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Order acceptance under uncertainty is a critical decision-making problem at the interface between cus-
tomer relationship management and production planning of order-driven manufacturing systems. In this
work, a novel approach for simulation-based development and on-line adaptation of a policy for dynamic
order acceptance under uncertainty in make-to-order manufacturing using average-reward reinforce-
ment learning is proposed. Locally weighted regression is used to generalize the gain value of accepting
or rejecting similar orders regarding attributes such as product mix, price, size and due date. The order
acceptance policy is learned by classifying an arriving order as belonging either to the acceptance set
or to the rejection set. For exploitation, only orders in the acceptance set must be chosen for shop-floor
scheduling. For exploration some orders from the rejection set are also considered as candidates for
acceptance. Comparisons made with different order acceptance heuristics highlight the effectiveness of
the proposed ARLOA algorithm to maximize the average revenue obtained per unit cost of installed

Keywords:

Order acceptance

Demand management
Reinforcement learning
Make-to-order manufacturing
Revenue management

Order similarity

capacity whilst quickly responding to unknown variations in order arrival rates and attributes.
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1. Introduction

With the advent of business-to-business electronic commerce
and the trend towards client-server relationships in inter-enter-
prise integration, the value chain has been fragmented both hori-
zontally and vertically. As a result, companies of all sizes and
industrial sectors are increasingly shifting towards make-to-order
(MTO) production systems (Calosso, Cantamessa, & Gualano,
2004; Calosso, Cantamessa, Vu, & Villa, 2003; Jalora, 2006). In order
to face the challenge of MTO manufacturing, order management
systems need to account for agility and responsiveness by resort-
ing to decision support tools that integrate selective order negoti-
ation with production planning and scheduling. Aimed at targeting
very specific market niches, successful MTO systems should care-
fully choose which orders are worth accepting or negotiating,
and which orders are not from the viewpoint of opportunity costs
and revenue management (Defregger & Kuhn, 2007; Quante,
Meyer, & Fleischmann, in press). Order-driven production systems
increasingly focus on selling customized products and profits gen-
erated are thus strongly order-specific. Usually, a MTO company
may need to satisfy several customer segments while facing an
uncertain demand made up of different types of customers which
are willing to accept different product prices.
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The success of an MTO system is heavily dependent on the
selectivity of an order acceptance policy that seeks to maximize
the average revenue per unit cost of requested capacity when de-
mand exceeds capacity. It is noteworthy that the rejection of an or-
der may have strategic repercussions for future customer relations,
and may drastically change order arrival rates and patterns. In
Fig. 1, the hierarchy of functions involved in an order management
system is shown. The decision an MTO system has to make for an
incoming order is whether to accept, negotiate or reject it depend-
ing on the available capacity, the profit contribution margin of the
order and expected arrival times for future orders. A negotiation
process of an order is only worth pursuing if accepting it may con-
tribute significantly to generate more revenues per installed capac-
ity and market niche development. Resorting to an order
acceptance policy is thus a key decision-making problem at the
interface between marketing/sales functions and production plan-
ning (Barut & Shridaran, 2004, 2005; Zorzini, Corti, & Pozzetti,
2008).

Unlike the make-to-stock manufacturing mode which holds fin-
ished products in stock as a buffer against demand variability, MTO
production systems must hold production capacity and work-in-
process inventories to accept only orders of the most profitable
type. The main issue is thus how to selectively accept/reject/nego-
tiate orders in order to maximize cumulative profit gains. In the
absence of a more elaborated policy, orders are accepted on a
‘first-come-first-serve’ basis. If the available capacity is not enough
to process an arriving order on time, the order is rejected. Always
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Fig. 1. Hierarchy of functions in an intelligent system for order management.

accepting an order when there exists capacity available myopically
commit production capacity so that accepting more profitable or-
ders in the near future is no longer feasible. It is an interesting facet
of the order acceptance policies to take opportunity costs into ac-
count (Defregger & Kuhn, 2007; Mainegra Hing, van Harten, &
Schuur, 2007; Quante et al., in press; Wouters, 1997). How to find
a good trade-off between long-term opportunity costs and imme-
diate yield in case of order acceptance under uncertainty is a cen-
tral problem when demand exceeds capacity. It is thus critical to
save plant capacity for future high-valued orders based on cumula-
tive profits obtained from accepting and rejecting “similar” orders.

Despite a clear early concern about workload control (Wight,
1970), order acceptance as problem in itself has received limited
attention in the literature until recently. Most papers have focused
on alternative methods for releasing jobs to the shop-floor. Phili-
poom and Fry (1992) studied three order acceptance strategies
and found that selective acceptance of orders can yield dramatic
improvement in the case of capacity-constrained MTO manufac-
turing systems. Ten Kate (1994) also found that in severe condi-
tions with short lead times and high utilization rate, order
acceptance integrated with scheduling function performs better
than operations where these functions are not tightly integrated.
Wester, Wijngaard, and Zijm (1992) compared three basic order
acceptance approaches and concluded that under heavy workload
the one based on detailed scheduling of accepted orders outper-
forms other aggregate or myopic (e.g. FCFS) approaches. Wang
et al. (1994) proposed a multicriteria OA decision tool in which
the OA decision rule is based on a prioritization of outstanding or-
ders by a pairwise comparison using a neural network model for
ranking. Orders are accepted following the priority ranking if
capacity is available, but opportunity costs are not an explicit issue
under consideration.

The problem of accepting orders from the point of view of
capacity loading decisions has been studied in multipurpose batch

process industries by Raaymakers (1999). More recently, Raaymak-
ers, Bertrand, and Fransoo (2000a, 2000b) studied the performance
of workload control rules for order acceptance in batch chemical
manufacturing. The research of Ivanescu, Fransoo, and Bertrand
(2002) was built on these works by investigating order acceptance
when processing times are uncertain. Enns (2000) and Enns and
Costa (2002) evaluate the input control at the shop-floor based
on aggregate workload measures. Using simulation, Nandi and
Rogers (2003, 2004) present a make-to-order manufacturing sys-
tem under a control policy involving an order acceptance/rejection
component. More recently, Moreira (2005) has focused on the
study of a job-shop as a multiple decision-making problem, where
the acceptance/rejection decision is somehow taken into consider-
ation. Calosso et al. (2003) discussed in detail the structure for a
standardized negotiation process in electronic commerce for
MTO systems. Ebben, Hans, and Olde Weghuis (2005) use a simu-
lation model of a generic job-shop to compare their sophisticated
workload control approach with straightforward methods. Uncer-
tainty in order acceptance has started to receive attention just re-
cently. Ivanescu (2004) continued Raaymakers’ work by
considering the effect of uncertainty, including stochastic order
arrivals and processing times.

An important step in considering opportunity costs in address-
ing order acceptance was made using dynamic programming mod-
els. A single server system in continuous time in which opportunity
costs play a role was studied by Nawijn (1985). A decision has to be
made between starting a new service for an arriving order or
rejecting an arriving order depending on its expected processing
time. Orders that arrive while the server is busy are lost. A dynamic
programming model allows taking into account the opportunity
costs in a natural way (Herbots, Herroelen, & Leus, 2007). From this
viewpoint, the optimal policy may be formulated as follows: an
incoming order is made eligible for acceptance only if its immedi-
ate reward per unit of capacity is greater than the average reward.
Although it is not a straightforward operational criterion since the
average reward is not known beforehand, and it is difficult to esti-
mate analytically, it helps showing that acceptance/rejection of an
order only depends on its revenue per unit cost of resources de-
manded. The major practical problem with this dynamic program-
ming (or optimal control) formulation is that order acceptance is
plagued with uncertainty in order attributes, arrival times, pro-
cessing time and costs (Mainegra Hing et al., 2007). To solve the or-
der acceptance problem in the face of uncertainty reinforcement
learning (RL) (Sutton & Barto, 1998) is a promising avenue.

Simulation-based development of order acceptance policies in a
production or service environment using RL techniques was first
proposed by Snoek (2000) based on a neuro-genetic architecture
for acceptance/rejection decisions in a job-shop environment. It
was shown that a learning-based approach performs better than
two simple heuristics for order acceptance in a changing environ-
ment. In Mainegra Hing, van Harten, and Schuur (2001) an RL pol-
icy is shown to converge to the optimal policy for a simple OA case
with a single server with at most one job in execution. More elab-
orated applications of RL to the problem of order acceptance have
been discussed in Mainegra Hing (2006) and Mainegra Hing et al.
(2007). However, there are important drawbacks in the above liter-
ature motivating the approach presented in this paper which are
worth discussing. Firstly, order types are assumed to be known a
priori. This is a very weak point for MTO systems where product
mix, sizes and revenue of an order are attributes varying over of
a continuum and also part of the problem uncertainty to be ad-
dressed. Secondly, in the works of Mainegra Hing et al. (2007)
and Herbots et al. (2007), the state of processing resources are rep-
resented in an explicit way which is unduly complicated for order
acceptance while imposing high computational costs without
necessity. Finally, the use of neural networks for learning and
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generalization is quite risky and impractical for on-line adaptation
of the order acceptance policy.

2. Intelligent order acceptance

As shown in Fig. 1, order acceptance (OA) is a critical decision-
making problem at the interface between customer relationship
management and production planning of order-driven manufac-
turing systems. To solve this problem, the key issue is order selec-
tivity to get the maximum profit by capacity management. As a
guideline for selectivity, it is proposed here that when demand ex-
ceeds production capacity the logic for OA decision-making should
be based on the following simple rule: only accept orders that help
increasing the short-term average revenue obtained per unit cost of in-
stalled capacity. This average will be referred to as p hereafter.
Using this guideline, credit-assignment in the sequence of accep-
tance/rejection decisions should be made by rewarding acceptance
or rejection of an order based on its marginal contribution to the
average revenue p. Accordingly, any order whose revenue per unit
cost of capacity requested r will increase p must be accepted,
whereas orders whose r will lower p must be rejected. The optimal
policy for order acceptance is thus defined as the one that maxi-
mizes the average-reward obtained for all decisions taken over
time. A negative reward must be given whenever an order that
may increase p needs to be rejected since it cannot be inserted
in the shop-floor schedule. Constantly seeking to maximize the
short-term average revenue p is a distinctive goal for order accep-
tance which allows a precise definition of the optimal policy. Any
deviation from the optimal policy will inevitably lower p, hence
it is a sub-optimal policy.

Conceptually, the optimal OA policy can be understood as hav-
ing complete knowledge about a minimum threshold b*(t) for the
revenue per unit cost of capacity requested r of an order, such that
only those orders that comply with r > b"(t) should be accepted.
The main problem is that this threshold b*(t) is typically unknown
and time-varying since it depends heavily on attributes (price, size
and product mix) and arrival rates of the different order types. As a
result, OA heuristics such as those proposed by Mainegra Hing
et al. (2007) which are based on a fixed threshold b will be neces-
sarily sub-optimal. On one hand, whenever the fixed threshold is
set too low, i.e. b < b’(t), the MTO system accept some orders that
lower the average revenue whereas some orders of the most prof-
itable type are necessarily rejected since they cannot be inserted in
the shop-floor schedule. Conversely, if the acceptance threshold is
chosen such that b > b(t), some valuable orders are unduly re-
jected which give rises to a lower utilization of installed capacity
and opportunity costs. Due to the many sources of uncertainty in-
volved and dynamics of the optimal threshold b (t), the OA policy
must be learned on-line from reinforcements while constantly
seeking to increase the short-term average p.

For practical reasons, it is assumed hereafter that order accep-
tance is carried out using decision epochs (see Section 3 below)
in such a way that an order_list of outstanding orders is considered
at each epoch. When a decision has been made for all orders in the
current order_list, a transition to the next decision epoch takes
place and a new list of orders is considered. Given an order_list,
an important issue is how orders should be ranked so that accep-
tance/rejection decisions can be taken one at a time to assess indi-
vidually the feasibility of inserting each order into the current
schedule. Intuitively, it can be said that the order_list should be
ranked so that at the top of the list are those orders whose accep-
tance decision is definitively more valuable than order rejection. At
the bottom of the order_list are located those orders whose rejec-
tion is definitively more convenient for increasing the short-term
average revenue p. For this purpose, the concept of a gain or value

2 of taking either the acceptance decision %(o, acc), or the rejec-
tion decision %(o, rej) for an order o, is proposed. The value or util-
ity 2 is thus defined as the immediate reward r obtained following
order acceptance or rejection, plus the maximum average reward
that can be obtained by following an optimal OA policy from then
onwards. As explained in the next section, these gain values
(0, acc) and (o, rej) are obtained using a learning rule that re-
sorts to evaluative feedback of decisions taken in a sequence of
decision epochs.

Consider a given candidate order o is must be analyzed for
acceptance or rejection based on its contributing value to maximiz-
ing the average reward per time step using the corresponding gain
values. Assuming the gain values for acceptance %(o, acc) and rejec-
tion %(o, rej) are known beforehand, the decision-making logic pro-
posed in Fig. 2 is rather straightforward. If %(o, acc)> %(o, rej),
insertion of the order “0” into the current production plans is then
attempted. If order insertion for shop-floor processing is feasible,
the order is then accepted; otherwise, the due date may be, if pos-
sible, negotiated with the client to avoid rejecting it. Alternatively,
whenever gain values for the order o are such that %(o,
acc) < (o, rej), negotiation of order attributes is required in order
to increase the order acceptance value (o, acc) so as to exceed
(o, rej) by either increasing order price, changing order size or
product mix, or combination thereof. Otherwise, the order o must
be rejected.

To better understand the rationale of the decision-making logic
in Fig. 2, it is mandatory to understand the meaning of #-values as-
signed to a given order as heavily dependent on the environment in
which the MTO system operates. For example, the values for accep-
tance and rejection of an order type depend on the arrival rates of
order types which are more valuable than it. For the sake of clarity,
let’s assume that in the current arrival pattern an order o should be
rejected according to the logic in Fig. 2. Imagine the arrival rate of
more valuable orders is decreased. Accordingly, the value of accep-
tance %(o, acc) for this type of less profitable orders becomes great-
er than the value for rejection #(o, rej). As a result, similar orders
should be accepted to increase p. It is worth noting that #-values
are heavily dependent on its attributes such as mix of products,
price and size. Thus, the acceptance condition %(o, acc) > %(o, rej)
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Fig. 2. Order acceptance logic based on #-values for order acceptance and
rejection.
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is a simple, yet powerful guideline for negotiating order attributes.
Should the corresponding #-values for acceptance and rejection be
perfectly known a priori is rather straightforward to decide always
optimally. Accordingly, only orders which are contributing the
most to maximize the average revenue are accepted, whereas the
rest are rejected.

For an over-demanded MTO production system, the corre-
sponding values for acceptance and rejection decisions of an order
are independent on the way resource usage is represented in pro-
duction plans. This is a very important remark which challenges
the need for expliciting representing plans and schedules to solve
the order acceptance problem as proposed in Mainegra Hing
(2006), Mainegra Hing et al. (2007) and Herbots et al. (2007). If
an arriving order whose acceptance value is greater than the corre-
sponding value for rejection, but the order cannot be accepted be-
cause it is not feasible to insert the order into the current plan or
schedule, the only alternative is to negotiate its due date. If this
negotiation is not an option, the order must be rejected despite
the order is capable of increasing the short-term average revenue,
but due to orders previously accepted the available capacity is
insufficient.

If the #-values for acceptance and rejection decisions in Fig. 2
were known exactly for a given order, the only information re-
quired is whether the order can be inserted or not in the current
production plan. Thus, explicitly considering profiles for planned
resource usage or any other scheduling or shop-floor details in
the decision-making logic for order acceptance are not needed.
The main obstacle to the implementation of the order acceptance
logic shown in Fig. 2 is knowing the values %(o, acc) and %(o, rej)
for acceptance or rejection of an arriving order. Due to the many
sources of uncertainty involved, reinforcement learning from simu-
lated experience is the alternative of choice for value estimation
and generalization based on order similarity. Furthermore, %(o0, acc)
and (o, rej) can be updated on-line using real experience to ac-
count for time-varying order arrival rates and new order types. It
is important to highlight the complete equivalence between check-
ing the acceptance condition “#(o, acc) > (o, rej)” with resorting
the optimal threshold b*, as it is discussed below for the case study.

3. Learning and adaptation
3.1. Order acceptance decision process

Let’s consider an MTO system which is subjected to an uncer-
tain demand that should be answered by acceptance, rejection or
negotiation of each arriving order. Orders arrive at the system fol-
lowing some sort of stochastic pattern or regularity, e.g. Poisson
process with arrival rate A. Each order is characterized by a number
of attributes such as mix of different products, due date, size (vol-
ume) and, if accepted, it generates a revenue. Accordingly, once the
decision to accept or reject an order has been made, an immediate
reward r is obtained. The MTO system has a limited processing
whose scheduled usage state changes every time an order is ac-
cepted. A rejection decision will not change the schedule for using
the installed capacity but may alter arrival patterns for some order
types. When the %(o, acc) < Z(o, rej) (the order is deemed not valu-
able enough) or the current production plan does not allow to in-
sert an order one option is rejection. Alternatively, if possible the
attributes of an order can be negotiated so that the value for accep-
tance #(o, acc) is increased over (o, rej). If %(o, acc) > %#(o, rej),
negotiation should pursue a delayed due date to allow the inser-
tion of the order into the current schedule. Orders in the negotia-
tion process are accepted as soon as an agreement is reached on
their attributes and insertion in the shop-floor production schedule
is feasible. Although order arrivals occur continuously over time,

orders are only evaluated at discrete time moments t. At each deci-
sion epoch, it is assumed that all orders whose arrival occur after
the previous decision epoch are accumulated in the order_list.
These decision epochs, labeled by ¢, t+1,t+2,..., correspond to
fixed time windows, e.g. 1 or 2 days, for which a list of all arriving
orders (order_list) in such period of time is evaluated and accep-
tance/rejection/negotiation decisions are taken. As a result of deci-
sions taken a sequence of rewards is generated. Fig. 3 summarized
the essence of the OA problem in the well-known style of stage-
wise dynamic programming.

At each decision epoch, the OA-agent must decide which subset
of the orders in the order_list should be accepted or rejected. This
means, in principle, that each possible subset of orders may be ana-
lyzed to assess if those orders can be inserted in the current pro-
duction schedule. However, this approach to develop an OA
policy does not allow learning order values based on its similarity
with previously accepted orders. Thus, instead of focusing on all
possible subsets of orders that can be accepted or rejected at once,
in this work decisions are taken sequentially whilst the order_list
is being processed. The top order in the order_list is considered
for acceptance/rejection/negotiation following the logic in Fig. 2,
the decision is taken and again the new top order is considered un-
til the list is empty. Accordingly, decisions are taken one order at a
time which allows describing order acceptance as a dynamic pro-
gram in the framework of a semi-markov decision process (SMDP).
For a SMDP, decision moments are not restricted to discrete time
epochs (like in MDPs) but correspond to any time at which the sys-
tem enters a new state (Das, Gosavi, Mahavedan, & Marchalleck,
1999). Thus, the MTO system state may change several times be-
tween two decision epochs due to capacity assignments. As a re-
sult, there are two types of state transitions in the order_list and
resource usage profiles (see Fig. 3). Immediate transitions as long
as acceptance/rejection decisions are taken and timed transitions
which happen as the discrete time t advances to the next decision
epoch when a new order_list is available for processing and shop-
floor resource commitments may also change as some orders are
being completed.

Order acceptance is a sequential decision-making stochastic
process characterized by five elements: decision epochs, states,
actions, transition probabilities and rewards. The OA-agent (deci-
sion-maker) controls the path of the stochastic process comprising
of order arrivals and shop-floor admissions. In fact, at certain points
in time in the path, the OA-agent intervenes and takes decisions
which alter the course of the future path. These points are called
decision epochs and the decisions are called actions. At each deci-
sion epoch, the MTO system occupies a decision-making state in
which each order present in the order_list is rejected, chosen for
service or negotiated. The MTO system state is partly described
by an array whose rows are vectors (orders) with order’s attributes
(e.g. size, price, due date) and its insertability as their entries. As a
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Fig. 3. Sequential decision process in order acceptance.
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result of taking an action in a state, the decision-maker receives a
reward r (which may be positive or negative) and the system goes
to the next state with a certain probability which is called the tran-
sition probability. A decision rule is a function for selecting an ac-
tion in each state, while a policy is a collection of such decision
rules over the state-space. A policy specifies which action to per-
form at each state of the system. Implementing a policy generates
a sequence of rewards. The SMDP problem is to choose a policy that
maximize a function of this reward sequence (optimality criterion),
typically an average reward per time step.

In the reinforcement learning literature (Sutton & Barto, 1998),
there exist two well-known optimality criteria: the discounted ex-
pected cumulative reward and the average-reward criteria. Most
works in reinforcement learning are based on expected cumulative
reward, where long-term rewards are discounted based on the de-
lay in their occurrence. Discounting future rewards makes perfect
sense in some applications, e.g. those dealing with net present va-
lue of decisions, where the distant future is indeed less important
than the near future (Singh, 1994). However, in the OA problem,
when demand exceeds capacity, the goal is to maximize the aver-
age-reward obtained per time unit by properly choosing which
orders are more profitable in terms of revenue per capacity re-
quested. In this case, all time periods are equally important. For
developing the OA policy in MTO systems, the average-reward
criterion is used here. The average reward or gain of a stationary
decision-making policy 7, starting at any state system i and contin-
uing with policy 7, is defined as follows:

i N By
p" (i) = lim N 21: {Zr(sna[)} 1)

N—oo T

where S(7) is the set of system states s; which can be visited when
the policy 7 is used to choose action a, which generates the reward
1(ss, a;); N refers to the number of times each system state is visited
when policy 7 is used to choose actions. The optimal policy can then
be characterized simply as the one which provides the maximum
average reward p*. As an example, consider the special case when
7 is a heuristic rule where only orders having revenue per unit of
capacity requested r above a threshold b are accepted. The S(7) will
then correspond to all possible MTO system states (e.g. resource
usage profiles) resulting from the application of this rule and p” will
correspond to the mean revenue which can be obtained using this
OA heuristic infinitively.

3.2. Average-reward reinforcement learning

The computational complexity of SMDP algorithms is prohibi-
tive for industrial applications and can grow intractably large with
the size of the problem (number of states and action). Furthermore,
these model-based techniques require knowing for each action the
one step transition probabilities matrix and corresponding re-
wards, a completely unrealistic assumption bearing in mind the
many sources of uncertainty (arrival times, order types, processing
times, etc.) involved in the development of a decision-making
policy for order acceptance. To face uncertainty, in this work a
simulation-based stochastic approximation framework called rein-
forcement learning (RL) for computing near-optimal policies for
SMDPs is used. RL is primarily concerned with how to learn a
near-optimal policy from successive interactions with an uncertain
environment (Sutton & Barto, 1998). The OA-agent, equipped with
a learning rule, uses the outcomes of ongoing interactions with its
(actual or simulated) environment to update the #-values for
acceptance and rejection decisions so as to maximize p over time.

Fig. 4 summarizes the interaction cycle between the OA-agent
and its environment in an MTO system. At each decision epoch ¢,

the OA-agent first receives a perception of the environment’s state
in the form of a list of orders (along with their attributes) which
have arrived during a given period of time (1), e.g. day and infor-
mation about available capacity at the shop-floor (2). Orders that
made up the current order list (order_list) are ranked based on
their values for acceptance #(o, acc). The OA-agent must decide
and perform an action (3) for each order in the order_list. The ac-
tion set includes to accept or to reject each order in the order_list.
Order selection is made according to the current decision policy
developed by the agent. If the order is accepted (4) the commit-
ment of production resources must change. In case the order is re-
jected (5), capacity available is not affected, but arrival rates of
similar orders may decrease. As a result, the environment (custom-
ers and production system) makes a transition to a new state and a
reinforcement, or reward signal, is given to the OA-agent. The new
state includes all orders already belonging to the order_list minus
the order that was just accepted or rejected, and the insertability of
each order in the current production schedule. The reward signal is
received by the OA-agent and through its learning rule is used to
update its knowledge base. Consequently the decision-making pol-
icy is updated (6). Whilst processing the order list, the OA-agent
implements a mapping from states to probabilities of accepting
or rejecting a given order bearing in mind the exploration-exploi-
tation trade-off. This mapping or rule is called the OA policy n. In
reinforcement learning, the agent changes this policy as a result
of interactions where the agent takes an action and receives a re-
ward, which is the only hint it has to modify its decision-making
policy.

As the decision-making objective is to maximize the cumulative
profit gain, the learning process is based on relating revenue to or-
der attributes using a value function (s, a), where s is the system
state and a stands for the finite set of possible actions in s. When a
given action a is chosen at state s, # corresponds to the average re-
ward that can be gained by choosing action a and acting optimally
thereafter. Should the values of %(s, a) be known a priori, the opti-
mal policy is simply to chose accept/reject orders based on which
action has the highest . Unfortunately, the value function # is un-
known a priori and can only be estimated by evaluative feedback
along the sequence of actions (acceptance/rejection) and credit-
assignments to actions taken in the sequel using the actual re-
wards obtained. Furthermore, even when the action set is finite,
MTO system states are defined by a continuum of variables defin-
ing product mix, size, volume, etc., which poses a difficult problem

ENVIRONMENT
(Real or simulated)

it CUSTOMERS
Arrival pattern

OA-AGENT

Rejected orders |5

order_[ist (order) % accept/reject

Take decision, Get reward
==

6
Update knowledge and policy

2[ Available capacity Accepted orders |4

Fig. 4. Interaction cycle of the OA-agent with customers and production scheduling.
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for generalizing the #-values for acceptance or rejection of orders
to new orders that can bear some similarity with orders previously
accepted, but are not identical.

To learn #-values from (simulated or actual) experience the ba-
sic #-learning algorithm (Schwartz, 1993) is adapted for order
acceptance under uncertainty, where the return associate to any
OA policy is the average reward per time step received by the
OA-agent. This algorithm aims to compute an optimal policy that
yield the highest average reward. Initially the acceptance #-values
for all order types are set to an optimistic high value. At each state
in the sequence, the learning agent chooses the order acceptance
action that has the highest #-value (accept/reject), except that
sometimes it chooses an exploratory, non-optimal action. #-values
are adjusted after each action, based on the following learning rule:

Rnew(S,0) — Roig(S,0) + oL|T — p +MaxX Rog(S',a') — Roa(S,0)|  (2)
i

where r is the reward resulting of taking the action a at the state s
and 0 < « < 1 is the learning rate. This rule differs from the Q-learn-
ing algorithm (the most popular algorithms used in RL, see Sutton &
Barto, 1998 for details) only in that the average reward p is sub-
tracted from the immediate reward r, and by the fact that discount
factor y is not required. Using revenues obtained from recently ac-
cepted orders, the average reward p for order acceptance in the
learning rule (2) is increasingly updated using the cumulative rev-
enue obtained per installed capacity over # previous decision
epochs as follows:

t-1
_ 2. yTevenue
H x cap-max

p 3)
where cap_max is the installed capacity available per time step. As
no revenue is get from rejected orders, p = 0 when the learning rule
(2) is used to update %(o, rej) for a rejection decision. In Fig. 5, the
basic #-learning algorithm for order acceptance is described.

The way acceptance/rejection decisions are given rewards or
penalties is the only evaluative feedback from the environment
to the learning OA-agent. In the present work, whenever an order
is accepted, the reward r is exactly the same revenue obtained per
unit cost of processing capacity requested (p;). However, for re-
jected orders the reward is defined as follows:

r— {—Pi
0

where (0, acc) and #(o, rej) are current #-values corresponding to
acceptance and rejection decisions, respectively. It is worth noting
that based on the estimated #-values for an order, a penalty (neg-
ative reward) is given to the decision of rejecting an order when it
should be accepted, that is, whenever %(o, acc) > #(o, rej). A word

if %(0;, acc) > %(o;,rej)
if %(0;,acc) < %(0;,rej)

(4)

Set p and R(s,a), for all s, a arbitrarily
Repeat forever

s < current state

Choose action a € A(s)

Take action g, receive s’ and rvalues

R e (s,a) <Ry (57‘1)"’ ax [f -p + max R i (Sv,a,)_ R i (s,a)}

Each time an order is accepted, update the average reward
using:
t—1
> revenue
__t=9f
H X cap _ max

Fig. 5. Basic #-learning algorithm for OA.

of caution is in order about the basic algorithm for order accep-
tance: learning assumes that there exist different order types. Thus,
#-values actually correspond to order types rather individual or-
ders. If an arriving order is different from any previously accepted
orders, a new order type must be created for which the correspond-
ing #-values must be learned.

3.3. Value generalization and order similarity

For MTO systems with a small number of order types, estimates
of the #-values can be represented as a table. However, as the
number of order types increases the table of #-values scales up
significantly in size; updating information accurately in such a
large table may be a significant problem for fast learning and adap-
tation. Often orders have attributes that vary over a continuum.
However, there exist clusters of similar orders that favor inductive
learning. To generalize #-values based on order similarity we re-
sort to locally weighted regression (LWR) (Atkeson et al., 1997;
Smart & Pack Kaelbling, 2000). LWR is a variation of standard
regression techniques, in which training points close to the query
point have more influence over fitted regression surface than those
which are further away. Performing a regression over all of the
training data for every order query would be extremely expensive.
Therefore, LWR attempts to fit the training data only in a small re-
gion around the location of the query point. Data points are
weighted according to a function of their distance from the query
point. This function is typically a kernel function (k), with ‘width’
parameter known as the bandwidth (h):

k(d, h) = e/’ (5)

where d is the Euclidean distance between the query point and each
point in the training dataset. Since most of data points are likely to
be far away from the query point, they will have little effect on %-
values estimation for an order. Typically, a minimum number of
points is needed for estimating %(o, acc) and %(o, rej). With few
data points, regression is not reliable and a default #-values must
be returned.

The key issue in local propagation of #-values is order similar-
ity. Accordingly, learning in order acceptances is based on the
assumption of clustering orders in the attribute space with similar
values for %(o, acc) and %(o, rej). In the LWR algorithm these clus-
ters of similar orders are defined using some sort of distance norm
(e.g. Euclidean) between a query point and orders in its neighbor-
hood. Thus, order similarity relates the notion of locality of order
attributes with their corresponding #(o, acc) and %(o, rej). It is
noteworthy that even when orders are not segmented by type a
priori, the proposed learning algorithm will discover the existence
of such order clusters. The proposed integration of LWR with the
basic OA #-learning algorithm makes possible to propagate #-val-
ues updates to all accepted orders in the region of influence around
the query point, as defined by the kernel function in Eq. (5).

3.4. Exploitation vs. exploration

To effectively learn a policy in the face of uncertainty the OA-
agent must address the dilemma of exploitation vs. exploration.
This means that to discover better orders to profit from it is neces-
sary to accept orders whose rejection seems, at first glance, more
valuable than acceptance. Without purposeful exploration the
agent can only exploit knowledge from accepted orders. To exploit
more in the near future, the OA-agent should accept apparently
less profitable orders to know more about their profitability based
on order similarity. The trade-off between exploitation and explo-
ration can be achieved in many different ways. The easiest alterna-
tive is the so-called e-greedy. With probability (1 — ¢ the decision
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with highest value is selected whereas with probability &, any of
the alternative decisions is taken. More specifically, for learning
the OA policy, the balance between exploration and exploitation
is based on ranking the order_list using #(o, acc). Also, orders in
the order_list are classified as belonging either to the acceptance
set (#(o, acc)> %(o, rej)) or to the rejection set (%(o, rej)> %(o,
acc)). For exploitation, only orders in the acceptance set must be
chosen for shop-floor insertion. For exploration some orders from
the rejection set are also considered as candidates for acceptance.
Accordingly, with probability (1 — &) the order at the top of the
acceptance set is selected. If the order can be inserted into the
shop-floor schedule, then it is accepted. On the other hand, with
a small probability ¢ any of the orders in the rejection set is chosen
to check the feasibility of its insertion. As usual, if the capacity
available allows inserting the order, then it is accepted.

To stabilize the learning curve it is important to lessen the effect
of exploration as the agent-environment interaction progresses. To
this aim, the value of ¢ is increasingly lowered as follows (Mainegra
Hing et al., 2007):

€o

S TN ©

where ¢ is the initial value of ¢ at the beginning of the learning
curve and 7q is a parameter which defines the progressive decay
of exploration. The lower is parameter 7o, the greater is the explo-
ration decay rate towards only exploitation of the acceptance set
whiles the order_list is being processed.

For responsiveness, it is important to reset the exploration
parameter & < &y as soon as shop-floor utilization or the average
revenue p experiment a sustained decrease. In the first case, re-
source utilization may decrease because the arrival rate of the
most profitable type has diminished and the OA policy should
change to accept more orders of less profitable types. A lowering
of p may be due to a profitability loss of some order types which
demands updating the #-values of order clusters that are being re-
jected with the current policy. Whatever the case, the rationale for
resetting to a maximum level of exploration is that environmental
changes may have changed the actual values for acceptance of
some orders which are not being accepted unless exploration is
done. For better updating the values of those orders, a more
aggressive strategy for exploration is thus required. Finally, a spe-
cial type of exploration strategy is needed to handle the arrival of
orders of a new type for which estimating acceptance/rejection
values is not feasible using LWR. In the ARLOA algorithm (see be-
low), when an arriving order has a set of attributes such that there
not exist enough data points to support a reliable estimation of its
#-values, a different kind of exploration is carried out. To guaran-
tee that some orders of this new type are processed by the MTO
system, an optimistic (high) default value is assigned to %(o, acc).

3.5. ARLOA algorithm

The overall logic of the proposed ARLOA (Average-reward Rein-
forcement Learning for Order Acceptance) algorithm is shown in
Fig. 6. The values %(o, acc) and %(o, rej) of an incoming order o
are first estimated using LWR, based on the similarity of its attri-
butes with previously accepted orders. At each decision epoch,
the order_list is first prioritized using order values for acceptance,
namely #(o, acc). While there exists enough processing capacity
available orders in the order_list are accepted using an OA policy
that combines exploitation with exploration based on the explora-
tion parameter ¢. If the order cannot be inserted and its due date
cannot be delayed, the order is rejected. If %(o, acc) < %(o, rej)
and order attributes are not negotiable, the order is rejected. De-
tails about the integration of average-reward reinforcement learn-
ing algorithm with locally weighted regression (LWR) for value

generalization are given in Fig. 6. The novel algorithm ARLOA is
the key contribution of this work. ARLOA is capable of effectively
handling different sources of uncertainty in the environment of a
MTO system by transforming the simple guideline stated in Section
2 into a systematic procedure to answer order processing requests.

The ARLOA algorithm has been developed bearing in mind
agent-based automation of the interface between customer rela-
tionship management and production planning as part a of busi-
ness-to-business electronic commerce project for make-to-order
supply chains. However, having access to a minimum of data
from the shop-floor planning system in order to assess the inser-
tability of a candidate order, the ARLOA algorithm can also be ap-
plied as a standlone application based only on an user interface, a
standard spreadsheet and a small database application to accu-
mulate information on previous accepted orders. Small and med-
ium enterprises working as MTO systems can benefit sensibly
from a standlone implementation of ARLOA for revenue
management.

4. Case study and results
4.1. Description

To illustrate the proposed approach, order acceptance in a sin-
gle-stage process plant adapted from Musier and Evans (1989) is
used. These authors argued that this class of process structure is
the typical production structure found in a broad range of batch
process industries, and it is also a key building block in bottleneck
resource scheduling in multi-stage production plants. Our case
study is related to a manufacturing environment in which produc-
tion is driven by multiple-product orders. Plant equipment items
are semi-continuous extruders which process orders for four dif-
ferent products. Each order consists of a mix of products, has a
due date and generates a revenue following acceptance. After a
decision (acceptance or rejection) is taken, a reward is generated
based on the order revenue and requested capacity (processing
time in this case). There is a maximum regular capacity of hours
per working day due to operator shift and there is not available ex-
tra capacity. It is assumed that all accepted orders must be com-
pleted without violating their corresponding due date. Working
weeks are made up of 5 days.

The product mix of an arriving order is randomly generated
from up to five well-differentiated order clusters or types. This fact
is unknown a priori to the OA-agent and is part of the learning pro-
cess. For the Case 1 below (initially unknown to the OA-agent)
preferences by order type are as follows: 4 <3 <2 <5 <1, based
on their corresponding revenue per unit of capacity requested (p;).
For all order types, due dates are generated using a uniform distri-
bution between 5 and 10 working days. At each decision epoch, the
MTO system state is defined by the order_list prioritized by the
corresponding #-values for acceptance; the individual insertability
of each order is also an entry in the system state vector. As the or-
der_list is being processed using the ARLOA algorithm (see Fig. 6),
orders in the acceptance set are accepted only if they can be in-
serted. This corresponds to exploiting the knowledge an OA-agent
has about the #-values for acceptance and rejection of each order
in the current order_list. When exploration is carried out, orders
from the rejection set are also made eligible for processing. Penal-
ties to rejection are given based on the revenue generated per unit
of capacity requested (see Eq. (4)). Orders of all types arrive follow-
ing a Poisson process with mean /= 10 order/day. Arrival rates (in
percentage of 4 of each order type for the base case (Case 1) are
shown in Table 1.
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the order_f[ist using R(o,acc).
3) While order_fist is not empty do

selected order.

result of taking action a.
iv) Calculate ®(0,a)using:

4) Update average reward:
t—1

> revenue
P —
H Xcap _max
go step 2)

1) Set epoch decision tag: =0. Initialize all ®R(o,acc) with an optimistic initial value. Set the
cumulative revenue obtained per installed capacity: p=0. Run the MTO system.
2) For each arriving order in [#-1, 7] estimate ®-values using LWR and prioritized them in

i)  With probability 7-€, select the order at the top of the order_fist (EXPLOIT),
otherwise choose a random order from the rejection set (EXPLORE). Set 7 as the

ii) Given an order, decide to accept, reject or negotiate it. If R(i,acc)> R(i,rej) and the order
can be inserted, then action = accept and go to iii); if the order cannot be inserted
negotiate its due date and return to 1i).

If R(i,acc)< R rej) and order attributes (price, mix, size, etc.) can be negotiated, then
action = negotiate and return to i). Otherwise, action = reject and go to iii).
iii) Take the chosen action (accept/reject). Let r be the immediate reward received as a

Rnew (0’ Ll) A q\)-'o&z" (0’ Ll) tax |:l’ -P + max R’o&{ (0" Cl')_ Ro&{ (0’ a)jl
v) Update ®-value for each order jin the neighbourhood of order i:
Rnew (0]"‘1]')e Ra[d' (Oj’aj )+ K] X|:Rnew (Oi’ai )_R‘O[d (Oj,ll]. ):|

vi) Set current state sto the new state s’, R(0,@)oir <—R(0,@new-
vii)If order_fist is not empty go to step i), else go to step 4)

Fig. 6. The ARLOA algorithm.

4.2. Results

Different scenarios for the demand to the MTO system have
been evaluated to compare the ARLOA algorithm with threshold
heuristics of the type proposed by Mainegra Hing et al. (2007). In
some scenarios, the proposed method is also compared with the
simple rule “First Come First Serve” (FCFS) and Q-learning based
on discounted cumulative rewards with a discount factor
y=0.99. The initial value of the exploration parameter is set
&= 0.2, whereas decay exploration rate is defined by choosing
To = 10. Learning rate is set to « = 0.5 for both Q-learning and AR-

Table 1
Demand data for the base case.
P1 P2 P3 P4
Products attributes
Processing rate (kg/day) 30 25 25 30
Revenue ($/kg) 5 2 1 0.5

#1 #2  #3  #5 #4

Order type attributes
Size (kg) 15

Composition (% dominant products) N~ (60,5) N~ (22,3)
Due date (days) X ~U(5,10)
Arrival rates (% of 1) 10 20 30 30 10

LOA algorithms. At each decision epoch, the short-term average
p is calculated based on orders accepted in 10 previous epochs.

4.2.1. Case 1: base case

In Table 1 data values for this base case are given. Orders are
generated from clusters of similar orders. Each order has a domi-
nant product and the remaining product mix is evenly distributed
among the other three products. Order types #1, #2, #3 and #5
have as dominant products P1, P2, P3 and P4, respectively. For each
order type, the percentage of the dominant product is randomly
obtained from a normal probability distribution with mean
1 =60% and standard deviation ¢ = 5%, whereas for the other prod-
ucts in the order are evenly distributed. For order type #4, the mix
of products is roughly balanced as they are all obtained through
sampling a normal distribution with = 22% and ¢ = 3%. The per-
centage of 4 corresponding to the arrival rate of each order type
is given in Table 1.

In Fig. 7, the learning curve in this illustrative example is shown
for the ARLOA policy using the weekly revenue obtained from ac-
cepted orders. Learning curves were obtained by averaging five
independent simulation runs. A comparison is made between the
ARLOA algorithm, an optimal threshold heuristic r > 55 (b =55),
the Q-learning rule and the first-come-first-served (FCFS) accep-
tance policy. As it is shown, after a learning phase, the ARLOA
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Fig. 7. Profit learning curves for Case 1. ARLOA and Q-learning OA-agents compared to FCFS policy and a near-optimal threshold heuristic with b =55.

policy not only match the revenue get by the optimal heuristic rule
but actually performs better. The sub-optimality of FCFS and the Q-
learning rule is quite noticeable. Note that the optimal threshold
value (b =55) was obtained after a tedious and computationally
expensive tuning of the parameter b by trial-and-error. To assess
the selectivity of the ARLOA policy, an independent simulation
run was made without allowing further changes to the #-values.
Results obtained for the acceptance rate of each order type are
shown in Fig. 8. The ARLOA policy is highly selective since almost
every type #1 order arriving to the system is accepted. Selectivity
of the ARLOA policy also seeks to increase revenue generation from
the installed capacity by accepting near 50% of type #5 orders
which are second in the preference scale. Note that the ARLOA pol-
icy only accepts a very small number of orders from types #2, #3
and #4. It is worth mentioning that selectivity is very important
for consolidating market segments in MTO systems. The optimal
heuristic rule is by far less selective than ARLOA. OA policies using
Q-learning and FCFS are not selective at all. Selectivity and respon-
siveness are the two most requirements for successfully imple-
menting the hierarchy of functions in Fig. 1.

4.2.2. Case 2: adaptability

To assess adaptiveness of the policy generated by ARLOA, at
time 500 days (100 working weeks) a significant reduction in the
arrival rates and revenues of order types #1 and #5 are made as
it is shown in Table 2. Order preferences are still 4 <3 <2 <
5 <1, though. To maintain constant the overall arrival rate /,

100 T T T T ;
ool Il ARLOA |
[_IFCFs
801 [ lQ-Learning
< 70t I Heuristic (55) ||
(]
® 60} 1
14
g 501
c
8 40t
[« 3
8
g 301
<
201
10 7 m
0 #1 #2 #3 #4
Order Type

Fig. 8. Selectivity compared for different OA policies in Case 1.

Table 2
Demand changes (prices and arrival rates) for Case 2.
P1 P2 P3 P4
Products attributes
Revenue (before change) 5 2 1 0.5
Revenue (after change) 4 1 0.5 0.5

#1 #2 #3 #4 #5

Order type attributes
Arrival percent (before change) (%) 15 20 25 25 15
Arrival percent (after change) (%) 5 20 35 35 5

specific arrival rates for order types #3 and #4 are subjected to
an identical increase in their arrival rates (see Table 2). As type
#1 orders are still the most profitable ones, weakly revenues will
be necessarily lower after the change. In Fig. 9, the average weakly
revenues based on five independent runs are shown for the ARLOA
policy and three threshold heuristics with b=40, b=55 and
b =65. As can be seen, ARLOA provides the best OA policy both be-
fore and after the change. The heuristic rule with b = 55, which was
comparable to ARLOA before the change is made, performs sensi-
bly sub-optimal afterwards, though. As can be expected, lowering
the threshold for acceptance is needed to handle this kind of envi-
ronmental changes. The effect on order selectivity for the ARLOA
policy resulting from these changes to arrival rates and prices are
shown in Fig. 10. The way ARLOA handles demand changes is by
increasing the number of type #4 orders which are accepted. Also,
more orders of the less profitable types are accepted in accordance
with their preferences as shown in Fig. 10b.

Changes to arrival rates are quickly detected by a lowering of
the resource utilization index for extruders. This fact triggers a
resetting of the exploration strategy of ARLOA and a new learning
curve begins as can be seen in Fig. 9. In Fig. 11, the effect of demand
changes on resource utilization for ARLOA is compared with re-
source usage lowering when a heuristic rule with b =65 is used.
Note that the ARLOA policy is able to recover a high level of utili-
zation after the environment changes. It is remarkable the severe
detrimental effect on resource utilization of a sub-optimal setting
of the threshold b. High levels of utilization can only be restored
by reoptimizing the value of b.

4.2.3. Case 3: a new order type

In this scenario, the OA policy should respond to an environ-
mental change related to the arrival of a new order type which is
even more profitable than the current best type. The MTO system
is initially receiving four order types which are numbered #2-#5
with order preferences defined as follows: 4 < 3 < 2 < 5 (see Table
3). The overall arrival rate 1 is maintained constant throughout by
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Fig. 9. ARLOA adaptiveness to a significant reduction of the arrival rates of more profitable orders.
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Fig. 10. Selectivity of ARLOA and threshold heuristics compared in Case 2: (a)
before change and (b) after change.

lowering the arrival rates of order types #3 and #4. Arrivals of the
new order type #1 occur from week #80 onwards. The exploration
strategy in the ARLOA algorithm provides a high default value for
acceptance #(o, acc) to these new orders which allows the OA pol-
icy to adapt quickly and grasp the opportunity for increasing the

revenue obtained as it is shown in Fig. 12. It is noticeable how a
near-optimal setting for the heuristic threshold (b = 50) degrades
significantly when arrivals of this new order type take place. As ex-
pected, the way to handle this demand change would be to in-
crease the threshold (see learning curve for b = 50). However, the
difficult issue to be addressed is choosing fast the best value for
the threshold so that revenues are maximized.

Fig. 13 provides a clear picture of the ARLOA distinctive capabil-
ity for selective order acceptance. After the arrival of the new order
type, more than 60% of order type #1 are accepted, some orders are
lost because their due dates are too tight to be inserted. The only
way to increase the number of accepted orders of the more profit-
able types #1 and #5 is attempting due date negotiation with cli-
ents so as to consolidate this market segment.

4.2.4. Case 4: due date negotiation

To take advantage of ARLOA selectivity, the demand scenario in
Table 4 is considered for product pricing and arrival rates.

Negotiation is modeled here as offering clients of selected or-
ders the possible postponement of the order due date so as to guar-
antee order insertion in the production scheduling. It is assumed
that the 90% of the due dates offered are accepted by customers.
An important remark is the implemented logic chosen to decide
which orders are offered a delayed due date. Only orders for which
the estimated #-value for acceptance is greater than the average
revenue p are negotiated (%(o, acc)> p. Figs. 14 and 15 vividly de-
pict the benefits resulting from selective negotiation of due dates
when the ARLOA algorithm is used. It is worth noting that even
though the heuristic threshold b has been defined quite conve-
niently, negotiation does not provide a meaningful advantage in
this case. The explanation is rather simple: as the heuristic rule
is not selective above the threshold, negotiation can only provide
marginal improvement as there exist alternative order types to
profit from without engaging in due date negotiation. The remark-
able selectivity of the ARLOA policy when due date negotiation is
allowed is shown in Fig. 15.

4.2.5. Case 5: changes in product prices

Market conditions constantly change order profitability. The OA
policy should be able to detect and to adapt to these changes by
accepting orders in the rejection set to look out for opportunities.
Let’s assume that at time 400 days (80 working weeks), significant
changes to product prices are made as it is detailed in Table 5. The
demand change is first detected using ARLOA based on a steady de-
crease in the average revenue p obtained. As a result, a resetting
event of the exploration parameter ¢ — & is triggered. The weekly
revenue obtained using the OA policy generated by the ARLOA is
compared in Fig. 16 with two competitive heuristic rules. The
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Fig. 11. Utilization rate for ARLOA and the threshold heuristic (65) compared in Case 2.

Table 3
Arrival of a new order type with high profitability (Case 3).

#1 #2 #3 #4 #5

Order type attributes
Arrival percent (before change) (%) 0 20 35 35 10
Arrival percent (after change) 10 20 30 30 10

policy based on ARLOA performs always better than any well-
tuned heuristics due to its sensitivity and selectivity as can be seen
in Fig 17. It is worth noting that type #2 orders (which are mostly
rejected before prices are changed), are the preferred ones after
product prices are modified.

5. Final remarks

Based on the key role of order acceptance in MTO manufactur-
ing systems, a novel hierarchy of functions for intelligent order
management when demand exceeds capacity has been proposed.
As the key piece of this hierarchy, the OA-agent has the role of
deciding which orders are worth negotiating and which orders
can be released to the shop-floor so as to attempt their insertion
into the current production schedule. For negotiation, the OA-
agent resorts to the clear-cut criterion that the order value for
acceptance (o, acc) should be greater than #(o, rej) to pinpoint

which attributes (size, revenue, product mix, etc.) must be changed
in order to make the order part of the acceptance set, i.e. where
(0, acc) > %(o, rej). The attractiveness (value) for acceptance of a
given order is thus heavily dependent on its attributes regarding
the objective of maximizing the short-term revenue but also de-
pends on market factors such as arrival rates of orders with higher
2-values for acceptance. Thus, values for acceptance and rejection
of an order are dynamic entities which require that the OA-agent
includes an active exploration strategy which allows conveniently
updating the OA policy to cope successfully with environmental
changes. The proposed algorithm ARLOA integrates all the means
required for effectively learning #-values under uncertainty.

The importance of developing an OA policy under uncertainty
using the ARLOA algorithm have been highlighted for MTO systems
subjected to unknown order types and environmental changes re-
lated to profitability and arrival rates. To deal with many sources of
uncertainty for revenue management, the idea of integrating order
similarity and locally weighted learning for dynamic order accep-
tance in an over-demanded MTO manufacturing system is pro-
posed. Since order attributes vary over a continuum, the
presented work deliberatively resorts to attribute similarity in or-
der to estimate order #-values from previously accepted orders
using a distance (kernel) function. This is very important for defin-
ing a reward function which not only provides rewards for ac-
cepted orders but also for rejected ones. In previous related
works by Mainegra Hing (2006) and Mainegra Hing et al. (2007),

900
800
£ 700+
S
c 600
S
® 500
2
= 400 -
3
by 300 B
= 0l — ARLOA |
—e— Heuristic (50)
100 —— Heuristic (40) {
. -+ Heuristic (60)
O | | ral | | | 1
0 20 40 60 80 100 120 140 160
Weeks

Fig. 12. Learning curves for ARLOA and three heuristic rules to accommodate arrivals of a new order type (Case 3).
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type orders are already arriving (Case 3).

Table 4
Due date negotiation of more profitable orders (Case 4).
P1 P2 P3 P4
Products attributes
Revenue ($/kg) 5 2 1 0.5
#1 #2 #3 #4 #5
Order type attributes
Arrival percent (%) 5 20 30 30 15

zero reward is given to rejection decisions which is no indicative at
all of the goodness or badness of rejecting some order types. As a
result, the proposed ARLOA algorithm is very effective to quickly
learn which orders are worth accepting and to distinguish them
from those orders whose rejection is mandatory to accept more
profitable orders in the near future.

The issue of policy adaptation has been addressed by providing
a special meaning to the notion of exploitation and exploration
along with conveniently resetting the maximum level of explora-
tion. To this aim, the order_list found by the OA-agent at each deci-
sion epoch has been divided into the acceptance set and the
rejection set. For exploitation, only orders in the acceptance set
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Fig. 15. Selectivity for ARLOA and OA heuristic (50) compared in Case 4.

Table 5
Product price changes (Case 5).
P1 P2 P3 P4
Products attributes
Revenue (before change) 5 2 0.5
Revenue (after change) 3 6 1.5 1
#1 #2 #3 #5 #4
Order type attributes
Arrival percent (%) 10 20 30 30 10

should be accepted. However, to discover new order types, and
to adapt to lower arrival rates of more profitable order types, the
OA-agent should also continuously explore by choosing orders
from the rejection set. The trade-off between exploitation and
exploration is a tricky issue that has been successfully addressed
here by resetting. The ARLOA algorithm resorts to a steady lower-
ing of the exploration parameter ¢ until a resetting event occurs.
Exploration resetting is mainly based on monitoring certain indices
such as the short-term average revenue or a bottleneck resource
utilization. There can be more elaborated strategies for resetting
exploration, but this one is very simple and was able to provide a
quick enough response to environmental changes affecting the
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Fig. 14. Learning curve for ARLOA and heuristic (50) when due date negotiation of more profitable orders is allowed (Case 4).
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2-values for acceptance and rejection upon which the OA policy is
defined.

There are several avenues which are being pursued to further
the research presented in this work. The issue of developing a

meta-learning layer based on adaptive clustering techniques is
one problem currently being addressed. There are many advanta-
ges of explicitly identifying clusters of similar orders based on val-
ues for acceptance and rejection. Firstly, the OA policy can be easily
understood in the attribute space using order types which are part
of the learning process. Secondly, OA heuristics can be generated
and human supervision of the OA policy is thus much easier. Also,
propagation of #-values using adaptive clustering is a very effec-
tive approach which may provide a definitive advantage in terms
of learning rate and policy adaptation. Another research avenue
which is being tackled is introducing order recognizers to define
archetypes (features) of order attributes for automatic character-
ization of a priori unknown order type. Finally, agent roles such
as negotiation, order acceptance and order insertion, defined in
the intelligent OA hierarchy of Fig. 1, are currently being used to
define a multi-agent architecture for order management in MTO
systems.

References

Atkeson, C., Moore, A., & Schaal, S. (1997). Locally weighted learning. Artificial
Intelligence Review, 11, 11-73.

Barut, M., & Sridharan, V. (2004). Design and evaluation of a dynamic capacity
apportionment procedure. European Journal of Operational Research, 155,
112-133.

Barut, M., & Sridharan, V. (2005). Revenue management in order-driven production
systems. Decision Sciences, 36, 287-316.

Calosso, T., Cantamessa, M., Vu, D., & Villa, A. (2003). Production planning and order
acceptance in business to business electronic commerce. International Journal of
Production Economics, 85, 233-249.

Calosso, T., Cantamessa, M., & Gualano, M. (2004). Negotiation support for make-to-
order operations in business-to-business electronic commerce. Robotics and
Computer-Integrated Manufacturing, 20, 405-416.

Das, T., Gosavi, A., Mahavedan, S., & Marchalleck, N. (1999). Solving semi-markov
decision problems using average reward reinforcement learning. Management
Science, 45(4), 560-574.

Defregger, F., & Kuhn, H. (2007). Revenue management for a make-to-order
company with limited inventory capacity. OR Spectrum, 29, 137-156.

Ebben, M., Hans, E., & Olde Weghuis, F. (2005). Workload based order acceptance in
job-shop environments. OR Spectrum, 27, 107-122.

Enns, T. (2000). Evaluating shop-floor input control using rapid modelling.
International Journal of Production Economics, 63(3), 229-241.

Enns, S., & Costa, M. (2002). The effectiveness of input control based on aggregate
versus bottleneck work loads. Production Planning and Control, 13, 614-624.
Herbots, J., Herroelen, W., & Leus, R. (2007). Dynamic order acceptance and capacity
planning on a single bottleneck resource. Naval Research Logistics, 54(8),

874-889.

Ivanescu, C., Fransoo, J., & Bertrand, J. (2002). Makespan estimation and order
acceptance in batch process industries when processing times are uncertain. OR
Spectrum, 24, 467-495.

Ivanescu, C. (2004). Order acceptance under uncertainty in batch process industries.
PhD thesis, Technische Universiteit Eindhoven, Eindhoven.

Jalora, A. (2006). Order acceptance and scheduling at a make-to-order system using
revenue management. PhD thesis, Texas A&M University.

Please cite this article in press as: Arredondo, F., & Martinez, E. Learning and adaptation of a policy for dynamic order acceptance in make-to-order man-
ufacturing. Computers & Industrial Engineering (2009), doi:10.1016/j.cie.2009.08.005



http://dx.doi.org/10.1016/j.cie.2009.08.005

14 F. Arredondo, E. Martinez/Computers & Industrial Engineering xxx (2009) XXx—-Xxx

Ten Kate, H. (1994). Towards a better understanding of order acceptance.
International Journal of Production Economics, 37, 139-152.

Mainegra Hing, M., van Harten, A., & Schuur, P. (2001). Order acceptance with
reinforcement learning. Technical Report 66. University of Twente, Netherlands.

Mainegra Hing, M. (2006). Order acceptance under uncertainty: A reinforcement
learning approach. PhD thesis, Universiteit Twente, Technische Universiteit
Eindhoven, Netherlands.

Mainegra Hing, M., van Harten, A., & Schuur, P. (2007). Reinforcement learning
versus heuristics for order acceptance on a single resource. Journal of Heuristics,
13, 167-187.

Moreira, M. (2005). Planning and controlling job-shop operations. PhD dissertation,
Faculty of Economics, University of Porto, Portugal.

Nandi, A., & Rogers, P. (2003). Behavior of an order release mechanism in a make-to-
order manufacturing system with selected order acceptance. In Proceedings of
the 2003 winter simulation conference (pp. 1251-1259).

Nandi, A., & Rogers, P. (2004). Using simulation to make-to-order acceptance/
rejection decision. Simulation, 80(3), 131-142.

Nawijn, W. (1985). The optimal look-ahead policy for admission to a single server
system. Operations Research, 33(3), 625-643.

Philipoom, P., & Fry, T. (1992). Capacity-based order review/release strategies to
improve manufacturing performance. International Journal of Production
Research, 30(11), 2559-2572.

Quante, R., Meyer, H., & Fleischmann, M. (in press). Revenue management and
demand fulfilment: Matching applications, models, and software. OR Spectrum.
doi: 10.1007/s00291-008-0125-8.

Raaymakers, W. (1999). Order acceptance and capacity loading in batch process
industries. PhD thesis, Technische Universiteit Eindhoven, Netherlands.

Raaymakers, W., Bertrand, J., & Fransoo, J. (2000a). The performance of workload
rules for order acceptance in batch chemical manufacturing. Journal of
Intelligent Manufacturing, 11, 217-228.

Raaymakers, W., Bertrand, J., & Fransoo, J. F. (2000b). Using aggregate estimation
models for order acceptance in a decentralized production control structure for
batch chemical manufacturing. IIE Transactions, 32, 989-998.

Schwartz, A. (1993). A reinforcement learning method for maximizing
undiscounted rewards. In Proceedings of the tenth international conference on
machine learning (pp. 298-305).

Singh, S. (1994). Reinforcement learning algorithms for average-payoff markovian
decision processes. In Proceedings of the 12th national conference in artificial
intelligent, 2002-2007. MIT Press.

Smart, W., & Pack Kaelbling, L. (2000). Practical reinforcement learning in
continuous spaces. In Proceedings of the 17th international conference on
machine learning (pp. 903-910). Morgan Kaufmann.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. London,
England: MIT Press.

Snoek, M. (2000). Neuro-genetic order acceptance in a job shop setting. In
Proceedings of 7th international conference on neural information processing,
Korea (pp. 815-819).

Wang, ], Yang, J., & Lee, H. (1994). Multicriteria order acceptance decision support
in over demanded job-shops: A neural network approach. Mathematical and
Computer Modelling, 19(5), 1-19.

Wester, F., Wijngaard, J., & Zijm, W. (1992). Order acceptance strategies in a
production-to-order environment with setup times and due-dates. International
Journal of Production Research, 30(6), 1313-1326.

Wight, 0. (1970). Input/output control: A real handle on lead time. Production and
Inventory Management Journal, 11(3), 9-30.

Wouters, M. (1997). Relevant cost information for order acceptance decisions.
Production Planning and Control, 8(1), 2-9.

Zorzini, M., Corti, D., & Pozzetti, A. (2008). Due date (DD) quotation and capacity
planning in make-to-order companies: Results from an empirical analysis.
International Journal of Production Economics, 112(2), 919-933.

Please cite this article in press as: Arredondo, F., & Martinez, E. Learning and adaptation of a policy for dynamic order acceptance in make-to-order man-
ufacturing. Computers & Industrial Engineering (2009), doi:10.1016/j.cie.2009.08.005



http://dx.doi.org/10.1007/s00291-008-0125-8
http://dx.doi.org/10.1016/j.cie.2009.08.005

	Learning and adaptation of a policy for dynamic order acceptance in make-to-order manufacturing
	Introduction
	Intelligent order acceptance
	Learning and adaptation
	Order acceptance decision process
	Average-reward reinforcement learning
	Value generalization and order similarity
	Exploitation vs. exploration
	ARLOA algorithm

	Case study and results
	Description
	Results
	Case 1: base case
	Case 2: adaptability
	Case 3: a new order type
	Case 4: due date negotiation
	Case 5: changes in product prices


	Final remarks
	References


