = F τ ◦ RiΓGa . Also F τ sends injective objects to injective
objects, so we may apply Lemma 1.2.2 and conclude thatRi(ΓGb ◦F τ) ∼= RiΓGb ◦F τ.

2.4 Filtered algebras

In this section we review a few general results on filtered algebras. We are particularly
interested in graded algebras endowed with a filtration by graded subspaces, which
we call GF-algebras. This situation arises often in the study of Hodge algebras, see for
example [BH93, chapter 6] or [DCEP]. The associated graded algebra of a GF-algebra
is an N2-graded algebra, and this grading plays an important role in the sequel.

2.4.1 Filtrations indexed by semigroups

Throughout this subsection we assume that S is a finitely generated subsemigroup of
Zr+1 for some r ≥ 0. We denote by < the restriction of the lexicographic order of Zr+1
to S.

Definition 2.4.1. An S-filtered algebra is an algebra A along with a family of subspaces
F = {FsA | s ∈ S}, such that FsA · Fs ′A ⊂ Fs+s ′′A for every s, s ′ ∈ S and Fs ′A ⊂ FsA
whenever s ′ < s.

If A is an S-filtered algebra, an filtered A-module, or simply a filtered module if S
and A are clear from the context, is an A-module along with a family of subspaces
{FsM | s ∈ Zr+1}, such that FsA · Fs ′M ⊂ Fs+s ′M for every s ∈ S, s ′ ∈ Zr+1, and
Fs ′M ⊂ FsM if s ′ < s.

Given a filtered A-module M, the subspaces FsM are called the layers of the filtra-
tion. We denote by F<sM the space

∑
s ′<s Fs ′M. Just as for graded algebras, we say

that M is S-filtered if FsM = 0 whenever s /∈ S.

The associated S-graded algebra of A, denoted by grA, is the S-graded algebra with
homogeneous components

(grA)s =
FsA

F<sA
for every s ∈ S.
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By definition of a filtered algebra, for every s, s ′ ∈ S the multiplication of A restricts
to FsA× Fs ′A −→ Fs+s ′A, which in turn induces a map FsA

F<sA
× Fs ′A

F<s ′A
−→ Fs+s ′A

F<s+s ′A
. This

defines the product of grA over homogeneous elements, which is then extended by
bilinearity to the whole space.

Given a filtered A-module, its associated graded module is the Zr+1-graded grA-
module with homogeneous components

(grM)s =
FsM

F<sM
for every s ∈ Zr+1.

By definition of a filtered module, for every s ∈ S, s ′ ∈ Zr+1, the action of A on M
induces a linear morphism FsA× Fs ′M −→ Fs+s ′M, which in turn induces an action of
grA on grM.

Definition 2.4.2. A filtration on a vector space M is said to be:

(E) exhaustive if
⋃

s∈Zr+1
FsM =M,

(B) bounded below if there exists s ′ ∈ Zr+1 such that FsM = {0} for all s < s ′,

(D) discrete if
⋂

s∈Zr+1
FsM = {0}.

If M is a filtered module and its filtration is exhaustive and discrete, then for
every non-zero element m ∈ M there exists p(m) ∈ Zr+1 such that m ∈ Fp(m)M and
/∈ F<p(m)M. The class of m in (grM)p(m) is a nonzero element denoted by grm.

We consider k to be a filtered algebra setting F0k = k. The following is a standard
result on filtered vector spaces.

Lemma 2.4.3. Suppose S ⊂ Nr+1 is a positive affine semigroup. Let V be an S-filtered vector
space with an exhaustive filtration F , and let {vi | i ∈ I} be a subset of V . Then {gr vi}i∈I is a
homogeneous basis of grF V if and only if for every s ∈ S the set {vi | i ∈ I}∩ FsV is a basis of
FsV .

Proof. First we set some notation. For each s ∈ S set

Is = {i ∈ I | vi ∈ FsV}, I<s = ∪t<sIt and I◦s = Is \ I<s.

We point out that {gr vi} is a basis of grV if and only if the set {gr vi | i ∈ I◦s } is a basis
of the homogeneous component (grF V)s. The if part of the statment follows.

We now prove that {vi | i ∈ Is} is a basis of FsV by induction on the totally ordered
set S. The case s = 0 is clear since grV0 = F0V . Let s ∈ S. Suppose the result holds for
all t < s, and that there exist scalars λi with i ∈ Is such that

0 =
∑
i∈Is

λivi =
∑
i∈I<s

λivi +
∑
i∈I◦s

λivi.
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Reducing this equality modulo F<sV we get

0 =
∑
i∈I◦s

λi gr vi

which implies that λi = 0 for i ∈ I◦s . On the other hand, there are at most finitely
many i ∈ I<s such that λi 6= 0, so there exists t < s such that λi 6= 0 implies i ∈ It. By
inductive hypothesis the set {vi | i ∈ It} is linearly independent, so λi = 0 for all i ∈ Is
and {vi | i ∈ Is} is linearly independent.

Let v ∈ FsV . If v ∈ FtV for some t < s then the inductive hypothesis guarantees
that v is in the vector space generated by {vi | i ∈ It}. If not, then gr v ∈ (grF V)s, and
there are scalars λi for i ∈ I◦s such that

gr v =
∑
i∈I◦s

λi gr vi.

This implies that v−
∑
i∈I◦s λivi ∈ FtV for some t < s, and by inductive hypothesis this

element lies in the vector space generated by {vi | i ∈ It}. Hence FsV is generated by
{vi | i ∈ Is}.

2.4.2 GF-algebras and modules

We now focus on the case where A is N-graded and N-filtered. Most of the material in
this section is adapted from [NVO79, chapter I].

Definition 2.4.4. A GF-algebra (as in “graded and filtered”) is an N-graded algebra A
with a filtration F = {FpA}p∈N such that each layer is a graded subspace of A.

We say that an A-module M is a GF-module over A if it is both a Z-graded and a
Z-filtered module, and each layer of its filtration is a graded subspace of M.

As a trivial example, we consider k to be a GF-algebra with k0 = F0k = k. A
GF-vector space is a Z-graded vector space with a filtration by graded subspaces.

For the rest of this section A denotes a GF-algebra. We write HomA instead of
HomZA and for every i ≥ 0 we denote by ExtiA its i-th derived functor.

Let M be a GF-module over A. Given a vector subspace V ⊂ M, the filtration on
M induces a filtration on V by setting FpV = V ∩ FpM for every p ∈ Z. In particular
every homogeneous component of M is a filtered subspace. Recall that if the filtration
on M is exhaustive and discrete, then for each m ∈ M \ {0} we denote by p(m) the
smallest integer such that m ∈ Fp(m)M and m /∈ F<p(m)M. Given a homogeneous
element m ∈M we denote by δ(m) the ordered pair (p(m), degm).

We say that M is a GF-free module if it is a GF-module with a homogeneous basis
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{ei}i∈I and an exhaustive and discrete filtration such that, if δ(ei) = (pi,di), then

FpMd =
∑
i∈I
Fp−piAd−diei.

The GF-module M is locally finite if FpMd is a finite dimensional vector space for all
p,d ∈ Z. Finally M is GF-finite if it is generated by a finite set of homogeneous
elements m1, . . . ,mr with δ(mi) = (pi,di), such that

FpMd =

r∑
i=1

Fp−piAd−dimi.

Let M be a finitely generated graded A-module. Choosing a finite set of homoge-
neous generators m1, . . . ,mr, we can put a filtration on M setting

FpM =

r∑
i=1

FpAmi for every p ∈ Z.

It is clear by definition that this gives M the structure of a GF-finite module. This
simple construction will be used repeatedly in the next chapter, so we put it down as
a lemma.

Lemma 2.4.5. Assume A is a GF-algebra and let M be a finitely generated graded A-module.
Then M can be given the structure of a GF-finite module and its associated graded module is
finitely generated over grA.

Given two GF-modules M and N, the vector space HomA(N,M) is filtered in the
following way: for every p ∈ Z, set

FpHomA(N,M) = {f ∈ HomA(N,M) | f(FqN) ⊂ Fq+pM for all q ∈ Z}.

This induces a filtration on the vector subspace HomA(N,M) ⊂ HomA(N,M). With
this filtration, the Z-graded vector space HomA(N,M) becomes a GF-vector space.

A morphism f ∈ HomZA(N,M) such that f(FpN) ⊂ FpM for every p ∈ Z is called a
GF-morphism. Equivalently, f is a GF-morphism if and only if f ∈ F0HomA(N,M)0. A
GF-morphism f is strict if f(FpN) = Im f∩ FpM for all p ∈ Z. Notice that this condition
is stronger than that of being a GF-morphism. A GF-module M is finite if and only if
there is a GF-finite and free module F and a strict epimorphism F −→M.

Since the GF-algebra A is filtered, we may consider its associated graded algebra

grA =
∞⊕
p=0

FpA

Fp−1
A =

⊕
(p,d)∈N2

FpAd
Fp−1Ad

.

This decomposition gives grA the structure of an N2-graded algebra. By [MR01, The-
orem 1.6.9], if grA is noetherian then so is A.
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Given a GF-module M, its associated graded module

grM =
⊕
p∈Z

FpM

Fp−1M
=

⊕
(p,d)∈Z2

FpMd

Fp−1Md

is a Z2-graded grA-module. If the filtration on M is exhaustive and discrete, then
for every homogeneous element m ∈ M we have that grm ∈ (grM)δ(m). If f ∈
HomA(N,M) with δ(f) = (p,d), then gr f : grN −→ grM is a homogeneous grA-linear
morphism of degree (p,d).

Now we present some technical results on GF-modules to be used in the sequel.

Lemma 2.4.6. Let A be a GF-algebra and let K,M and N be GF-modules. Suppose the
filtrations on A and M are exhaustive and discrete.

1. Let (∗) : K f
−→M

g
−→ N be a complex, where f and g are GF-morphisms. Its associated

graded complex grK
gr f
−→ grM

gr g
−→ grN is exact if and only if (∗) is exact and f,g are

strict.

2. If M is GF-free with basis {mi}i∈I, then grM is a Z2-graded grA-free module with basis
{grmi}i∈I.

3. If grM is generated over grA by the set {grmi | i ∈ I}, then M is generated over A by
the set {mi | i ∈ I}. Moreover, M is GF-finite if and only if grM is finitely generated.

4. If grA is noetherian then A is noetherian.

5. There exists a resolution of M by GF-free modules with strict differentials. Furthermore,
if grA is noetherian and grM is finitely generated over grA, the GF-free modules in the
resolution can be chosen to be GF-finite.

Proof. 1. Notice that the gradings play no role in this statement, so we may refer to
the filtered case, which proved in [NVO79, 4.4, item 5].

2. Let pi = p(mi) and di = degmi. By definition, for every (p,d) ∈ Z2

FpMd =
⊕
i∈I
Fp−piAd−dimi

so

grM(p,d) =
⊕
i∈I

Fp−piAd−dimi

Fp−pi−1Ad−dimi

∼=
⊕
i∈I

(grA)(p−pi,d−di) grmi.

Thus grM is a graded-free grA-module with basis {grmi | i ∈ I}.
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3. Let F be the GF-free module with basis {ei | i ∈ I} and δ(ei) = δ(mi). Since the
filtration on A is exhaustive and discrete, the same holds for the filtration on F.
Let f : F −→M be the map defined by setting f(ei) = mi, and consider its associ-
ated graded morphism gr f : gr F −→ grM. Since gr f(gr ei) = grmi, the map gr f
is surjective by hypothesis, so item 1 implies that f is a strict epimorphism. In
particular M is generated by the set {mi | i ∈ I}.
If grM is finitely generated, the module F can be taken to be GF-finite and free in
the previous argument, and so there exists a strict epimorphism from a GF-finite
and free module onto M. This is equivalent to the fact that M is a GF-finite
module. Conversely, suppose we have a GF-finite and free module F and a strict
epimorphism F −→ M. By passing to the associated graded modules we get an
epimorphism from gr F to grM, and since gr F is finitely generated and free, grM
is finitely generated.

4. It is enough to show that A is graded noetherian. If I ⊂ A is a graded ideal then
it is a GF-module with the filtration induced by that of A. Now the ideal gr I
is finitely generated since grA is noetherian, and by item 3 this implies that I is
finitely generated.

5. The first part of item 3 shows that for every GF-module M there exists a GF-free
module F and a strict epimorphism F −→M, so applying the usual procedure to
construct a free resolution we obtain a resolution by GF-free modules with strict
differentials.

If grA is noetherian and grM is finitely generated, then A is a noetherian algebra
andM a finitely generatedA-module. The second part of item 3 shows that every
finitely generated module has a GF-finite and free cover, so we may apply the
usual procedure to construct finite and free resolutions over noetherian algebras
to obtain the desired resolution.

The next lemma relates the Z-graded Hom spaces over A with the Z2-graded Hom

spaces over grA. We write HomgrA for HomZ
2

grA, and we denote by ExtigrA its i-th
derived functor for every i ≥ 0.

Lemma 2.4.7. Let A be a GF-algebra and let M and N be two GF-modules, with N GF-finite.
Assume all filtrations are exhaustive and discrete.

1. The filtration {FpHomA(N,M)}p∈Z on HomA(N,M) is exhaustive. If the filtration on
M is bounded below, then the filtration on HomA(N,M) is also bounded below.

2. If N is GF-free, then there exists a natural Z2-graded vector space isomorphism

ϕ : gr HomA(N,M) −→ HomgrA(grN, grM)
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given by the following assignation: for every f ∈ Fp(f)HomA(N,M) and x ∈ Fp(x)N

ϕ(gr f)(gr x) = f(x) ∈ Fp(f)+p(x)M/Fp(f)+p(x)−1M.

Proof. 1. Let n1, . . . ,nr be a finite set of generators of N and set pi = p(ni) for
1 ≤ i ≤ r. Let f ∈ HomA(N,M) and let qi = p(f(ni)). If t = maxi{qi − pi} then

f(FpN) =
∑
i

f(Fp−piAni) =
∑
i

Fp−piAf(ni) ⊂
∑
i

Fp−pi+qiM ⊂ Fp+tM.

Hence f ∈ FtHomA(N,M). If we assume the filtration on M is bounded below,
then there exists q ∈ Z such that FqM = 0. Let p0 = max{pi, 1 ≤ i ≤ r}. If
f ∈ Fq−p0 HomA(N,M), then f(ni) ∈ Fq−p0+p1M = 0, so Fq−p0 HomA(N,M) = 0

and the filtration on HomA(N,M) is bounded below.

2. It is clear from the definition that ϕ is a graded morphism. Since GF-free mo-
dules are filtered projective in the sense of [NVO79, Section I.5], ϕ is an isomor-
phism by [NVO79, Lemma 6.4].

The following theorem relates the Z-graded Ext-modules over A with the Z2-
graded Ext-modules over grA. We will use this result in chapter 3 to transfer some
homological properties from grA to A.

Theorem 2.4.8. Let A be a GF-algebra, and let M and N be two GF-modules with N GF-
finite. Suppose that all filtrations are exhaustive and discrete, that the filtration on M is
bounded below, and that grA is noetherian. Then for each d ∈ Z there is a convergent spectral
sequence:

E(N,M)d : E1p,q = Ext−p−qgrA (grN, grM)(p,d) ⇒ Ext−p−qA (N,M)d p,q ∈ Z,

and the filtration of the Ext-group on the right hand side is bounded below and exhaustive.

Proof. By item 4 of Lemma 2.4.6 there is a GF-free and finite resolution of N with strict
differentials

. . . −→ P−2 −→ P−1 −→ P0 −→ N −→ 0

Each Pi has a finite and bounded below filtration, so item 1 of Lemma 2.4.7 implies
that for every i ≤ 0 the vector space HomA(P

i,M) is a GF-vector space and its filtration
is exhaustive and bounded below.

Fix d ∈ Z. Since the differentials in the resolution of N are GF-morphisms,
HomA(P

•,M)d is a complex of filtered vector spaces. By [Wei94, 5.5.1.2] there exists a
spectral sequence with page one equal to

E1p,q = Hp+q(FpHomA(P
•,M)d/Fp−1HomA(P

•,M)d) p,q ∈ Z,
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that converges to

Hp+q(HomA(P
•,M)d) = Ext−p−qA (N,M)d.

By item 1 of Lemma 2.4.6, the complex

. . . −→ gr P−2 −→ gr P−1 −→ gr P0 −→ grN −→ 0

is exact, and by item 2 of the same lemma it is a free resolution of grN as a Z2-graded
grA-module. Finally, by item 2 of Lemma 2.4.7 there is a natural isomorphism

FpHomA(P
•,M)d/Fp−1HomA(P

•,M)d ∼= HomgrA(gr P
•, grM)(p,d)

and so E1p,q
∼= Ext−p−qgrA (grN, grM)(p,d). This completes the proof.

Theorem 2.4.8 is a generalization of the spectral sequence found in [Bjö89, section
3], which deals with filtered algebras. MathOverflow user Ralph kindly pointed out
and provided a proof of the existence of this spectral sequence. The proof above is
taken from [Ral] with minor modifications to take into account the graded structure.

The following is an immediate corollary of the previous result

Corollary 2.4.9. Suppose M and N are GF-modules over A satisfying the hypotheses of The-
orem 2.4.8. Fix d ∈ Z and i ∈ N. If ExtigrA(grN, grM)(p,d) = 0 for all p ∈ Z, then
ExtiA(N,M)d = 0.

Proof. By hypothesis, all the entries in the i-th diagonal of the first page of E(N,M)d
are equal to zero, so the same is true for the infinity page. By Theorem 2.4.8, the
component ExtiA(N,M)d has a bounded below and exhaustive filtration such that its
associated graded module is zero. By item 3 of Lemma 2.4.6, ExtiA(N,M)d = 0.
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Chapter 3

Homological regularity of connected
algebras

In their classic paper [AS87], M. Artin and W. Schelter introduced the no-
tion of AS-regular algebras. Several other properties from the commuta-
tive world, such as being Gorenstein, Cohen-Macaulay, having dualizing
complexes, etc., were borrowed afterwards by noncommutative geometry
to help in the study and classification of connected N-graded algebras.
In order to proceed with this program, the theory of local cohomology
for connected N-graded algebras was developed by analogy with commu-
tative local rings. Examples of the application of local cohomology for
noncommutative algebras can be found in many articles, such as [Yek92],
[AZ94], [Jør97], etc. In this chapter, we show that some of these ideas adapt
painlessly to the connected Nr+1-graded case.

The chapter is organized as follows: In section 3.1 we review the general
properties of Nr+1-graded algebras. In section 3.2 we review the noncom-
mutative version of some regularity conditions over graded rings, show
their relation to change of gradings, and use these results to prove that
said properties are stable by Zhang twists and by passing to associated
graded rings.

3.1 Connected graded algebras

Let r ≥ 0. An Nr+1-graded algebra A is said to be connected if its component of degree
(0, . . . , 0) is equal to k. Just as in the N-graded case, connected graded algebras have
several properties in common with local rings.

We assume for the rest of this section that A is a connected Nr+1-graded algebra.
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We write ”graded” instead of ”Zr+1-graded”, HomA instead of HomZ
r+1

A , and for every
i ≥ 0 we denote by ExtiA its i-th derived functor. We denote by m the ideal generated
by the homogeneous elements of nonzero degree, which is the only maximal graded
ideal of A. Since A/m ∼= k, we consider k as a left and right graded A-module through
this isomorphism. In particular, A has a notion of rank. As discussed in subsection
2.1.1, A is graded noetherian if and only if it is noetherian.

3.1.1 General properties

We begin with an Nr+1-graded version of Nakayama’s Lemma.

Lemma 3.1.1 (Nakayama’s Lemma). Let M be a finitely generated graded A-module. The
following are equivalent:

1. M = 0.

2. M = mM.

3. k⊗AM = 0.

If N is another graded A-module and f : N −→M is a morphism of graded modules, f is epic
if and only if 1⊗A f : k⊗AN −→ k⊗AM is epic.

Proof. The equivalence between 2 and 3 is clear since k⊗AM ∼= M/mM, and obvi-
ously 1 implies the other two. We prove that 2 implies 1 by contradiction. Suppose M
is finitely generated and M 6= 0. Setting the lexicographic order on Zr+1, we may con-
sider ξ = min suppM. The minimality of ξ implies that (mM)ξ = 0, so (M/mM)ξ 6= 0,
in particular M 6= mM.

Since the functor k⊗A − is right exact, k⊗A (M/f(N)) = coker 1⊗A f, so by the
first part of the lemma, 1⊗A f is epic if and only if M/f(N) = 0.

The following fact is a classical consequence of Nakayama’s Lemma.

Lemma 3.1.2. Suppose A is noetherian. For any finitely generated graded A-module M there
exists a resolution P• −→M by finitely generated graded-free modules of length pdimZr+1

A M.

Proof. For every graded A-module N we set P(N) = A⊗ (N/mN). This tensor product
has a grading as described in subsection 2.1.2, which is compatible with the A-module
structure, so it is a graded free module. If n1, . . . ,nr is a basis of N/mN we define a
morphism P(N) −→ N by setting 1⊗ ni 7→ ni for all i, which by Nakayama’s lemma
is an epimorphism.

We setΩ0M =M and P0 = P(M). For every i ≥ 0we define recursivelyΩ−i−1M =
ker(P(Ω−iM) −→ Ω−iM) and P−i−1 = P(Ω−i−1M). Since A is noetherian, Ω•M and
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P• are finitely generated for all • ≤ 0. We set d−i : P−i−1 −→ P−i to be the composition
of the morphisms P−i−1 −→ Ω−i−1M −→ P−i. This defines a complex P• which is a
graded free resolution of M, with i-th syzygy Ω−iM. Since dimk k⊗ P−i = dimk k⊗
Ω−iM = dimTorAi (k,M), if i > pdimZr+1

A M then TorAi (k,M) = 0 and P−i = 0, so the
length of this resolution is equal to pdimZr+1

A M.

Let ϕ : Zr+1 −→ Z be a group morphism. Recall from section 2.2 that we denote
by ϕ!(A) the Z-graded algebra with the same underlying algebra structure as A, and
with homogeneous components given by

ϕ!(A)d =
⊕

ϕ(ξ)=d

Aξ for all d ∈ Z.

We say that A is ϕ-connected if ϕ!(A) is a connected N-graded algebra. We denote by
σ : Zr+1 −→ Z the group morphism that sends each r-uple ξ = (ξ0, . . . , ξr) ∈ Zr+1 to
ξ0 + . . .+ ξr ∈ Z. Notice that any connected Nr+1-graded algebra is σ-connected.

The following proposition relates the graded global and injective dimensions of A
to ungraded invariants of A.

Proposition 3.1.3. Let ϕ : Zr+1 −→ Z be a group morphism, and suppose A is noetherian
and ϕ-connected.

1. A finitely generated graded A-module is locally finite and ϕ-finite.

2. The following equalities hold:

injdimZr+1
A A = injdimZ

ϕ!(A)
ϕA! (A) = injdimAA.

3. The following equalities hold:

pdimZr+1
A k = pdimZ

ϕ!(A)
ϕA! (k) = pdimA k,

and these numbers are equal to the graded global dimension of A.

Proof. 1. First we prove the statement on the local finitude of finitely generated
modules. Let M be a finitely generated graded module and let ξ ∈ Zr+1. Since
Mξ ⊂ ϕA! (M)ϕ(ξ), and ϕ!(A) is a connected N-graded algebra, it is enough to
prove the result for connected N-graded algebras.

Let B be a noetherian connected N-graded algebra, and for every n ∈ N let B≥n
be the ideal generated by elements of degree greater than or equal to n. Since
B is noetherian, B≥n is finitely generated for every n, so B≥n/B≥n+1 ∼= Bn is
finitely generated over B0 = k. This shows that B is locally finite, and hence
so is any finitely generated graded-free module. Since every finitely generated
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graded module is the homomorphic image of a finitely generated graded-free
module, it must be locally finite.

Now since ϕ!(A) is noetherian connected N-graded, ϕA! (M) is locally finite, so
for every n ∈ Z the vector space ϕA! (M)n =

⊕
ξ∈ϕ−1(n)Mξ is finite dimensional,

so there are only finitely many ξ in the fiber of n with Mξ nonzero.

2. By item 1 we may apply Proposition 2.2.9 to deduce that the graded injective
dimension of A is equal to the graded injective dimension of ϕA! (A). By [Lev92,
Lemma 3.3], this in turn is equal to the injective dimension of A as A-module.

3. Once again we apply Proposition 2.2.9 to prove the equality of the projective
dimensions; notice that this is true even if A is not noetherian since k is triv-
ially ϕ-finite. Clearly the graded global dimension of A is at least pdimZr+1

A k, so
without loss of generality we may assume that this number is finite. Lemma
3.1.2 implies that the graded projective dimension of any finitely generated
graded right A-module is bounded by the projective dimension of k, in par-
ticular pdimZr+1

A◦ k ≤ pdimZr+1
A◦ k and so k has finite projective dimension as a

Zr+1-graded right A-module. By symmetry these two numbers are equal and
bound the graded projective dimension of all finitely generated graded left mo-
dules. The result then follows from the graded version of [Wei94, Theorem 4.1.2].

Remark 3.1.4. Item 3 of Proposition 3.1.3 can be improved. By a classical result, the
projective dimension of k is equal to the global dimension of A, no gradings involved.
For a proof of this fact the reader is referred to [Ber05].

3.2 Local cohomology and regularity conditions

We keep the conventions from the previous section. In particular, A denotes a con-
nected Nr+1-graded algebra and m denotes its unique maximal graded ideal. Also we
write HomA for HomZ

r+1

A and ExtiA for its i-th derived functor. We also assume from
now on that A is noetherian.

Let B denote either A or k. In section 2.3 we introduced the torsion functor ΓZ
r+1

m :

ModZ
r+1
A⊗B◦ −→ ModZ

r+1
A⊗B◦ and its derived functors RiΓZr+1m , which are called

the local cohomology functors. As explained in that section, we are justified in using the
same notation for the two different functors thanks to Proposition 1.2.3.

In order to lighten up notation we will write Γm for ΓZ
r+1

m and Him for its i-th de-
rived functor. We write Γm◦ for the torsion functor associated to the connected graded
algebra A◦.
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Recall also that we have defined some invariants related to local cohomology. If M
is a graded A-module, its depth and local dimension are

depthM = inf{i ∈ N | Him(M) 6= 0}
ldimM = sup{i ∈ N | Him(M) 6= 0}.

The local dimension of A as a graded algebra is

lcdA = sup{ldimM |M is an object of ModZ
r+1
A}.

By item 1 of Proposition 2.3.3 and item 1 of Lemma 2.3.4, these numbers are invariant
by change of grading. If M is a graded A-bimodule we sometimes write depthmM or
depthm◦M, and ldimmM or ldimm◦M to clarify which structure we are considering.

As mentioned in the introduction to this chapter, M. Artin and W. Schelter adapted
the notions of regular and Gorenstein rings to connected N-graded algebras. They are
now called AS-regular and AS-Gorenstein in their honour. There is also a notion of
AS-Cohen-Macaulay algebras, introduced by M. Van den Bergh in [VdB97, section 8].

Definition 3.2.1. Let B be a noetherian connected N-graded algebra with maximal
ideal n.

1. We say that B is left, resp right, AS-Cohen-Macaulay if depthn B = ldimn B, resp.
depthn◦ B = ldimn◦ B. We say that B is AS-Cohen-Macaulay if

depthn B = ldimn B = ldimn◦ B = depthn◦ B.

2. We say that B is left AS-Gorenstein if injdimZ
B B = d < ∞ and there exists ` ∈ Z,

called the left Gorenstein parameter of B, such that

ExtiB(k,B) ∼=

{
k[`] if i = d,
0 otherwise,

where the isomorphism is of graded vector spaces. We say that B is right AS-
Gorenstein if an analogous condition holds for B as a right graded module over
itself. We say that B is AS-Gorenstein if it is both left an right AS-Gorenstein, with
the same graded injective dimension and Gorenstein parameters in both cases.

3. We say that B is left AS-regular if it is left AS-Gorenstein and it has finite graded
global dimension, and analogously for right AS-regular. We say that B is AS-
regular if it is AS-Gorenstein, has finite graded global dimension.

The following remark clarifies the relation between these properties and their clas-
sical counterparts.

53



Remark 3.2.2. 1. If A is a commutative noetherian connected N-graded algebra of
finite Krull dimension, then A is Cohen-Macaulay if and only if the local algebra
Am is Cohen-Macaulay, see [BH93, Exercise 2.1.27]. By Grothendieck’s vanishing
theorem [BH93, Theorem 3.5.7] and [BH93, Remark 3.6.18], the local algebra Am

is Cohen-Macaulay if and only if the local cohomology modules Him(A) are zero
except when i is equal to the Krull dimension of A. This shows that the notions
of Cohen-Macaulay and AS-Cohen-Macaulay coincide in the commutative, finite-
dimensional case. A similar statement holds for AS-Gorenstein and AS-regular
algebras.

2. By definition, if A is AS-regular then it is AS-Gorenstein. Suppose now that A is
AS-Gorenstein. Then depthA ≤ ldimA ≤ injdimZr+1

A A = depthA, from which
we immediately deduce that A is left AS-Cohen-Macaulay. A similar argument
shows that A is right AS-Cohen-Macaulay, and since the injective dimensions of
A as a left or right A-module coincide, A is AS-Cohen-Macaulay.

3.2.1 The Artin-Schelter conditions for Nr+1-graded algebras

We now focus on studying the relation between the properties from Definition 3.2.1
and Nr+1-graded algebras. We will show that they are stable by changing the grading
of the algebra, and also by twisting the algebras by Zhang twists.

Recall that we denote by σ : Zr+1 −→ Z the morphism that assigns to each r+ 1-
uple the sum of its components. Notice that A is necessarily σ-connected. We will say
that A has the left AS-CM property if depthmA = ldimmA; the right AS-CM property
is defined analogously. We will say that A has the left AS-G property with parameter
` ∈ Zr+1 if it has finite graded injective dimension d over itself and

Exti(k,A) ∼=

{
k[`] if i = d;
0 otherwise;

the right AS-G property is analogous. Finally, we say that A has the left AS-r property
if it has the left AS-G property and finite graded global dimension, with its corre-
sponding right analogue. The following three propositions show that these properties
can be considered as suitable analogues of the AS-Cohen-Macaulay, AS-Gorenstein
and AS-regular properties of N-graded algebras.

Proposition 3.2.3. The following are equivalent:

1. A has the left, resp. the right, resp. both the left and the right AS-CM property;

2. For all group morphisms ϕ : Zr+1 −→ Zt+1, where t ≥ 0, such that A is ϕ-connected,
the algebra ϕ!(A) has the left, resp. the right, resp. both the left and the right AS-CM
property;
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3. The algebra σ!(A) is left, resp. right, resp. both left and right AS-Cohen-Macaulay.

Proof. As we have stated before, the depth and local dimension of a module are invari-
ant under change of grading for noetherian algebras. The result follows immediately
from this.

Proposition 3.2.4. The following are equivalent:

1. A has the left AS-G property with parameter `;

2. For all group morphisms ϕ : Zr+1 −→ Zt+1, where t ≥ 0, such that A is ϕ-connected,
ϕ!(A) has the left AS-G property with parameter ϕ(`);

3. The algebra σ!(A) is left AS-Gorenstein with parameter σ(`).

Furthermore, any of the previous conditions is equivalent to its corresponding right condition,
with the same injective dimension and Gorenstein parameter.

Proof. The equivalence of the three conditions follows from Propositions 2.2.9 and
2.2.11. Of course an analogous argument shows that the corresponding right prop-
erties are equivalent. By a result of J. Zhang, a connected N-graded algebra is left
AS-Gorenstein if and only if it is right AS-Gorenstein, see [Zha97, Corollary 1.2].

Proposition 3.2.5. The following are equivalent:

1. The algebra A has the left AS-r property.

2. For all group morphisms ϕ : Zr+1 −→ Zt+1, where t ≥ 0, such that A is ϕ-connected,
ϕ!(A) has the left AS-r property ϕ(`).

3. The algebra σ!(A) is left AS-regular.

Furthermore, any of the previous conditions is equivalent to its corresponding right condition.

Proof. The equivalence of these properties, including the fact that they are equivalent
to their right counterparts, follows from item 3 of Proposition 3.1.3 and Proposition
3.2.4.

In view of the last three propositions, we will say that an Nr+1-graded algebra is
AS-Cohen-Macaulay if it has both the left and right AS-CM properties; we will say
that it is AS-Gorenstein if it has both the left and right AS-G properties with the same
graded injective dimension and parameter in both cases; and that it is AS-regular if it
has both the left and right AS-r properties, with the same graded global dimension in
both cases.
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Remark 3.2.6. One can prove even stronger versions of the previous propositions,
namely that if A can be endowed with two different connected gradings with max-
imal ideal m, then A has the left or right AS-CM property with respect to one of the
gradings if and only if it has said property with respect to the other grading. Similar
results holds for the AS-G and AS-r properties. These results can be proved by using
the forgetful functors from the corresponding categories of graded modules to the cat-
egory of A-modules, just as we used the change of grading functors in the previous
proofs.

Recall from section 2.1.3 that a left twisting system on A is a set of graded k-linear
automorphisms τ = {τξ | ξ ∈ Zr+1}, satisfying

τξ(τξ ′(a)a
′) = τξ ′+ξ(a)τξ(a

′)

for all ξ, ξ ′ ∈ Zr+1 and all a ∈ A and a ′ ∈ Aξ ′ . Given a left twist τ on A, the connected
Nr+1-graded algebra τA is the algebra with the same underlying graded vector space
as A, and product defined by

a ·τ a ′ = τξ ′(a)a ′ for all a ∈ A, a ′ ∈ Aξ ′ .

The category of Zr+1-graded τA modules is isomorphic to ModZ
r+1
A by Theorem

2.1.8. Since A is noetherian, this implies that τA is Zr+1-graded noetherian, and by
[CQ88, Theorem 2.2] it is noetherian.

A property is said to be twisting invariant if it is true for A if and only if it is true
for τA. In [Zha96, Theorem 5.11], J. Zhang proved that being AS-Gorenstein and AS-
regular are twisting invariant properties for connected N-graded algebras. This is not
surprising since the homological regularity properties of A are defined in terms of the
category of graded A-modules. We will now prove a similar result for Nr+1-graded
connected algebras, but first we need a technical result.

Lemma 3.2.7. Let τ be a left twisting system on A and let M be an object in ModZ
r+1
A. For

every n ∈ N there exists a natural isomorphism of Zr+1-graded k-vector spaces

T(M) : HomA(A/mn,M) −→ HomτA(
τA/(τm)n, τM).

Proof. Given an element m ∈ M we will denote by τm the corresponding element in
τM.

Fix n ∈ N and d ∈ Z. We denote by [1] the class of 1 in the quotient A/mn. For
every f ∈ HomA(A/mn,M)d the element f([1]) ∈ Md is annihilated by mn, and every
element of Md that is annihilated by mn is the image of one such morphism. On the
other hand by definition of the τA-module structure on τM, an element m ∈ Md is
annihilated by mn if and only if the corresponding element τm ∈ τMd is annihilated
by (τm)n. Hence we can define T(M)(f) to be the only τA-linear function such that
T(M)(f)([τ1]) = τf([1]). This is clearly an isomorphism, whose inverse can be found
by repeating the above construction but considering A as a twist of τA.
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We are now ready to prove the result announced above.

Proposition 3.2.8. Let τ be a left twisting system on A. Then A is AS-Cohen-Macaulay,
resp. AS-Gorenstein, resp. AS-regular, if and only if τA is AS-Cohen-Macaulay, resp. AS-
Gorenstein, resp. AS-regular.

Furthermore, if A is AS-Gorenstein then the injective dimension and the Gorenstein pa-
rameters of A and τA coincide, and if A is AS-regular then the graded global dimensions of A
and τA also coincide.

Proof. Recall from Theorem 2.1.9 that there is a right twist ν on A and a graded algebra
isomorphism θ : τA −→ Aν, and that the right τA-module τA is isomorphic to the
induced right τA-module Aνθ .

By Proposition 2.3.5, for every i ≥ 0 there exists an isomorphism of Zr+1-graded
τA-modules Hiτm(

τA) ∼= τHim(A), so depthmA = depthτm
τA and ldimmA = ldimτA

τA.
Since local cohomology also commutes with right twists, and it obviously commutes
with the isomorphism of categories induced by θ, we see thatHiτm◦(

τA) ∼= Hi(mν)◦(A
ν
θ)

∼=

Him(A)
ν
θ for all i. Thus A is AS-Cohen-Macaulay if and only if τA is.

By Proposition 3.2.4, it is enough to prove that if A is left AS-Gorenstein then
τA is AS-Gorenstein. Since F τ is an isomorphism of categories injdimZr+1

τA
τA =

injdimZr+1
A A. Let I• be an injective resolution of A as A-module. Then τI is an in-

jective resolution of τA as module over itself, so by Lemma 3.2.7 HomA(k, I•) and
HomτA(k, τI•) are isomorphic as complexes of graded vector spaces. This implies that
their cohomologies are also isomorphic as graded vector spaces, that is

ExtiA(k,A) ∼= ExtiτA(k, τA)

for all i ≥ 0. Thus A is AS-Gorenstein if and only if τA is, and in that case their graded
injective dimensions and their parameters coincide.

Finally since F τ is an isomorphism of categories, A and τA have the same graded
global dimension, so one is AS-regular if and only if the other is AS-regular.

3.2.2 The Artin-Schelter conditions for GF-algebras

It is a classical result in the commutative setting that if A is a filtered algebra and its
associated graded algebra is Cohen-Macaulay, Gorenstein or regular, then so is A, see
for example [BH93, Theorem 4.5.7]. In this subsection we prove that, given a technical
condition, similar results hold for GF-algebras which were introduced in subsection
2.4.2.

The technical condition mentioned in the previous paragraph is the following.

Definition 3.2.9. Suppose A is noetherian and let M be a graded A-module. We say M
has property χ if for every i ≥ 0 the vector space ExtiA(k,M) has finite dimension. We
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say that A has property χ as a graded algebra if every finitely generated graded A-module
has property χ.

Remark 3.2.10. Properties χ◦ and χ were introduced in [AZ94, Definitions 3.2 and 3.7].
By [AZ94, Proposition 3.1(1) and Proposition 3.11(2)], both properties agree with the
one defined above when A is a noetherian connected N-graded algebra. In [AZ94,
Proposition 3.11 (3)] it is shown that if A is N-graded and commutative then it has
property χ. The proof adapts word for word to the Nr+1-graded case.

Property χ appears naturally when trying to transfer notions from algebraic ge-
ometry to the study of noncommutative connected graded algebras. Informally, a
noetherian algebra with property χ is expected to have an homological behavior close
to that of commutative noetherian algebras. Evidence for this claim can be found in
[AZ94], [VdB97], [Jør97], [JZ00], etc.

From this point on, A denotes a noetherian connectedN-graded algebra. Recall that
for every n ∈ N, we denote by A≥n the ideal generated by all homogeneous elements
of degree greater than or equal to n. Now we summarize various results relating
property χ and local cohomology for noetherian connected N-graded algebras.

Lemma 3.2.11. Let M be a graded A-module.

1. For every l ∈ N there exist n,n ′ ∈ N such that mn ⊂ A≥l and A≥n ′ ⊂ ml.

2. For every i ≥ 0 there exist natural isomorphisms

Him
∼= lim
−→
n

ExtiA(A/A≥n,−).

3. The following equality holds: depthmM = inf{i ∈ N | ExtiA(k,M) 6= 0}.

4. If M has property χ, then for every d0 ∈ Z and every i ≥ 0 there exists n0 ∈ N such
that

Him(M)d ∼= ExtiA(A/A≥n,M)d for all n ≥ n0, d ≥ d0.

5. The A-module M has property χ if and only if for each i ≥ 0 there exists di ∈ N such
that Him(M)d = 0 for d ≥ di.

Proof. 1. Since m = A≥1, it is clear that ml ⊂ A≥l for every l ∈ N. For the other
inclusion, let M be a finite set of homogeneous generators of m. An element of
A≥n ′ ⊂ m can be written as a linear combination of monomials in the elements
of M, each monomial of degree greater than n ′. Let D = max{dega | a ∈ M}.
If a1a2 . . . at is a monomial of degree at least n ′, then n ′ ≤ dega1a2 . . . at ≤ Dt.
Taking n ′ = Dl we see that t ≥ l, so a1a2 . . . at ∈ ml and A≥n ′ ⊂ ml.
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2. Item 1. implies that

Γm(M) = {m ∈M | A≥nm = 0 for n� 0}.

Using this equality, the proof of Lemma 2.3.2 can be adapted to prove the exis-
tence of the desired isomorphisms.

3. Let d be the infimum defined in the statement. For every n ∈ N and every i ≥ 0
consider the long exact sequence

Exti−1A (A≥n/A≥n+1,M) −→ ExtiA(A/A≥n,M)
πin−→

−→ExtiA(A/A≥n+1,M) −→ ExtiA(A≥n/A≥n+1,M). (*)

Suppose i < d. Since ExtiA(k,M) = 0 and A≥n/A≥n+1 is isomorphic as A-module
to a direct sum of copies of k, the exactness of sequence (*) implies that the map
πin is an isomorphism for all n. By induction, we see that ExtiA(A/A≥n,M) = 0

for all n, so

Him(M) ∼= lim
−→
n

ExtiA(A/A≥n,M) = 0.

The exactness of (*) also implies that πdn is injective for all n, and this in turn
implies that the natural morphism ExtdA(A/A≥1,M) ↪→ Hdm(M) is injective, so
Hdm(M) 6= 0.

4. By [AZ94, Proposition 3.11], properties χ and χ◦ are equivalent for locally finite
algebras. The result then follows from [AZ94, Proposition 3.5 (1)].

5. See [AZ94, Corollary 3.6(3)].

From this point on we assume that A is a GF-graded algebra as defined in section
2.4.2; we assume furthermore that F0A = k, so its associated graded algebra grA is a
connected N2-graded algebra, with maximal ideal grm.

Before we go on, we fix some more notation. We denote by π : Z2 −→ Z the
projection to the second coordinate, and write B = π!(grA). SinceA is a GF-algebra, for
every d ∈ N the vector space Ad is filtered by FpAd = FpA∩Ad, and the vector spaces
Bd and gr(Ad) are equal; in particular, B is connected with maximal ideal n = π!(grm).
Notice also that the inclusion A≥n ↪→ A is a strict morphism, so item 1 of Lemma 2.4.6
implies that B/B≥n ∼= π

grA
! (gr(A/A≥n)) as graded B-modules.

We recall that by [MR01, Theorem 1.6.9], if grA, or equivalently B, is noetherian
then so is A and by item 1 of Proposition 3.1.3 A, grA and B are locally finite.

Lemma 3.2.12. Suppose grA is noetherian. Let M be a finitely generated graded A-module.
Set a GF-module structure on M as in Lemma 2.4.5. Then following hold:
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1. depthgrm grM ≤ depthmM.

2. pdimZ
A M ≤ pdimZ2

grA grM and injdimZ
AM ≤ injdimZ2

grA grM.

3. If grM has property χ, so does M.

4. If grM has property χ, then ldimM ≤ ldim grM.

Proof. Recall from Theorem 2.4.8 that under the hypotheses of the lemma, for any
finite GF-module N and any d ∈ Z there exists a spectral sequence

E(N,M)d : E1p,q = Ext−p−qgrA (grN, grM)(p,d) ⇒ Ext−p−qA (N,M)d p,q ∈ Z.

1. Let i < depthgrm grM. By item 3 of Lemma 3.2.11, ExtigrA(gr k, grM) = 0 since
gr k = k. Corollary 2.4.9 then implies ExtiA(k,M) = 0, so i < depthM.

2. The module P(M) = A⊗M/mM is a graded A-module, and as in Lemma 3.1.2
there is a map P(M) −→ M, call it ε. We may give P(M) the structure of a GF-
module by setting FpP(M) = ε−1(FpM) for every p ∈ Z. Given a basis x1, . . . , xt
of M/mM, it is immediate that

FpP(M) =

t∑
i=1

Fp−piA(1⊗ xi),

where pi is such that x ∈ FpiM \ Fpi−1M, so P(M) is a GF-free module.

By definition the morphism ε : P(M) −→ M is strict, so the resolution P• from
Lemma 3.1.2 is a resolution of M by finitely generated GF-free modules with
strict differentials, and its length is equal to the projective dimension of M. Ac-
cording to items 1 and 2 of Lemma 2.4.6 gr P• is a projective resolution of grM,
from which it follows that pdimZ2

grA grM ≤ pdimZ
AM.

Now let N be a finitely generated graded A-module, and give it a GF-module
structure as in Lemma 2.4.5. If i > injdimZ2

grA grM, then ExtigrA(grN, grM) = 0

and by Corollary 2.4.9 ExtiA(N,M) = 0. Using the graded version of [Wei94,
Theorem 4.1.2] we obtain injdimZ

AM ≤ injdimZ2
grA grM.

3. Suppose grM has property χ, that is ExtigrA(k, grM) is finite dimensional for all
i ≥ 0, and fix i ∈ N. By hypothesis, for all d ∈ Z the i-th diagonal of the first
page of E(k,M)d has at most a finite number of nonzero entries, each of finite
dimension. Furthermore, there are no nonzero entries except for finitely many
d’s. The same is true of the infinity page, so the associated graded vector space
of ExtiA(k,M)d is finite dimensional, and equal to zero for all but finitely many
d’s and by item 3 of Lemma 2.4.6, the same is true for ExtiA(k,M)d. It follows
that ExtiA(k,M) is a finite dimensional k-vector space.
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4. Let i > ldim grM and let d ∈ Z. We will prove that Him(M)d = 0. By item 4 of
Lemma 3.2.11, there exists n0 ∈ N such that

Him(M)d ∼= ExtiA(A/A≥n,M)d for all n ≥ n0,

so it is enough to prove that ExtiA(A/A≥n,M)d = 0 for n large enough.

Let M̃ = π
grA
! (grM). By item 1 of Proposition 2.3.3, Hin(M̃) = 0. Once again by

item 4 of Lemma 3.2.11, there exists n1 ∈ N such that

0 = Hin(M̃)d ∼= ExtiB(B/B≥n, M̃)d for all n ≥ n1.

Applying Proposition 2.2.11 we obtain⊕
p∈Z

ExtigrA(gr(A/A≥n), grM)(p,d)
∼= ExtiB(B/B≥n, M̃)d = 0

for all n ≥ n1. Taking n greater than both n0 and n1, the result follows from
Corollary 2.4.9.

We now prove that the regularity properties of grA transfer to A. Notice that A◦ is
naturally a GF-algebra, and that grA◦ = (grA)◦.

Theorem 3.2.13. Suppose that grA is noetherian and that grA and grA◦ have property χ as
graded algebras. Then A and A◦ have property χ as graded algebras. Furthermore if grA is
AS Cohen-Macaulay, resp. AS-Gorenstein, resp. AS-regular, then A is AS-Cohen-Macaulay,
resp. AS-Gorenstein, resp. AS-regular.

Proof. Let M be a finitely generated graded A-module and endow it with the structure
of a GF-module as in Lemma 2.4.5. Since grA has property χ as a graded algebra,
grM has property χ, and by item 3 of Lemma 3.2.12 so does M. This proves that A
has property χ as a graded algebra. An analogous argument works for A◦.

Suppose grA is AS-Cohen-Macaulay. Since grA has property χ over grA and grA◦,
we can apply items 1. and 4. of Lemma 3.2.12 to get the series of inequalities

depthgrm grA ≤ depthmA ≤ ldimmA ≤ ldimgrm grA,

depthgrm◦ grA ≤ depthm◦ A ≤ ldimm◦ A ≤ ldimgrm◦ grA,

The hypothesis implies that all these numbers are equal, so A is AS-Cohen-Macaulay.

Suppose now that grA is AS-Gorenstein with Gorenstein parameter ` = (`1, `2) ∈
Z2 and injective dimension d. By Proposition 3.2.4 it is enough to prove that A is
left AS-Gorenstein. By item 2 of Lemma 3.2.12 we see that injdimZ

AA ≤ d. By the
condition on the modules ExtigrA(k, grA), the spectral sequence E(k,A)t collapses at
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page 1 for all t ∈ Z, since E1p,q = 0 for all p,q ∈ Z save for p = `1 and −p− q = d. We
thus obtain graded vector space isomorphisms

ExtiA(k,A) ∼=

{
k[`2] if i = d,
0 otherwise.

These implies injdimZ
AA = d, so A is AS-Gorenstein with the same injective dimension

and Gorenstein parameter π(`). Notice that B is also AS-Gorenstein with the same
injective dimension and Gorenstein parameter.

Finally, suppose grA is AS-regular. By the previous argument A is AS-Gorenstein,
and by item 2 of Lemma 3.2.12 pdimZ

A k ≤ pdimZ2
B k < ∞, so k has finite graded

projective dimension over A. The result then follows from Proposition 3.2.5.
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Chapter 4

Dualizing complexes

Dualizing complexes for connected graded algebras were introduced by A.
Yekutieli to answer a question posed by M. Artin on the local cohomology
modules of AS-regular connected N-graded algebras. They have proven
to be a very useful tool for the study of connected graded algebras and
their homological properties. In this chapter we review the definitions and
basic results, and show that they hold in the Nr+1-graded setting. We then
use these results to prove that having a (balanced) dualizing complex is
a twisting invariant property, and that it transfers from associated graded
algebras to GF-algebras.

Dualizing complexes are objects of the derived category D(ModZ
r+1
Ae), so

in section 4.1 we give a brief review of general results of derived categories,
and then extend some results on local cohomology and the change of grad-
ing functors to the derived setting. Then in section 4.2 we prove the main
results of this chapter, mostly Nr+1-graded analogues of known results.

The enveloping algebra Ae = A⊗A◦ is an Nr+1-graded algebra with the natural
grading for the tensor product of graded vector spaces, as defined in subsection 2.1.2.
Notice that the functor ϕ! is compatible with tensor products, and that ϕ!(A

e) =
ϕ!(A)

e.

4.1 Derived categories

All undefined objects and notations in this section are taken from [Har66, chapter I],
which we use as our main reference on derived categories.
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4.1.1 Generalities

Throughout this subsection, A and B denote two abelian categories with enough pro-
jective and injective objects, and all functors between them will be additive functors.
We denote the homotopy category of A by K(A), and its derived category by D(A).
We identify objects of A with complexes in D(A) concentrated in degree 0. For every
object M• of D(A) and any n ∈ Z, we denote by Hn(M•) the n-th cohomology mo-
dule of M•. We also denote by M•(n) the complex M•+n, the n-th translate of M. The
complex M• is said to be left bounded, resp. right bounded, resp. bounded, if there
exists n0 ∈ Z such that Mn = 0 for n ≤ n0, resp. n ≥ n0, resp. n ≥ |n0|. We denote
the full subcategories of left bounded, right bounded and bounded objects of D(A) by
D+(A),D−(A) and Db(A), respectively.

Given an object M• of D(A), a projective resolution of M• is a complex P• of projec-
tive objects of A and a quasi-isomorphism p : P• −→M•. An injective resolution of M•

is a complex I• of injective objects of A along with a quasi-isomorphism i :M• −→ I•.

Since A has enough injectives, every object M• of D+(A) has an injective res-
olution by [Har66, Lemma 4.6]. The injective dimension of a complex is defined as
the minimal length of injective resolutions of M•. By [Har66, Proposition 7.6] and
its proof, the injective dimension of M• is equal to the minimum i ∈ N such that
Hi(HomA(A,M•)) = 0 for all objects A of A.

Recall that an additive functor ∆ : D(A) −→ D(B) is called a ∂-functor if it com-
mutes with the translation functor of the derived category and takes distinguished
triangles to distinguished triangles. For example, if F : A −→ B is exact then F in-
duces a ∂-functor in the corresponding derived categories; we will also denote by F
the induced functor F : D(A) −→ D(B).

Every left exact functor F : A −→ B has a right derived functor RF : D+(A) −→
D+(B) that is calculated as follows: for every object M• of D+(A) choose an injective
resolution M• −→ I•; then RF(M•) = F(I•). We write RiF(M•) = Hi(RF(M•)). As
usual, injective objects can be replaced with F-acyclic objects, see [Har66, Theorem 5.1
and Corollary 5.3]. This implies the following lemma, which is a derived version of
Lemma 1.2.2 and can be proved using the same argument.

Lemma 4.1.1. Let F : A −→ B and G : B −→ C be two covariant left exact functors, where
C is an abelian category. If F is exact and sends injective objects to G-acyclic objects, then
R(G ◦ F) ∼= RG ◦ F.

Given a subcategory C of A, we say that C is closed under extensions if whenever
there exist objects C ′,C ′′ of C and an exact sequence of objects of A

0 −→ C ′ −→ C −→ C ′′ −→ 0,

then C is also an object of C. Notice that in [Har66] these categories are called thick
subcategories. If C is closed under extensions, the full subcategory DC(A) formed by
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the objects of D(A) whose cohomology modules lie in C is a full triangulated subcat-
egory of D(A). We write D+

C (A), resp. D−
C (A), resp. DbC(A), for the full subcategories

of DC(A) formed by left bounded, resp. right bounded, resp. bounded, objects of
DC(A).
Proposition 4.1.2. Let D : D+(A) −→ D(B) be a ∂-functor and let A ′ be a subcategory of
A, closed under extensions.

1. Suppose there exist a ∂-functor E : D+(A) −→ D(B) and a natural transformation
η : D −→ E such that for every object A of A ′ the map η(A) is an isomorphism. Then
η(X•) is an isomorphism for every object X• of DbA ′(A).

2. Let B ′ be a subcategory of B, and suppose that it is closed under extensions. If D sends
objects of A ′ to DB ′(B), then for every object X• of DbA ′(A) the complex F(X•) is in
DB ′(B).

Proof. See [Har66, Chapter 1, Propositions 7.1 (i) and 7.3 (i)].

4.1.2 The category D(ModZ
r+1
Ae)

We now return to the study of connected Nr+1-graded algebras. For the rest of this
section A denotes a connected Nr+1-graded algebra, and we focus on the derived
category of ModZ

r+1
Ae.

We start by reviewing the definitions of the HomA functors defined at the level of
complexes, following closely [Yek92, section 2]. Notice that the reference works with
Z-graded modules instead of Zr+1-graded ones, but the proofs can be adapted to this
new context almost word by word.

Let B and C be two connected N-graded algebras. Recall from subsection 2.1.2
that given a graded A⊗ B◦-module N and a graded A⊗ C◦-module M, the enriched
homomorphism space HomZ

r+1

A (N,M) is a graded B ⊗ C◦-module. Given N• and
M• objects of K(ModZ

r+1
A ⊗ B◦) and K(ModZ

r+1
A ⊗ C◦) respectively, the complex

HomZ
r+1

A (N•,M•) is the object of K(ModZ
r+1
B⊗C◦) whose n-th component is

HomZ
r+1

A (N•,M•)n =
∏
p∈Z

HomZ
r+1

A (Np,Mp+n),

where the product is taken in the category of graded modules (see item 1 of Lemma
2.1.2), and whose differential is given by

dn =
∏
p∈Z

((−1)n+1HomZ
r+1

A (dpN,Mp+n) +HomZ
r+1

A (Np,dp+nM )).

Thus we obtain a bifunctor

HomZ
r+1

A : K(ModZ
r+1
A⊗ B◦)◦ ×K(ModZ

r+1
A⊗C◦) −→ K(ModZ

r+1
B⊗C◦).
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Remark 4.1.3. Notice that our sign conventions differ from those of [Yek92]. A. Yekutieli
follows [Har66] in his sign conventions, but as shown in [Con00] this leads to an
inconsistency in the definition of the natural transformation τ (see section 4.2). This
last reference corrects the error, so we follow the conventions found there.

By a reasoning similar to that of [Wei94, 2.7.5], for every ξ ∈ Zr+1 and every
n ∈ N the cohomology group Hn(HomZ

r+1

A (N•,M•)) is the space of homotopy classes
of homogeneous A-linear morphisms of complexes from N• to M•[ξ](n).

Theorem 4.1.4. 1. The functor HomZ
r+1

A has a right derived functor

RHomZ
r+1

A : D(ModZ
r+1

A⊗ B◦)◦ ×D+(ModZ
r+1

A⊗C◦) −→ D(ModZ
r+1

B⊗C◦).

When M• is an object of D+(ModZ
r+1
A ⊗ C◦) such that Mi is injective as left A-

module for each i ∈ Z, then RHomZ
r+1

A (N•,M•) ∼= HomZ
r+1

A (N•,M•) for every object
N• of D(ModZ

r+1
A⊗ B◦)◦.

2. The functor HomZ
r+1

A also has a right derived functor

RHomZ
r+1

A : D−(ModZ
r+1

A⊗ B◦)◦ ×D(ModZ
r+1

A⊗C◦) −→ D(ModZ
r+1

B⊗C◦).

When N• is an object of D−(ModZ
r+1
A⊗ B◦)◦ such that Ni is projective as left A-

module for each i ∈ Z, then RHomZ
r+1

A (N•,M•) ∼= HomZ
r+1

A (N•,M•) for every object
M• of D+(ModZ

r+1
A⊗C◦).

3. These derived functors coincide over D−(ModZ
r+1
A⊗ B◦)◦ ×D+(ModZ

r+1
A⊗C◦).

Proof. See [Yek92, Theorem 2.2].

Of course one may define in the same way a bifunctor

HomZ
r+1

A◦ : K(ModZ
r+1
B⊗A◦)◦ ×K(ModZ

r+1
C⊗A◦) −→ K(ModZ

r+1
C⊗ B◦),

with the same properties as HomZ
r+1

A . We will only be interested in the cases where
B,C are either A or k.

As in subsection 2.1.2 we denote by Λ and P the functors that assign to each Zr+1-
graded Ae-module its underlying left and right Zr+1-graded A-module, respectively.
Recall from Lemma 2.1.5 that Λ and P are exact functors and send injective objects to
injective objects.

Lemma 4.1.5. Let N• be an object of D+(ModZ
r+1
Ae). The objects Λ(N•) and P(N•) have

finite injective dimension if and only if there is an object I• of Db(ModZ
r+1
Ae) isomorphic to

N• such that Λ(Ip) and P(Ip) are injective for all p ∈ Z.

Proof. The proof is analogous to [Yek92, Proposition 2.4].
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In section 2.3 we introduced the torsion functor Γm : ModZ
r+1
Ae −→ ModZ

r+1
Ae

that extends the torsion functor for A-modules, in the sense that Γm commutes with Λ.
Of course, Γm◦ commutes with P.

Proposition 4.1.6. The following diagrams of functors commute

D+(ModZ
r+1

Ae)

Λ

��

RΓm // D+(ModZ
r+1

Ae)

Λ

��

D+(ModZ
r+1

Ae)

P
��

RΓm◦ // D+(ModZ
r+1

Ae)

P
��

D+(ModZ
r+1

A)
RΓm // D+(ModZ

r+1

A), D+(ModZ
r+1

A◦)
RΓm◦ // D+(ModZ

r+1

A◦).

Proof. We have already seen in section 2.3 that Λ ◦ Γm = Γm ◦ Λ, from which we can
deduce that

Λ ◦ RΓm ∼= R(Λ ◦ Γm) ∼= R(Γm ◦Λ) ∼= RΓm ◦Λ,

where the last isomorphism follows from Lemma 4.1.1 and the fact that Λ sends injec-
tive objects to injective objects. The proof is the same for P and Γm◦ .

For the sake of legibility we will omit the functors Λ and P when the context makes
it clear in which category we are working.

For every graded A-module M the graded vector space M∗ = HomZ
r+1

k (M,k) has
a natural Zr+1-graded right A-module structure. This space is called the Matlis dual of
M. More generally, the functor HomZ

r+1

k (−,k) induces a functor

HomZ
r+1

k (−,k) : D(ModZ
r+1
A⊗ B◦)◦ −→ D(ModZ

r+1
B⊗A◦).

Suppose M is a graded A-module. The usual adjunction between HomZ
r+1

A and graded
tensor products gives

HomZ
r+1

A◦ (−,M∗) ∼= HomZ
r+1

k (−⊗AM,k).

Hence the functor HomA◦(−,M∗) is exact, that is M∗ is injective, if and only if M is a
flat A-module. If A is noetherian andM is finitely generated then Lemma 3.1.2 implies
that M∗ is injective if and only if M is free. Notice that the Matlis dual of the algebra
A∗ is injective both as left and right graded module.

4.1.3 Change of grading between derived categories

Before we begin our discussion of dualizing complexes we prove derived versions
of Propositions 2.3.3 and 2.2.12. In this subsection ϕ : Zr+1 −→ Z denotes a group
morphism such that A is ϕ-connected. By a slight abuse of notation we denote by
Λ the functor that assigns to each graded A⊗ B◦-module its underlying graded A-
module.
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It is clear from the definitions that Λ and P commute with the change of grading
functor ϕA⊗B

◦

! . We will use this fact throughout this section without further men-
tion. Notice that since ϕA⊗B

◦

! is an exact functor, it induces a ∂-functor between the
corresponding derived categories which we also denote by ϕA⊗B

◦

! .

Proposition 4.1.7. Suppose A is noetherian

1. The following diagram of functors commutes

D+(ModZ
r+1
A⊗ B◦) RΓm //

ϕA⊗B
◦

!
��

D+(ModZ
r+1
A⊗ B◦)

ϕA⊗B
◦

!
��

D+(ModZϕ!(A⊗ B◦))
RΓm // D+(ModZϕ!(A⊗ B◦)).

2. The following diagram of functors commutes

Dblf(ModZ
r+1
A⊗ B◦) −∗ //

ϕA⊗B
◦

!
��

Dblf(ModZ
r+1
A⊗ B◦)

ϕA⊗B
◦

!
��

Dblf(ModZϕ!(A⊗ B◦))
−∗ // Dblf(ModZϕ!(A⊗ B◦)),

where −∗ is Matlis duality and lf denotes the subcategory of locally finite A ⊗ B◦-
modules.

Proof. 1. This is proved just like item 1 of Proposition 2.3.3, replacing Lemma 1.2.2
by its derived version Lemma 4.1.1.

2. By definition, for every n ∈ Z

ϕA⊗B
◦

! (M∗)n =
⊕

ϕ(ξ)=n

Homk(M−ξ,k) ⊂ Homk

 ⊕
ϕ(ξ)=n

M−ξ,k

 = ϕA⊗B
◦

! (M)∗n.

Denote by η(M) : ϕA⊗B
◦

! (M∗) −→ ϕA⊗B
◦

! (M)∗ the natural transformation in-
duced by this inclusion. Notice that η(M) is an isomorphism if and only if M is
ϕ-finite, in particular if M is locally finite.

Since ϕA⊗B
◦

! and Matlis duality are exact functors, they induce ∂-functors in
the corresponding derived categories, which are the ones that appear in the
diagram. For every complex X• in D+(ModZ

r+1
A ⊗ B◦) there is a morphism

η(X•) : ϕA⊗B
◦

! ((X•)∗) −→ ϕA⊗B
◦

! (X•)∗, and by Proposition 4.1.2 it is an isomor-
phism whenever X• is a bounded complex with locally finite cohomology mo-
dules.

68



Proposition 4.1.8. Let R• and S• be objects of Db(ModZ
r+1
A⊗ B◦) and Db(ModZ

r+1
A⊗

C◦) respectively. There exists a morphism of complexes,

F(R•,S•) : ϕB⊗C
◦

! (RHomZ
r+1

A (R•,S•)) −→ RHomZϕ!(A)
(ϕA⊗B

◦

! (R•),ϕA⊗C
◦

! (S•)),

which is natural in R• and S•. If A is noetherian and Λ(R•) has finitely generated cohomology
modules, then F(R•,S•) is an isomorphism.

Proof. Let P• be a projective resolution of R•. As we have seen several times before,
ϕA⊗B

◦

! (P•) is a projective resolution of ϕA⊗B
◦

! (R•), so by Theorem 4.1.4

RHomZ
r+1

A (R•,S•)) ∼= HomZ
r+1

A (P•,S•)),

RHomZϕ!(A)
(ϕA⊗B

◦

! (R•),ϕA⊗C
◦

! (S•))) ∼= HomZϕ!(A)
(ϕA⊗B

◦

! (P•),ϕA⊗C
◦

! (S•)))

We define F(R•,S•) as the morphism induced by the inclusion

ϕB⊗C
◦

! (HomZ
r+1

A (Pi,Sj)) ⊂ HomZϕ!(A)
(ϕA⊗B

◦

! (Pi),ϕA⊗C
◦

! (Sj))) i, j ∈ Z.

We write F instead of F(R•,S•) to alleviate notation. The naturality of this morphism
and the fact that it is independent from the chosen projective resolution can be proved
as in Proposition 2.2.11.

Suppose now that A is noetherian. Notice that if R• and S• are concentrated in
homological degree 0 then F(R•,S•) = E(R0,S0), where E is the natural transformation
defined in Corollary 2.2.12. If furthermore R0 is finitely generated then this map is
an isomorphism by the same corollary. Applying Proposition 4.1.2 to the natural
transformation F(R0,−), we see that F(R0,S•) is also an isomorphism whenever S•

is a bounded complex. Now consider the natural transformation F(−,S•); we have
just proved that this is an isomorphism whenever the first variable is evaluated in a
complex R• concentrated in homological degree zero such that R0 is finitely generated
as left A-module. Since the class of A⊗ B◦-modules which are finitely generated as
left A-modules is closed by extensions, we may again apply Proposition 4.1.2 and
deduce that F(R•,S•) is an isomorphism whenever R• is a bounded complex whose
cohomology modules are finitely generated as left A-modules.

4.2 Dualizing complexes

In this section we study dualizing complexes over Nr+1-graded algebras. Since dualiz-
ing complexes were originally defined for N-graded algebras, see [Yek92] most results
in the literature are proved in this context. Whenever the proofs can be adapted to
the Nr+1-graded case without effort we simply give a reference. However, in order to
prove a general existence result as that given by M. Van den Bergh in [VdB97, Propo-
sition 6.3] one would have to re-write most of said paper in the Nr+1-graded context;
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in this case we offer an alternative, namely using the change of grading functors to
deduce the desired result from the N-graded case.

Throughout this ϕ : Zr+1 −→ Z is a group morphism such that A is ϕ-connected.

4.2.1 Dualizing complexes for Nr+1-graded algebras

Suppose we are given a bounded below complex R• of Ae-bimodules such that Λ(R•)
and P(R•) have finite injective dimension. We can associate to R• the functors

D = RHomZ
r+1

A (−,R•) : D(ModZ
r+1
A⊗ B◦) −→ D(ModZ

r+1
B⊗A◦),

D◦ = RHomZ
r+1

A◦ (−,R•) : D(ModZ
r+1
B⊗A◦) −→ D(ModZ

r+1
A⊗ B◦).

There exists a natural transformation from the identity to the composition D◦D,
which we denote by τ and is defined as follows: using Lemma 4.1.5 we replace R• by a
resolution I•, where each Ii is injective, so using Theorem 4.1.4 we see that it is enough
to define a morphism of complexes

τ(M•) :M• −→ HomZ
r+1

A◦ (HomZ
r+1

A (M•, I•), I•).

Given a homogeneous element m ∈ Mp and q ∈ Z, we define τ(M•)(m) to be the
morphism of complexes induced by the assignation

(ft)t∈Z ∈ HomZ
r+1

A (M•, I•)q =
∏
t∈Z

HomZ
r+1

A (Mt, It+q) 7→ (−1)pqfp(m) ∈Mq+p.

The sign (−1)pq appears to make this assignation into a morphism of complexes. IfM•

is a complex of bimodules then we may repeat the construction and τ(M•) becomes a
morphism of complexes of bimodules, etc. We may also consider complexes of graded
right A-modules, interchanging D and D◦. See Appendix A for further details.

If we consider A as a complex of bimodules concentrated in homological degree
0 and identify HomZ

r+1

A (A, I•) with I• we obtain a morphism τ(A) −→ D◦D(A) ∼=

RHomZ
r+1

A◦ (R•,R•). The image of an homogeneous element a ∈ Aξ by τ(A) is the
A-linear morphism from I• to itself given by right multiplication by a, which is in
turn a lifting to the injective resolution of the endomorphism of R• given by right
multiplication by a. Applying [Har66, Theorem 6.4] we see that

Hi(HomZ
r+1

A (I•, I•)) =
⊕

ξ∈Zr+1
Hi

(⊕
p∈Z

HomA(I
•, I[ξ]•+p)

)
=

⊕
ξ∈Zr+1

HomD(ModZ
r+1

A)
(R•,R[ξ]•(i))

=
⊕

ξ∈Zr+1
Exti
D(ModZ

r+1
A)
(R•,R[ξ]•).

70



Hence, the image of the morphism H0(τ(A)) is the subspace of endomorphisms of R•

as an object of the derived category D(ModZ
r+1
A) induced by right multiplication by

a for all a ∈ A.

We are now ready to define dualizing complexes. The following definition is
adapted from [Yek92, Definition 3.3].

Definition 4.2.1. A Zr+1-graded dualizing complex over A is an object R• of the derived
category D+(ModZ

r+1
Ae) such that:

1. Both Λ(R•) and P(R•) have finite injective dimension.

2. Both Λ(R•) and P(R•) have finitely generated cohomology modules.

3. The natural morphisms

A −→ RHomZ
r+1

A◦ (R•,R•) and A◦ −→ RHomZ
r+1

A (R•,R•)

are isomorphisms in D(ModZ
r+1
Ae).

A dualizing complex R• is said to be balanced if RΓm(R•) ∼= A∗ and RΓm◦(R•) ∼= A∗ in
D(ModZ

r+1
Ae).

From the introduction to this subsection, we see that a dualizing complex is a
complex of bimodules without self extensions in D(ModZ

r+1
Ae) and such that all its

endomorphism as a complex of left or right A-modules are given by right or left
multiplication by elements of A.

For every object R• of D(ModZ
r+1
Ae) and every i ∈ {1, 2, 3} we will say that condi-

tion DC(i) holds for R• if it complies with items 1 to i of Definition 4.2.1.

Before moving on to study the effect of change of grading functors on dualizing
complexes, we point out some of their nice properties.

Proposition 4.2.2. Suppose R• is an object of D+(ModZ
r+1
Ae) such that condition DC(2)

holds for it.

1. The functorsD andD◦ restrict to functors between the categories Dblf(ModZ
r+1
A⊗B◦)

and Dblf(ModZ
r+1
B⊗A◦).

2. Condition DC(3) holds for R• if and only if for every object M• of Dbfg(ModZ
r+1
A) the

map τ(M•) is an isomorphism.

Proof. The proofs found in [Yek92, Propositions 3.4 and 3.5] adapt to the Zr+1-graded
case. An alternative proof for the second item is to notice that, through the isomor-
phism described in Proposition 4.1.8, we can identify the maps τ(ϕA⊗B

◦

! (M•)) and
ϕA⊗B

◦

! (τ(M•)), so one is an isomorphism if and only if the other is.
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If an object R• in D(ModZ
r+1
Ae) is a dualizing complex then the complex ϕA

e

! (R•)
is a good candidate for a dualizing complex over ϕ!(A). The following proposition
clarifies the relation between both complexes.

Proposition 4.2.3. Suppose A is noetherian and let R• be an object of D+(ModZ
r+1
Ae). Then

for every i ∈ {1, 2, 3}, condition DC(i) holds for R• if and only if it holds for ϕA
e

! (R•).

Proof. We recall that Λ and P commute with the change of grading functors.

DC(1) It is clear that the cohomology modules of Λ(R•) are finitely generated if and
only if the cohomology modules of ϕA! (Λ(R

•)) = Λ(ϕA
e

! (R•)) are also finitely
generated, since this fact is independent of the grading. The same holds for
P(R•).

DC(2) We will prove that the injective dimensions of Λ(ϕA
e

! (R•)) = ϕA! (Λ(R
•)) and

Λ(R•) coincide; a similar result holds by symmetry for P(R•), which clearly im-
plies the desired result. Since the cohomology modules of Λ(R•) are finitely
generated, they are ϕ-finite by item 1 of Proposition 3.1.3. By item 1 of Propo-
sition 4.1.2, the natural transformation ϕA! (Λ(R

•)) −→ ϕA∗ (Λ(R
•)) is a quasi-

isomorphism, so we reduce the problem to prove that the injective dimension of
Λ(R•) is equal to that of ϕA∗ (Λ(R•)).

Recall from Proposition 2.2.9 that a graded A-module is injective if and only if
its image by ϕA∗ is injective. Let d and d ′ be the injective dimensions of Λ(R•)
and ϕA∗ (Λ(R•)) respectively, and let I• be an injective resolution of R• of length d.
Then ϕA∗ (I•) is an injective resolution of ϕA∗ (Λ(R•)), so d ′ ≤ d. Now let σ≤d ′ de-
note the truncation of complexes at position d ′ as defined in [Har66, section 7.1].
Since ϕA∗ reflects exactness, we see that σ≤d ′(ϕA∗ (I•)) = ϕA∗ (σ≤d ′(I•)). Since d ′ is
the injective dimension of ϕA∗ (Λ(R•)), the complex σ≤d ′(ϕA∗ (I•)) = ϕA∗ (σ≤d ′(I•))
is an injective resolution of it, which in turn implies that σ≤d ′(I•) is an injective
resolution of R•, so d ′ = d.

DC(3) Using the morphism defined in Proposition 4.1.8 we can identify τ(ϕA
e

! (A)) with
ϕA

e

! (τ(A)) and analogously for τ(A◦); see Proposition A.0.6 for details. Thus one
is an isomorphism if and only if the other is.

By [Yek92, Theorem 3.9], a dualizing complex is unique up to tensor product with
an invertible bimodule. The notion of a balanced dualizing complex is introduced to
distinguish a particular class of dualizing complexes. We extend the previous result
to cover this case.

Corollary 4.2.4. Suppose R• is an object of D+(ModZ
r+1
Ae). Then ϕA

e

! (R•) is a balanced
dualizing complex over ϕ!(A) if and only if there exists ξ ∈ kerϕ such that R[ξ]• is a balanced
dualizing complex over A.
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Proof. By Proposition 4.2.3 R•[ξ] is a dualizing complex if and only if ϕA
e

! (R[ξ]•) =
ϕA

e

! (R•) is one. Furthermore, if either ϕA
e

! (R•) or R[ξ]• is balanced thenHi(RΓm(R•)) =
0 for all i 6= 0. Replacing R• by a finite resolution I•, where each Ip is injective as left
and right graded A-module, we see that the vertical maps in the following diagram

. . . // Γm(I
−1)

d−1 //

��

Γm(I
0)

d0 //

��

Γm(I
1) //

��

. . .

. . . // 0 // Γm(I0)
d−1(Γm(I−1))

// Γm(I
1) // . . .

. . . // 0 //

OO

H0(Γm(I
•)) //

OO

0 //

OO

. . .

are quasi-isomorphisms. In particular RΓm(R•) ∼= H0(Γm(I
•)) and, denoting this last

module by H, the problem reduces to proving that ϕA
e

! (H) ∼= ϕA
e

! (A)∗ if and only if
H[ξ] ∼= A∗.

The ”only if” part follows from item 1 of Proposition 4.1.7. For the ”if” part,
the hypothesis implies that H is locally finite, and so applying Matlis duality (see
Proposition 4.1.7) ϕA

e

! (A) ∼= ϕA
e

! (H∗). Thus by Proposition 2.2.9 H∗ is projective both
as left and right graded A-module, and by Lemma 3.1.2 it is free of rank 1 as left and
right graded A-module. Since ϕA

e

! (H∗) ∼= ϕA
e

! (A), the vector space
⊕
ξ∈kerϕH

∗
ξ is one

dimensional and contains a central generator ofH∗ (that is, an element h that generates
H∗ and such that ah = ha for all a ∈ A), which must be homogeneous of degree ξ for
some ξ ∈ kerϕ. Thus H∗ ∼= A[ξ] and applying Matlis duality again we conclude that
H[ξ] ∼= A∗, which implies that the dualizing complex R[ξ]• is balanced.

This last Proposition implies that if A has a Zr+1-graded dualizing complex then
so does ϕ!(A). However there there is no obvious way to construct a Zr+1-graded
dualizing starting from a Z-graded one, as the image of a finitely generated Z-graded
ϕ!(A)-module by ϕ∗A is not necessarily finitely generated, so we can not prove a con-
verse result.

If R• is a balanced dualizing complex over A then, we may fix an isomorphism
RΓm(R•) ∼= A∗, and so for every M• in D+(ModZ

r+1
A) there exists a natural morphism

just as in [Yek92, (4.17)]

θ(M•) : RΓm(M•) −→ RHomZ
r+1

A◦ (RHomZ
r+1

A (M•,R•),A∗),

such that ϕA! (θ(M
•)) = θ(ϕA! (M

•)) (notice that ϕA
e

! (R•) is also a balanced dualizing
complex, see Corollary 4.2.4). By [Yek92, Theorem 4.8] this map is an isomorphism
for all M• whose cohomology modules are finitely generated. Setting M• = A we see
that

RΓm(A) ∼= HomZ
r+1

A◦ (R•,A∗) ∼= (R•)∗,
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and since R• has locally finite cohomology modules, we can apply Matlis duality to
obtain R• ∼= RΓm(A)∗. With this observation in mind, there is always a candidate for a
balanced Zr+1-graded dualizing complex, namely RΓm(A)∗. In fact Corollary 4.2.4 can
be restated as saying that RΓm(A)∗ is a balanced Zr+1-graded dualizing complex over
A if and only if RΓm(ϕA

e

! (A))∗ is a balanced Z-graded dualizing complex over ϕ!(A).

Before moving on, we clarify the relation of the regularity properties studied in
section 3.2 with dualizing complexes.

Remark 4.2.5. By [Jør99, Theorem 1.6], an AS-Cohen-Macaulay algebra has a balanced
dualizing complex if and only if it is a graded quotient of an AS-Gorenstein algebra.
In particular any AS-Gorenstein algebra has a dualizing complex. This shows that
the hypothesis that grA has property χ in Theorem 3.2.13 is redundant in case grA is
AS-Gorenstein, or a graded quotient of an AS-Gorenstein algebra.

4.2.2 Existence results for balanced dualizing complexes

Recall that the left local dimension of an algebra A is the cohomological dimension
of the functor Γm over the category ModZ

r+1
A. By a celebrated result of M. Van den

Bergh [VdB97, Proposition 6.3], a connected N-graded noetherian algebra B has a
balanced dualizing complex if and only if both B and B◦ have finite local dimension
and property χ. In this section we will deduce from that result an analogous one for
noetherian connected Nr+1-graded algebras.

First we need some facts on N-graded algebras, so we fix a connected N-graded
noetherian algebra B. The following result, known as the noncommutative local dual-
ity theorem, shows that the complex RΓm(B)∗ has nice dualizing properties under the
hypothesis that B has finite local dimension, even if it is not a dualizing complex in
the sense of Definition 4.2.1.

Theorem 4.2.6. [VdB97, Theorem 5.1] Assume that B has finite local dimension. Then

1. The complex RΓm(B)∗ has finite injective dimension in D(ModZ B).

2. For any object M• of D(ModZ B) there is an isomorphism

RΓm(M•)∗ ∼= RHomZB(M
•,RΓm(B)∗).

in D(ModZ B◦).

The condition that lcdZ B <∞ is crucial for this result. Notice that the object M• is
not assumed to be bounded, so RΓm(M•) may not be well defined unless Γm has finite
cohomological dimension.

Recall that a B-module M is said to have property χ if dimk Ext
i
B(k,M) < ∞ for

every i ≥ 0; by item 5 of Lemma 3.2.11, M has property χ if and only if for every
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i ≥ 0 the homogeneous component H−i(RΓm(M)∗)d ∼= Him(M)∗−d is 0 for d � 0, i.e.
the cohomology modules of RΓm(M)∗ have left bounded grading. The local duality
theorem 4.2.6 has the following consequence.

Corollary 4.2.7. Suppose B is a noetherian connected N-graded algebra. If lcdZ B < ∞ then
B has property χ as a graded algebra if and only if the left B-module B has property χ.

Proof. Clearly if B has property χ as a graded algebra then the left B-module B has
property χ.

Now suppose the left B-module B has property χ and let A, resp. B, be the
subcategory of ModZ Be, resp. ModZ B◦, formed by objects with left-bounded grading.
Let M be a finitely generated Z-graded left B-module; in order to prove that it has
property χ we will prove that RΓm(M)∗ is an object of DB(ModZ B◦). By Theorem 4.2.6
there exists an isomorphism in D+(ModB◦)

RΓm(M)∗ ∼= RHomZB(M,RΓm(B)∗)

so it is enough to prove that the complex on the right hand side is an object of
DB(ModZ B◦).

The moduleM is finitely generated so its grading is left-bounded, and for every ob-
ject N of A the grading of the B◦-module ExtiB(M,N) is also left-bounded (this follows
from the noetherianity of B). By item 2 of Proposition 4.1.2, the functor RHomZB(M,−)
sends objects in DbA(ModBe) to objects in DB(ModZ B◦), so we have reduced the prob-
lem to proving that RΓm(B)∗ is (isomorphic to) an object of DbA(ModBe).

By the preamble to this corollary, the fact that B has property χ implies RΓm(B)∗ is
an object of D+

A(ModZ Be). Since Γm has finite cohomological dimension over ModZ Be

we can take a resolution of B by injective Be-bimodules and truncate it at position
lcdZ B, thus obtaining a Γm-acyclic resolution of B of finite length in D(ModZ Be) which
we denote by I•. Since I• is a bounded complex, so is RΓm(B)∗ ∼= Γm(I

•)∗, and RΓm(B)∗
is isomorphic to an object of DbA(ModBe).

We return to the study of Nr+1-graded algebras. The last theorem allows us to give
the following Zr+1-graded version of Van den Bergh’s criterion.

Corollary 4.2.8. Assume A is a noetherian connected Nr+1-graded algebra. If A has a Zr+1-
graded balanced dualizing complex, then it is given by

R• ∼= RΓm(A)∗,

and furthermore lcdZ
r+1

A and lcdZ
r+1

A◦ are finite, and both A and A◦ have property χ as
Zr+1-graded algebras.

Conversely, ifA andA◦ have finite local dimension and property χ as Zr+1-graded algebras,
then A has a balanced dualizing complex, given by RΓm(A)∗.

75



Proof. As stated above, the criterion was originally proved for N-graded algebras in
[VdB97, Theorem 6.3]. One possibility is to reprove all the results in said paper for
Nr+1-graded algebras. Here we show how to use the change of grading functors to
extend the result.

Remember that ϕ : Zr+1 −→ Z is a morphism such that A is ϕ-connected. By
Lemma 2.3.4 and Corollary 4.2.7, A and A◦ have finite local dimension and property
χ as graded algebras if and only if the same holds for ϕ!(A) and ϕ!(A)

◦. By Van
den Bergh’s criterion this happens if and only if RΓm(ϕA

e

! (A))∗ ∼= ϕA
e

! (RΓm(A)∗) is a
balanced dualizing complex for ϕ!(A). By Proposition 4.2.3 this happens if and only
if RΓm(A)∗[ξ] is a balanced dualizing complex, where ξ ∈ kerϕ. Since every balanced
dualizing complex is isomorphic to RΓm(A)∗, we see that ξ = 0.

An immediate consequence of the previous corollary is the following.

Corollary 4.2.9. Every commutative connected Nr+1-graded noetherian algebra of finite Krull
dimension has a Zr+1-graded balanced dualizing complex.

Proof. As discussed in Remark 3.2.10, every commutative noetherian algebra has prop-
erty χ. Also, by Grothendieck’s vanishing theorem [BS98, Theorem 6.1.2], the local
dimension of the algebra is bounded by its Krull dimension, so in particular it is finite.
The result now follows from Corollary 4.2.8.

We now use Corollary 4.2.8 to prove that having a balanced dualizing complex is
a twisting invariant property.

Proposition 4.2.10. Suppose A is noetherian, and that τ is a left twisting system on A. Then
the algebra τA has a balanced dualizing complex if and only if A does.

Proof. We only prove one implication. LetM be a finitely generated graded A-module.
By Lemma 3.2.7, the underlying graded vector spaces of ExtiA(k,M) and ExtiτA(k, τM)
coincide, M has property χ if and only if τM does. By Proposition 2.3.5, there exist
isomorphisms τHim(M) ∼= Him(

τM) for every i ≥ 0, so the local dimensions of M and
τM are the same. Hence A has property χ and finite local dimension as a graded
algebra if and only if τA does. By a mirror argument, (τA)◦ = (A◦)τ has property
χ and finite local dimension if and only if A◦ does. The claim now follows from
Corollary 4.2.8.

Remark 4.2.11. It seems natural to ask whether the fact that A has a dualizing complex
implies that τA has one. However, we know of no way to twist A-bimodules into
τA-bimodules, so there is no natural candidate for a dualizing complex over τA.

Suppose now that A is a GF-algebra. We finish this chapter proving that if grA has
a dualizing complex, so does A.

Theorem 4.2.12. Suppose grA is noetherian. Then the following hold.
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1. If grA has property χ as a graded algebra, then A has property χ and lcdZA ≤
lcdZ

2

grA.

2. If grA has a balanced dualizing complex, so does A.

Proof. 1. This follows from item 4 of Lemma 3.2.12.

2. By Corollary 4.2.8 A has a balanced dualizing complex if and only if A and
A◦ have property χ as graded algebras and finite local dimension as graded
algebras. Since (grA)◦ = grA◦, the result follows from the previous item.
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Chapter 5

Quantum affine toric varieties

In the last twenty years there has been a wide interest in ”toric degenera-
tions”, that is deformations of algebraic varieties into toric varieties. One
of the main reasons for this interest is that such a degeneration allows to
study deformation-invariant properties of the original varieties by study-
ing the resulting toric varieties. In a purely algebraic context this amounts
to finding a filtration on the coordinate ring of the variety such that its as-
sociated graded ring is a semigroup ring. The objective of this chapter is to
extend this idea to the noncommutative world.

In section 5.1 we review the main properties of affine semigroups and toric
varieties. Then in section 5.2 we introduce a family of noncommutative
algebras which, by analogy with the commutative case, we call quantum
affine toric varieties. They turn out to be Zhang twists of semigroup rings,
which allows us to use the results from the previous chapter in the study
of their homological properties. Later in section 5.3 we introduce a class of
algebras with a filtration such that its associated graded ring is a quantum
affine toric variety. We study the homological regularity properties of the
original algebras by looking at the corresponding quantum toric varieties.

Let r ∈ N∗. For every 0 ≤ i < j ≤ r fix qi,j ∈ k×, and write q = (qi,j)0≤i<j≤r. We
denote by kq[X0,X1, . . . ,Xr], or kq[X] for short, the quantum affine space with parameter
system q, the algebra with generators Xi for 0 ≤ i ≤ r and relations XjXi = qi,jXiXj for
every 0 ≤ i < j ≤ r. It is a classical result that quantum spaces are noetherian domains,
see for example [MR01, Chapter 1, Theorem 2.9]. The quantum torus kq[X

±1
0 , . . . ,X±1r ],

or kq[X
±1] for short, is the localization of kq[X] at the multiplicative set generated by

X0, . . . ,Xn. By standard localization theory it is also a noetherian domain, with an
obvious Zr+1-grading.

Given p = (p0,p1, . . . ,pr) ∈ Zr+1 we write Xp for Xp
0

0 X
p1

1 . . . X
pr

r ∈ kq[X±1]. If all the
qi,j’s are equal to 1 then kq[X

±1] is the commutative algebra of Laurent polynomials in
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r+ 1-variables, which we denote by k[X±1].

5.1 Affine toric varieties

5.1.1 Affine semigroups

In this subsection we review the basic notions on affine semigroups. Our main ref-
erences on the subject are [Ful93, Chapter 1] and [BH93, Chapter 6]; we follow the
notation of this last book.

Definition 5.1.1. [BH93, Section 6.1] A semigroup S is said to be affine if it is finitely
generated and isomorphic to a subsemigroup of Zr+1 for some r ≥ 0.

For the rest of this section S denotes an affine semigroup, and its enveloping group
is denoted by ZS. By definition there exists an injective semigroup morphism S ↪→
Zr+1, and ZS is isomorphic to the group generated by the image of S inside Zr+1.
Hence ZS is a finitely generated torsionless abelian group. The rank of S, denoted by
rkS, is the rank of ZS.

We denote by QS the Q-vector space Q⊗Z ZS and by RS the R-vector space R⊗Z
ZS. We can naturally identify S,ZS and QS with subsets of RS. A linear form ϕ of
RS is called rational if it is the extension to RS of a linear form over QS; a hyperplane
H is called rational if it is the kernel of a rational form. A rational convex cone is a set
D ⊂ RS of the form D =

⋂n
i=1{x ∈ ZS | ϕi(x) ≥ 0}, where ϕi is a rational linear form

over RS for every i.

We also set

R+S =

{
n∑
i=1

aisi | si ∈ S, ai ∈ R≥0

}
⊂ RS.

A hyperplane H ⊂ RS is said to be a supporting hyperplane of S if R+S is contained
in the closure of one of the half-spaces defined by H. Given a supporting hyperplane
H, we denote by H+ the corresponding closed half-space containing S. The face cor-
responding to H is the intersection τ = H ∩ R+S. A face τ is called a facet if the
R-vector space generated by τ is a supporting hyperplane, and in that case we write
τ < R+S. We denote by Hτ the supporting hyperplane generated by the facet τ; clearly
τ = Hτ ∩R+S. To every facet τ we associate the semigroup Sτ = ZS∩H+

τ .

The semigroup S is said to be normal if the following holds: whenever there exist
n ∈ N and z ∈ ZS such that nz ∈ S, then z ∈ S. We focus now on the class of normal
affine semigroups.

Lemma 5.1.2. Let S be a normal affine semigroup of rank r+ 1.
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1. For every τ < R+S the hyperplane Hτ is generated by a set of r linearly independent
elements of S, and R+S =

⋂
τ<R+S

H+
τ , that is R+S is a rational convex cone.

2. (Gordan’s Lemma) S = ZS ∩ R+S. Conversely, if G ⊂ Qr+1 is a finitely generated
subgroup and D is a rational convex cone, then G∩D is a normal affine semigroup.

3. Let S× ⊂ S be the subset of invertible elements of S. Then S decomposes as S× ⊕ S ′,
with S ′ a normal affine semigroup with no invertible elements other than zero.

4. S =
⋂

τ<R+S

Sτ.

5. For every τ < R+S the semigroup Sτ is normal and isomorphic as a semigroup to Zr⊕N.

Proof. 1. See [Ful93, Section 1.2, Point (8)].

2. See [BH93, Proposition 6.1.2].

3. See [BH93, Proposition 6.1.3 (a)]

4. Using items 1 and 2, and the fact that ZS = ZSτ, we obtain

S = ZS∩R+S =
⋂

τ<R+S

ZS∩H+
τ =

⋂
τ<R+S

Sτ.

5. Let S◦τ denote the semigroup generated by S plus the inverses of the generators
of Hτ given in item 1. It is easy to see that this semigroup is also normal. By
definition, the set of invertible elements of S◦τ has rank at least r, and since it is
contained in the half-space H+

τ this rank must be exactly r. Thus by item 3 S◦τ
is isomorphic to Zr ⊕N, with N a normal semigroup of rank 1. Any normal
semigroup of rank 1 is isomorphic to N, so S◦τ ∼= Zr ⊕ N, and we only have to
prove that S◦τ = Sτ. By Gordan’s lemma, S◦τ = ZS◦τ ∩R+S

◦
τ ⊃ ZS ∩H+

τ = Sτ, and
since the other inclusion is obvious we are done.

The affine semigroup S is said to be positive if the only invertible element in it is 0S.
Notice that item 3 of the previous lemma states that every normal affine semigroup is
the direct sum of a free abelian group and a positive affine semigroup. Any positive
affine semigroup has a natural order, which we denote by �, where s ′ � s holds for
any s, s ′ ∈ S if and only if there exists s ′′ ∈ S such that s ′ + s ′′ = s.

Lemma 5.1.3. Let S be a positive affine semigroup of rank r+ 1.

1. The semigroup S has a unique minimal set of generators, formed by the minimal nonzero
elements with respect to the order �.
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2. There exists an injective semigroup morphism S −→ Nr+1.

Proof. See [MS05, Proposition 7.15] for item 1 and [MS05, Corollary 7.23] for item 2.
Notice that in the reference given, positive semigroups are called pointed, and the term
positive is reserved for subsemigroups of Nr+1.

5.1.2 Affine toric varieties

We begin this subsection giving a presentation of the semigroup algebra k[S] by gen-
erators and relations. We will show that this is a finitely generated algebra, and recall
the main results on the associated varieties when k = C; these are called toric varieties.
We then discuss some general facts on toric varieties. Our main references are [Ful93]
and [CLS11].

Let S be an affine semigroup and choose a set of generators s1, . . . , sn of S such that
n is minimal. There is an obvious semigroup morphism π : Nn −→ S defined by the
assignation ei 7→ si for every 1 ≤ i ≤ n. Set

L(S) = {(p,p ′) ∈ Nn ×Nn | π(p) = π(p ′) and p <lex p
′}∪ {(0, 0)},

where <lex denotes the total lexicographic order of Nn. Clearly L(S) is a subsemigroup
of Nn ×Nn.

The morphism π induces a surjective morphism ϕ : k[X1, . . . ,Xn] −→ k[S]. Denote
by IL the ideal generated by the elements of the form Xp −Xp

′
for (p,p ′) ∈ L(S).

Theorem 5.1.4. The semigroup algebra k[S] is isomorphic to k[X]/IL.

Proof. See [MS05, Theorem 7.3]. The ideal IL is defined in a slightly different way in the
reference, but it is routine to check that it coincides with the ideal defined above.

Since k[X] is a noetherian algebra, the ideal IL is finitely generated, so there exists a
finite subset {(p1,p ′1), . . . , (pm,p ′m)} ⊂ L(S) such that IL = 〈Xpi −Xp

′
i | 1 ≤ i ≤ m〉. The

semigroup L(S) is generated as a semigroup by {(p1,p ′1), . . . , (pm,p ′m)}, which proves
in particular that every affine semigroup is finitely presented.

We can naturally see S as a subsemigroup of its enveloping group, and fix an
isomorphism ZS ∼= Zr+1. This datum induces morphisms between the corresponding
semigroup algebras k[S] ⊂ k[ZS] ∼= k[Zr+1], and this last algebra can be identified with
the Laurent polynomial algebra in r+ 1 variables k[X±1]. Thus the semigroup algebra
k[S] is isomorphic to a Zr+1-graded subalgebra of k[X±1], and furthermore, the Laurent
polynomial algebra is isomorphic to the localization of k[S] at the multiplicative set of
homogeneous elements. Geometrically this corresponds to the fact that Speck[S] has
an open dense set isomorphic to a torus; such varieties are known as toric varieties, and
we will now review some of their main properties. For the sake of simplicity we only
consider the case where k = C.
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Definition 5.1.5. [CLS11, Definition 1.1.3] An affine toric variety is an irreducible affine
variety V over C containing an algebraic torus Tr+1 ∼= (C×)r+1 as an open subset, such
that the action of Tr+1 over itself extends to an algebraic action of Tr+1 on V .

The following result is a characterization of affine toric varieties in purely algebraic
terms.

Proposition 5.1.6. Let S be an affine semigroup. Then SpecC[S] is an affine toric variety,
and every affine toric variety over C arises this way.

We will now sketch a proof of this fact. The interested reader can find a complete
proof in [CLS11, Theorem 1.1.17].

As discussed before, C[X±1] is isomorphic to the localization of C[S] at the multi-
plicative set M = {Xs | s ∈ S}. Since M is isomorphic to S as a semigroup, choosing
a finite set of generators of S and localizing at the corresponding monomials suffices
to obtain inverses of all the elements of M, so C[X±1] is a localization of S at a finite
set of elements. This implies that SpecC[S] has a principal open subset, isomorphic to
SpecC[X±1] ∼= (C×)r+1.

To prove that the action of this torus over itself extends to the whole variety, con-
sider C as a semigroup with the operation given by multiplication. For every maximal
ideal m ⊂ C[S], the quotient morphism π : C[S] −→ C[S]/m ∼= C induces a semigroup
morphism S −→ C that assigns to each s ∈ S the element π(Xs) ∈ C. Notice that this
cannot be the zero morphism, since it sends X0 = 1 to 1 ∈ C. Conversely, any nonzero
semigroup morphism S −→ C induces an algebra morphism C[S] −→ C, and its ker-
nel must be a maximal ideal. Thus the maximal spectrum of C[S] is in one-to-one
correspondence with the set of non-zero semigroup morphisms from S to C, which
we denote by HomSgrp(S,C)×. This set has a semigroup structure with pointwise mul-
tiplication as the operation. Also notice that HomSgrp(Zr+1,C×) ∼= (C×)r+1.

These identifications fit in the following diagram

SpecC[S] oo // HomSgrp(S,C)×

SpecC[X±1] oo //
?�

OO

HomGrp(Zr+1,C×) ∼= (C×)r+1,
?�

i∗

OO

where i∗ sends a morphism Zr+1 −→ C× to its restriction to S. This is a semigroup
morphism and induces an action of (C×)r+1 on SpecC[S], which restricted to the sub-
variety SpecC[X±1] is given by the natural action of the torus on itself. Thus SpecC[S]
is a toric variety.

To see that every affine toric variety V is the spectrum of an affine semigroup
algebra, one uses the fact that the coordinate algebra C[V ] can be identified with a
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subalgebra of C[X±1]. The action of the torus induces a grading on C[V ] by its char-
acter lattice HomGrp(Tr+1,C×) ∼= Zr+1, and since this action is an extension of the ac-
tion of the torus on itself, the grading is compatible with the Zr+1-grading of C[X±1]
(see [CLS11, Lemma 1.1.16]). Thus C[V ] is isomorphic to a finitely generated Zr+1-
graded subalgebra of C[X±1], i.e. C[V ] = C[S] where S = suppC[V ]. Since C[V ] is
finitely generated, say by elements Xs1 , . . . ,Xsn , the semigroup S is finitely generated
by {s1, . . . , sn}.

5.2 Quantum affine toric varieties

In the last section we saw that affine toric varieties are the spectra of affine semigroup
algebras. An affine semigroup algebra is a Zr+1-graded and finitely generated integral
domain whose ring of homogeneous fractions is isomorphic to k[X±1], and any algebra
of this form is isomorphic to an affine semigroup algebra. This inspires the following
definition.

Definition 5.2.1. Let A be a noetherian Zr+1-graded algebra. We say that A is a quan-
tum affine toric variety, or QA toric variety for short, if it is integral and its homoge-
neous ring of fractions is isomorphic to a quantum torus. The support of A is the set
S(A) = {ξ ∈ Zr+1 | Aξ 6= 0}.

Notice that the fact that A is integral implies that S(A) is a subsemigroup of Zr+1,
while noetherianity implies that it is finitely generated, so the support of a quantum
toric variety is always an affine semigroup.

Recall that a twisting system on k[S] is a family of ZS-graded linear automorphisms
τ = {τξ | ξ ∈ ZS} of the graded vector space k[S] such that

τs ′′(τs ′(X
s)Xs

′
) = τs ′+s ′′(X

s)τs ′′(X
s ′) for all s, s ′ ∈ S, s ′′ ∈ Zr+1. (†)

We will now prove that QA toric varieties are precisely Zhang twists of affine semi-
group algebras. In order to give a classification of them up to isomorphism we will
need to reinterpret Zhang twists as elements of a cohomology group.

5.2.1 Twists and 2-cocycles

Let S be an affine semigroup and let τ be a left twisting system on the semigroup
algebra k[S]. For every s, s ′ ∈ S, the element τs ′(Xs) is a nonzero homogeneous element
of degree s, so it must be a nonzero multiple of Xs. Denote by ατ(s, s ′) the only nonzero
scalar such that τs ′(Xs) = ατ(s, s ′)Xs. Condition (†), or equivalently associativity of the
product of τk[S], implies that

ατ(s, s ′)ατ(s+ s ′, s ′′) = ατ(s, s ′ + s ′′)ατ(s ′, s ′′) for all s, s ′, s ′′ ∈ S,
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that is, ατ : S× S −→ k× is a 2-cocycle over S with coefficients in k×.

We denote by C2 = C2(S,k×) the set of all 2-cocycles over S with coefficients in k×.
This set is a commutative group with pointwise multiplication as the operation. Given
α ∈ C2, the α-twisted semigroup algebra of S, denoted by kα[S], is the vector space with
basis {Xs | s ∈ S} and product defined over the generators by XsXs

′
= α(s, s ′)Xs+s

′
,

extended by bilinearity. If α = ατ for some twisting system τ over k[S] then kα[S] =
τk[S] by definition. Notice that the function 1 : S× S −→ k× with constant value 1 is a
2-cocycle over S, in fact it is the neutral element of C2, so the usual semigroup algebra
k[S] is the ”trivial” twisted semigroup algebra.

We will eventually show that 2-cocycle twists and Zhang twists of k[S] define the
same family of objects up to isomorphism. We begin with the following observation.

Lemma 5.2.2. Let α ∈ C2. Then the algebra kα[S] is a noetherian domain.

Proof. Fix an embedding S ↪→ Zr+1, and pull back on S the lexicographic order of Zr+1,
so S becomes a completely ordered semigroup.

Let s1, . . . , sn be a minimal system of generators of S; clearly the elements Xsi with
1 ≤ i ≤ n generate the algebra kα[S]. Setting qi,j = α(sj, si)/α(si, sj) for all 1 ≤ i < j ≤
n there is a surjective map kq[X] −→ kα[S] defined by the assignation Xi 7→ Xsi . Thus
kα[S] is a quotient of a quantum space, which is noetherian by [MR01, Chapter 1, The-
orem 2.9]. Now suppose a,b ∈ k[S], with a = Xs + (terms of lower degree) and b =
Xs
′
+ (terms of lower degree). Then ab = α(s, s ′)Xs+s

′
+ (terms of lower degree) 6= 0

which shows that kα[S] is a domain.

For the moment we can prove the following partial case of the equivalence between
Zhang twists and 2-cocycle twists.

Lemma 5.2.3. Let S be an affine semigroup.

1. For every left twisting system τ on k[S] there exists a 2-cocycle ατ over S such that
τk[S] = kατ [S].

2. If S = Zr+1 then the assignation of the previous item is bijective.

3. Every 2-cocycle twist and every Zhang twist of k[X±1] is isomorphic to a quantum torus,
and all quantum tori arise this way.

Proof. 1. This was already observed above.

2. Fix α ∈ C2(Zr+1,k×). For every ξ ∈ Zr+1 set τ(α)ξ : k[X±1] −→ k[X±1] to be
the graded automorphism that sends Xξ

′
to α(ξ ′, ξ)Xξ

′
for every ξ ′ ∈ Zr+1. The

fact that α is a 2-cocycle implies that τ(α) = {τ(α)ξ | ξ ∈ Zr+1} complies with
condition (†). It follows from the definitions that ατ(α) = α and τ(ατ) = τ.
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3. By item 2, Zhang twists and 2-cocycle twists of k[X±1] coincide, so we only need
to prove the result for 2-cocycle twists.

Given α ∈ C2(Zr+1,k×), set qij(α) = α(ej, ei)/α(ei, ej) for every 0 ≤ i < j ≤ r

and q(α) = (qij(α))0≤i<j≤r. There is a well defined morphism of Zr+1-graded
algebras ψ : kq(α)[X

±1] −→ kα[X±1] that sends Xi to Xi for every 0 ≤ i ≤ r.
Since Zr+1 is a completely ordered group, kα[X±1] is a domain by Lemma 5.2.2.
Thus for every ξ ∈ Zr+1 the element ψ(Xξ) ∈ kα[X±1] is a nonzero homogeneous
element of degree ξ, which implies that ψ sends a basis to a basis. Hence every
2-cocycle twist of k[X±1] is isomorphic to a quantum torus.

On the other hand, given a system of parameters q = (qi,j)0≤i<j≤r, for every
ξ, ξ ′ ∈ Zr+1 there is a unique nonzero scalar αq(ξ, ξ ′) such that Xξ · Xξ ′ =

αq(ξ, ξ ′)Xξ+ξ
′

in kq[X
±1]. The associativity of the product of kq[X

±1] implies
that αq is a 2-cocycle and by definition q(αq) = q, so kq[X

±1] is isomorphic to
kαq [X±1].

We now focus on proving a similar result for a general affine semigroup S, i.e. that
2-cocycle twists of k[S] are always isomorphic to a Zhang twist of this algebra. Since
we have identified k[X±1] and k[Zr+1], we may speak of 2-cocycle twists of k[X±1], and
given α ∈ C2(Zr+1,k×) we write kα[X±1] for kα[Zr+1].

Lemma 5.2.4. Every 2-cocycle twist of an affine semigroup algebra is a QA toric variety.

Proof. Let S be an affine semigroup, fix α ∈ C2(S,k×) and let A = kα[S]. Fixing an
isomorphism ZS ∼= Zr+1, we can pull back the lexicographic order from Zr+1 to S, so
S is a finitely generated and completely ordered semigroup. By Lemma 5.2.2, A is
a noetherian domain. Also kα[S] has an obvious ZS-grading, which we can see as a
Zr+1-grading through this isomorphism. For the rest of this proof we identify S with
its image in Zr+1.

Let T denote the localization of A at the monomial basis M = {Xs | s ∈ S}. Since
M consists of normal regular elements, the natural morphism A −→ T is injective,
and since the elements ofM are homogeneous, the Zr+1-grading of A induces a Zr+1-
grading on T (see [NVO04, Proposition 8.1.2]). By standard localization theory, the
elements of the form Xs(Xt)−1 with s, t ∈ S are normal and form a set of vector space
generators of T .

Notice that if s, s ′, t, t ′ ∈ S are such that s− t = s ′− t ′ then there exists c ∈ k× such
that Xs(Xt)−1 = cXs

′
(Xt

′
)−1. Indeed, since s+ t ′ = s ′ + t, we know that α(s ′, t)XsXt

′
=

α(s, t ′)Xs
′
Xt. Multiplying both terms on the left side by α(s ′, t)−1(Xt)−1(Xt

′
)−1 and

using the fact that monomials commute up to a constant, we get the desired result.
Since the homogeneous component Tξ of degree ξ ∈ Zr+1 is generated over k by
fractions of the form Xs(Xt)−1 with s− t = ξ, we see that dimk Tξ is at most 1.
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Since S generates Zr+1, for every 0 ≤ i ≤ r there exist si, ti ∈ S such that ei = si− ti.
Let Xi = Xsi(Xti)−1. The product Xξ

0

0 X
ξ1

1 . . . X
ξr
r is a homogeneous element of degree

ξ = (ξ0, ξ1, . . . , ξr), and is nonzero since T is a domain, so it generates the component
Tξ. Thus T is generated as an algebra by X±10 , . . . ,X±1r . As we have already seen,
for every 0 ≤ i < j ≤ r there exist qi,j ∈ k× such that XjXi = qi,jXiXj. Writing
q = (qi,j)0≤i<j≤r, we define ψ : kq[X

±1] −→ T to be the Zr+1-graded algebra morphism
defined by the assignation Xi 7→ Xi. By definition the image of the monomial Xξ ∈
kq[X

±1] is Xξ ∈ T , so ψ sends a basis to a basis, and hence is an isomorphism.

Let S be a subsemigroup of Zr+1. We denote by kq[S] the subalgebra of kq[X
±1]

generated by monomials of the form Xs with s ∈ S. The following proposition charac-
terizes QA toric varieties.

Proposition 5.2.5. Let A be a Zr+1-graded algebra. The following are equivalent.

1. A is a QA toric variety with support S.

2. A is isomorphic to a Zhang twist of k[S].

3. A is isomorphic to a 2-cocycle twist of k[S].

Proof. For 1 ⇒ 2, fix an isomorphism between the homogeneous ring of fractions of
A and a quantum torus kq[X

±1]; thus we get an injective morphism of Zr+1-graded
algebras ψ : A −→ kq[X

±1]. Evidently the image of A is B = kq[S] ⊂ kq[X
±1]. By item 3

of Lemma 5.2.3 there exists a twisting system τ over k[X±1] such that kq[X
±1] = τk[X±1].

For every ξ ∈ Zr+1 set τ̂ξ = τξ |B, and denote by τ̂ the twisting system {τ̂ξ | ξ ∈ Zr+1}.
Evidently B = τ̂k[S], and we are finished with this implication.

Item 1 of Lemma 5.2.3 gives us 2⇒ 3, while 3⇒ 1 is Lemma 5.2.4.

By the previous proposition, in order to classify QA toric varieties up to isomor-
phism it is enough to classify the 2-cocycle twists of a semigroup algebra, which we
do now. As usual, any function f : S −→ k× induces an element ∂f of C2 by setting
∂f(s, s ′) = f(s)f(s ′)

f(s+s ′) . A cocycle that is equal to ∂f for some f : S −→ k× is called a
2-coboundary. We denote by B2 = B2(S,k×) ⊂ C2 the subgroup of all 2-boundaries.
We denote by H2 = H2(S,k×) the quotient group C2/B2. Two elements of C2 are said
to be cohomologous if they define the same class in H2. The following lemma shows
that the group H2(S,k×) classifies twistings of k[S] by 2-cocycles up to S-graded (or
Zr+1-graded) isomorphism.

Lemma 5.2.6. Let α,β ∈ C2(S,k×). The algebras kα[S] and kβ[S] are isomorphic if and only
if α and β define the same class in H2(S,k×).
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Proof. The existence of an S-graded algebra isomorphism ϕ : kα[S] −→ kβ[S] is equiv-
alent to the existence of a function f : S −→ k× such that ϕ(Xs) = f(s)Xs and

f(s+ s ′)α(s, s ′)Xs+s
′
= ϕ(XsXs

′
) = ϕ(Xs)ϕ(Xs

′
) = f(s)f(s ′)β(s, s ′)Xs+s

′
.

Such a function exists if and only if α = (∂f)β, i.e. if and only if α and β define the
same class in H2(S,k×).

It is easy to check that there is a scalar a ∈ k× such that a = α(s, 0S) = α(0S, s ′) =
α(0S, 0S) for all s, s ′ ∈ S. A 2-cocycle is said to be normalized if a = 1. We denote
by C2norm the subgroup of C2 formed by normalized cocycles. If α is a normalized
cocycle, the unit of kα[S] is X0S . Constant functions from S× S to k× are in B2, so α is
cohomologous to α̃ = α(0S, 0S)−1α. By the previous lemma kα̃[S] ∼= kα[S], so without
loss of generality we can always assume that α is in C2norm.

Remark 5.2.7. Semigroup cohomology is defined in [CE99, chapter X], in a similar
way to group cohomology. Let S be any semigroup and let G be the enveloping
semigroup of S. By Proposition 4.1 of the given reference, if the natural morphism
i : S −→ G is injective then it induces an isomorphism i∗ : H2(G,k×) −→ H2(S,k×).
Setting ι = i× i : S× S −→ G×G, this result implies that given α ∈ C2(S,k×) one can
always find a 2-cocycle β ∈ H2(G,k×) such that α and β ◦ ι are cohomologous. Hence
there is a morphism

kα[S]
∼=

−→ kβ◦ι[S] ↪→ kβ[G]

where the last morphism sends Xs to Xi(s). From this we deduce that if S is commu-
tative and cancellative, every twist of k[S] by a 2-cocycle is isomorphic to a subalgebra
of a twist of k[G] by a 2-cocycle, which is a generalization of Lemma 5.2.4.

5.2.2 Properties of QA toric varieties

We now prove some ring theoretic properties of QA toric varieties. Throughout this
section A denotes a QA toric variety and its support is denoted by S. By Proposition
5.2.5, it is isomorphic to kα[S] for some α ∈ C2(S,k×), so we will assume A = kα[S].

We begin this subsection by giving a presentation of QA toric varieties analogous to
the one given for semigroup algebras in Theorem 5.1.4. As before we fix a minimal set
of generators s1, . . . , sn of S, set π : Nn −→ S to be the semigroup morphism defined
by the assignation ei 7→ si for all 1 ≤ i ≤ n, and fix a minimal set of generators
(p1,p ′1), . . . , (pm,p ′m) of L(S) = {(p,p ′) ∈ Nn × Nn | π(p) = π(p ′) and p <lex p

′} ∪
{(0, 0)}.

Set F = k〈Yi | i = 1, . . . ,n〉 and let ϕ : F −→ kα[S] be the morphism that maps Yi
to Xsi . We fix an S-grading on F by setting the degree of Yi equal to si, so ϕ is an S-
graded algebra morphism. Given p = (p1, . . . ,pn) ∈ Nn we write Yp for the monomial
Y
p1

1 Y
p2

2 . . . Y
pn

n ∈ F. Notice that deg Yp = π(p).
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For 1 ≤ i < j ≤ n the element

Ci,j = α(si, sj)YjYi −α(sj, si)YiYj

is in the kernel of ϕ. Also, for every s ∈ S and any p ∈ π−1(s) there exists cp ∈ k×
such that ϕ(Yp) =

∏
i(X

si)pi = cpX
s. We write cl = cpl and c ′l = cp ′l for all 1 ≤ l ≤ m,

and set

Sl = clY
p ′l − c ′lY

pl .

These elements also belong to the kernel of ϕ.

Lemma 5.2.8. Keep the notation from the previous paragraph. Let I ⊂ F be the ideal generated
by the elements Ci,j and Sl, with 1 ≤ i < j ≤ n and 1 ≤ l ≤ m. The twisted semigroup
algebra kα[S] is isomorphic to F/I.

Proof. Set B = F/I. By abuse of notation we write Yi and Yp for the class of Yi and
Yp in B for all 1 ≤ i ≤ n and all p ∈ Nn. Denote by ϕ̃ : B −→ kα[S] the S-graded
morphism induced by ϕ.

Clearly B is a quotient of a quantum affine space, so the set of monomials {Yp |

p ∈ Nn} is a set of homogeneous generators of B as a vector space. Furthermore
deg Yp = π(p), so for every s ∈ S the homogeneous component Bs is generated by
the set {Yp | p ∈ π−1(s)}. Suppose p,p ′ ∈ Nn are such that π(p) = π(p ′), and assume
without loss of generality that p <lex p

′, that is (p,p ′) ∈ L(S). Then there exist nl ∈ N
such that (p,p ′) =

∑
l nl(pl,p

′
l) ∈ L, and since Ypl = cl

c ′l
Yp
′
l in B, there exist nonzero

scalars d,d ′,d ′′ such that

Yp = d

m∏
l=1

(Ypl)nl = d

m∏
l=1

(
cl
c ′l
Yp
′
l

)nl
= d ′

m∏
l=1

(Yp
′
l)nl = d ′′Yp

′
.

This implies that for every s ∈ S, any two monomials of degree s in B are nonzero
multiples of each other. Hence, dimk Bs = 1 and ϕ̃ is a surjective morphism between
S-graded vector spaces whose homogeneous components have the same dimension,
which implies that it is an isomorphism.

We now recall the definition of a maximal order for noncommutative algebras. Our
objective is to prove that, just as in the commutative case, a QA toric variety A is a
maximal order if and only if S is normal. Recall that a semigroup is normal if for every
n ∈ N and every s ∈ ZS such that ns ∈ S then s ∈ S.

Definition 5.2.9. [MR01, section 3.1] A k algebra Q is called a quotient ring if every
regular element in the ring is a unit. A subring B ⊂ Q is called a right order in Q if
every element of Q is of the form rs−1 for some r, s ∈ B.
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Two orders B1,B2 ⊂ Q are said to be equivalent if there exist a,a ′,b,b ′ ∈ Q such
that aB1b ⊂ B2 and a ′B2b ′ ⊂ B1. This defines an equivalence relation on orders of a
fixed quotient ring Q. An order is said to be a maximal order if it is maximal in its class
of equivalence, ordered by inclusion.

The following lemma gathers several results on maximal orders. In particular item
1 shows that one may consider the property of being a maximal order as a noncom-
mutative analogue of being integrally closed, at least in the noetherian case.

Lemma 5.2.10. 1. A commutative noetherian integral domain is a maximal order in its
quotient field if and only if it is integrally closed.

2. Let A be a filtered ring with associated graded ring grA. If grA is a noetherian integral
domain and a maximal order, then so is A.

3. Let A be an noetherian integral domain and a maximal order in its quotient ring.
Then for every automorphism σ of A the Ore extension A[X,σ] and its localization
A[X,σ][X−1] are maximal orders.

4. Suppose that A is a noetherian domain, with a family of Ore subsets {Ui ⊂ A | i =
1, . . . ,n} such that A =

⋂n
i=1A[U

−1
i ] and A[U−1

i ] is a maximal order for all i. Then A
is a maximal order.

Proof. 1. See [MR01, Proposition 5.1.3].

2. See [MR01, 5.1.6].

3. This is a consequence of [MR80, Chapitre V, Corollaire 2.6] and [MR80, Chapitre
IV, Proposition 2.1].

4. Set Ti = A[U−1
i ] for 1 ≤ i ≤ n, and suppose there is an order R equivalent to A

such that A ⊂ R. Since the Ui are Ore sets, Ti is in the same equivalence class as
R[U−1

i ], and since the former is a maximal order, R[U−1
i ] ⊂ Ti. Thus

R ⊂
n⋂
i=1

R[U−1
i ] ⊂

n⋂
i=1

Ti = A,

which implies that R = A.

The following lemma shows that QA toric varieties are maximal orders if and only
if the corresponding classical varieties are integrally closed.

Lemma 5.2.11. Let S be an affine semigroup. The following conditions are equivalent:

1. The semigroup S is normal.
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2. For every α ∈ C2(S,k×) the algebra kα[S] is a maximal order.

3. The algebra k[S] is a maximal order.

Proof. The implication 2⇒ 3 is obvious, and 3⇒ 1 is proved in [BH93, chapter 6, page
258]. To prove 1 ⇒ 2 we choose an isomorphism ZS ∼= Zr+1 and restrict to the case
where S ⊂ Zr+1 is a normal subsemigroup.

Recall from Proposition 5.2.5 that for every α ∈ C2(S,k×) there exists q ∈ (k×)(
r+1
2 )

such that kα[S] ∼= kq[S], so it is enough to prove that every algebra of the form kq[S] is
a maximal order.

By item 4 of Lemma 5.1.2

S =
⋂

τ<R+S

Sτ,

from which we deduce that kq[S] =
⋂
τ<R+S kq[Sτ]. Recall that for every facet τ, the

semigroup Sτ is obtained by adjoining to S the inverses of every element of S ∩ τ, so
kq[Sτ] is the localization of kq[S] at the multiplicative set generated by {Xs | s ∈ τ}; this
set consists of regular normal elements, and hence is an Ore set. By item 5 of Lemma
5.1.2, there exists an isomorphism Sτ ∼= N⊕Zr, and through this isomorphism we can
identify kq[Sτ] with kq ′ [Y0, Y±11 , . . . , Y±n] for some system of parameters q ′. By item 3

of Lemma 5.2.10 kq[Sτ] is a maximal order, and item 4 of the same lemma implies that
so is kq[S].

We now focus on the homological regularity of twisted semigroup algebras. Recall
that we denote by R+S ⊂ R⊗Z ZS the convex cone of S. We denote by relintS the set
of points of S that lie in the topological interior of R+S. Recall also that we say that
S is positive if has no invertible element other than 0, and that in this case S can be
embedded in Nr+1, see Lemma 5.1.3.

If A is a QA toric variety whose support is a positive affine semigroup, we can
use this last result to give A an Nr+1-grading, and with this new grading A becomes
a connected Nr+1-graded algebra. The following result, which is an immediate con-
sequence of Proposition 5.2.5 and the theory from chapters 2 and 3, summarizes the
homological regularity properties of QA toric varieties with positive support.

Proposition 5.2.12. Let A be a QA toric variety. Suppose that its support is a positive affine
semigroup and put on A the Nr+1-grading described in the preamble to this statement. Then

1. A is a noetherian integral domain.

2. A has property χ and finite local dimension. It also has a balanced dualizing complex.

3. If S is normal then A is AS-Cohen-Macaulay and a maximal order.
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4. If S is normal and there exists s ∈ S such that relintS = s+ S, then A is AS Gorenstein.

Proof. By Proposition 5.2.5 there exist a twisting system τ over k[S] and a 2-cocycle α
over S such that A ∼= τk[S] = kα[S].

1. This is 5.2.2.

2. The algebra k[S] is a finitely generated noetherian commutative algebra of finite
Krull dimension; by Corollaries 4.2.8 and 4.2.9 k[S] has property χ, finite local di-
mension, and a balanced dualizing complex. Since all this properties are twisting
invariant (see Proposition 4.2.10), item 2 follows.

3, 4. Recall from Proposition 3.2.8 that being AS-Cohen-Macaulay and AS-Gorenstein
are also twisting invariant properties, so we may reduce again to proving the
desired results for A = k[S]. In that case 3 is due to Hochster and 4 to Danilov
and Stanley, see [BH93, Theorem 6.3.5 and Corollary 6.3.8] for proofs.

5.3 Quantum affine toric degenerations

In this section we introduce a class of algebras with ”quantum toric degenerations”,
that is, filtrations such that their associated graded rings are quantum toric varieties.

Throughout this section S denotes a positive affine semigroup. From Lemma 5.1.3
we know that S has a unique minimal generating system, and if rkS = r+ 1 then S
can be embedded inside Nr+1. Let {s1, . . . , sn} be the minimal set of generators of S. As
in the previous sections, we denote by π : Nn −→ S the semigroup morphism defined
by the assignation ei 7→ si and by L(S) the affine semigroup

L(S) = {(p,p ′) ∈ Nn ×Nn | π(p) = π(p ′) and p <lex p
′}∪ {(0, 0)}.

Again by Lemma 5.1.3 there exists a unique minimal set of generators {(p1,p ′1), . . . , (pm,p ′m)}
of L(S).

5.3.1 Algebras dominated by a semigroup

By a section of π we mean a function t : S −→ Nn such that π ◦ t = IdS. Notice that the
minimality of the generating set implies that t(si) = ei.

Definition 5.3.1. Let A be a connected N-graded algebra, with homogeneous gener-

ators b1, . . . ,bn. Given p = (p1, . . . ,pn) ∈ Nn, we write bp for
n∏
i=1

b
pi

i ∈ A. Let
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t : S −→ Nn be a section of π and let ϕ : S −→ N be a semigroup morphism such that
ϕ(si) > 0 for every 1 ≤ i ≤ n. We say that A is an (S, t,ϕ)-dominated algebra if the
following conditions hold:

1. For every 1 ≤ i ≤ n the element bi is homogeneous of positive degree.

2. The set {bt(s) | s ∈ S} is linearly independent.

3. For every 1 ≤ i < j ≤ n there exist ci,j ∈ k× and csi,j ∈ k such that

bjbi = ci,jbibj +
∑

ϕ(s)<ϕ(si+sj)

csi,jb
t(s).

4. For every 1 ≤ l ≤ m there exist cl ∈ k× and csl such that

bp
′
l = clb

pl +
∑

ϕ(s)<ϕ(π(pl))

cslb
t(s).

We will say that A is an S-dominated algebra if there exist t and ϕ as in the statement
such that A is an (S, t,ϕ)-dominated algebra.

Remark 5.3.2. From this point on, we will refer to the equalities arising from point 3 of
the previous definition as commutation relations of A, and to those arising from point 4

as straightening relations.

For the rest of this section A denotes an (S, t,ϕ)-dominated algebra, where t and
ϕ are as in Definition 5.3.1. Our objective is to prove that A can be endowed with
the structure of a GF-algebra such that its associated graded algebra is a connected
re-grading of a 2-cocycle twist of the semigroup algebra k[S]. By the theory developed
in subsection 3.2.2 this will imply that A inherits the regularity properties of k[S].

We write ϕ̃ for the composition ϕ ◦ π. Notice that since ϕ̃(ei) > 0, for any u ∈ N
there are only finitely many p ∈ Nn such that ϕ̃(p) ≤ u, and so the subspace

FuA = 〈bp | ϕ̃(p) ≤ u〉 ⊂ A

is finite dimensional. The next two lemmas show that these are indeed the layers of a
filtration as described above.

Lemma 5.3.3. The family F = {FvA}v∈N is a GF-filtration of A. More precisely, for all
p,q ∈ Nn there exists c ∈ k× such that bpbq ≡ cbp+q mod Fϕ̃(p+q)−1A.

Proof. We wish to prove that FuA · FvA ⊂ Fu+vA for all u, v ∈ N. We proceed by
induction on u+ v, with the base case u+ v = 0 being obvious.

Now let u, v ∈ N and suppose that for all p,q ∈ Nn such that ϕ̃(p+ q) < u+ v the
congruence of the statement holds. Fix p,q ∈ Nn such that ϕ̃(p+ q) = u+ v, and let i
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be the largest integer such that qi 6= 0. Thus bpbq = (bpbq−ei)bi, and since ϕ̃(ei) > 0
we may use the inductive hypothesis to deduce that

bpbq−ei = c1b
p+q−ei +

∑
ϕ̃(r)<ϕ̃(p+q−ei)

cr1b
r.

where c1 and all cr1 are nonzero constants. Multiplying each side by bi we obtain

bpbq−eibi = c1b
p+q−eibi +

∑
ϕ̃(r)<ϕ̃(p+q−ei)

cr1b
rbi

and since ϕ̃(r) + ϕ̃(ei) < ϕ̃(p) + ϕ̃(q) = u+ v, we may apply the inductive hypoth-
esis to conclude that bpbq ≡ c1bp+q−eibj mod Fu+v−1A. Hence we have reduced the
problem to show that there exists a nonzero constant c2 such that bp+q−eibi ≡ c2bp+q
mod Fu+v−1A, or in other words it is enough to prove the case q = ei.

Let j be the largest integer such that pj 6= 0. If j ≤ i then bpbi = bp+ei and there is
nothing left to do. On the other hand, if i < j then we may apply the corresponding
commutation relation to obtain

bpbi = b
p−ejbjbi = ci,j(b

p−ejbi)bj +
∑

ϕ(s)<ϕ(si+sj)

csi,jb
p−ejbt(s)

which, again by repeated application of the inductive hypothesis, is congruent to
c2b

p−ej+eibj modulo Fu+v−1A. Repeating this procedure we reduce the problem to
the case where i ≤ j, which we have already considered.

Lemma 5.3.4. For every p ∈ Nn there exists a non-zero constant d such that bp ≡ dbt(π(p))
mod Fϕ̃(p)−1A.

Proof. Let s = π(p). Since (t(s),p) ∈ L(S), for each 1 ≤ l ≤ m there exist nl ∈ N
such that (t(s),p) =

∑
l nl(pl,p

′
l). By repeated application of Lemma 5.3.3, there exist

c1, c2 ∈ k× such that
m∏
l=1

(bpl)nl ≡ c1bt(s) mod Fϕ(s)−1A and
m∏
l=1

(bp
′
l)nl ≡ c2bp mod Fϕ(s)−1A.

On the other hand the straightening relations of the algebra imply that bp
′
l ≡ clb

pl

mod Fϕ̃(pl)−1A, which in turn implies that there exists c3 ∈ k× such that

m∏
l=1

(bp
′
l)nl ≡ c3

m∏
l=1

(bpl)nl mod Fϕ(s)−1A.

This proves that the congruence of the statement holds with d = c−12 c3c1.

Before we prove that grF A is isomorphic as an algebra to a QA toric variety, we
gather several consequences of the previous lemmas.
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Proposition 5.3.5. Let F = {FuA}u∈N.

1. The algebra A is a connected GF-algebra with filtration F .

2. For every u ∈ N we have FuA = 〈bt(s) | ϕ(s) ≤ u〉, and the set {bt(s) | s ∈ S} is a basis
of A.

3. For every p ∈ Nn the class of bp in Fϕ̃(p)A/Fϕ̃(p)−1A is non zero.

4. For every 1 ≤ l ≤ m we have degbpl = degbp
′
l .

5. The commutation and straightening relations give a presentation of A as a graded alge-
bra.

Proof. 1. As we have already seen, F is a filtration and by definition its layers are
generated by homogeneous elements, so they are graded sub-vector spaces of
A. The fact that A0 = F0A = k follows from the definitions. To see that F
is exhaustive it is enough to show that an arbitrary product of the generators
b1, . . . ,bn lies in FuA for some u ∈ N, which follows from Lemma 5.3.3.

2. By Lemma 5.3.4, every element bp ∈ FuA is congruent modulo Fu−1A to a
nonzero multiple of bt(π(p)), so the set {bt(s) | ϕ(s) ≤ u} generates FuA, and
A =

⋃
u∈N FuA = 〈bt(s) | s ∈ S〉. Since by hypothesis the set is linearly indepen-

dent, it is a basis of A.

3. Since {bt(s) | s ∈ S} is a linearly independent set, the previous item implies that
bt(s) /∈ Fϕ(s)−1A. The statement now follows from Lemma 5.3.4.

4. Let l be as in the statement. Since the vector space generated by the bt(s) with
csl 6= 0 is contained in Fϕ̃(p)−1A, the previous item implies that bpl is linearly inde-
pendent of the other terms in the right hand side of the corresponding straight-
ening relation. Since the left hand side is homogeneous of degree degbp

′
l , then

bpl and every bt(s) with csl 6= 0 must be of degree degbp
′
l .

5. Let F be the free algebra on generators X1, . . . ,Xn, and set degXi = degbi for all
1 ≤ i ≤ n. For every p ∈ Nn denote by Xp the element Xp

1

1 X
p2

2 . . . X
pn

n , and let
B = F/I , where I is the ideal generated by

XjXi − ci,jXiXj −
∑

ϕ(s)<ϕ(si+sj)

csi,jX
t(s) for all 1 ≤ i < j ≤ n

Xp
′
l − clX

pl −
∑

ϕ(s)<ϕ̃(pl)

cslX
t(s) for all 1 ≤ l ≤ m.

By abuse of notation we denote the class of Xp in B again by Xp.

We claim that B is an (S, t,ϕ)-dominated algebra. Let ρ : B −→ A be the mor-
phism induced by the assignation Xi 7→ bi for all 1 ≤ i ≤ n. Since ρ(Xt(s)) = bt(s),
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the set {Xt(s) | s ∈ S} is linearly independent, and it is clear by definition that B
has the necessary commutation and straightening relations. Thus {Xt(s) | s ∈ S}
is a basis of B by the previous item, and since ρ maps a basis of B to a basis of
A, it is an isomorphism.

We are now ready to prove the main result of this section.

Theorem 5.3.6. There exist a group morphism ψ : ZS −→ Z2 with ψ(S) ⊂ N2 and a
2-cocycle α over S such that grF A ∼= ψ!(k

α[S]).

Proof. Let B = grF A. For every p = (p1, . . . ,pn) ∈ Nn we denote by (gr b)p the element
(gr b1)

p1(gr b2)
p2 . . . (gr bn)

pn . Item 3 of Proposition 5.3.5 implies that (gr b)p = gr bp,
and so by item 2 of the same proposition and item 2 of Lemma 2.4.6, {(gr b)t(s) | s ∈
S} is a basis of B. Given s, s ′ ∈ S, we know by Lemma 5.3.4 that gr bt(s) gr bt(s

′) =
α(s, s ′) gr bt(s+s

′) for some nonzero constant α(s, s ′). We have thus defined a function
α : S× S −→ k×, and the associativity of the product of B implies that α is a 2-cocycle.

Let ρ : kα[S] −→ B be the vector space isomorphism defined by sending Xs to
gr bt(s) for all s ∈ S; it is clear by definition that ρ is multiplicative, so it is an algebra
isomorphism. The assignation S −→ N2 given by s 7→ deg gr bt(s) = (ϕ(s), degbt(s)) is
additive by item 4 of Proposition 5.3.5, and we denote its extension to the enveloping
groups by ψ : ZS −→ Z2. By construction ρ induces an isomorphism of N2-graded
algebras between ψ!(k

α[S]) and B.

Remark 5.3.7. Notice that the N-filtration F has an associated graded algebra which
has a natural S-filtration, which is much finer (the original filtration of the (S,ϕ, t)-
dominated algebra does not play any role in this fact). This fact can be explained
as follows. We endow S with the order ≤∗, where s ′ ≤∗ s if and only if s− s ′ ∈ S
and ϕ(s ′) ≤ ϕ(s). Setting FsA = 〈bp | π(p) ≤∗ s〉 we get an S-filtration of A with
respect to the partial order ≤∗, with FsA/F<sA = 〈gr bt(s)〉 for all s ∈ S; the associated
S-graded algebra is isomorphic to kα[S] by a similar reasoning as above. The filtration
F can be recovered by setting FuA =

⋃
ϕ(s)≤u FsA for each u ∈ N. The properties

defining the class of (S, t,ϕ)-dominated algebras guarantee that the graded algebras
associated to both filtrations have the same defining relations. We have preferred to
work with the N-filtration since the theory developed in section 2.4.2 gets considerably
more technical for algebras filtered by partially ordered semigroups.

We now use the transfer results from chapter 3 to show that S-dominated algebras
inherit the regularity properties of their associated QA toric varieties.

Corollary 5.3.8. Let A be an S-dominated algebra. Then the following hold

1. A is a noetherian integral domain.
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2. A has property χ and finite local dimension. It also has a balanced dualizing complex.

3. If S is normal, then A is AS-Cohen-Macaulay and a maximal order.

4. If S is normal and there exists s ∈ S such that relintS = s+S, then A is AS-Gorenstein.

Proof. By Proposition 5.2.12, the statement holds when A is a QA toric variety. For
a general S-dominated algebra, we use the fact that all the properties we mention
transfer from grF A to A.

For the first item, see [MR01, Proposition 1.6.6 and Theorem 1.6.9]. The transfer
of the properties from the second item follows from Theorem 4.2.12. Since kα[S] is
noetherian and has property χ, the AS Cohen-Macaulay and AS Gorenstein properties
transfer by Theorem 3.2.13.

Remark 5.3.9. Notice that if kα[S] is regular then A is also regular. However it is rare
for affine toric varieties to be regular affine varieties. By [CLS11, Theorem 1.3.12], this
happens if and only if the minimal system of generators of the associated semigroup
is free over Z.

In the next two subsections we introduce two subclasses of S-dominated algebras.

5.3.2 Algebras with S-bases

The following definition is inspired in the results found in [Cal02, section 2]. Through-
out this subsection we assume that we have fixed an embedding S ↪→ Nr+1. Just for
this section, we identify S with its image inside Nr+1, and write < for the lexicographic
order of Nr+1.

Definition 5.3.10. Let B be a connected N-graded algebra. We say that B has a homo-
geneous S-basis if B has a basis {bs | s ∈ S} consisting of homogeneous elements of B
with the following property: for all s, s ′, s ′′ ∈ S with s ′′ < s+ s ′ there exist ds

′′
s,s ′ ∈ k

and ds+s
′

s,s ′ ∈ k× such that

bsbs ′ = d
s+s ′

s,s ′ bs+s ′ +
∑

s ′′<s+s ′

ds
′′
s,s ′bs ′′ .

For the rest of this section B denotes a connected N-graded algebra with an S-basis.
Define a function α : S× S −→ k× by α(s, s ′) = ds+s

′

s,s ′ for all s, s ′ ∈ S. By comparing the
two associators (bsbs ′)bs ′′ and bs(bs ′bs ′′), we see that for every σ < s+ s ′ + s ′′ there
exist dσ,d ′σ ∈ k such that

α(s, s ′)α(s+ s ′, s ′′)bs+s ′+s ′′ +
∑

σ<s+s ′+s ′′

dσbσ

= α(s, s ′ + s ′′)α(s ′, s ′′)bs+s ′+s ′′ +
∑

σ<s+s ′+s ′′

d ′σbσ.
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Since the standard elements are linearly independent, α must be a 2-cocycle.

For every s ∈ S set FsB = 〈bs ′ | s ′ ≤ s〉. The definition of an S-basis implies that the
family F = {FsB}s∈S is an S-filtration of B. Clearly FsB = 〈bs〉⊕ F<sB, so gr bs generates
the component of degree s of grF B, and it is also clear that gr bs gr bs ′ = α(s, s ′) gr bs+s ′ .
Thus the vector space isomorphism kα[S] −→ grF B which sends Xs to gr bs is an
isomorphism of S-graded algebras.

Before proving that B is an S-dominated algebra, we prove a simple lemma.

Lemma 5.3.11. Let C ⊂ Nr+1 be a finite set. Then there exists a semigroup morphism ϕ :
Nr+1 −→ N such that for every c, c ′ ∈ C, the inequality c < c ′ holds if and only if ϕ(c) <
ϕ(c ′).

Proof. The proof is taken from [Cal02, Lemma 3.2]. Since C is a finite set, there exists
a natural number K such that C is contained inside the r+ 1-cube [0,K− 1]r+1. The
morphism ϕ : Nr+1 −→ N defined by the assignation ei 7→ Kr−i for all 0 ≤ i ≤ r

sends every element c inside the cube to the integer whose K-adic expansion is c, so it
respects the lexicographic order when restricted to the cube.

We now proceed with the proof of the main result.

Proposition 5.3.12. Suppose B has an S-basis. Then for every section t of π there exists a
semigroup morphism ϕ such that B is an (S, t,ϕ)-dominated algebra.

Proof. Let bi = bsi for every 1 ≤ i ≤ n and let t : S −→ Nn be any section of π.
For every p ∈ Nn we write (gr b)p for (gr b1)

p1(gr b2)
p2 . . . (gr bn)

pn . Since grF B ∼=
kα[S] as an S-graded algebra, it is a domain and so gr bp = (gr b)p for all p ∈ Nn.
Furthermore this is a nonzero homogeneous element of degree π(p), so {gr bt(s) | s ∈ S}
is a homogeneous basis of grF B. By Lemma 2.4.3 the set {bt(s) | s ∈ S} is a basis of
B and FsA = 〈bt(s ′) | s ′ ≤ s〉, which proves points 1 and 2 of the definition of an
S-algebra dominated by t.

Since gr(bibj) =
α(si,sj)
α(sj,si)

gr(bjbi) for all 1 ≤ i < j ≤ n and for every 1 ≤ l ≤ m

there exists cl ∈ k× such that gr bp
′
l = cl gr b

pl , we deduce that for every s < si + sj or
s < π(pl) exist constants csi,j and csl such that

bjbi =
α(si, sj)
α(sj, si)

bibj +
∑

s<si+sj

csi,jb
t(s) for all 1 ≤ i < j ≤ n,

bp
′
l = clb

pl +
∑

s<π(pl)

cslb
t(s) for all 1 ≤ l ≤ m.

Let C ⊂ S be the finite set formed by

- the elements si + sj, for 1 ≤ i < j ≤ n;
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- the elements of the form π(pl) for 1 ≤ l ≤ m;

- the elements s ∈ S such that csi,j 6= 0 for some 1 ≤ i < j ≤ n;

- the elements s ∈ S such that csl 6= 0 for some 1 ≤ l ≤ m.

Applying Lemma 5.3.11 we know there exists a morphism ϕ : Nr+1 −→ N such that
for every s, s ′ ∈ C, the inequality s < s ′ holds if and only if ϕ(s) < ϕ(s ′). Restricting
ϕ to S, it is clear that B is an (S, t,ϕ)-dominated algebra.

5.3.3 Lattice semigroups and their dominated algebras

Let (Π,≤) be a partially ordered set (poset). Given x,y ∈ Π the interval [x,y] is the set
[x,y] = {z ∈ Π | x ≤ z ≤ y}. Clearly, it is non-empty if and only if x ≤ y.

A subset Ω ⊂ Π is called a Π-ideal provided it satisfies the following condition: for
all w ∈ Ω and all p ∈ Π, if p ≤ w then p ∈ Ω. A Π◦-ideal is an ideal for the reverse
order, that is, a subset Ω ⊂ Π such that whenever there exist w ∈ Ω and p ∈ Π such
that w ≤ p, then p ∈ Ω.

Let (Π,≤) be a finite ordered set. For any x ∈ Π, the rank of x, denoted rk x, is
defined to be the greatest integer t such that there exists a strictly increasing sequence
x0 < · · · < xt = x in Π. The rank of Π, denoted rkΠ, is the maximum of the ranks of
the elements of Π.

For every pair of elements x,y ∈ Π we define

R(x,y) = {(z, z ′) ∈ Π×Π | z ≤ x,y ≤ z ′}.

A lattice is a poset (L,≤) satisfying the following condition: for any x,y ∈ L, there
exist elements x∧y, x∨y ∈ L such that x∧y ≤ x,y ≤ x∨y, and for all z, z ′ ∈ L such
that z ≤ x,y ≤ z ′, then z ≤ x∧ y ≤ x∨ y ≤ z ′; in other words, (x∧ y, x∨ y) ∈ R(x,y)
and R(x,y) = R(x∧ y, x∨ y). We write R(x,y)∗ for R(x,y) \ (x∧ y, x∨ y).

If the ordered set (L,≤) is a lattice there exist two binary operations

∧ : L×L −→ L ∨ : L×L −→ L
(x,y) 7−→ x∧ y (x,y) 7−→ x∨ y

called meet and joint, respectively. The lattice (L,≤) is said to be distributive if the
operation ∨ is distributive with respect to the operation ∧, that is, if x∨ (y∧ z) = (x∨
y)∧ (x∨ z) for all x,y, z ∈ L; clearly the meet and join operations are commutative.
A finite lattice is a lattice whose underlying set is finite. Clearly, a finite lattice has
a unique minimal and a unique maximal element, which are denoted by 0̂ and 1̂,
respectively. If P is a finite poset then the set J(P) of all poset ideals of P is a finite
distributive lattice with union as join and intersection as meet.
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A sub-lattice of L is a subposet L ′ ⊂ L which is stable under the maps ∧ and ∨.
A morphism of lattices is a morphism of ordered sets which commutes in the obvious
way with the join and meet operations.

Let L be a lattice. An element z ∈ L is called join-irreducible provided it is not
minimal and satisfies the following condition: given x,y ∈ L such that z = x∨ y, then
either z = x, or z = y. We denote by Lirr the poset of join-irreducible elements of L
and set Lirr

0 = Lirr ∪ {0̂}.

The following result is due to G. Birkhoff. The reader is referred to [Sta97, Section
3.4] for a proof.

Theorem 5.3.13. (Birkhoff’s representation theorem) Let L be a finite distributive lattice. For
every x ∈ L the set Jx = {y ∈ Lirr | y ≤ x} is a poset ideal of Lirr, and the map L −→ J(Lirr)
given by x 7→ Jx is a lattice isomorphism.

An immediate consequence of this result is that rk x+ rky = rk x∧ y+ rk x∨ y.
Indeed, by Birkhoff’s representation theorem we can reduce to the case where L =
J(P) for some poset P, in which case the rank of an element is its cardinality, see
[Sta97, Proposition 3.4.4]. Now the formula follows from the fact that given I, J ∈ J(P),
and in fact any two subsets of a set, |I|+ |J| = |I∩ J|+ |I∪ J|.

Let L be a finite distributive lattice, and let A be an algebra equipped with an
injective function [−] : L −→ A. A standard monomial in A is a product of the form
[x0][x1] . . . [xn] with xi−1 ≤ xi for all 1 ≤ i ≤ n.

Definition 5.3.14. Let L be a finite distributive lattice, and let A be a connected N-
graded algebra equipped with an injective function [−] : L −→ A. We say that A is a
symmetric quantum graded algebra with a straightening law over L, or symmetric quantum
ASL for short, if the following hold:

1. The set {[x] | x ∈ L} consists of homogeneous elements of positive degree that
generate A as an algebra.

2. The set of standard monomials is linearly independent.

3. For every x,y ∈ L there exist {cz,z
′

x,y }(z,z ′)∈R(x,y)∗ ⊂ k and cx,y ∈ k×, such that

[y][x] = cx,y[x][y] +
∑

(z,z ′)∈R(x,y)∗
cz,z

′
x,y [z][z

′].

4. For every pair of incomparable elements x,y ∈ L there exist {dz,z
′

x,y }(z,z ′)∈R(x,y)∗ ⊂ k
and dx,y ∈ k×, such that

[x][y] = dx,y[x∧ y][x∨ y] +
∑

(z,z ′)∈R(x,y)∗
dz,z

′
x,y [z][z

′].
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Quantum graded algebras with a straightening law over an arbitrary poset were
introduced in [LR06, Definition 1.1.1]. Of course, symmetric quantum ASL’s over finite
distributive lattices are a special case of these.

We now associate to each finite distributive lattice a semigroup S(L). We will soon
see that this is a normal affine semigroup, and that any symmetric quantum ASL over
L is dominated by it.

Definition 5.3.15. Let L be a finite distributive lattice. The straightening semigroup of
L, denoted by S(L) is the commutative semigroup generated by L with relations

(x+ y, x∧ y+ x∨ y) for all pairs of incomparable elements x,y ∈ L.

We identify the elements of L with their class in S(L).

The proof that the straightening semigroup of a finite distributive lattice can be
embedded in Nr+1 for r = rkL is due to Hibi, and is taken from [Hib87, section 2].
We fix a L and consider the poset Lirr ⊂ L of irreducible elements of L. By Birkhoff’s
theorem the assignation x ∈ L 7→ Jx = {y ∈ Lirr | y ≤ x} ∈ J(Lirr) is an isomorphism
of distributive lattices, and |Lirr| = rkL. We set r = rkL and fix a monotone function
σ : Lirr −→ {1, . . . , r}. We define i = i(σ) : S(L) −→ Nr+1 to be the morphism induced
by the assignation

x ∈ L 7−→ e0 +
∑
i∈σ(Jx)

ei ∈ Nr+1.

That i(σ) is well defined follows from the fact that

i(x) + i(y) = e0 +
∑
l∈σ(Jx)

el + e0 +
∑
l∈σ(Jy)

el

= e0 +
∑

l∈σ(Jx∩Jy)
el + e0 +

∑
l∈σ(Jx∪Jy)

el

= e0 +
∑

l∈σ(Jx∧y)
el + e0 +

∑
l∈σ(Jx∨y)

el = i(x∧ y) + i(x∨ y).

Notice that there is a unique monotone extension of σ to a monotone function Lirr
0 −→

{0, . . . , r}, which we also denote by σ.

Lemma 5.3.16. Let i : S(L) −→ Nr+1 be as above.

1. An r+ 1-uple ξ = (ξ0, . . . , ξr) lies in the image of i if and only if the following holds:
whenever x,y ∈ Lirr

0 and x ≤ y then ξσ(x) ≥ ξσ(y).

2. The function i is injective, and S(L) is a normal semigroup.

3. For every s ∈ S(L) and every 1 ≤ l ≤ t there exists nl ∈ N such that s =
∑t
l=1 nlxl,

with x1 < x2 < . . . < xt.
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Proof. For every 0 ≤ i < j ≤ r let Si,j = {ξ ∈ Nr+1 | ξi ≥ ξj}, and let

S =
⋂

{x,y∈Lirr
0 |x<y}

Sσ(x),σ(y).

We may rewrite the statement of the first item as i(S(L)) = S. Since S is the intersection
of normal semigroups, it is itself normal and proving that i is injective with image S
implies that S(L) is normal.

By definition i(x) ∈ S for all x ∈ L, so the image of i is contained in S. We now
define a function j : S −→ S(L) which will be an inverse to i. We define j(ξ) by
recursion on |ξ| = ξ0 + ξ1 + . . .+ ξr. If |ξ| = 0 then ξ = (0, . . . , 0) and we set j(ξ) =
0; evidently i(j(0)) = 0. Suppose that we have defined j(ξ ′) and that i(j(ξ ′)) = ξ ′

whenever |ξ ′| < |ξ|. Suppose furthermore that j(ξ ′) can be written in a unique way as
in item 3. The definition of S guarantees that for every ξ ∈ S the set supp ξ = σ−1({i >
0 | ξi 6= 0}) ⊂ Lirr is a poset ideal of Lirr and hence equal to Jx for some x ∈ L. Also by
definition, ξ ′ = ξ− i(x) lies in S, so we set j(ξ) = j(ξ ′) + x. Clearly i(j(ξ)) = ξ.

By hypothesis j(ξ ′) can be written in a unique way as in item 3, and supp ξ ′ = Jxt .
Since by definition Jxt ⊆ supp ξ = Jx, we see that xt ≤ x, so j(ξ) can be written as∑
l nlxl + x which is of the form described in item 3. Also, since i is injective over the

elements of L by definition, putting any element x ′ ∈ L different from x in this sum
gives an element which is not in the preimage of ξ by i, so this writing is unique and
we have item 3. Thus i is injective with image S, which proves items 1 and 2.

For the rest of this section we fix a finite distributive lattice L and write S for S(L).
From Lemma 5.3.16 we deduce that L is a minimal set of generators of S. Indeed,

recall from Lemma 5.1.3 that the minimal set of generators of S consists of the minimal
elements for the order �, i.e. the elements of S that cannot be written as a sum of two
nonzero elements. Now every element of S has nonzero 0-th coordinate, and i(x)0 = 1
for all x ∈ L, so i(x) cannot be written as the sum of two nonzero elements of S and
hence it is minimal for �. Since L is also a generating set, it must be the minimal set
of generators of S.

Let n = |L| and choose a monotone function ρ : L −→ {1, . . . ,n}. Write xi = ρ−1(i)
for every 1 ≤ i ≤ n and let π : Nn −→ S(L) be the group morphism defined by ei 7→ xi
for every 1 ≤ i ≤ n. We denote ei∧j = π−1(xi ∧ xj) and ei∨j = π−1(xi ∨ xj) for all
1 ≤ i < j ≤ n. Notice that by definition π(ei∧j + ei∨j) = π(ei + ej) and since ρ is an
order preserving function, ei+ ej <lex ei∧j+ ei∨j whenever xi and xj are incomparable.
Let I = {(i, j) | 1 ≤ i < j ≤ n such that xi, xj are incomparable}. Then

L(S) =
∑

(i,j)∈I
N(ei + ej, ei∧j + ei∨j),

and it is once again clear that elements in these set of generators are minimal for
the divisibility order of L(S). Thus the presentation of S given in Definition 5.3.15 is
minimal.
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Now from item 3 of Lemma 5.3.16 we see that every element s ∈ S can be written
in a unique way as s =

∑n
i=1mixi with the condition that the set {xi | mi 6= 0} is

a chain of L. This defines a section t : S −→ Nn of π, that to each s ∈ S assigns
t(s) = (m1, . . . ,mn). We refer to t as the standard section of π.

Before proving the main result of this section, namely that all symmetric quantum
graded ASL’s over L are S(L)-dominated algebras, we prove a technical lemma.

Lemma 5.3.17. Let i be as above. Then

i(z) + i(z ′) <lex i(x) + i(y)

for every x,y ∈ L and all (z, z ′) ∈ R(x,y)∗.

Proof. Since i(x) + i(y) = i(x∧ y) + i(x∨ y) and R(x,y)∗ = R(x∧ y, x∨ y)∗, we only
consider the case z < x ≤ y < z ′, or equivalently Jz ( Jx ⊆ Jy ( Jz ′ . The inequality
i(z) + i(z ′) <lex i(x) + i(y) holds if and only if i(z ′) − i(y) <lex i(x) − i(z), that is if and
only if ∑

i∈σ(Jz ′\Jy)
ei <lex

∑
i∈σ(Jx\Jz)

ei.

It follows from the inclusions above that the least element of Jx \ Jz is strictly smaller
than the least element of Jz ′ \ Jy, which implies the last inequality.

Theorem 5.3.18. Let L be a finite distributive lattice and let S be the image of S(L) by the
embedding i defined above. Let t : S −→ Nn be the standard section of π : Nn −→ S. Then
there exists a semigroup morphism ϕ : S −→ N such that every symmetric quantum graded
algebra with a straightening law over L is an (S, t,ϕ)-dominated algebra.

Proof. Since the given presentation of S is minimal, points 1 of Definitions 5.3.14 and
5.3.1 are equivalent. Since the set {bt(s) | s ∈ S} from Definition 5.3.1 corresponds
precisely to the set of standard monomials, we see that points 2 of both definitions are
also equivalent.

Let C be the union of the sets i(R(x,y)) for all x,y ∈ L. By Lemma 5.3.11 there
exists a morphism ϕ : S −→ N such that for any two elements c, c ′ ∈ C, the inequality
c <lex c

′ holds if and only if ϕ(c) < ϕ(c ′). Thus points 3 and 4 of Definition 5.3.14 are
equivalent to the corresponding points of Definition 5.3.1 and we are done.

The following result will be useful in the sequel. It shows that certain quotients of
symmetric quantum graded ASL’s also belong to this class.

Proposition 5.3.19. Let A be a symmetric quantum graded ASL over a finite distributive
lattice L, let x,y ∈ L and let I be the ideal generated by the elements [z] with z /∈ [x,y]. Then
A/I is a symmetric quantum graded ASL over [x,y].
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Proof. Consider first the case where y = 1̂. Then {z |/∈ [x, 1̂]} = {z | x � z} is a poset
ideal; writing I ′ for the ideal of A generated by [z] with z ∈ [c, 1̂], [LR06, Corollary
1.2.6] states that the quotient algebra A/I ′ is a quantum graded ASL over [x, 1̂], and
since A is symmetric, so is A/I ′.

On the other hand, the fact that A/I ′ is symmetric implies that it is also a quantum
graded ASL over [x, 1̂]◦, the lattice with the same underlying group as [x, 1̂] but with
the opposite order. Since [x,y] is a poset ideal of [x, 1̂]◦, the same result implies that
A/I is a quantum graded ASL over [x,y], and again it is symmetric since A/I ′ is
symmetric.
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Chapter 6

Toric degeneration of quantum flag
varieties and associated varieties

This chapter contains the results that motivated this thesis, namely the
study of properties of the quantized homogeneous coordinate rings of
some varieties associated to flag varieties. These have been widely studied
as good examples of noncommutative projective varieties, and are both a
motivating example for the theory and a fertile ground for testing different
ideas.

In section 6.1 we review the definitions of quantum grassmannians and
their Schubert and Richardson varieties. We prove that grassmannians and
their Schubert and Richardson varieties in type A are symmetric quantum
ASLs for an arbitrary field and quantum parameter. Then in section 6.2 we
recall the definition of arbitrary quantum flag varieties and their Schubert
varieties. Assuming the underlying field is a transcendental extension ofQ,
we show that arbitrary quantum flag and Schubert varieties have S-bases,
and hence they degenerate to quantum affine toric varieties.

6.1 Quantum analogues of grassmannians and related vari-
eties.

In this section, we investigate quantum analogues of coordinate rings of Richardson
varieties in grassmannians of type A. The final aim is to show that these are symmetric
quantum graded ASL’s and to derive from this some of their important properties.
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6.1.1 Quantum grassmannians, Schubert and Richardson subvarieties

Consider positive integers n,m and a scalar q ∈ k∗. Following [LR06, section 3.1],
we let Oq(Mn,m(k)) denote the quantum analogue of the affine coordinate ring of the
space of n×m matrices with entries in k. This is the k-algebra with generators Xij for
1 ≤ i ≤ n and 1 ≤ j ≤ m, and relations given by

XitXij = q
−1XijXit; XsjXij = q

−1XijXsj;

XitXsj = XsjXit; XstXij = XijXst − (q− q−1)XsjXit;

where 1 ≤ i < s ≤ n and 1 ≤ j < t ≤ m. If n = m, we put Oq(Mn(k)) = Oq(Mn,m(k)).

Recall that there is a transpose automorphism of algebras trv : Oq(Mn,m(k)) −→
Oq(Mm,n(k)), defined by the assignation Xij 7→ Xji. With this in mind, from this point
on we assume that n ≤ m. Recall in addition that, if n ′,m ′ are positive integers such
that n ′ ≤ m and m ′ ≤ m, then the assignment Xij 7→ Xij defines an injective algebra
morphism from Oq(Mn ′,m ′(k)) to Oq(Mn,m(k)).

Let I = {i1 < i2 < . . . < it} be a subset of {1, . . . ,n} and J = {j1 < j2 < . . . < jt} a
subset of {1, . . . ,m}, where t ≤ n. We associate to such a pair the quantum minor

[I | J] =
∑
σ∈St

(−q)`(σ)Xi1,jσ(1)Xi2,jσ(2) . . . Xit,jσ(t) ∈ Oq(Mn,m(k))

where `(σ) denotes the length of the bijection σ ∈ St. An easy induction argument
shows that the transpose morphism sends [I | J] to [J | I]. When I = {1, . . . ,n} we
simply write [J] for [I | J]. Notice that when q = 1 this is simply the usual definition of
a minor of a matrix.

We denote by Πn,m the subset of Nn consisting of elements (i1, . . . , in) such that
1 ≤ i1 < · · · < in ≤ m endowed with the restriction of the natural product order of
Nn. It is easy to see that Πn,m is a distributive lattice of Nn, with

(i1, . . . , in)∧ (j1, . . . , jn) = (min{i1, j1}, . . . , min{in, jn})
(i1, . . . , in)∨ (j1, . . . , jn) = (max{i1, j1}, . . . , max{in, jn}).

Clearly an element I = {i1 < · · · < in} of Πn,m determines a subset of {1, . . . ,m}

which by a slight abuse of notation we also denote by I, and hence there is a map
Πn,m −→ Oq(Mn,m(k)), given by I 7→ [I].

Definition 6.1.1. Let n,m ∈ N with n ≤ m and let q ∈ k×. The quantum grassmannian
with parameters n,m,q, denoted by Oq(Gn,m(k)), is the subalgebra of Oq(Mn,m(k))
generated by the n× n quantum minors of Oq(Mn,m(k)), that is, by the elements [I]
for I ∈ Πn,m.

The algebra O1(Gn,m(k)) is the coordinate ring of the Plücker embedding of the
grassmannian parametrizing n-dimensional subspaces of km, see for example [BV88,
chapter 1, section D].
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Let I ∈ Πn,m. We associate to this element a poset ideal ΠI = {J ∈ Πn,m | J � I} (see
subsection 5.3.3 for the definition of a poset ideal). Similarly we denote by ΠI the poset
ideal {J ∈ Πn,m | J � I}. If J ∈ Πn,m and I ≤ J then we write ΠJI = ΠI ∪ΠJ. We denote
by ΩI the ideal generated in Oq(Gn,m(k)) by {[J] | J ∈ ΠI}, and we define analogously
the ideals ΩI and ΩJI.

Definition 6.1.2. To each I ∈ Πn,m we associate the quantum analogue of the homogeneous
coordinate ring of the corresponding Schubert variety, or quantum Schubert variety for
short, defined as the quotient

Oq(Gn,m(k))I = Oq(Gn,m(k))/ΩI.

To each I, J ∈ Πm,n such that I ≤ J, we associate the quantum analogue of the ho-
mogeneous coordinate ring on the Richardson variety corresponding to I, J also called, to
simplify, the quantum Richardson variety associated to I, J, defined as the quotient

Oq(Gn,m(k))/ΩJI.

The material in this section is a new presentation of work published in [RZ12].
This was a continuation of the work started in [LR06, LR08]. Notice that we adopt
here a convention exchanging rows and columns with respect to the one used in these
last two references. However, embedding all the relevant algebras in Oq(Mv(k)) and
using the transpose automorphism introduced above shows that the two different
conventions lead to isomorphic algebras. Hence we are in position to use all of the
results in the aforementioned papers.

6.1.2 Quantum Richardson varieties are symmetric quantum graded ASL’s

For the rest of this section, our aim is to prove that Oq(Gn,m(k)) is a symmetric quan-
tum ASL over the distributive lattice Πn,m as in Definition 5.3.14. As mentioned before,
the class of symmetric quantum ASL’s is a subclass of quantum graded ASL’s as de-
fined in [LR06, Definition 1.1.1]. In this reference it is proved that quantum grassman-
nians are quantum graded ASL’s. We begin with the following lemma on the structure
of the lattice Πn,m. Recall that the rank of an element I ∈ Πn,m is the maximal t such
that there exists a chain I0 < I1 < . . . < It = I in Πn,m. Also recall that given I, J ∈ Πn,m
we set

R(I, J) = {(K,L) ∈ Πn,m ×Πn,m | K ≤ I∧ J, I∨ J ≤ L and rkL+ rkK = rk I+ rk J}.

Since we have identified the set I ⊂ {1, . . . ,m} with the n-uple formed by its elements
in increasing order, it makes sense to write i ∈ I if and only if there exists t such that
i = it.

Lemma 6.1.3. Let n,m ∈ N with n ≤ m, and let Πn,m be as above.
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1. The rank of I = (i1, . . . , in) ∈ Πn,m is
∑
i∈I i−

n(n+1)
2 .

2. Fix I, J ∈ Πn,m, and suppose we are given L,K ∈ Πn,m such that L ∪ K = I ∪ J,
L ∩ K = I ∩ J, and K ≤ I∧ J. Then rk I+ rk J = rkK+ rkL and I∨ J ≤ L, that is
(K,L) ∈ R(I, J).

Proof. 1. We prove the result by induction on the rank of I. If rk I = 0 then I is the
unique minimal element of Πn,m, namely (1, 2, . . . ,n), in which case the formula
is clearly valid. Now suppose the formula is valid for all elements of rank less
than rk I, where I = (i1, . . . , in). Since rk I > 0, there must exist 1 ≤ t ≤ n such
that it > t. Clearly I− et ∈ Πn,m, and furthermore I− et < I, with no element of
the lattice between them. Hence rk I = rk(I− et) + 1 =

(∑
i∈I i

)
− 1+ l(l+1)

2 + 1 =∑
i∈I i−

l(l+1)
2 .

2. Suppose K,L are as in the statement. Then

rk I+ rk J = l(l+ 1) +
∑
i∈I
i+
∑
j∈J
i = l(l+ 1) +

∑
i∈I∩J

i+
∑
i∈I∪J

i

= l(l+ 1) +
∑
i∈K∩L

i+
∑
i∈K∪L

i = l(l+ 1) +
∑
i∈L
i+
∑
i∈K

i

= rkK+ rkL.

Notice that I∧ J and I∨ J comply with the hypothesis of the statement, that is
(I∧ J)∩ (I∨ J) = I∩ J and (I∧ J)∪ (I∨ J) = I∪ J, so the hypothesis is equivalent
to the same statement with I and J replaced by I∧ J and I∨ J respectively, and
since R(I, J) = R(I∧ J, I∨ J), we can restrict ourselves to the case where I ≤ J.

Recall that to each element I ∈ Πn,m we may associate the n × n quantum mi-
nor [I] in Oq(Gn,m(k)). We will often identify an element of Πn,m with its image in
Oq(Gn,m(k)). By definition of Oq(Gn,m(k)), the set {[I], I ∈ Πn,m} is a set of generators
of the k-algebra Oq(Gn,m(k)) since any n× n quantum minor of Oq(Mn,m(k)) equals
[I] for some I ∈ Πn,m. Recall, further, that Oq(Gn,m(k)) has an N-grading with respect
to which the elements [I], I ∈ Πn,m, are homogeneous of degree 1. Recall that a standard
monomial on Oq(Gn,m(k)) is a product of the form [I1][I2] . . . [It] with I1 ≤ I2 ≤ . . . ≤ It.

In [LR06, section 3] it is proved that Oq(Gn,m(k)) is a quantum graded ASL on
Πn,m. More precisely, the following is proved:

1. The assignation I ∈ Πn,m 7→ [I] ∈ Oq(Gn,m(k)) is injective.

2. Standard monomials on Πn,m form a basis of the k-vector space Oq(Gn,m(k)).

108



3. For any (I, J) ∈ Πm,n ×Πm,n, there exists a relation

[I][J] − qfI,J [J][I] =
∑
(K,L)

cI,JK,L[K][L],

where fI,J ∈ Z and where the sum extends over pairs (K,L) of elements of Πm,n

such that K ≤ L and K < I, J and where, for such a pair, dI,JK,L ∈ k.

4. For any pair of incomparable elements I, J ∈ Πn,m, there exists a (necessarily
unique) relation

[I][J] =
∑
(K,L)

dI,JK,L[K][L],

where the sum extends over pairs (K,L) of elements of Πm,n such that K ≤ L and
K < I, J and where, for such a pair, cI,JK,L ∈ k;

Thus in order to prove that Oq(Gn,m(k)) is a symmetric quantum graded ASL we need
only prove that the standard monomials appearing in the commuting and straighten-
ing relations comply with Definition 5.3.14.

Proposition 6.1.4. Let I, J ∈ Πn,m.

1. If K,L ∈ Πn,m are such that cI,JK,L 6= 0 then K ≤ I, J ≤ L.

2. If I, J are incomparable and K,L ∈ Πn,m are such that dI,JK,L 6= 0 then K ≤ I, J ≤ L.

3. If I, J are incomparable then dI,JI∧J,I∨J 6= 0.

Proof. We consider two gradings on the algebra A = Oq(Mn,m(k)). The first is a Nm-
grading where the degree of Xij is ej for each 1 ≤ i ≤ n and 1 ≤ j ≤ m; write deg1 a
for the degree of an element a ∈ A with respect to this grading. The second is a Z-
grading, with the degree of Xij given by j− i. We write deg2 a for the degree of a with
respect to this second grading. Notice that the relations defining A are homogeneous
for both gradings, so they are well-defined.

Clearly for every I ∈ Πn,m the associated quantum minor [I] is a homogeneous
element for the first grading, and deg[I] =

∑
i∈I ei. On the other hand, notice that for

every σ ∈ Sn

deg2 X1iσ(1)X2iσ(2) . . . Xniσ(n) =
∑
i∈I
i−

n(n+ 1)

2
= rk I,

so deg2[I] = rk I by item 1 of Lemma 6.1.3. Given any relation of the form

[I][J] =
∑
(K,L)

λI,JK,L[K][L]
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with K ≤ L, the linear independence of standard monomials implies that all the mono-
mials on the right hand side are homogeneous of the same degree as [I][J] for both
gradings. Thus for every K,L with λI,JK,L 6= 0 we get the equalities∑

i∈I
ei +
∑
i∈J
ei =

∑
i∈K

ei +
∑
i∈L
ei rk I+ rk J = rkK+ rkL.

The first equality is equivalent to the fact that I∩ J = K∩ L and I∪ J = K∪ L. Since we
also know that K ≤ I, J, item 2 of Lemma 6.1.3 guarantees that I, J ≤ L. This proves
items 1 and 2.

Now suppose K,L are such that dI,JK,L 6= 0, and suppose I∨ J < L. Since rkK+ rkL =
rk I+ rk J = rk I∧ J+ rk I∨ J, it must be rkR < rk I∧ J, in particular R < I∧ J. Thus
the straightening relation for [I] and [J] can be written as

[I][J] = dI,JI∧J,I∨J[I∧ J][I∨ J] +
∑

K<I∧J≤I∨J<L
dI,JK,L[K][L]

Thus in the quantum Schubert variety Oq(Gn,m(k))I∧J we get [I][J] = dI,JI∧J,I∨J[I∧ J][I∨
J], since all the other monomials in the right hand side are in the Schubert ideal of
I ∧ J. By [LR08, Corollary 3.1.7], quantum Schubert varieties are domains, and so
dI,JI∧J,I∨J 6= 0.

From the definitions and the last proposition we immediately deduce that quantum
grassmannians are symmetric quantum graded ASL’s. Using Proposition 5.3.19 we
obtain the following result

Theorem 6.1.5. Quantum grassmannians and their quantum Schubert and Richardson vari-
eties are symmetric quantum graded ASL’s.

By Theorem 5.3.18 and Corollary 5.3.8, this implies that Richardson varieties are
normal domains, and that they are always AS-Cohen-Macaulay.

6.2 Toric degenerations of quantum flag and Schubert varieties

Throughout this section we assume that k is a field of characteristic zero. We adapt
the arguments from [Cal02] to the quantum setting to show that Schubert cells of
arbitrary quantum flag varieties have S-bases, and that in each case S is a normal
affine semigroup.

6.2.1 Quantum flag and Schubert varieties

Let g be a complex semisimple Lie algebra and let G be the corresponding simply
connected Lie group. We denote by P the weight lattice of g, and write {p1, . . . ,pn}
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for its fundamental weights. Let P+ =
∑
iNpi be the set of dominant weights, and

α1, . . . ,αn the positive roots of P. Let W be the Weyl group of g, and si ∈ W the
reflection corresponding to the i-th root. Given an element w ∈ W we denote its
length by `(w), and set N to be the length of the longest word of W. A decomposition
of w ∈ W is a word on the generators si that equals w in W. A decomposition of
the longest word of W is said to be adapted to w if it is of the form si1 . . . siN with
si1 . . . si`(w)

= w. For every element w ∈W there exists a decomposition of the longest
word of W adapted to w, in other words the longest word of W is the maximum for
weak right Bruhat order on W, see [BB05, Proposition 3.1.2].

Fix q ∈ k× not a root of unity. Let Uq(g) be the quantum enveloping algebra of g
as in [Jan96, Definition 4.3]. The algebra Uq(g) is generated by elements {Ei, Fi,K±1i |

i = 1, . . . ,n} where n is the rank of P. Denote by Uq(b), resp. Uq(n), the subalgebra
of Uq(g) generated by the elements Ei,Ki, resp. Ei, for all 1 ≤ i ≤ n; Uq(b

−) and
Uq(n

−) are defined analogously, replacing each Ei by the corresponding Fi. For each
λ ∈ P+ there is an irreducible highest-weight representation of Uq(g) which we denote
by Vq(λ). Each Vq(λ) decomposes as the direct sum of weight spaces

⊕
µ∈Λ Vq(λ)µ,

where Λ is a finite subset of P+; the dimensions of the weight spaces are the same
as in the classical case, that is, the Weyl and Demazure character formulas hold for
these representations (see [Kas95, section 12.4], or [Jan96, subsection 5.15] for the Weyl
formula).

Let I be a subset of the set of fundamental weights and set J (I) =
∑
pi/∈INpi.

Denote by WI ⊂ W the subgroup generated by reflections sαi with pi ∈ I, and for
each class in W/WI pick a representative of smallest length. We call WI the set of
these representatives. Since the Demazure character formula holds, for each w ∈ WI

and λ ∈ J (I) the vector space Vq(λ)wλ has dimension 1 just as in the classical case.
The Demazure module Vq(λ)wλ is the Uq(b)-submodule of Vq(λ) generated by a vector
of weight wλ in Vq(λ).

Given a vector space V we denote its dual space by V∗. Since Uq(g) is a Hopf
algebra, its dual is an algebra with convolution product induced by the coproduct of
Uq(g). There is a map Vq(λ)∗ ⊗ Vq(λ) −→ Uq(g)

∗ defined by sending ξ⊗ v ∈ Vq(λ)∗ ⊗
Vq(λ) to the linear functional cλξ,v, which assigns to each u ∈ Uq(g) the scalar cλξ,v(u) =

ξ(uv). Functionals of type cλξ,v are called matrix coefficients. The span of the matrix
coefficients forms a subalgebra of Uq(g)∗ denoted by Oq[G], the quantized algebra of
coordinate functions over the group G. Given λ,µ ∈ P+ and highest weight vectors
vλ ∈ Vq(λ) and vµ ∈ Vq(µ), the vector vλ ⊗ vµ ∈ Vq(λ)⊗ Vq(µ) is a highest weight
vector that generates a Uq(g)-submodule isomorphic to Vq(λ+µ), so identifying these
modules the product of two matrix coefficients cλξ,v and cµχ,w is cλ+µξ⊗χ,v⊗w, which makes
sense since v⊗w is in the Uq(g)-submodule generated by vλ ⊗ vµ.

We now review the definitions of quantum flag varieties. They were introduced
by Soibelman in [Soı̆92] and by Lakshmibai and Reshetikhin in [LR92]. Let B be a
maximal Borel subgroup of G. Then G/B is the full flag variety associated to G. Let
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C+
q (λ) be the vector space of matrix coefficients of the form cλξ,vλ in Uq(g)∗, where vλ is

some highest weight vector in Vq(λ), and set

Oq[G/B] =
⊕
λ∈P+

C+
q (λ) ⊂ Uq(g)∗.

This is called the quantum full flag variety of G. Notice that the product of two matrix
coefficients in Oq[G/B] is again in OQ[G/B]. The above decomposition as a direct sum
gives Oq[G/B] the structure of a P+-graded algebra.

To every subset I of the set of fundamental weights corresponds a parabolic sub-
group PI, and the variety G/PI is the corresponding generalized flag variety. To this
datum we associate the P+-graded subalgebra of Oq[G/B]

Oq[G/PI] :=
⊕
λ∈J (I)

C+
q (λ)

called quantum partial flag variety associated to I. The case I = ∅ corresponds to the full
flag variety.

Given vector spaces V2 ⊂ V1, we denote by V⊥2 the set of linear functionals over V1
which are zero on V2. For every w ∈WI, the vector space

JIw =
⊕
λ∈J (I)

〈
cλξ,vλ ∈ C

+
q (λ) | ξ ∈ Vq(λ)⊥w

〉
⊂ Oq[G/PI]

is an ideal of Oq[G/PI] called the Schubert ideal associated to w. The quotient algebra
Oq[G/PI]w = Oq[G/PI]/JIw is called the quantum Schubert variety associated to w.

6.2.2 An S-basis for quantum Schubert varieties

The aim of this subsection is to show that, assuming k is of characteristic zero and q
is transcendental over Q, all quantum Schubert varieties have an S-basis for a suitable
affine semigroup S. In order to do so we work for a moment over the field Q(v), where
v is an indeterminate over Q, and consider the Q(v)-algebra U = Uv(g). The general
case will follow by extension of scalars.

We denote by U+ and U− the algebras Uv(n+) and Uv(n−), respectively. Let A =
Z[v, v−1] ⊂ Q(v). The algebra U has an A-form, defined equivalently in [Lus10, para-
graph 3.1.13] and [Jan96, section 11.1], which we denote by UA. This is a graded
subring of U, and the algebras U+ and U− also have A forms which we denote by U+

A
and U−

A, respectively. By definition U = Q(v)⊗A UA, and analogous results hold for
U+
A and U−

A.

The algebra U−
A has an homogeneous A-basis B, called the canonical basis of U−

which was discovered and studied independently by Lusztig and Kashiwara. For
a general overview of the theory we refer to [Kas95], and for proofs and details to
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[Lus10, section II] and [Jan96, chapters 9 - 11]. The A-form U−
A is compatible with

the coalgebra structure of U, in the sense that ∆(U−
A) ⊂ U−

A ⊗A U
−
A, where ∆ is the

comultiplication of U (see [Lus10, Proposition 14.2.6 (a)]). Furthermore the highest
weight modules Vv(λ) have corresponding A-forms, which we denote by VA(λ). All
this A-forms are compatible with the weight decompositions of the original objects.

Theorem 6.2.1. Let λ ∈ P+, let I be a subset of the fundamental weights and let w ∈ WI.
There exists Bλ ⊂ B such that Bλvλ ⊂ Vv(λ) is a basis of weight vectors of Vv(λ), and
furthermore, there exists a subset Bw ⊂ B such that (Bw ∩ Bλ)vλ is a basis of the Demazure
module Vq(λ)w.

Proof. See [Kas93, Theorem 3.2.5]. Remark 3.2.6 of the same reference states that this
decomposition induces a decomposition of the corresponding A-forms.

Littelman proved in [Lit98, Proposition 1.5, a)] that for every decomposition w0
of the longest word of W there is a parametrization of the canonical basis B by a set
Sw0 ⊂ NN, where N is the length of the longest word of W. For each s ∈ Sw0 let
bs denote the corresponding element in the canonical basis. Thus if λ is a dominant
weight then there exists a finite set Sλ,w0 ⊂ Sw0 such that Bλ = {bs | s ∈ Sλ,w0}.

Let w ∈ WI, and let w0 be a decomposition of the longest word of W adapted to
w. Following [Cal02] we set

S̃w0 = {(s, λ) | s ∈ Sλ} ⊂ NN × P+ ∼= NN+n,

S̃ww0 := {(s, λ) ∈ S̃w0 | bs ∈ Bλ ∩ Bw},
S̃ww0,I := {(s, λ) ∈ S̃ww0 | λ ∈ J (I)} = S̃ww0 ∩ J (I).

We set on these groups the total order induced by pulling back the lexicographic order
of NN+n. By abuse of notation, we denote this order by ≤lex.

Lemma 6.2.2. The sets S̃w0 , S̃ww0 and S̃ww0,I are normal affine semigroups.

Proof. For S̃w0 and S̃ww0 see [Cal02, Theorem 2.2 and Theorem 2.4] respectively.

Now, S̃ww0,I is by definition S̃ww0 ∩ N
n × J(I). Let D = R+S̃

w
w0

and let G be the
enveloping group of Nn × J(I). By item 2 of Lemma 5.1.2, S̃Iw0 is equal to D ∩ Zn × P,
and G ∩D is a normal affine semigroup. Now every point of G ∩D lies in S̃ww0 , and
hence in Nn × P+. Thus G∩D = G∩ (Nn × P+)∩D = (Nn × J(I))∩ S̃ww0 = S̃

w
w0,I.

Let λ be a dominant integral weight. By Theorem 6.2.1, the set Bλvλ is a basis
of Vv(λ), and hence it has a dual basis B∗λ . For every s ∈ Sλ there is an element
b∗s,λ ∈ B∗λ defined as the only functional that sends bvλ to δb,bs for all b ∈ B. Each
linear functional b∗s,λ induces a matrix coefficient which by abuse of notation we will
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also denote by b∗s,λ. We denote by C+
A the sub A-module of C+

v (λ) generated by these
matrix coefficients, and set

OA[G/B] =
⊕
λ∈P+

C+
A(λ).

Clearly OA[G/B] ⊂ Oq[G/B] ⊂ Uq(g)
∗. The product of Oq[G/B] is induced by the

product of this last algebra, which in turn is induced by the coproduct of Uq(g). Since
this UA is stable by this coproduct, OA[G/B] is a sub A-algebra of Oq[G/B].

Let λ be a dominant integral weight, let I be a finite set of fundamental weights
and let w ∈WI. Then setting

B∗λ,w = {b∗s,λ | (s, λ) ∈ S̃ww0,I}

B⊥λ,w = {bs,λ ∈ B∗λ ∩ Vv(λ)⊥w}

we see that Bλ = B∗λ,w t B⊥λ,w, and B⊥λ,w is a basis of Vv(λ)⊥w, while the restriction of the
functionals of B∗λ,w to Vv(λ)w are a basis of Vv(λ)∗w. Hence it is possible to define A-
forms of arbitrary quantum Schubert varieties, and by definition the matrix coefficients
b∗s,λ with (s, λ) ∈ S̃ww0,I form an A-basis of the A-algebra OA[G/PI]w. We keep abusing
notation and denote the image of b∗s,λ in this quotient by the same symbol.

Proposition 6.2.3. Let I be a finite set of fundamental weights and let w ∈ WI. Then for
every (s, λ); (s ′, λ ′) ∈ S̃ww0,I and every (s ′′, λ ′′) <lex (s+ s

′, λ+ λ ′) there exist cs
′′
s,s ′ ∈ A and

c = c((s, λ), (s ′, λ ′) ∈ Z such hat

b∗(s,λ)b
∗
(s ′,λ ′) = v

cb∗(s+s ′,λ+λ ′) +
∑

s ′′<lexs+s ′

cs
′′
s,s ′b

∗
(s ′′,λ+λ ′). (6.1)

Proof. Let k = C(t1/d), where d is the length of the longest root of g. Then there
is an obvious map Q(v) −→ k sending v to t. This induces an obvious morphism
of Hopf algebras Uv(g) ↪→ Ut(g). The canonical basis B of Uv(g) maps to a basis of
Ut(g), and since Demazure modules are preserved by extension of scalars, Theorem
6.2.1 still holds over Ut(g) (see the reference given there). Thus there is an obvious
injective A-linear morphism from C+

A(λ) to C+
t (λ), and hence an injective A-linear

morphismOA[G/B] −→ Ot[G/B]; this morphism is multiplicative since the extensions
UA ↪→ Uv(g) ↪→ Ut(g) are morphisms of coalgebras. Thus it is enough to establish that
the formula holds in Ot[G/B], which is done in [Cal02, Proposition 2.1].

We immediately obtain the following result.

Corollary 6.2.4. Let I be a subset of the fundamental weights and let w ∈ WI. Then the
Schubert variety Oq[G/PI]w has a homogeneous S̃ww0,I-basis.

By Proposition 5.3.12 and Corollary 5.3.8, this implies that quantum Schubert va-
rieties are normal domains, and that they are always AS-Cohen-Macaulay.
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Appendix A

On the evaluation morphism

In this appendix we clarify some technical questions on the evaluation morphisms
introduced in chapter 4. Throughout this appendix A is a noetherian connected Zr+1-
graded algebra.

Let us review some of the pertinent definitions. Recall that given two complexes of
A-modules N• and M•, the n-th component of the complex HomZ

r+1

A (N•,M•) is given
by ∏

p∈Z
HomZ

r+1

A (Np,Mp+n),

so an element in this component is a family of morphisms f = (fp)p∈Z, with fp ∈
HomZ

r+1

A (Np,Mp+n) for all p ∈ Z; we say that f is of degree n.

By definition the differential of f = (fp)p∈Z of degree n is the collection of mor-
phisms whose p-th member is given by

dn(f)p = (−1)n+1fp+1 ◦ dpN• + d
p+n
M• ◦ f

p

that is, given a family of morphisms of degree n, its differential is a family of mor-
phisms of degree n+ 1 given by the sum (if n is odd) or the difference (if n is even) of
the red and blue arrows in the following diagram

· · · // Np−1
dp−1 //

fp−1

�� ��
00

Np
dp //

fp

�� ��
..

Np+1
dp+1 //

fp+1

��

· · ·

· · · //Mp−1+n

dp−1
//Mp+n

dp
//Mp+1+n

dp+1
// · · ·

Fix q ∈ Z and x ∈ Nq. To each n ∈ Z and each f = (fp)p∈Z ∈ HomZ
r+1

A (N•,M•)n we
can associate an element of Mq+n, namely fq(x); thus evaluation at x can be thought
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of as a function from HomZ
r+1

A (N•,M•)n to Mn+q, which is by definition an element in
the q-th component of the complex

HomZ
r+1

k (HomZ
r+1

A (N•,M•),M•).

If M• is a complex of Ae-modules then HomZ
r+1

A (N•,M•) is a complex of A◦-modules,
and evaluation at x is compatible with the A◦-module structure, so in fact lies in the
q-th component of

HomZ
r+1

A◦ (HomZ
r+1

A (N•,M•),M•).

Let us denote by evnx the function that assigns to each family of morphisms (fp)p∈Z of
degree n the element fq(x) ∈Mn+q.

Lemma A.0.5. Let M• be a complex of Ae-modules and N• be a complex of A-modules. Then
there exists a morphism of complexes of A-modules

τ(N•,M•) : N• −→ HomZ
r+1

A◦ (HomZ
r+1

A (N•,M•),M•)

that sends each x ∈ Nq to ((−1)nq evnx )n∈Z.

Proof. We write τ instead of τ(N•,M•) to alleviate notation. The function τ is well
defined since we have already seen that evnx sends families of morphisms of degree n
to elements of Mn+q, so the collection ((−1)nq evnx )n∈Z belongs to the q-th component
of the target complex. It is only left to see that τ is a morphism complexes, i.e. that
the differential of the family ((−1)qn evnx )n∈Z is given by ((−1)(q+1)n evnd(x))n∈Z.

Write δ for the differential of the complex HomZ
r+1

A (N•,M•). By definition,

dq(τ(x))n = (−1)q+1(−1)q(n+1) evn+1x ◦δn + (−1)qndn+qM• ◦ ev
n
x .

We now apply this to a family of morphisms f = (fp)p∈Z of degree q and obtain

(−1)qn+1 evn+1x ◦δn(f) + (−1)qndn+qM• ◦ ev
n
x (f)

= (−1)qn+1δn(f)q(x) + (−1)qndn+qM• (f
q(x))

= (−1)qn+1[(−1)n+1fq+1dqN•(x) + d
n+q
M• (f

q(x))] + (−1)qndq+nM• (f
q(x))

= (−1)(q+1)nfq+1(dqN•(x)) + [(−1)qn+1 + (−1)qn]dq+nM• (f
q(x))

= (−1)(q+1)nfq+1(dqN•(x)) = (−1)(q+1)n evnd(x)(f).

Thus d(τ(x))n(f) = τ(d(x))n(f), which is precisely what we set out to prove.

Given a morphism of complexes f : N• −→ Ñ• it is routine to prove that the
following diagram commutes

N•
τ(N•,M•) //

f

��

HomZ
r+1

A◦ (HomZ
r+1

A (N•,M•),M•)

(f∗)∗

��

Ñ•
τ(Ñ•,M) // HomZ

r+1

A◦ (HomZ
r+1

A (Ñ•,M•),M•).
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so transformation τ is natural in the first variable. In section 4.2 we introduced the
contravariant functors

D = RHomZ
r+1

A (−,R•) : Dbfg(ModZ
r+1
A) −→ Dbfg(ModZ

r+1
A◦),

D◦ = RHomZ
r+1

A◦ (−,R•) : Dbfg(ModZ
r+1
A◦) −→ Dbfg(ModZ

r+1
A).

were R• is a Zr+1-graded dualizing complex over A. Fixing an injective resolution
R• −→ I•, the map τ(M•, I•) induces a morphism τ(M•) :M• −→ D◦D(M•) which is
natural in M• by the previous observation.

Let ϕ : Zr+1 −→ Z be a group morphism and assume that A is ϕ-connected.
Given an object M• of Dbfg(ModZ

r+1
A), Proposition 4.1.8 guarantees that ϕA

◦
! (D(M))

is isomorphic to D(ϕA! (M
•)). Since D(M•) is also bounded and has finitely generated

cohomology groups, item 1 of Proposition 4.2.2 implies ϕA! (D
◦D(M)) is isomorphic

to D◦D(ϕA! (M)). The following result was used to prove the third item of Proposition
4.2.3.

Proposition A.0.6. The following diagram commutes,

ϕA! (M
•)

ϕA! (τ(M•))
//

τ(ϕA! (M•)) ,,

ϕA! (D
◦D(M•))

∼=
��

D◦D(ϕA! (M
•))

where the vertical isomorphism is induced by the natural transformation from Proposition
4.1.8.

Proof. We replace R• with a resolution I• in D+(ModZ
r+1
Ae) consisting of modules

which are both left and right Zr+1-graded injective modules. Since the natural trans-
formation ϕA

e

! (I) ⇒ ϕA
e

∗ (I) is a quasi-isomorphism when I is a ϕ-finite module,
item 1 of Proposition 4.1.2 implies that the same holds if we replace I by a bounded
complex with finitely generated (and in particular ϕ-finite) cohomology modules, so
ϕA

e

! (R•) −→ ϕA
e

∗ (R•) is a quasi-isomorphism, and since ϕA
e

∗ is exact, the composition
ϕA

e

! (R•) −→ ϕA
e

∗ (R•) −→ ϕA
e

∗ (I•) is also a quasi-isomorphism. Using the fact that
ϕA∗ sends injective modules to injective modules (see Proposition 2.2.9) and that ϕA

e

∗
commutes with the functors Λ and P in the obvious sense, we see that the components
of ϕA

e

∗ (I•) are injective as left Z-graded A-modules. We also fix a projective resolution
P• −→M•; since ϕA! preserves projectives, the map ϕA! (P

•) −→ ϕA! (M
•) is a projective

resolution.

Consider the following commutative diagram in the category D(ModZ
r+1
A),

ϕA
◦

! HomZ
r+1

A (P•, I•) F // HomZA(ϕ
A
! (P•),ϕA

e

! (I•))
∼= // HomZA(ϕ

A
! (P•),ϕA

e

∗ (I•))

ϕA
◦

! HomZ
r+1

A (M•, I•) F //

∼=

OO

HomZA(ϕ
A
! (M•),ϕA

e

! (I•)) //

OO

HomZA(ϕ
A
! (M•),ϕA

e

∗ (I•))

∼=

OO
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where the unlabeled maps are induced by the natural inclusion ϕA
e

! (I•) −→ ϕA
e

∗ (I•).
Notice that the two complexes in the first column are quasi-isomorphic to the complex
ϕA

◦
! (D(M•)) and that the map connecting them labeled with ∼= is just the natural

identification between them, so it is a quasi-isomorphism. The remaining complexes
in the first row and the last one in the bottom row are all isomorphic toD(ϕA! (M

•)) and
the maps between them are also natural identifications. Finally, the maps labeled F are
quasi-isomorphisms by Proposition 4.1.8. Notice in particular that the first map in the
top row is the morphism through which we identify ϕA

◦
! (D(M•)) and D(ϕA! (M

•));
thus this map can be identified in the derived category with the map given by the
composition of the two maps in the bottom row, which we call G.

It follows from the definitions that the diagram

ϕA! HomZ
r+1

A (HomZ
r+1

A (M•, I•), I•) ∼= ϕA! (D
◦D(M•))

G
��

ϕA! (M)

ϕA! (τ(M•))
55

τ(ϕA! (M•)) ((

HomZA(ϕ
A◦
! HomZ

r+1

A (M•, I•),ϕA
e

∗ (I•)) ∼= D◦(ϕA
◦

! (D(M•)))

HomZA(Hom
Z
A(ϕ

A
! (M

•),ϕA
e

∗ (I•)),ϕA
e

∗ (I•)) ∼= D◦D(ϕA! (M
•))

G

OO

is commutative, and this proves the desired result.

118



Appendix B

On the AS-Gorenstein condition

Let G be a group and let A and B be G-graded rings, with A (left and right) noetherian.
We denote by M a G-graded left A-module and by N a G-graded B−A-bimodule. In
order to simplify notation we write HomA for HomGA and ExtiA for its i-th derived
functor. Also we write Tori for the i-th derived functor of the tensor product of G-
graded modules.

There exists a morphism of G-graded B-modules, natural in both variables

η(N,M) : N⊗AM −→ HomA◦(HomA(M,A),N)

n⊗Am 7−→ (ϕ ∈ HomA(M,A) 7→ nϕ(m)).

Lemma B.0.7. Suppose M is finitely generated and N is injective as right A-module. Then
η(N,M) is an isomorphism.

Proof. If M is free then η(N,M) simply identifies N⊗A An with HomA◦(A
n,N) ∼= Nn

as B−A-bimodules, so the result is clear for free modules. For the general case we fix
a finite presentation Am −→ An −→ M −→ 0, and get morphisms between the exact
complexes

N⊗A Am //

η

��

N⊗A Am

η

��

// N⊗AM
η(N,M)

��

// 0

Nm // Nn // HomA◦(HomA◦(M,A),N) // 0.

Notice that in the complex below we have identified HomA◦(HomA(A
n,A),N) with Nn;

this complex is exact because N is injective as a right A-module. Thus η(N,M) is an
isomorphism by the five lemma.

This implies the existence of a spectral sequence, which is a graded version of
Ischebeck’s spectral sequence, introduced in [Isc69].
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Theorem B.0.8. Let A, M and N be as in the preamble. Suppose that M is finitely generated
and N has finite injective dimension d as right A-module. Then there exists a convergent
spectral sequence of G-graded B-modules

E
p,q
2 = ExtpA◦(Ext

−q
A (M,A),N)⇒ TorA−p−q(N,M) p,−q > 0

Proof. Let N −→ I• be a resolution of N by injective B−A-bimodules. Then each I• is
injective as right A-module, and setting

J• =


I• for • < d;
ker(Id −→ Id+1) for • = d;
0 for • > d;

with the obvious differentials, N −→ J• is a finite resolution of N by B−A-bimodules
which are injective as right A-modules.

Let P• −→ M be a resolution of M by finitely generated projective G-graded
A-modules. We consider the complex J• ⊗A P•, which can be identified with the
complex HomA◦(HomA(P

•,A), J•) through the natural transformation η. Writing P̂• =
HomA(P

•,A) we get an isomorphism of double complexes J• ⊗A P• ∼= HomA◦(P̂
•, J•).

Let ′E be the spectral sequence obtained by filtering J• ⊗A P• by rows and ′′E the one
obtained by filtering HomA◦(P̂

•, J•) by columns. Since both complexes are isomorphic,
′′E is isomorphic to the spectral sequence defined by filtering J• ⊗A P• by columns.

The first page of ′E is obtained by taking the homology of the rows of J• ⊗A P•,
i.e. fixing q ∈ N and looking at the homology of J• ⊗ P−q. Since P−q is a G-graded
free A-module, the rows are exact for • > 0, so the columns of ′Ep,q

1 are zero, except
for p = 0 where we get ′E0,q1 = H0(J• ⊗A P−q) = H0(J•)⊗A P−q = N⊗A P−q, and the
differentials are induced by those of P•. Now taking homology on the columns we see
that

′Ep,q
2

∼=

{
TorA−q(N,M) for p = 0;

0 for p 6= 0.

Hence the spectral sequence degenerates at page 2, and so

Hi
(
Tot⊕(J• ⊗A P•)

)
∼= TorA−i(N,M).

On the other hand, page 1 of ′′E is given by

′′Ep,q
1

∼= Hq(HomA◦(P̂
•, Jp)) ∼= HomA◦(H

−q(P̂•), Jp) ∼= HomA◦(Ext
−q
A (M,A), Jp),

and the differentials are those induced by J•, so

′′Ep,q
2

∼= Hp( ′′E
•,q
1 ) ∼= ExtpA◦(Ext

−q
A (M,A),N).
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Notice that if p > d then Ep,q
2 = 0, so the spectral sequence converges to

Hp+q(Tot⊕(HomA◦(P̂
•, J•)) ∼= Hp+q(Tot⊕(J• ⊗A P•)) ∼= TorA−p−q(N,M).

Taking N = A we obtain the following result.

Corollary B.0.9. Suppose A has finite injective dimension as graded right A-module. Then
there exists a convergent spectral sequence

E
p,q
2 : ExtpA◦(Ext

−q
A (M,A),A)⇒ Hp+q(M) =

{
M if p+ q = 0

0 else.
p,−q > 0.

Suppose now that A is a noetherian connected Zr+1-graded algebra.

Corollary B.0.10. If A is left and right AS-Gorenstein, then it is AS-Gorenstein.

Proof. Let d, e be the left and right injective dimensions of A, respectively. The hypoth-
esis implies the existence of graded isomorphisms

ExteA◦(Ext
d
A(k,A),A) ∼= ExteA◦(k[l],A) ∼= k[r− l]

where r and l are the right and left Gorenstein shifts, respectively. Hence the second
page of the graded Ischebeck spectral sequence with M = k and N = A looks like

E
p,q
2 = ExtpA◦(Ext

−q
A◦ (k,A),A) ∼=

{
k[r− l] if p = e,−q = d;

0 otherwise.

Evidently this converges to Hp+q−e+d(k[l− r]), and by Corollary B.0.9 it also converges
to Hp+q(k). This can only happe if e = d and l = r.

There is a finer result due to Zhang (see [Zha97, Theorem 0.3]), which states that
if A has property χ as left or right module over itself, then it is AS-Gorenstein if and
only if it has finite injective dimension, further proof that an algebra with property χ
behaves much like a commutative algebra.
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