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a b s t r a c t

The distributed and executable enterprise models are one of the most important sources of an organiza-
tion’s information requirements where the business expert has not only an appropriate representation of
the organization in terms of processes, information flows and user roles, but also a simulation capability
for the interpretation of the dynamic behavior. We present an environment to support the development
of such a model. It uses a MDA approach to acquire the simulation model from conceptual model. The
simulation model can run both distributed and local environment.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Business process (re)engineering, benchmarking, supply chain
management, and several other techniques and activities, use the
enterprise model (EM) to get a general view of the organization
which will enable the evaluation of processes from different per-
spectives depending on the organization’s objectives. Enterprise
models represent the organization knowledge in terms of its pro-
cesses, its material and information flows, the available and re-
quired resources, functional areas interactions, available
information technology and time constraints. EM can be employed
to describe the organization ‘‘as-is’’, to evaluate its processes, to
define a new or desired organization as well as to conceptualize
workflows and to specify the information requirements of the
organization [3]. An EM is usually composed of entity relationship
diagrams, state diagrams and activity diagrams.

The simulation of the processes of an EM is very valuable since
provides a powerful tool to analyze how the system will perform in
its ‘‘as-is’’ configuration and under a myriad of possible ‘‘to-be’’
alternatives. Usually, an organization develops its EM with other
purposes than simulation. Therefore, it is necessary to construct
a simulation enterprise model (SM). The SM includes knowledge
of the EM but also it needs more data and information.

Also, in the context of the new agile and dynamic structure
organizations like virtual enterprises [2,7,8,9,18,49], network
enterprise [28,30] and extended enterprises [10,5,8], the complex-
ity of the business processes implies to share information among
departments, areas, nodes and branches of an organization, some
time they are distributed geographically having different cultures
and speaking different languages. As consequence, SM develop-
ment is a difficult, expensive and time consuming task. SM is usu-
ally relegated to evaluate some aspect of an organization, as for
example logistic performance, bullwhip effect, production process
and some workflows.

Organizations need tools that help them to construct SM from
their EM. The Model Driven Arquitecture (MDA) [38,33] presents
a very promising approach to reduce the difficulties and cost of
SM construction. Currently the use of MDA to translate from a plat-
form independent model (PIM) to a platform specific model (PSM)
is widely used in different areas, such as to align IT infrastructure
of an enterprise with its business needs and requirements [27];
also to solve Web services composition [31] and to validate models
as workflows [51], among others.

In this work, we present an environment to develop EM with a
business-oriented language and a MDA approach to construct SM
from EM. In the building of SM we have used DEVS formalism
[52], because it enables the modular assembly and helps to reuse
components. The MDA approach proposed focuses on the predom-
inant challenges encountered in simulation business process
development:
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(i) an enterprise model that has been designed with business
requirements and goals in mind is not necessarily a simula-
tion model, with events, time and metrics,

(ii) a simulation model derived from an enterprise model may
not be so easily reused and integrated in a distributed simu-
lation environment,

(iii) a simulation model derived from an enterprise model must
be semantically equivalent

This work is organized as follows. Section 2 presents an
overview of the related work in the enterprise simulation domain.
Section 3 introduces the main concepts, like DEVS and HLA, used in
simulation model construction and execution. Section 4 presents
the architecture of the environment. The language used in develop-
ment of EM is presented in Section 5. Section 6 describes the
construction of SM. Section 7 illustrates the way in which to exe-
cute the SM. Section 8 shows an example and finally in Section 9
conclusions are drawn.

2. Literature review

In some approaches, it is proposed to define processes using a
business-oriented language as SIMPROCES [39], or an English-like
language as SIMSCRIPT [37]; but the model that is defined is a
SM. In this case, the user must realize that s/he should represent
actions such as ‘‘count number of orders released’’ when in daily ac-
tions, this task is not done, that is, it is not really a task. Then we
can say that the business process knowledge is mixed with simu-
lation knowledge. This simple fact can complicate the development
of the SM.

In literature, supply chain modeling and simulation are consid-
ered independently [12,26,36] without taking into account that a
supply chain is defined as a virtual enterprise and, according to
that, it can be modeled using enterprise modeling techniques. That
is to say, there is no connection between supply chain analysis and
enterprise model and simulation. As regards supply chain simula-
tion, we have observed that there are two mainly approaches to
construct the model and execute it: global central model and
distributed model. The global central model uses a single global
model running in a single machine [12,27,6,4,13,36,46]. This model
reproduces the nodes of the supply chain, and relations among
them. The distributed model employs several modular models run-
ning in a distributed environment [25,50,48]. The first approaches
have not interoperability problems, but they cannot reuse the
existing local models of the supply chain nodes. The second ap-
proaches are better for supply chain simulation; however there
are few contributions describing supply chain simulation in dis-
tributed environments [42]. Perhaps, one of the main reasons is
the difficulties in providing interoperability among modular simu-
lation models, especially when they are developed using CSP (COTS
simulation package).

In recent years, the Simulation Interoperability Standards
Organization’s (SISO) and the CSP Interoperability Product Devel-
opment Group (CSPI PDG) have been working in the development
and standardization of a set of Interoperability Reference Models
(IRM) [40,41]. This IRM provides a frame of reference that allows
for interoperability capacity among CSP. This fact will help in the
incremental use of distributed simulation in the area of supply
chain.

DESSCOM [4] presents an architecture of the decision making
tool for supply chains based on sound modeling and problem solv-
ing approaches. XML-nets (Mevius and Pivernik; 2004) presents an
approach to SCPM (supply chain process management) based on a
type of high-level Petri-nets, which can manipulate XML docu-
ment representing the objects (customer order, bills of material,

materials, finished goods, etc.). The XML-net can be executed
and analyzed by a workflow engine. Vieira and Guilherme [45]
proposes an environment that uses ARENA [1] to develop and sim-
ulate a supply chain model. This work has a specific objective: to
analyze the bullwhip effect and the benefits of collaborative plan-
ning, forecasting and replenishment. ONE [17] is a tool to support
decision makers for the assessment, design and improvement of a
supply chain. The supply chain is represented using arcs and
nodes, where each node represents a member and the arcs repre-
sent connections between them. This tool has an optimization
module offering a set of optimization methods such as mathemat-
ical programming and genetic algorithm. This module allows user
to obtain new optimized networks depending on the goals set.
EASY-SC [26]) is a tool that represents the supply chain as a graph
with nodes and arcs. The environment is developed using Java
language.

These tools, offer model and simulation process capability,
using a graphic representation based on some formalism like petri
net [34], DEVS models [52], or in ad hoc representation [26,17].
These models are then, interpreted by a machine obtaining data
used in the analysis process. But this representation oriented to a
specific simulation objective and with a simulation language is
not reconciled with the enterprise expert knowledge. Heretofore,
tools and methods proposed fail in the integration of the enterprise
knowledge and present the simulation model oriented to analyze
some characteristic. In any case, the tools propose to reuse modes
that represent some aspect of the enterprise.

3. Preliminary concepts

3.1. DEVS formalism

DEVS is a simulation formalism that uses discrete event models
and offers an open approach based on general concepts about sys-
tem dynamics. It makes possible model decomposition with a hier-
archical and modular approach.

In this work we have used parallel DEVS [11]. In agreement
with the literature on DEVS, the specification of an atomic discrete
event model is defined as structure:

DEVS ¼ hX;Y; S; dint; dext; dcon; k; tai

where

X = {(p,v)jp 2 InPort ^ v 2 Xp} is the set of input ports and
values.
Y = {(p,v)jp 2 OutPort ^ v 2 Yp} is the set of output ports and
values.
S is the set of states.
dint: S ? S is the internal transition function, it defines the state
changes caused by internal events.
dext: Q � Xb ? S: is the external transition function, it deter-
mines the state changes produced by external events.
dcon: S � Xb ? S: is the confluent transition function.
k: S ? Yb: is the output function, it specifies the output values
caused by the internal transitions.
ta: S ? R0 + [1: is the time advance function. Special cases 0
and 1 identify transitory states or passive states. In the first
case, the stay in state s is so short that no external events can
intervene. In the second case, the system will stay in such a
state forever unless an external event interrupts its slumber.
Q = {(s,e)js 2 S, 0 6 e 6 ta(s)} is the set of total state and e is the
elapsed time since the last transition.
Xb denotes the collection of bags over X (sets that some
elements may occur more than once).
Yb denotes the collection of bags over Y.
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The specification of a DEVS coupled model is defined as
structure:

COUPLE ¼ X;Y;D; fMiji 2 Dg;EIC; EOC; ICf g

where

X = {(p,v)jp 2 InPort ^ v 2 Xp} is the set of input ports and
values.
Y={(p,v)jp 2 OutPort ^ v 2 Yp} is the set of output ports and
values.
D is the set of the components’ names.

{Miji 2 D} is the set of the component. Components are DEVS
models for each i 2 D:

Mi ¼ XM ;YM ; SM; dint M ; dext M; dcon M; kM ; taMf g

EIC # {((M, ipN)(d, ipd))} ipN 2 InPort ^ d 2 D ^ ipd 2 InPortd

EOC # {((d,opd)(M,opM))} opM 2 outPort ^ d 2 D ^ opd 2
OutPortd

IC # {((a,opa)(b, ipb))} a, b 2 D ^ opa 2 outPorta ^ ipb 2 InPortb

^ a – b

3.1.1. DEVS simulation cycle
DEVS proposes separate models of their simulators, thus, each

atomic model has a simulator associated and each coupled model
has a coordinator associated. A special coordinator called root
coordinator, directs the simulation. The DEVS simulation mecha-
nism consists of four stages: (i) advance the function time until
the time of the next event, (ii) calculate the inputs and outputs,
(iii) send message and (iv) execute the internal and external tran-
sition functions. Fig. 1 shows the DEVS simulation cycle imple-
mented in the root coordinator.

As we can see in the cycle, the coordinator asks its components
to compute the time of the next event (TN). Then, the smallest of
them is called TN*. The simulation time will be advanced to TN*.
We represent this as follow:

TN� ¼minftndjd 2 Dg

where
D is the set of components and tnd is the next event time of the

d component.
With this value, the coordinator groups in set I all the compo-

nents whose next event time is equal to TN⁄, known as imminent
components:

I ¼ djtnd ¼ TN�f g

Next, it asks to calculate inputs and outputs. That is, the immi-
nent components execute their output function generating mes-
sages that will be the inputs to other components.

8 d 2 I sendðcomputeInputOutput;dÞ

When the coordinator receives these outputs, using coupling
information, it sends the messages to the corresponding input
ports. Here the coordinator makes a set M of all the components
that have a set of inputs different from empty.

M ¼ dj9p 2 Inportd messageOnPortðpÞ – /f g

In the following step, the coordinator sends the messages to the
components, which will receive them in their input ports. Finally, it
arranges the components to execute their transition functions in
the following way: all the components that are in the intersection
of sets I and M execute the confluence transition function, all the
remaining components of I execute the internal transition function
and the remaining components of M execute the external transi-
tion function:

8 d 2 I \M; sendðdcon;dÞ
8 d 2 M � ðI \MÞ; sendðdext;dÞ
8 d 2 I � ðI \MÞ; sendðdint; dÞ

This cycle is repeated until there are no imminent components
or a given number of iterations have been fulfilled.

3.2. HLA (High Level Architecture) specification

The High Level Architecture (HLA) is a simulation framework
developed by the Defense Modeling and Simulation Office (DMSO)
[15] whose more important objectives are reusability and interop-
erability in complex simulation systems. This framework was stan-
dardized by the IEEE, giving rise to the standard 1516-2010 [22].
HLA provides a general framework within which simulation devel-
opers can structure and describe their simulation applications.
When a simulation is implemented as part of an HLA-compliant
simulation, it is referred to as a federate. HLA simulations are made
up of a number of HLA federates and are called federations. The
HLA definitions involve three main elements: rules, interface spec-
ification [23] and object model template (OMT) [24]. The rules are
a set of ten items that describe the relationship and responsibility
among a federation’s components. The interface specification de-
fines the functional interface between HLA federates and the run
time infrastructure (RTI). Finally the OMT describe a common for-
mat for representing the object model in HLA. Simulations, which
use the HLA, are modular in nature allowing federates to join
and resign from the federation as the simulation executes. Each
federate has a Simulation Object Model (SOM) that describes the
data that the federate can produce or consume.

Each federation has a Federation Object Model (FOM) that de-
scribes the common parts of the participating federates’ SOM to
be used in the federation.

The RTI is software that is used in the federation execution. It is
an implementation of the interface specification and consists of a
set of services. The RTI has services to start and end simulation
execution, transfer data between federates, coordinate the simula-
tion time, etc. This software is out of the specification and specific
software suppliers provide it.

4. DE2M environment architecture

In our proposal, we have decided to choose a two-layer archi-
tecture (Fig. 2), in order to hide the simulation process.

The first layer – conceptual model layer – is the one the user
works with. The functions that are offering are related to develop

Compute TN

Compute inputs / outputs 

Send messages 

Execute delta functions 

DEVS cycle 

Fig. 1. DEVS cycle.
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the conceptual EM using a business-oriented language, in this
particular case Coordinates language. Then, the user can develop
the model in an easy and friendly way using a known vocabulary
(like task, resources, processes, states) and a graphical interface.
As result, the obtained EM is called conceptual model (CM),
because it represents the conceptualization of the organization.
This model does not have simulation information.

The simulation layer provides functionality to acquire SM,
execute it either locally or in a distributed environment; and
compute metrics. This layer implements the MSVC design pattern
proposed by Nutaro and Hammonds [32], which is oriented to de-
velop component-base simulation. It proposes a clear separation
between models, simulation and distributed computing. The
component-base simulation paradigm [43] emphasizes the devel-
opment of simulation model in term of components that interacts
each other. A component can be reused and/or substituted in the
simulation model and interpreted both isolated and in cooperation
with others components. A component, also know as building-
block, is defined by BETADE-research group [44] as self-defined unit,
interoperable, reusable and replaceable that encapsulate its internal
structure given services and useful functionality to its environment
through its interface defined previously.

5. Conceptual enterprise model

DE2M environment gives support to the business process mod-
eling and simulation. It is the starting point for analyzing, evaluat-
ing, describing, improving, reorganizing and managing an
organization.

We have adopted the Coordinates language, which has met the
requirements of a language for enterprise modeling [29,17]. This
language proposes the EM development from three views: (i) Task
view, representing the functional view of an organization (ii)
Dynamic view, representing the resource life cycle as a conse-
quence to participate in task execution, and (iii) Domain view,
representing the resources relationship such as composition, asso-
ciation and inheritance [20]. As they are related to one another,
they make possible to obtain a general view of the enterprise.
Fig. 3 shows the perspectives that compound the conceptual EM.

The Task view is represented by task model. It describes an
organization as a set of Tasks, which make use of different
Resources in order to achieve their goals. Different semantic links
(Task-Resource Link) relate Tasks with Resources: uses, modifies,
processes, creates and eliminates are some of the primitives. That
is to say, a Task modifies a Resource when the Resource changes

its state because of the Task execution. The uses relationship means
the Resource is seen as a tool during the Task execution. The creates
and eliminates relationships indicate a Resource is generated/elim-
inated in the domain as the result of the Task execution. A task pro-
cesses a resource when the resource waits in a queue. Any other
relationship can be expressed through the combination or special-
ization of the previous links. The Coordinates language supports
Task description at multiple levels of detail and it is composed
by Tasks. A Process must only be the root in a decomposition hier-
archy. A Composite Task, by contrast, may occupy any position in a
decomposition hierarchy. Both the Process and the Composite task
are described through one or more Task Version, each one encapsu-
lating a particular way of accomplishing the task. Task Version, may
differ, for instance, in the specific combination of Resources they
use, the subtasks they are decomposed into, the conditions under
which they may be carried out, the view they adopt of the organi-
zation, etc. A Task Version is described in terms of a particular set of
Tasks, Resources, Temporal Links and Task-Resource Links. One or
more preconditions, each one identifying a particular Resource
state, constrain the structure that a Task may assume. Fig. 4 shows
the class diagram implementing Task model in the Conceptual
model layer of the architecture. This model focuses on Task Version
concept.

Domain view is depicted by Resource model. This model focuses
on the structural characteristics of the resources. Specialization,
Composition and Association relationships are the basic links used
to represent the structure of Resources. Fig. 5 shows the class dia-
gram use to implement this view. The class Resource identifies
the concept resource. The class RelResource represents the relation
among resources. It has three subclasses: Association, Inheritance
and Composition.

The Dynamic view is depicted by a Resource life cycle model.
This model is a Resource centered view as it emphasizes the way
a particular Resource evolves because of participating in different
Tasks. This view is based on the statechart formalism proposed
by Harel [21]. The evolution of a resource is represented in terms
of states and transitions. A transition abstracts a change of state
and is produced because of the starting or ending of a Task. Fig. 6
shows the class diagram to implement this view. Note that the
StateTransition class has two relationships with task: startTrigger
and endTrigger. They indicate that the transition takes effect when
task begins or finishes its execution respectively. These relations
are the nexus between dynamic view and task view. That is, on
the one hand task execution makes resources change states and
on the other hand the resource state is precondition of tasks
execution.

6. Simulation model construction

This section explained the transformation process from CM to
SM. It is based on the schema shows in Fig. 7. So, a source model
(CM) writing in Coordinates language is automatically translated
by transformation tool in an output model (SM) writing in
DEVSJAVA language [16]. The implementation of the transforma-
tion tool has been based on transformation definition writing in
OCL language [47], this definition consist on 7 rules that are
described in Appendix A.

The CM comprises of three models related to each others
depicting the different EM views. Although the translation begins
when a task version from Task view is selected, translation tool
takes into account the three views. Then, the SM acquired repre-
sents the organization as a whole and not simply the functional
view. Although the translation process is complex, it has the
advantage to represent the behavior of the organization in all its
aspect, having better data analysis on which to take decisions.

Fig. 2. DE2M architecture.
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To achieve the automatic transformation of CM in SM was nec-
essary to taking into account several aspects. On the one hand,
we have defined and implemented the components of SM neces-
sary to represent the concepts found in CM and the rules that
govern the transformation. On the other hand, we have to solve
how to run SM in a way that is as transparent as possible. For this

reason, assumptions have been made and set in the Experimental-
Frame component as for example the metrics defined in Resume
model, which could be obtain as result of simulation run; the
ending of simulation setting in Acceptor component, and
resources that feed the simulation model defining in Generator
component.

Fig. 3. Conceptual enterprise model.

AtomicTask
(from Abstraction)

TemporalLinkImp
(from Implementation)

TaskType
(from Abstraction)

TaskResLinkImp
(from Implementation)

TaskResLink
(from Abstraction)

+uses

Task
(from Abstraction)

Process
(from Abstraction)

CompositeTask
(from Abstraction)

Resource
(from Abstraction)

TaskImp
(from Implementation)

+uses

ResourceImp
(from Implementation)

+uses

TaskVersion
(from Abstraction)

default+component

+content

+content

Fig. 4. Task model class diagram.
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6.1. Simulation model components

Components are DEVS model. Each one has a well-defined inter-
face through its input and output ports and the values in such ports.
These blocks define the vocabulary needed to construct SM. They are:

AtomicTaskDevs, ResourceDevs, TaskVersionDevs, SimulationModel
and ExperimentalFrame which are described below. As these compo-
nents have been defining with a special purpose, it has determined a
special message structure that is interchanged among them, which is
explained at the end of this section.

Fig. 5. Domain view class diagram.

Fig. 6. Dynamic view class diagram.
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6.1.1. AtomicTaskDevs
An AtomicTaskDevs is an atomic DEVS model that encapsulates

the behavior of a task in the CM. Fig. 8 is a representation of an
AtomicTaskDevs model.

An atomic Task T belonging CM could be part of two diagrams:
Task version diagram and resource state transition diagram (STD).

The dynamic interpretation of T must realize when T can exe-
cute and what are the T execution effects. T can execute if both
the resources are available and the time correspond to the execu-
tion of T according with the arrangement. In business process the
order in which tasks are executed is important and must be taking
into account. Then, when the task executes, it causes: (i) changes in
resources states and (ii) execution of following tasks. In DEVS mod-
el the way to represent this behavior is through inputs and outputs
ports and events in that ports. The er port and the values in that
port ready, no-ready are interpreted as the resources that are ready
or not to participates in task execution. The ed port and the values
in that port process, means that a job arrives and will be put in
queue. The eta/ets ports and the values in that ports end, start,
ready, no-read,y when they are received are interpreted as synchro-
nization message of previous tasks. The stop port and the value in
that port stop is interpreted as simulation finalization message.
Once the task is executed, it generates output events that will
cause changes in models that receive such events. The output
events start/end means the task start/end execution. The output
events ready, no-ready are sent by task when it needs to synchro-
nize. The output event process sends a job. Finally events tSusp
and longCola stand for time in suspended state and average queue
length, respectively.

The states transition diagram in Fig. 9a shows partially the
dynamic of AtomicTaskDevs model due to message in input ports.

In state init the task is ready to execute, immediately the task
enters in the state executing where it remained until the execTime
has elapsed. Before the transition from init to executing state take
effect, the task sends out the start and tSusp events.

Then, when the task finishes, which is task’s execution time has
elapsed, the task enters in the state suspended, before this transi-
tion, the task send out the end and longCola events. The internal
transition that occurred from the state informing to waiting has
the purpose to send the ready output event in order to synchronize
the beginning of a set of tasks.

As regard external transition function, there is a transition from
suspended to init state when there are: (i) events ready in er input
port, and (ii) end events in sta input port. In some cases, the task
needs to synchronize with other tasks to begin to execute, in this
case, when the above conditions are met, there is a transition from
suspended to informing state. The task will be in waiting state until
receiving ready synchronization messages. When this happened,
the task goes from waiting to init state. It is possible that, while
the task is waiting for synchronization, the resources became
unavailable sending no-ready event; in this case, the transition
from waiting to withoutRes state is performed. Finally, the transi-
tion from suspWithoutRes to informing is performed when task re-
ceive the events ready in er port, meaning resources become
available again for the task.

Diagram in Fig. 9b shows messages in stop and ed ports because
they have special usage: when the stop event is present in stop
port, the task will be in the suspended state whatever state it is
(show in the figure as xx state). When an event is presented in ed
port, it is placed in the queue and the task remains in the same
state.

6.1.2. ResourceDevs
A ResourceDevs is an atomic DEVS model that represents the

behavior of a resource from the conceptual model. Fig. 10 shows
a graphical representation of a ResourceDevs. Then, for each re-
source R in CM, there is a ResourceDevs in SM typifying R. This
model has input and output port well defined but the internal
and external transition function is not determined until the trans-
lation process is executed. When a ResourceDevs is generated, the
states and transition from STD belonging CM are copied and
adapted in order to represent the behavior of the ResourceDevs.
In this way, the behavior of this model and the way in which
the process generates the resources model will be explain in
Section 6.2.

6.1.3. TaskVersionDevs
TaskVersionDevs represents a particular decomposition of a task

with respect to other simpler tasks. It is a coupled DEVS model
where its components are AtomicTaskDevs and TaskVersionDevs

Fig. 7. Transformation schema.
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Fig. 8. AtomicTaskDevs component.
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models, linking by coupled relationship. This model typifies a task
version associated to a composite task in CM. The model TaskVer-
sionDevs has the same X and Y set as AtomicTaskDevs, it is to say,
both are consider having the same interface.

The couplings among component models vary according with
the temporal relationship in CM and they are explained in the
translation process.

6.1.4. SimulationModel
SimulationModel represents the business process behavior to be

simulated. It is a DEVS coupled model. It is possible to connect to
this model an experimental frame in order to execute the simula-
tion in a given scenario. Fig. 11 depicts the SimulationModel DEVS
model.

The input events are those that feed the simulation model. The
event process has a resource as an argument that represents the re-
sources generated outside the enterprise process simulated. These
types of resources are for example customer order, raw material,
among others. In CM this type of resources can be distinguished

through the processes relationship with tasks. As regards stop
event, it sets the end of simulation.

The outputs events from tr port are those generated by simula-
tion process. These events represent statistical value that will be
interpreted by ExperimentalFrame. As we can note, these values
are outputs event of AtomicTaskDevs, TaskVersionDevs and
ResourceDevs building blocks explain previously. The process
events in out port will be taking into account only if the simulation
model is part of a federate. That is, these events are those gener-
ated by the internal business process that will be the input events
to external processes.

6.1.5. ExperimentalFrame
ExperimentalFrame model represents the experiment with

which to prove the simulation model. The experimental frame is
defined by Zeigler in [52], it can adopt different forms according
with the designer goals. In this architecture, the ExperimentalFrame
model has been defined with three components: Acceptor,
Generator and Resume models. Fig. 12 shows the structure of
ExperimentalFrame model. Their components are described follow.
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6.1.6. Resume
Resume is an atomic DEVS model, which is in charge to collect

the statistical values, such as the time in which a resource has
waiting in a queue (waiting event), time in which a task has been
suspended (tSusp event), among others. This model has only exter-
nal transition function. We can summarize the behavior of Resume
model with the state transition diagram on Fig. 13.

Resume model is in state recording for an infinite time, when re-
ceives an event waiting, tSusp, longCola or notEnough in in port, then
record the event and remands in state recording waiting the new
event. When receive the event stop, go to the state final. This model
has not output and generates the following metrics from recorded
values during simulation run:

TIi is the average of task i inactivity time (Eq. (6.1)) and LCi is the
average of queue length (Eq. (6.2)).

TIi ¼
Pn

j¼0tSuspi;j

TotalSimulationTime
ð6:1Þ

LCi ¼
Pn

i¼0longColai

n
ð6:2Þ

TIP is the process inactivity time (Eq. (6.3)):

TIP ¼
Xn

i¼1

TIi ð6:3Þ

For each resource i:
TCi is the average of the time in queue (Eq. (6.4)) and TFi is the

average time in which the resource i was not enough for a given
task (Eq. (6.5)).

TCi ¼
Pn

i¼0waitingi

totalSimulationTime
ð6:4Þ

TFi ¼
Pn

i¼0notEnoughi

totalSimulationTime
ð6:5Þ

6.1.7. Generator
Generator is an atomic DEVS model, which is in charge to gener-

ate events that feed simulation model. These events represent re-
sources generated externally to the process that is simulated. For
instance, customer orders, production plan and payment can be con-
sidered as events that make processes react. These resources are
identifying in the CM as the resources that are processes by tasks,
but there is not task that generate those. Generator makes events

process
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Fig. 11. SimulationModel component.
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until receives the event stop in its in input port. We can summarize
its behavior with the state transition diagram shown in Fig. 14.

There is an internal transition from the state generating to the
same state, which makes the output event process appear in out
output port. This transition takes effect when the elapsed time is
equal to random (t), this value is a random number that determine
the time in which the events are generated.

The external transition function represents the presence of the
event stop in in input port. When this happened, the model goes
to the final state.

6.1.8. Acceptor
Acceptor is an atomic DEVS model in charge to determine the

end of the simulation run. It has one output port but not input port.
Initially it is in the state suspended, remaining in this state during

the simulation time. When this time elapses, it goes to the final
state generating the event stop on the out output port.

Fig. 15 shows the state transition diagram that represents the
behavior of this model.

As we can see in Fig. 15 it has only one internal transition and
one output. It has not external transition.

These components have been implementing as it shown in the
class diagram of Fig. 16. As we can note in the previous diagram,
the building blocks have been implementing as subclasses of clas-
ses belonging DEVSJAVA framework (filled boxes).

6.1.9. Events
In this approach, the events interchanged among components

are implemented in the class MessageCont. It has two components:
event that represents the event interchanged as for example pro-
cess, end, start among others; and list that is a set of components
representing the event argument. For instance, the process event
has a ResourceDevs instance as argument; the ready event from
ResourceDevs component has a list of AtomicTaskDevs instances,
which represents the tasks for which the resource is ready. All
events from AtomicTaskDevs have itself references, meaning which
is the task that sends the event.

6.2. Transformation process

Rules that govern transformation process (see Appendix A)
determine in which way a CM element is translated in a compo-
nent of SM but they do not specify the order in which they must
execute. In MDA approach implemented in this environment, there
is an internal scheduling defining the order in which individual
rules are applied [14]. Because CM has a hierarchical organization,
transformation process is executed in top-down way from the
highest level CM component to the inner most one. Fig. 17a shows
the sequences of rules performed by translator. Rule 1 and 2 are in
charge to generate the framework of simulation model (topModel
and its components: SM and ef) and the other rules are in charge
to generate its components iterating on CM components,

generating final

random(t)/(out,process)

(in,stop)

generating finalgenerating final

Fig. 14. Generator state transition diagram.

suspended final

simulationTime/y(out,stop)

Fig. 15. Acceptor state transition diagram.
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preserving the hierarchy. The activity Translate components is a
complex activity, that iterates on task version components. It is
spread out in Fig. 17b and involve calls to rules 3 and 5. Task Ver-
sion components are both tasks and resources, but this activity
only considers task to translate. If the task is an atomic task the
translation is simple, but if the task is a composite task, the Trans-
late components activity is recursively called with its components
as shown in Fig. 17b. The activity make ResourceDevs is a loop that
iterates on resources instances, which are found in different depth
levels, in CM. Once the models were generated, coupling among
them are carried out. Rules 6 and 7 define coupling due to task-re-
source relationship and temporal relationship.

Fig. 18 shows the implementation of the translation process in
translator tool to construct SM from a task version in CM. The
process begin when Translator receive translate (selectedProcess)
message, whose argument is a TaskVersion from task view.
Sequence diagram shows the way in which models are generated

and compounds each other. Tasks can use the same instance of re-
sources and they can compete for these. Then, in the construction
of SM, on the one hand it has represented the decomposition of
tasks in subtasks (soloTareas instance) and on the other hand it
has represented the different instances of resources that partici-
pate in the selected process (generateResDevs() method).

This description is not fully detailed, but represents the
steps necessary to get higher level model and correspond to the
implementation of rule 1 and 2. Fig. 19 shows the schema of
the topModel digraph generated with this sequence. We can see
the two models components SM and ef and how they are coupling.

Every time that the transformation process takes effect, the
structure of topModel and ef will be the same, but not so with
the SM model, its structure depends on the CM structure. One
of the SM components is soloTareas, which is an instance of
TaskVersionDevs class and represents the higher level task
decomposition.

TranslateTaskVersion
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rule 1
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rule 2

make 
topModel make ef

make topModel 
coupling

make SM
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Fig. 17. Translation process sequence.
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Fig. 20 shows the sequence diagram to translate the task hierar-
chy, and corresponds to the implementation of rule 3 (for atomic
task) and 5 (for composite task).

A task that it is translated can have associated both, an
AtomicTask, in which case it is instantiated AtomicTaskDevs, or a
CompositeTask, in which case it is instantiated TaskVersionDevs. In
the latter case, its components will be translated calling this
method recursively.

Let’s consider the task version shows in Fig. 21a, which repre-
sents the decomposition of a task called ‘‘making yerba sapecada’’.
The transformation process generates an instance of TaskVersion-
Devs coupled model that represent the higher level task ‘‘making
yerba sapecada’’, refer this DEVS model as V. Then, for each task that
participate in task decomposition, it is generated the correspond-
ing DEVS model. In this example the three tasks, which are part
of the decomposition, are atomic tasks. Then each one has an
instance of AtomicTaskDevs associated, which are part of V as we
can see in Fig. 21b. Couplings within TaskVersionDevs model is

complex enough because it realize the arrangement of task in
CM through temporal relationship.

Rule 6 describes the TaskVersionDevs IC base on temporal rela-
tionship. Then, whichever two task associated with an asynchro-
nous temporal relationship (before, during) it will be generated
the coupling between origin task sta port and destination task
eta port. In Fig. 21a we can note that there is a temporal relation-
ship before (in the graph appeared as ‘‘antes que’’) between ‘‘dry
yerba mate’’ and ‘‘burn yerba’’ tasks, this relation makes the cou-
pling between sta port of ‘‘dry yerba mate’’ DEVS model and eta port
of ‘‘burn yerba’’ DEVS model as shown in Fig. 21b.

In the same way, whichever two tasks associated with a
synchronous temporal relationship (meet, equals, begin), it will be
generated the coupling between origin task sts port and destina-
tion task ets port.

The coupling between ed port and sd port is defined in rule 7
and is associated with the occurrence of processes relationship
between a task and a resource.
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Fig. 18. Translate sequence diagram.
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As regard EIC, it is necessary determine which component mod-
el is the first to execute. A model t, which is a component of a cou-
pled model, is the first to execute if there is not a pair in internal
coupling with value equal to (t,eta). Let’s {Mi}V be the V models
components, then the set firstTask # {Mi}V is defined as follow:

firstTask ¼ t=t 2 fMigV ;8tj 2 fMigV ; ððtj; staÞ; ðt; etaÞÞ R ICV
� �

ð6:6Þ

Since the temporal relationship between tasks in the conceptual
model, determine couplings between DEVS models, the set first-
Task depict those DEVS models that typify a task t that have not
predecessor in the conceptual model, that is, there are not tasks
with temporal link before with task t.

With this definition, it is possible determine same pair in the
EIC of the V coupled model as follow:

8t 2 firstTask; ððV ; etsÞ; ðt; etsÞÞ; ððV ; etaÞ; ðt; etaÞÞf g# EICV ð6:7Þ

With the expression (6.7) the EICV is not completely defined.
The stop input port of model V is connected with the stop input port
of each component t, then:

8t 2 fMigV ; ððV ; stopÞ; ðt; stopÞÞ 2 EICV ð6:8Þ

We can note in Fig. 21a that the first task is Dry yerba mate task,
in Fig. 21b this is reflected in coupling ((V, ets); (dry yerba mate,
ets))and ((V, eta); (dry yerba mate, eta)). As well in Fig. 21b the stop
port of V is connected with stop port of all its components.
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Fig. 19. Structure of obtained simulation model.
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In order to define EOCV coupling, it is necessary determine
which model is the latest to execute. A model t 2 {Mi} is the latest
to execute if there is not a pair in internal coupling with value
equal to (t, stat). We can define the set finalTask of models that
meet this condition with the expression 6.9:

finalTask ¼ t=t 2 fMigV ^ 8tj 2 fMigV ; ððt; staÞ; ðtj; etaÞÞ R ICV
� �

ð6:9Þ

As for the firstTask, we can reason in the same way thinking that
the model t typifies a task T in conceptual model, is the latest mod-
el to execute in a version V if t is not the origin of a temporal rela-
tionship before with other task.

Then, the expression 6.10 defines the pairs that are included in
EOCV:

8t 2 finalTask; ððt; stsÞ; ðV ; stsÞÞ; ððt; staÞ; ðV ; staÞÞf g# EOCV

ð6:10Þ

Other pairs that are part of EOCV are couplings between ports tr.
The expression (6.11) defines these couplings.

8t 2 fMigV ; ððt; trÞ; ðV ; trÞÞ 2 EOCV ð6:11Þ

Note that in the transformation of the version in Fig. 21, the re-
sources are not taking into account. The TaskVersionDevs generated
has only TaskDevs model as components, either atomicTaskDevs or
TaskVersionDevs. The resources translation will generate instances
of ResourceDevs, which are part of SM components.

In the translation of a resource (described by rule 4), it is taking
into account the STD associated of each resource. STD shows in
which way the tasks make a resource goes from one state to
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another. Coordinate language sets to represent the evolution of a
resource giving a task execution is necessary to represent three
states: initial state, representing the pre-condition; intermediate
state, representing the state in which the resource is during task
execution; and final state, representing the post-condition. Two
events makes resources go from one state to another: start trigger
and end trigger of the task. Fig. 22a shows an example of mechanic
rake STD.

Idle state is both a pre and a post-condition state and busy is an
intermediate state. This resource is use by two task: dry yerba mate
and store. To translate a resource, the sequence diagram of Fig. 23
shows the steps to follow.

First an instance of ResourceDevs is generated but this model
does not have transition functions defined. The ResDevsLifeCycle
instance describes the internal and external transition function
and is generated based on resource’s STD in CM. This sequence
makes the STD shows in Fig. 22a will be translated in the transi-
tion function of ResourceDevs model shown in Fig. 22b. As we can
note, the startTrigger and endTrigger events are translated as start

and end event in ResourceDevs input port, the arguments shown
as the event end and start refer to the special usage in this ap-
proach of the messageCont class. A new state dummy and an inter-
nal transition are added in order to send the event ready meaning
the resource is ready for a given task. Note that the post-condi-
tion state of a task could be the pre-condition state for another
task.

Here, we have explained the coupling within topModel and ef
coupled models. Still have to explain coupling within SM and
soloTareas coupled models. Fig. 24 shows the structure of SM
and the IC, EOC and EIC. It shows only two resource models but
could be more than two. The internal coupling implements the
relationship between task and resources. The resources ps output
ports will be connected with soloTareas er input port. The soloTar-
es sr output port will be connected with resources pe input ports.
Through these couplings, the events generated by resources will
be propagated to soloTareas components. The SM in input port
is connected with soloTareas ed input port, thus the events from
the ef model are propagated within soloTareas model. As regards
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SM stop port, it is connected with all the components stop ports,
in this way, when the stop event is generated it is propagated
within SM.

7. Executing SM

Once the translation process finish and SM is acquired, it is pos-
sible to execute it both locally and distributed. In local environ-
ment, the coordinator is in charge of directing the simulation run.
And in distributed environment, the CoordinatorE2M does it.

Fig. 25 shows the SM structure and the engines associated in or-
der to execute in local environment. This represents a normal exe-
cution of a DEVS models.

In order to execute SM in distributed environment, we have de-
fined the model FederateE2M that represents the HLA-compliant
federate. It can run under HLA and interact with RTI.

The class diagram shown in Fig. 26 defines the class Federa-
teE2M. It is made up of a SimulationModel and implements the
IODevs interface. That it to say, this class is a DEVS model and a
federate too. Then, in a distributed environment FederateE2M, is
the highest-level DEVS model. This DEVS model can run under
HLA because it has a special coordinator associated. The coordina-
torE2M extends from coordinator (a class belong to DEVSJAVA
framework) and redefines the simulate method in order to incor-
porate modifications in the DEVS simulation cycle and makes root
coordinator been a conservative one. Since DEVS does not imple-
ment rollback, and since time management is centralized in root
coordinator, the way to communicate and to interact with the RTI
is using a conservative scheme [19]. Using this scheme, the RTI
and the federate can guarantee no send an event in the past.

Fig. 27 shows a collaboration diagram depicting the interaction
carry out among models, engines and controllers to time
management.
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The aRootCoordinator is an instance of CoordinatorE2M and it
is responsible for directing the simulation run in the distributed
environment. The FederateE2M is responsible for interacting with
other federates and it works with RTIAmbassador and Federate-
Ambassador [35] in order to achieve its objective. The Simulation-
Model is the enterprise behavior and has a coupledCoordinator
associated.

CoordinateE2M asks for next event time to the coupled coordi-
nator associated, this message is propagated in simulation engine
hierarchy. When the coordinatorE2M has the Tn value, before
advancing the simulation time, it asks for grant to the FederateE2M,
next FederateE2M invokes the services timeAdvanceRequest and
waits for grant. After a few seconds, RTIAmbassador sends the grant
invoking the call back function timeAdvanceGrant. Then, Federate-
Ambassador informs about grant to FederateE2M, which in turn,
returns the grant to the CoordinatorE2M. Finally, the root coordina-
tor follows the simulation cycle.

8. Case study

Let’s us consider a yerba mate factory. Yerba mate is a product
used in Argentina to prepare an herbal infusion known as ‘‘mate’’.
The factory sells about 8 millions kilos of this product annually in
the country and it wants to improve its production process with
the aim of having a better performance and, at the same time,
improving the sales mechanism. This factory participates in a sup-
ply chain with retailers and wholesalers.

To use the environment, the first step is to develop the CM of
the factory. Note that the environment has its user interface in
Spanish language. The diagram in Fig. 28 shows the yerba mate
production process with a set of tasks, resources and links. It is
important to note that in this example we have only described
the production process but in the conceptual model there are
others processes defined such as supply process, sales process
and logistic process.
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(from poRTIco)

IODevs

for (tN = nextTN(); && i <= num_iter; i++) {
computeImputOutput(tN);
wrapDeltFunc(tN);
if !(tN==newxTN())
// case loockahead = 0//
myGraph.RTI().nextEventRequest(tN)
while !grant wait();
tL=tN;
tN=nextTN();}

CoordinatorE2M

simulate()

SimulationModel

FederateE2M

change(interaccion : interaction)
change(mensaje : MessageInterface)
runFederate()

+myGraph

+myCoordinator

RTIAmbasador
(from poRTIco)

miRTI FederateAmbassadorE2M

RTI
(from poRTIco)

myRTI=new RTIAmbassador()
myRTI.enableTimeConstrained();
myRTI.enableTimeRegulation(loockahead);
...

Fig. 26. FederateE2M class diagram.

aRootCoordinator : 
CoordinatorE2M

aFederate : 
FederateE2M

myRTI : 
RTIAmbasador

myFederateAmbassador : 
FederateAmbasador

SimulationModel : 
digraph

CoupledCoordinator : 
coupledCoordinator

1:nextTn()

2:nextTn()

3:grant() 4:timeAdvanceRequest(tn)

5:tick()
6:timeAdvanceGrant(tn)

7:granted()

Fig. 27. Time management in distributed environment.
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Fig. 28. Yerba mate production process snapshot.

Fig. 29. Yerba Canchada STD.
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The production process has been defined as five tasks: truck
dropping, making yerba sapecada, making yerba canchada, storing
yerba and packaging. In this process, the tasks can be executed
in parallel, where the only restriction is the availability of re-
sources. Therefore, there are not temporal links between tasks.
Each task can be described in a more detailed way using a task
version where the task is broken down into subtasks, given a
low level view of the process. For instance, there are two ways
of accomplishing the storing yerba task: (i) to store yerba for
two years in warehouses labeled from 1 to 10, or (ii) to store yer-
ba for one year in warehouses labeled 11 to 20. Two task versions
are attached to the storing yerba task, each one depicting a differ-
ent way of performing it. In Fig. 28 this task appeared with the
first version call first quality because this version produces the

best quality of yerba. In diagram it is possible distinguish an
atomic task (rectangles with a single line) from a composite task
(rectangles with a double line).

A dynamic view of the conceptual enterprise model is depicted
by state transition diagram, one for each resource, which repre-
sents the behavior of it. This view shows another process perspec-
tive. A yerba canchada STD is shown in Fig. 29.

In Fig. 29, is possible to see the states of a resource and the tran-
sitions cause by tasks execution. For example when the making yer-
ba canchada task starts, the yerba canchada resource stays in the
inProduction state and when this task finishes, the resource goes
to the withoutStoring state (waiting to be stored). In this way, we
must define the STD for each resource participating in some task.

When the conceptual EM is obtained, it can run selecting the
bottom corresponded to simulation run in the tool bar. Then, the
snapshot in Fig. 30 appeared. It is necessary to set the simulation
time and the type of simulation (local or distributed). In Fig. 30,
the time is set to 6 month (for the harvest time) and it was selected
the option Local running. Once the parameter was defined, the sim-
ular (meaning simulate) bottom is selected, the translation process
take effect and the simulation begin execute.

When the simulation finishes, the results are shown like the one
in Fig. 31. In local environment the results correspond to the met-
rics identified in resume model. Fig. 31a shows a bar graph repre-
senting task execution time (gray bars) and task suspended time
(black bars). Fig. 31b shows a bar graph of resources. This graph
represents the time in which resources were insufficient for tasks
(black bars) and the time in which resources were sufficient for
tasks (gray bars).

Graphics show that the ‘‘making yerba canchada’’ task has a long
inactivity time, and the ‘‘yerba sapecada’’ resource has a long time
under the stock and it is an input to the ‘‘making yerba canchada’’
task. Then, the business analyst can analyze possible improve-
ments before making a decision. A proposal can be to replace the
furnaces used in the ‘‘making yerba sapecada’’ task, which are con-
trolled by employees, by furnaces mechanically controlled. Thus,
the loss of ‘‘yerba sapecada’’ will be smaller, from 15% presently
to 2% with the improvement. This change will cause the amount
of ‘‘yerba sapecada’’ to be greater and the ‘‘making Yerba Canchada’’

Fig. 30. Snapshot to set the simulation parameters.

Fig. 31. simulation result.
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task will have enough resources to process, so the time in the state
suspended will be smaller. Although we were not able to modify
the time needed to execute ‘‘make yerba sapecada’’ task, we were
able to improve the process by incorporating new resources, so
the task will be carried out more efficiently with the new resource.

9. Conclusions

This work presents an integrated environment that supports the
modeling and simulation of business processes. It gives services to
develop a conceptual model of an organization and to analyze its
behavior using simulation. In this way, it helps the business expert
to introduce his/her knowledge in an easy and friendly way and
then analyze the dynamic behavior in both local and distributed
environment.

The development of an EM is a complex task, not only for the
number of components but also for the multiplicity of actors in-
volved in this activity. Then, in this approach, we have proposed
the use of different views to represent the EM, representing each
one a different aspect or perspective of the company, without los-
ing the integrated vision of the EM.

We can mention the advantages to obtain the SM from EM
through the use of MDA approach, where both static and dynamic
aspects of the enterprise are represented:

� SM easy to acquire and execute;
� the results of analysis can be used in decision making, as it takes

into account all aspects of the Company;
� the execution of the SM represents interacting business pro-

cesses behavior;
� avoid the replication of information.

We have chosen the DEVS formalism in the development of
simulation layer because:

� it makes easier the modular construction of the SM,
� it facilitates the reuse of SM in different environments, since it

propose to differentiate model from the engine that interpret it.
In this way, it is possible to develop the SM once and run it with
different associated engine, giving as result the satisfactory per-
formance of the model both in local and distributed
environments.

The HLA compliant-federate generated with the environment
can interact with a variety of other simulators because HLA is
widely use in distributed simulation. The use of HLA standard
guarantees the interoperability with other simulators. This feder-
ate encapsulate the private data and information of an Organiza-
tion and exposes its behavior through its interface making easier
the behavior composition of it.

It is possible extend these concepts in order to model other
type of enterprise with different structures such as networked
enterprise, distributed enterprise, as well as, whichever com-
pany that can develop its model with different granularity
levels.
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Appendix A

Rule 1 TaskVersionToFramework
From the top most TaskVersion model is obtained a digraph f which has two components: ExperimentalFrame (ef) and Simulation-
Model (sm).

Transformation TaskVersionToFramework (Coordinates, DEVS)
Source: v1: Coordinates :: TaskVersion (A.1)
Target: f: DEVS :: digraph

sm: DEVS :: SimulationModel
ef: DEVS :: ExperimentalFrame (A.2)

Source condition
Target condition

sm.version = v1
(A.3)

f.components ? includes (ef, sm) (A.4)
f.inputports.name ? includes (‘‘fIn’’) (A.5)
f.outports.name ? includes (‘‘fOut’’) (A.6)
sm.inputports.name ? includes (‘‘in’’, ‘‘stop’’) (A.7)
sm.outputport.name ? includes (‘‘tr’’) (A.8)
ef.inputports.name ? includes (‘‘in’’) (A.9)
ef.outputports.name ? includes (‘‘out’’, ‘‘stop’’) (A.10)

- - IC between sm and ef - -
f.cp ? exists (tjt.desv1 = ef^t.port1.name = ‘‘out’’^

t.devs2 = sm^t.port2.name = ‘‘in’’) (A.11)
f.cp ? exists (tjt.desv1 = ef^t.port1.name = ‘‘stop’’^

t.devs2 = sm^t.port2.name = ‘‘stop’’) (A.12)
f.cp ? exists (tjt.desv1 = sm^t.port1.name = ‘‘tr’’^

t.devs2 = ef^t.port2.name = ‘‘in’’) (A.13)
- - EIC

f.cp ? exists (tjt.desv1 = f^t.port1.name = ‘‘fIn’’^t.devs2 = ef^t.port2.name = ‘‘in’’) (A.14)

(continued on next page)
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- - EOC
f.cp ? exists (tjt.desv1 = sm^t.port1.name = ‘‘out’’^

t.devs2 = f^t.port2.name = ‘‘fOut’’) (A.15)
Mapping

try TaskVersionToSimulationModel on
v1.components < � > f.sm (A.16)

Rule 2: TaskVersionToSimulationModel
The TaskVersion components are translated in simulation model components.

Transformation TaskVersionToSimulationModel (Coordinates, DEVS)
Source

v1: Coordinates :: TaskVersion (A.17)
Target

sm: DEVS :: SimulationModel
SoloTareas: DEVS :: TaskVersionDevs (A.18)

Source condition
Target condition SoloTareas.inputports.name? includes (‘‘er’’, ‘‘eta’’, ‘‘ets’’, ‘‘ed’’, ‘‘stop’’) (A.19)

SoloTareas.outputport.name? includes (‘‘sr’’, ‘‘sts’’, ‘‘sta’’, ‘‘sd’’, ‘‘tr’’) (A.20)
- - The sm components are: SoloTareas and ResourceDevs models:

sm.components? includes (SoloTareas) (A.21)
sm.components? includes (v.components ? select (OclIsT ypeof (ResourceImp)).devs) (A.22)

- - EIC between sm and SoloTareas:
sm.cp ? exists (tjt.desv1 = sm^t.port1.name = ‘‘in’’^t.devs2 = SoloTareas^ t.port2.name = ‘‘ed’’) (A.23)

sm.cp? exists (tjt.desv1 = sm^ t.port1.name = ‘‘stop’’^t.devs2 = SoloTareas^

t.port2.name = ‘‘stop’’) (A.24)
- - EOC between sm and SoloTareas:

sm.cp? exists (tjt.desv1 = SoloTareas^ t.port1.name = ‘‘tr’’^

t.devs2 = sm^t.port2.name = ‘‘tr’’) (A.25)
sm.cp? exists (tjt.desv1 = SoloTareas^ t.port1.name = ‘‘sd’’^

t.devs2 = sm^t.port2.name = ‘‘out’’) (A.26)
- - IC:

sm.cp? exists (cjc.desv1 = SoloTareas^ c.port1.name = ‘‘sr’’^c.devs2 = r^

c.port2.name = ‘‘pe’’^r.isOclType (ResourceDevs)) (A.27)
sm.cp? exists (cjc.desv1 = r^ c.port1.name = ‘‘ps’’^c.devs2 = SoloTareas^

c.port2.name = ‘‘er’’^r.isOclType (ResourceDevs)) (A.28)
Mapping

try TaskToTaskDevs on
v1.taskImp < � > SoloTareas.components (A.29)

try ResourceToResourceDevs on
v1.resourceImp < � > sm.resourceDevs (A.30)

try VersionToVersionDevs on
v1.taskImp.default < � > SoloTareas.components (A.31)

try TemporalLinkToCoupling on
v1.taskImp.temporalLink < � > SoloTareas.cp (A.32)

try TaskResLinkToCoupling on
v1.taskImp.taskResLinkImp < � > SoloTareas.cp (A.33)

Rule 3: TaskToTaskDevs
Each TaskImp whose default link is empty, is translated in a AtomicTaskDevs.

TransformationTaskToTaskDevs (Coordinate, DEVS)
Source

comp: Coordinates :: TaskImp (A.35)
Target

modelD: DEVS::AtomicTaskDevs
SoloTareas: DEV S :: TaskVersionDevs (A.36)

Source condition:
TaskImp.default.isEmpty () (A.37)

Target condition:
modelD.ta (executing) = comp.execTime (A.38)
SoloTareas.components ? includes (modelD) (A.39)
modelD.name = comp.name (A.40)
modelD.model = comp (A.41)
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modelD.inputports.name? includes (‘‘er’’, ‘‘eta’’, ‘‘ets’’, ‘‘ed’’, ‘‘stop’’) (A.42)
modelD.outputport.name? includes (‘‘sr’’, ‘‘sts’’, ‘‘sta’’, ‘‘sd’’, ‘‘tr’’) (A.43)
SoloTareas.inputports.name? includes (‘‘er’’, ‘‘eta’’, ‘‘ets’’, ‘‘ed’’, ‘‘stop’’) (A.44)
SoloTareas.outputport.name? includes (‘‘sr’’, ‘‘sts’’, ‘‘sta’’, ‘‘sd’’, ‘‘tr’’) (A.45)

Mapping

Rule 4: ResourceToResourceDevs
Each ResourceImp is translated in a ResourceDevs model.

Transformation ResourceToResourceDevs (Coordinate, DEVS)
Source

cvr: Coordinates :: ResLifeCycle
comp: Coordinates :: ResourceImp (A.46)

Target
modelD: DEV S :: ResourceDevs
sm: DEV S :: SimulationModel (A.47)

Source condition:
cvr = comp.class.theResLifeCycle (A.48)

Target condition:
sm.components ? includes (modelD) (A.49)
modelD.name = comp.name (A.50)
modelD.resource = comp (A.51)
modelD.inputports.name ? includes (‘‘pe’’, ‘‘stop’’) (A.52)
modelD.outputport.name ? includes (‘‘tr’’, ‘‘ps’’) (A.53)
modelD.state ? includes (cvr.theResState. type ? oclIsTypeOf (AtomicState).name) (A.54)
modelD.deltext (e, ‘‘start’’, s) = s’:

cvr.theResState.theStateTransition ? exists (tjt.origin = s^t.destination = s’^

t.startTrigger ? notempty ()) (A.55)
modeloD.deltext (e, ‘‘end’’, s’) = dummy:

cvr.theResState.theStateTransition ? exists (tjt.origin = s^dummy 2 DUMMY^

t.endT rigger ? notEmpty () (A.56)
modeloD.deltint (dummy) = s’’

cvr.theResState.theStateTransition ? select (t jt.endTrigger.notEmpty ()^

t.origin = s‘^t.destination = s’’) (A.57)
Mapping

Rule 5: VersionToVersionDevs
A TaskVersion associated a composite task is translated in a TaskVersionDevs model.

Transformation VersionToVersionDevs (Coordinate, DEVS)
Source

comp: Coordinates :: TaskVersion (A.58)
Target

modelD: DEVS :: TaskVersionDevs
firstTask: DEVS :: TaskDevs
finalTask: DEVS :: TaskDevs (A.59)

Source condition:
Target condition:

modelD.name = comp.name (A.60)
modelD.inputports.name ? includes (‘‘ed’’, ‘‘eta’’, ‘‘ets’’, ‘‘stop’’, ‘‘er’’) (A.61)
modelD.outports.name ? includes (‘‘sd’’, ‘‘sta’’, ‘‘sts’’, ‘‘sr’’) (A.62)
modelD.components ? includes (comp.components ?

select (tjt.isOclTypeOf (TaskImp)).devs) (A.63)
firstTask = comp.firstTask.devs (A.64)
finalTask = comp.finalTask.devs (A.65)

– – EIC:
modelD.cp ? exists (tjt.devs1 = modelD^ t.port1.name = ‘‘ets’’^

t.devs2 = firstTask^t.port2.name = ‘‘ets’’) (A.67)
modelD.cp ? exists (tjt.devs1 = modelD^ t.port1.name = ‘‘eta’’^

t.devs2 = firstTask^t.port2.name = ‘‘eta’’) (A.68)
modelD.cp ? exists (tjt.devs1 = modelD^ t.port1.name = ‘‘er’’^

t.devs2 = firstTask^t.port2.name = ‘‘er’’) (A.69)
modelD.cp ? exists (tjt.devs1 = modelD^ t.port1.name = ‘‘stop’’^

(continued on next page)
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modelD.components ? (pj t.devs2 = p^ t.port2.name = ‘‘stop’’) (A.70)
- - EOC

modelD.cp ? exists (tjt.devs1 = finalTask^ t.port1.name = ‘‘sd’’^

t.devs2 = modelD^t.port2.name = ‘‘sd’’) (A.71)
modelD.cp ? exists (tjt.devs1 = finalTask^ t.port1.name = ‘‘sta’’^

t.devs2 = modelD^t.port2.name = ‘‘sta’’) (A.72)
modelD.cp? exists (tjt.devs1 = finalTask^ t.port1.name = ‘‘sts’’^

t.devs2 = modelD^t.port2.name = ‘‘sts’’) (A.73)
modelD.cp ? exists (tjt.devs1 = finalTask^ t.port1.name = ‘‘sr’’^

t.devs2 = modelD^t.port2.name = ‘‘sr’’) (A.74)
Mapping

try TaskToTaskDevs on
comp.components < � > modelD.components (A.75)

try VersionToVersionDevs on
comp.components < � > modelD.components (A.76)

try TemporalLinkToCoupling on
comp.components < � > modelD.cp (A.77)

try TaskResLinkToCoupling on
comp.components < � > modelD.cp (A.78)

Rule 6: TemporalLinkToCoupling
A temporal relationship between two tasks is translated in internal coupling between the DEVS models associated with these
tasks.

Transformation TemporalLinkToCoupling(Coordinates, DEVS)
Source

tl: Coordinates :: TemporalLink (A.79)
Target

coup: DEVS :: couprel
taskDsourc: DEVS :: TaskDevs
taskDend: DEVS :: TaskDevs (A.80)

Source condition: Target condition: taskDsourc = tl.source.devs (A.81)
taskDend = tl.end.devs (A.82)
tl ? oclIsTypeOf (Before, During) implies

taskDsourc.container.cp? exists (p jp.devs1 = taskDsourc^p.port1.name = ‘‘sta’’^

p.devs2 = taskDend^p.port2.name = ‘‘eta’’) (A.83)
tl? oclIsTypeOf (Meet, Equal, Begin) implies

taskDsourc.container.cp? exists (p jp.devs1 = taskDsourc^p.port1.name = ‘‘sts’’^

p.devs2 = taskDend^p.port2.name = ‘‘ets’’) (A.84)
Mapping

Rule 7: TaskResLinkToCoupling
A task-resource relationship is translated into external input coupling and external input coupling between TaskVersion models
and its components.

Transformation TaskResLinkToCoupling (Coordinates, DEVS)
Source

relTR: Coordinates :: TaskResLinkImp (A.85)
Target
cp: DEV S :: couprel (A.86)
Source condition:
Target condition: taskDsource = relTR.source.devs (A.87)

taskDen = relTR.end.devs (A.88)
taskDsourc.container.cp ?exists (p jp.devs1 = taskDsource^p.port1.name = ‘‘sr’’^

p.devs2 = taskDsourc.container^p.port2.name = ‘‘sr’’) (A.89)
taskDsource.container.cp ? exists (p jp.devs1 = taskDsource.container^p.port1.name = ‘‘er’’^

p.devs2 = taskDsource^p.port2.name = ‘‘er’’) (A.90)
relTR ? oclIsTypeOf (processes) implies

taskDsourc.container.cp ?exists (pjp.devs1 = taskDsourc.container^p.port1.name = ‘‘ed’’^

p.devs2 = taskDsourc^p.port2.name = ‘‘ed’’) (A.91)
Mapping
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