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Abstract

This article presents a solution to pH control based on model-free learning control (MFLC).
The MFLC technique is proposed because the algorithm gives a general solution for acid-base
systems, yet is simple enough for implementation in existing control hardware. MFLC is based
on reinforcement learning (RL), which is learning by direct interaction with the environment. The
MFLC algorithm is model free and satisfying incremental control, input and output constraints.
A novel solution of MFLC using multi-step actions (MSA) is presented: actions on multiple time
scales consist of several identical primitive actions. This solves the problem of determining a
suitable fixed time scale to select control actions so as to trade off accuracy in control against
learning complexity. An application of MFLC to a pH process at laboratory scale is presented,
showing that the proposed MFLC learns to control adequately the neutralization process, and
maintain the process in the goal band. Also, the MFLC controller smoothly manipulates the control
signal.
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learning, neutralization process, pH control
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1. INTRODUCTION 
 
Control of pH in neutralization processes is a ubiquitous problem encountered in 
chemical and biotechnological industries. For example, pH value is controlled in 
chemical processes such as fermentation, precipitation, oxidation, flotation and 
solvent extraction processes. Also, controlling the pH in food and beverage 
production is an important issue as the growth and activity of anaerobic 
microorganisms are largely pH dependent. Also, in the decomposition section of 
Sucono/UOP Phenol Process: The acid catalyst that is added in the decomposition 
section must be neutralized to prevent yield loss due to side reactions and protect 
against corrosion in the fractionation section (Schmidt, 2005). 

Control of pH also involves the chemical equilibrium, kinetic, 
thermodynamic and mixing problems. In designing controllers, these 
characteristics must be considered (Gustafsson et al., 1995). By considering them, 
it makes difficulty to design a controller. In other hand, the process buffer 
capacity varies with time, which is unknown and dramatically changes process 
gain. This can be understood as, for example, if either the concentration in the 
inlet stream or the composition of the feed changes, the shape of the titration 
curve will be drastically altered. Therefore, the process nonlinearity becomes 
time-varying and the system moves among several titration curves. Consequently, 
it is difficult to develop appropriate mathematical models of the pH process for 
control design. 

Intelligent control strategies have been proposed for pH control applying a 
wide array of techniques such as fuzzy control (Fuente et al., 2006) and neural 
networks (Ramirez and Jackson, 1999). Fuzzy self tuning PI control (Babuska et 
al., 2002) and fuzzy internal model control (Edgar and Postlethwaite, 2000) have 
also been implemented to control pH processes.  

The approaches cited above have several difficulties for practical 
applications, and also are difficult when tackling control system design. The 
resulting control structures are complex and difficult to supervise. They might be 
conservative or may have many tuning parameters. Thus, tight and robust pH 
control is often difficult to achieve due to the inherent uncertain, nonlinear and 
time varying characteristics of pH neutralization processes. 

This paper discusses an alternative approach to solve the pH control 
problem by applying Model-Free Learning Control (MFLC) (Syafiie et al., 2004; 
2005; 2006a; 2006b), based on the reinforcement learning (RL) framework 
(Sutton and Barto, 1998).  

In standard RL algorithms, like Q-learning, there is a difficulty for Process 
Control implementations: these algorithms scale very badly with increasing 
problem size, granularity of states or control actions. Among others, one intuitive 
reason for this is that the number of decisions from the start state to the goal state 
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increase exponentially.  
According to the problem size, to keep tractable the number of decision to 

be taken to reach the goal state, hierarchical approaches based on temporal 
abstraction have been proposed. Temporal abstraction can be defined as an 
explicit representation of extended actions, as policies together with a termination 
condition (Precup, 2000). The original one-step action is called primitive action. 
Semi Markov Decision Processes (SMDPs) is the theory used to deal with the 
temporal abstraction as a minimal extension of RL frameworks. SMDPs is a 
Markov Decision Processes (MDP) appropriate for modeling continuous-time 
discrete-event systems.  

Several RL algorithms resorting to hierarchical temporal abstraction 
approaches have been proposed: Options (Sutton et al., 1999); Hierarchy of 
Abstract Machine (HAM) (Parr, 1998); MaxQ (Dietterich, 1997) and Multi-step 
actions (MSA) (Riedmiller, 1998). The first three methods are based on the notion 
that the whole task is decomposed into subtasks each of which corresponds to a 
subgoal. The last one, using MSA, is very convenient for process control 
application where typically the most appropriate time scale for defining control 
actions is unknown in advance. 

The paper is organized as follows. A short introduction to reinforcement 
learning is given in section 2. The architecture of model-free learning control 
(MFLC) for chemical process is discussed in section 3, followed by MSA 
approach in section 4. In sections 5 and 6, the application to real laboratory plant 
and discussion are given. Section 7 gives some conclusions.   
 

2. REINFORCEMENT LEARNING 
 
Reinforcement Learning (RL, for short) can be defined as ‘learning what to do by 
doing’, i.e. how to map perceptions of process states to control actions, so as to 
maximize an externally provided scalar reward signal. According to this 
definition, the learning agent (controller) is not instructed to act under the tutelage 
of an exemplar teacher, as in most forms of supervised learning, but instead must 
try control actions seeking out those that provide the maximum cumulative 
reward. These algorithms are based on online learning directly from the closed-
loop behavior of the plant.  

The learning algorithm in RL emphasizes the interaction between an 
active decision-making agent (or an intelligent controller) and its target dynamic 
system or plant (see Figure 1). In the latter, a desired behavior or control goal is 
permanently sought despite lacking a priori knowledge about system dynamics 
and the influence of external disturbances, including other controllers. The reward 
function can also incorporate information on one or more preference indices. 
These preferences define the most desirable ways for achieving a control goal (or 
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objective) and are the basis for assigning rewards (or penalties) to a learning 
controller.   
  An agent (called controller) interacts with its environments (controlled 
system or plant). They interact continually: the agent selects an action and then 
the environment responds to the action and presents a new state or situation to the 
agent. The agent uses features from the new situation as clues for decision making 
in the next time step, can be seen in Figure 1. 
 

Agent

Environment

action
at

reward
rt

state
st

rt+1

st+1

 
 
Figure 1. An agent interacts with its environment: dash line represents delay. 
 

Achievement of the control goal and preference optimization demands 
foresight to account for indirect, delayed consequences of control actions. This is 
particularly critical for a chemical plant where material recycles gives rise to 
process dynamics slowly unfolds over time. This goal-oriented perspective of 
control actions gives rise to a central problem of RL: to devise a computational 
approach with the capability of apportioning rewards over a sequence of actions, 
taking into account the control goal to be achieved and the preferences to be 
optimized. A key concept in this regard is that of an action-value function, which 
has permitted an important breakthrough in the analysis and design of RL 
algorithms (Sutton and Barto, 1998). 

When resorting to controller/process interactions for learning, four typical 
components of an RL algorithm can be identified: a control policy, a reward 
function, a value function, and a learning algorithm. The control policy or 
feedback law is a dynamic relationship (i.e. changes with interaction) that defines 
which action to take at a given state bearing in mind the achievement of the goal 
and optimizing the preferences. The other components serve as means to learn 
and improve the control law; i.e. their existence is only justifiable on the grounds 
of being components of learning algorithms for the control law. 

When the desired goal has been reached (reward) or when the system has 
failed (punishment) a signal indicates the success or failure after a sequence of 
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action has been taken. This signal is called delayed reinforcement signal. 
 
2.1 Reward function 
 
The reward function translates the goal and preferences into single numbers 
indicating the short-term benefit or reward rt+1 of taking the action at at a given 
state or situation st. Note that the reward is a single number that varies from one 
decision step to another. However, the very purpose of the control law is to 
maximize the cumulative reward that can be obtained over the next h steps in the 
sequence of rewards that follow the time step t denoted by rt+1, rt+2, rt+3,..., rh. The 
cumulative reward Rt that can be obtained from time t on is just the return, defined 
as: 
 
  rt+1+rt+≡tR +rt+3+...+rh.                                   (1) 2

 
To make definition (1) more mathematically tractable for long-sequence of 

controls (i.e. when h → ∞) it is better to geometrically discount rewards using a 
recency factor γ, (where 0 ≤ γ ≤ 1): 
 

     .
0
∑
∞

=

=
t

t
t

t rR γ                                             (2) 

 
The discount factor γ is used to weight near term reinforcements more 

heavily than distant future reinforcements. If γ is small, the agent learns to behave 
only for short-term reward. The closer γ  is to 1 the greater the weight assigned to 
long-term reinforcements. 

Using the return Rt, it is possible to assess how good (or bad) is to take the 
action at  at the state st, from the point of view of the control goal and the chosen 
preferences. This forms the basis for defining the action-value function. To 
clearly distinguish between the effect on Rt of at from the effect on Rt of decisions 
to be taken later in sequel, the action-value function is defined as follows. At time 
step t, the action-value function approximates the expected value of Rt upon 
executing at when st is observed and acting optimally thereafter. This function is 
called an action-value function and is mathematically defined by 
 

{ }.,),( aassREasQ ttttt ===                 (3) 

The main issue to be solved during learning is the dilemma of exploration 
versus exploitation. To exploit what it is already known, good estimates of the 
actual value of actions at different states are needed. For this, exploration of 
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actions with apparently lower values must be tried. To exploit more after learning 
it is necessary to explore more during learning.  
 
2.2 Q-Learning Algorithm 
 
A policy, π(st, at), is defined via the action value function, with represent how 
much the future rewards the agent would get by taking the action at at state st and 
following the current policy in subsequent steps. Equation 3 can be rewritten as an 
immediate reinforcement, plus a sum of future reinforcements:  
 

( ) ( ) ( ) .,,,
1 ⎭

⎬
⎫

⎩
⎨
⎧ += ∑

=
++

T

k
ktkt

k
tttt asRasREasQ γππ                 (4) 

 
The equation can be updated by substituting the sum of future 

reinforcements with the estimated value function: 
 

( ) ( ) ( ) ( ) ( ){ },,,,,, 11 tttttttttt asQasQasREasQasQ πππππ γ −++← ++               (5) 
 
where the expected discounted reinforcement of taking action at is taken over the 
next state, st+1, given that the current state is st. A model of state transition 
probabilities is needed. If it does not exist, a Monte Carlo approach can be used in 
which a single sample replaces the expectation, and the value function is updated 
by a fraction of the difference (Anderson et al, 1997): 
 

( ) ( ) ( ) ( ) ( )[ ],,,,,, 11 ttttttttttt asQasQasRasQasQ ππππ γα −++← ++                    (6)    
 
where the learning rate, 0 ≤ α ≤ 1, is tuned to maximize the speed of learning, as 
small learning rates induce slow learning, and large learning rates induce 
oscillations. Value iteration is applied to increase the action-selection policy and 
achieve optimal control. This dynamic programming method combines steps of 
policy evaluation with policy improvement. The update corresponds to the 
equation: 
 

( ) ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −++← +∈ tttAbttttttt asQbsQasRasQasQ ,,max,,, 1 ππππ γα                  (7) 

 
This equation is known as Q-learning algorithm, which is used to improve 
optimal control.  
 The agent knows neither exactly the optimal value function nor the correct 
estimation of the dynamic environment. If the agent knows and estimates this 
value correctly, the policy can select a greedy action in each time step. This is 
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called exploitation. However, the agent should execute trial actions in order to 
know the optimal value function. This is called exploration.     
 In this study, the ε-greedy policy explores and exploits the available 
actions with ε probability of choosing an apparently nonoptimal action. The 
action which has maximum Q-value will be selected with (1-ε) probability and the 
rest will explore and exploit nonmaximum-Q-value-action. The exploration of 
choosing nonmaximum-Q-value-action is chosen based on uniform distribution.  

 
3. MODEL-FREE LEARNING CONTROL  

 
The proposed Model-Free Learning Control (MFLC) architecture can be seen in 
Figure 2. First, the “Situation” block preasents the next state and the 
corresponding reward, based on the desired setpoint and measured output. This 
presentation is based on Boolean or fuzzification functions. In current state, the 
agent uses the “Policy” to select an action from those available. Then, control 
signal ut is calculated in “Calculate U” block and actuated to the plant. The 
selected action is then criticized by using “Critic” block as “good” or “bad” one 
based on evaluation what happens in the plant after applying the selected action, 
which is based on measurement in the next step.  

The proposed MFLC in this study is based on this architecture. The policy 
block on Figure 2 can be any strategy or algorithm to select actions. For one step 
learning, every action chosen by the agent in this application is criticized time to 
time. Whereas, for temporal abstraction (extended actions), the agent applies the 
selected action for several time steps until termination condition is satisfied. 
Undoubtedly, when the agent selects temporal abstraction, the policy will be hold 
until termination condition. Soon after the termination condition is reached, and 
then the policy will be used to explore and select the optimal action.  
 

Policy

Critic

Calculate USituation Plant
sp

rt+1 rt

st+1 st

st+1
st

rt+1

action

Q
-value

action ut yt

Controller

 
Figure 2.  Model-Free Learning Control Architecture. 

 
Compared to other control techniques based on learning, the proposed 
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MFLC has some clear advantages: 
o It is possible to put in the design of the controller a priori knowledge about the 

plant. 
o The control algorithm is quite simple from a computational point of view, so it 

is feasible to implement using low-cost hardware. 
o It is possible to derive and obtain a feedback control law from an optimal 

control point of view based on actual experience rather than a process model, 
which makes it attractive for Control and Plant Engineers. 

 
3.1 State definition in MFLC 
 
In MFLC, symbolic states are defined as the length of error from desired setpoint. 
The symbolic state is represented as in Figure 3.  
 

st

et

r
 

Figure 3. State is the length of error from the reference in current time. 
 

It is introduced a band in desired control objective to allow some tolerance   
error, which makes room to allow noise. Therefore, the objective can be 
augmented to have the output of the system being in the bound, ηη ≤≤− r , all 
time. This band is called the goal band, and it is defined as goal state. The other 
symbolic states are defined as how far from this band that the controller has to 
explore finding optimal actions to achieve the goal band. For example, the outer 
state is when the error of system is bigger or smaller than r±η±n, respectively. 
This means that when the system in this band, the controller provides a control 
signal by exploring in this area.   

Usually, the available states are defined based on the length of n from the 
goal state, which is depicted in Figure 4. Generally, the longer n is from the goal 
state, the more states are available for the controller to be learned and explored 
the environment. The parameter n, is a unique solution, can be selected as a 
region where the controller explores to provide actions to learn the environment.  
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Outer 
State

Outer 
State

r ηη− n-n

Goal State

Other StatesOther States

 
Figure 4. States definition from desired point. 
 
3.2 Action Definition 
 
Applying RL for process control, the number available actions leading to control 
signals will be a huge space. However, the number of actions in MFLC can be 
reduced by bounding the incremental control signal as a function of the state. This 
function is as follows: 
 
( ) ( ) ( ),iii ssus ξς ≤Δ≤                    (8) 

 
where ζ(si) and ξ(si), respectively, are lower and upper bound constraints of the 
agent can manipulate previous control signal when the system is in state si. This 
means that increase or decrease previous control signal is allowed on the 
limitation, when the system is within the state st in time t. In the goal state, a wait 
action, which is for keeping previous control signal, is defined.  

With respect to the constraints (9), the control signal can be calculated as 
follows: 
 

( ),w
s
op aaku i −=Δ                    (9) 

 
where 0<k<1 is gain, is

opa  is optimal actions selected by the agent and aw is wait 
action. Wait action means that when the system is in the goal state, sg, the agent 
selects action, gs

opa , that is equal to aw. Therefore, the right hand side of the 
equation (10) is zero. 

The action, is
ba , satisfying lower bound constraint of incremental control 

signal is calculated in state si as follows: 
 

( ) .w
is

b a
k
sa i +=

ζ                    (10) 
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The action, is
pa , satisfying upper bound constraint of incremental control 

signal in state si is calculated as  
 

( )
.w

is
p a

k
s

a i +=
ξ

               (11) 

 
( )ii s

p
s
b aad , , in state si is   The distance between these actions,

 

( ) ( ) ( )
.,

k
ss

aad iis
p

s
b

ii
ξζ −

=                  (12) 

 
It stresses out that k, ζ(si), ξ(si) are chosen such that , is

pais
ba  are integers, so 

that the distance between this actions is also going to be integer. 
The actions in state si between ,  are: is

pais
ba

 
[ ] [ ].,,1,0,1,,2,1, dddjdaa ii s

b
s
j LL ∈+∈+=                           (13) 

 
In state 1, the action satisfying the lower bound incremental constraint is 

action 1. Therefore, wait-action is calculated from Equation 10, as follows: 
 

.1 1

k
a w

ζ
−=                             (14) 

 
The distance between lower and upper constraints can be a fixed value for 

all available states, or can be also chosen different values as a function of states. 
Usually, in the goal state the distance is chosen smaller or even to keep previous 
control signal. If the fixed value is chosen, it means that the agent has the same 
space in every given states to explore in order to provide optimal control signal. 
Therefore, the available actions are the same in every visited state. Difference 
values give different spaces for the agent to learn to present optimal control signal 

 
4. MFLC (MSA) 

 
In this paper the concept of MSA (Schoknecht and Riedmiller, 2003) is applied to 
pH control because it is best suited for systems where no decomposition in 
subgoals is known in advance. As in the general framework defined by Sutton et 
al. (1999), MSA is a special type of semi-Markov option. A Markov option would 
require a state-dependent termination condition. In the MSA algorithms, the 
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termination condition is applied after executing a sequence of m primitive actions. 
The MSA method is a method enabling an intelligent control to learn a 

control policy by using multiple time scales simultaneously. The MSA consists of 
several identical actions in the primitive time scale. This algorithm is possible to 
increase responsiveness and add flexibility to the controller behavior. Also, giving 
a learning controller the possibility of using MSA to reach the goal can improve 
the speed of learning and reduce control efforts. This approach has been 
successfully applied in a simple thermostat control (Riedmiller, 1998; Schoknecht 
and Riedmiller, 2003). Thus, we think that the algorithm can be extended to 
complex and highly nonlinear problem, such as the pH control problem.  

MFLC based on MSA seems to be a promising approach to overcome the 
pH problem as mentioned above because the control law can easily adapt to 
varying scenarios by online learning. By experiencing a sequence of identical 
actions applying for pH process, the agent can speed up learning and planning, to 
maintain the process in the desired pH value. In order to explore the set of 
possible actions and acquire experience through the reinforcement signals, the 
actions are selected using an exploration/exploitation policy. In this study ε-
greedy policy is applied to select one of the available actions in visited state and 
experience it for a multiple time steps of the plant. The ε-greedy policy has been 
selected because it gives better performance for pH process than softmax policy 
(Syafiie et al., 2004).  

This proposed solution can be used for general-purpose system control in 
acid-base process, providing the user-friendly and smart control system that users 
demand. The advantages of MFLC based on MSA are: 
o no precise quantitative knowledge of the process is available,  
o no process identification mechanism (identifier is included in the system, 

which is an online learning), no controlled design for a specific process is 
needed,  

o simple manual tuning of controller parameter is required and stability analysis 
criteria are available to guarantee the closed-loop system stability, 

o compared to the standard RL, this Q-learning-modification (MSA) algorithm 
is proposed for pH process because it can extract more training examples from 
the each experimental run. The agent executes a primitive action and applies it 
for m time steps.  

The idea of MSA is based on a set of all multiple step actions of degree m, 
defined as , where am denotes the MSA that arises if action a is 
executed in m consecutive time steps (Schoknecht and Riedmiller, 2003). The 
next action will be executed after the whole MSA has been applied. Thus, the 
MSA has a time-dependent termination condition after m primitive time steps.  

( ) ( ){ 1| AaaA mm ∈= }

The concept of MSA can be integrated in learning algorithms, such as Q-
learning. For example, when the controller executes action am of degree m in state 
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se the environment makes transition to state sn after m time steps. The state-action 
value can be updated as follows: 

 

( ) ( ) ( ) ( ) ( )⎥⎦⎤⎢⎣
⎡ −++←

∈

m
eenAb

mm
ee

m
ee

m
ee asQbsQasrasQasQ ,,max,,, γα           (15) 

 
where 
 

( ) ∑
−+

=

−=
1

,
mi

i
as

im
ee rasr

τ

τ
τ

γ  

 
( )m

ee asQ ,where  is Q-value for state-action where MSA is executed in state se, and 
Q(sn, b) is Q-value for next state, α is learning rate, and γ is discount factor. When 
action am with degree m is selected in se, the environment makes a transition to 
se+m with reward ( )m

ee asr , . When executing am, all actions ai, e = 1, 2, …, m – 1 are 
executed implicitly. The transition from se to state se+m contains all information 
necessary to update the Q-values for those lower-level actions at all intermediate 
states.  

This paper also proposes to introduce additional closed-loop termination 
conditions in order to study flexibility and speed up learning and planning. 
Besides the m time steps termination condition (Syafiie et al., 2005), two new 
termination conditions are introduced: the MSA execution finishes if the process 
reaches the goal band and/or if the control goal has changed (for example the 
desired setpoint). If in time t the agent executes MSA for m time step, but in time 
t+j (m>j), the control goal has been changed. Therefore, the MSA should 
terminate on time t+j.  

 
5. APPLICATION TO PH PROCESSES 

 
This section describes the proposed MFLC (MSA) implementation to a pH 
process.  
 
5.1 States and Reward 
 

The main control objective is to maintain the pH inside a band of ±δ 
around the desired setpoint (the width of this band is defined by measurement 
noise in the process and allowed tolerance). This band is defined as the goal state. 
Other states are defined in accordance to values of the pH outside this band, as 
depicted in Figure 5. 

To classify the reading of pH and to select an action available in each 
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visited state, this study uses 11 symbolic states, where the goal state is 6 
(corresponds to the desired pH band). The number of states is selected to satisfy 
the error of the pH process. For example, the states are defined for     ( ) .11 ≤−≤− ry

 

rReward

Punishment

y(t)

Punishment

Punishment

Punishment

Punishment

Punishment

Punishment

Punishment

r+δ

r+δ+2η

r+δ+4η

r+δ+6η

r+δ+8η

Punishment

Punishment state 1

state 2

state 3

state 4

state 5

state 6

state 7

state 8

state 9

state 10

state 11

r-δ

r-δ-2η

r-δ-4η

r-δ-6η

r-δ-8η

 
Figure 5. Control objective and definition of states. 

 
5.2 Control Actions 
 
The available actions in every state are defined satisfying incremental constraint: 
 

( )
( )

( )⎩
⎨
⎧

==Δ

≤≠Δ<
=Δ

0

0

gi

gi
i ssu

ssu
su

μ
             (16) 

 
where sg is goal state, and μ is the upper limit incremental constraints in state si. 
From this defined incremental constraint, the available actions are calculated as in 
Syafiie et al. (2006a).  

In MFLC, the agent selects an action and executes it in current time and 
receives the next reward. From the chosen action, the control signal, ut, is 
calculated as follows: 

 
( )twtt aakuu −+= −1                         (17) 

 
where at is the optimal action chosen by the controller from those available 
actions in every visited state, and aw is the wait action where there is no change to  
the previous control signal. For example, if the system has three actions, where 
action one is to increase the previous control signal, action two is to maintain the 
previous control signal and action three is to decrease it. Therefore, action two is 
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called wait action. The controller gain, k, is a tuning parameter that can be 
selected to weight how much to increase or decrease previous control signal.  

The number of actions in every state is calculated as follows: 
  

( ) .1+=
k

sN i
μ                (18) 

 
It is stress out that μ and k are chosen such that μ/k is integer, so that the 

number of actions N is also integer.  
The probability that the system moves to a new state from the current state 

depends on the system behavior following the execution of the chosen action. For 
instance, if the process is in state 1, and the controller chooses action 1, the 
process may move either to state 2 or to another state or stay in state 1.  

These states and reward are defined by a parameter that refers to the 
setpoint, r, as a desired output. The goal state is restricted by boundary values: 
upper, r+δ, and lower, r-δ as shown in equation 16. The maximum reward is 
introduced in the goal state. When the system is outside the desired band, the 
controller is punished by negative rewards. This reward function is applied in 
each state as a single number:  

 

⎩
⎨
⎧
−

+<<−
=

else
rpHrif

reward
1

,1 δδ
                      (19)

             
MFLC uses zero initial condition for the values of the (tabular) Q-

function. This value entry in Q is updated by each time when following an action 
the process situation changes. When the environment changes, for example, the 
setpoint changes, the action-value function Q is immediately reset to an initial 
condition. Resetting Q-values to their initial values makes possible for the agent 
to learn new environment without any influence from the past learning onto the 
new environment.  
 
5.3 MFLC (MSA) Control Algorithm 
 
The MSA algorithm developed for the learning system is as follows: 

1. Observe/Read the state st 
2. Select an action at, this action is chosen from state st using ε-greedy policy 
3. Apply the selected action at for n time steps 
4. Do until terminating condition m=n 

1. Read the resulting state st+m 
2. Update Q-value using Equation (8) 
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6. RESULTS AND DISCUSSION 

 
The experimental results section describes and discusses the application of MFLC 
based on RL to a pH process control on the laboratory plant.  
 
6.1 Description of the Experimental Setup 
 
The experimental setup consists of a continuous stirred tank reactor (CSTR) 
where a process stream (sodium acetate) should be maintained at a certain pH 
value for which it is titrated with a solution of hydrochloric acid (HCl). The 
solution of sodium acetate (CH3COONa) is prepared using various concentration 
levels. The hydrochloric acid is prepared 1% of volume. It is assumed that the 
mixing in the tank is homogeneous; therefore, the concentration in the effluent 
stream is similar to the concentration in the reactor.  

For the experimental process, the zero initialized Q-value is used. The 
value of the meta – parameter for the agent are selected to be: discount factor, 
γ=0.98 and learning rate, α=0.1, which were determined to be a good values from 
previous work (Syafiie et al., 2004).  

As mentioned above, the defined system has eleven states. In this 
implementation, the parameters δ and η are selected to be δ=0.1 and η=0.1, based 
on the level of measurement noise and the desired operating range of pH. From 
the parameters δ and η, it can be defined that state 1 is when the measured pH is 
higher than r+δ+8η. It means that the agent is in state 1 if the pH is higher than 
r+δ+8η. State 2 is defined when the pH is lower than r+δ+8η and higher than 
r+δ+6η. The rest of the states are defined following Figure 5.  

In this application, the gain of MFLC is chosen 2×10-5 and the upper limit 
of incremental constraint is selected to be 8×10-5. Therefore, each state has 5 
possible actions, except in the goal state that has only 1 action, which is the so-
called wait action. The wait action is chosen to be 22, which is no manipulation of 
previous control signal. In this MSA application, 3 identical primitive actions are 
executed in every multiple time scale. 

In MFLC, the ε-greedy policy is applied for choosing an action in every 
visited state of the pH process. Parameter ε used in the ε-greedy policy is selected 
to be ε=0.1, to leave space for the agent to explore the available actions. This 
means that exploration (choosing an action that does not have the estimated 
maximum action-value) will be selected with a probability of 1 out of 10, which 
represents a good compromise for controller performance, given its time-varying 
and nonlinear characteristic (less experience would be necessary if the plant were 
more linear and the concentration less uncertain). 
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6.2 Experimental Results and Discussions 
 
The application of the proposed MFLC (MSA) controller to the laboratory plant 
shows that the responses of the process are reasonably well. It can be seen in the 
responses of the plant by applying MFLC (MSA) controller for some changes in 
setpoint for the NaCH3CHOO – HCl system and comparison to a PID controller 
can be seen in Figure 6. Whereas, the application of MFLC (standard) can be seen 
in Syafiie et al.(2005).  

The comparison shows that the responses of the application the proposed 
MFLC (MSA) controller settle in reference faster than the PID controller. Also, 
the responses of the plant show that MFLC controller based on RL algorithms lay 
closer to the references, whereas the PID controller has higher peak of 
oscillations. 
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Figure 6. pH Responses of the application of MFLC (MSA) and PID controllers. 
 

The control signal (Figure 7) shows that the MFLC (MSA) controller 
manipulates, after learning, the actuator much smoother than a PID controller. 
Since MFLC allows a tolerance error of the process whenever the pH is within the 
control band, the control signal is smoother when the process is closer or within 
the pH band.  

Control signal produced by MFLC (MSA) is smoother than PID controller 
because the MFLC controller can only manipulate control signal satisfying 
incremental control. Also, the MFLC acts passively when the process in the goal 
band. It means that the agent resorts to the wait action.  
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Figure 7. Control Signal by using of MFLC (MSA) and PID controllers. 
 
6.3 MFLC (MSA) Termination Condition Study 
 
In this section, it is reported the study of the effect for simultaneously taking and 
executing identical actions. The proposed MFLC (MSA) algorithm was applied to 
the laboratory pH plant, for 10, 20 and 30 steps of identical actions. All 
parameters chosen are as in that section previous section and k=10-5 is selected.  
 The responses for all steps actions are plotted in Figure 8 and control 
signals are shown in Figure 9. 
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Figure 8. Online Responses of MFLC (MSA) for NaCH3COO-HCl system, for 
n=10, 20 or 30 steps. 
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Figure 9. Control signal of MFLC (MSA) for NaCH3COO-HCl system, for n=10, 

20 or 30 steps. 
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Figure 10. Detail of Responses from 10000 to 12000 secs. 
 

The online comparison responses of applying identical actions to the 
laboratory pH plant can be seen in Figure 8, which clearly shows that the 
responses are good enough and lie close to the reference. The responses of 
applying 10, 20 and 30 step-actions of MFLC (MSA) show quite similar. There 
are no significant differences that can be seen from the responses of multiple time 
steps of action courses (Figure 8). This is because the agent has the same space 
for exploring and providing actions. 

However, the agent reduces significantly the exploration time for applying 
20 step-actions. However, the responses of 30 step-actions are a little slower than 
others, because the agent has a little time to try other actions. The pattern of the 
control signal for these MFLC (MSA) algorithms, given in Figure 9, is similar.  
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7. CONCLUSION 
 
In this paper, the algorithm with multiple time scale MFLC (MSA) has been 
proposed for pH control problems and applied on a pH control process at 
laboratory scale. It has been shown that the main advantage of designing control 
systems using MFLC (MSA) is that a priori model of the process is not necessary. 
Also a simple algorithm is used that takes into account different constraints. The 
proposed algorithm, MFLC (MSA), performs reasonably well when controlling in 
real-time a pH laboratory plant. The responses of the process applying the 
proposed MFLC (MSA) show that the process regulated adequately well. Also, 
the MFLC agent manipulates smoothly the control signal.  
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