
Mathematical and Computer Modelling 49 (2009) 1372–1385

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

A multiperiod model for production planning and design in a
multiproduct batch environment
Marta Susana Moreno a, Jorge Marcelo Montagna a,b,∗
a INGAR – Instituto de Desarrollo y Diseño – CONICET, Avellaneda 3657, S3002GJC Santa Fe, Argentina
b CIDISI – Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información, Universidad Tecnológica Nacional – Facultad Regional Santa Fe,
Argentina

a r t i c l e i n f o

Article history:
Received 30 November 2007
Received in revised form 24 November
2008
Accepted 25 November 2008

Keywords:
Production planning and design
Optimization
Multiperiod model
Mixed integer linear programming

a b s t r a c t

A general multiperiod model to optimize simultaneously production planning and
design decisions applied to multiproduct batch plants is proposed. This model includes
deterministic seasonal variations of costs, prices, demands and supplies. The overall
problem is formulated as a mixed-integer linear programming model by applying
appropriate linearizations of non-linear terms. The performance criterion is to maximize
the net present value of the profit, which comprises sales, investment, inventories,
waste disposal and resources costs, and a penalty term accounting for late deliveries.
A noteworthy feature of this approach is the selection of unit dimensions from the
available discrete sizes, following the usual procurement policy in this area. The model
simultaneously calculates the plant structure (parallel units in every stage, and allocation
of intermediate storage tanks), and unit sizes, as well as the production planning decisions
in each period (stocks of both product and rawmaterials, production plans, policies of sales
and procurement, etc.).

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, one of the most important challenges faced by business is the adjustment of the firm resources in order to
satisfy market requirements subjected to fluctuations over time, mainly costs, prices, existences, demands, etc. In many
industries, products have distinctive demand patterns that vary due to market or seasonal changes coupled with raw
material supplies that also undergo changes. Because of these variations over time, there has been an increased interest
in the development of multiperiod optimization models in recent years.
Flexible production is receiving increased attention in the chemical processing industry. This flexible production leads to

faster responses to the market fluctuations and is most commonly achieved in batch plants. In this work, efforts are focused
onmultiproduct batch production environment, where several different products are produced sharing the same equipment
operating in the same sequence.
A batch process refers to a general non-continuous process that consists of multiple stages employing a combination of

identical parallel batch units. In amultiproduct batch plant each product is produced at a time. Batch units are characterized
by a processing time and no simultaneous feed and removal is performed. Also, intermediate storage tanksmay be available
between successive stages of operation in order to decouple the production process. Fig. 1 shows a plant configuration of
this type of industry.
Most of the previous approaches in batch plants used to pose models that worked with a single long time period and

constant conditions without considering variations due to seasonal or market fluctuations. Also, these previous efforts
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Notation

Subscripts

c Raw material
i Product
j Batch stage
m Number of parallel units at batch stages
s Discrete sizes for batch stages
t Time period
v Discrete sizes for storage tanks

Superscripts

d Downstream
L Lower bound
p Subprocess
u Upstream
U Upper bound

Parameters

coit Operating cost coefficient of product i in period t .
cpit Cost coefficient for late delivery of product i in period t .
CT Number of common ingredients for producing each final product i.
DEit Demand of product i at period t .
Fcit Parameter that accounts conversion of raw material c to produce i at period t .
gj Number of discrete sizes available for storage tanks at stage j.
H Time horizon.
Ht Net available production time for all products at period t .
kj Number of discrete sizes available for batch units at stage j.
npit Price of product i at period t .
Sijt Size factor of product i in stage j for each period t .
SIj Set of available discrete sizes for the storage tanks allocated after stage j.
STijt Size factor for product i for an intermediate storage tank in the location j.
SVj Set of available discrete sizes for the batch units at stage j.
ptijt Processing time of product i in batch stage j in period t .
wpit Waste disposal cost coefficient per product i.
wrct Waste disposal cost coefficient per raw material c.
αj Cost coefficient for a batch unit in stage j.
βj Cost exponent for a batch unit at stage j.
εct Inventory cost coefficient for raw material c in period t .
κct Price for the raw material c in period t .
vjs Standard volume of size s for batch unit at stage j.
πj Cost coefficient for an intermediate storage tank allocated in position j.
σit Inventory cost coefficient for product i in period t .
τj Cost exponent for an intermediate storage tank allocated in position j.
vtjv Standard volume of size v for storage tank allocated in position j.
ζc Time periods during which raw materials have to be used.
χi Time periods during which final products have to be used.
Λij Parameter that represents the maximum difference of number of batches.

Binary variables

dj It is 1 if the tank is allocated in position j.
stjv It is 1 if storage at position j has size v.
yjm It is 1 if batch stage j hasm units of the same size in parallel.
zjs It is 1 if equipment at batch stage j has size s.

Integer variables

Mj Number of parallel units operating out of phase at batch stage j.
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Continuous variables

Bijt Batch size of product i in stage j in period t .
Cct Amount of raw material c purchased in period t .
eijst Continuous variable that represents the product of the variables qit zjs.
fijvt Continuous variable that represents the product of the variables qit stjv .
IMct Inventory of raw material c at the end of a period t .
IPit Inventory of final product i at the end of a period t .
nijt Number of batches of product i in stage j at period t .
PWit Product iwasted at period t due to the limited product lifetime.
qit Amount of product i to be produced in period t .
QSit Amount of product i sold at the end of period t .
rjms Continuous variable that represents the product of the binary variables zjsyjm.
RMct Raw material c used for production in period t .
RMcit Raw material c consumed in period t to manufacture product i.
RWct Raw material c wasted at period t due to the limited product lifetime.
Tit Total time for producing product i in period t .
TLpit Limiting cycle time of product i for a subprocess p in period t .
Vj Size of a batch unit at stage j.
VTj Size of the intermediate storage tank allocated in position j.
wijmt Continuous variable that represents the product of the variables nijtyjm.
ϑit Amount of late delivery for product i in period t .

usually decouple the design and planning problems and solve only one problem making several assumptions over the
other. In the design problem, the production requirement of each product and the total production time available are
specified. A procedure is generated in order to determine the plant configuration and equipment sizes to minimize the
capital cost. Different formulations have been developed and solved through different methodologies [1–5]. Moreover,
several approacheswith varying degrees of detail have been introduced in the past years to solve the planning problem [6–8].
Unlike previously citedworks, a smaller number of articles have posedmodels formultiperiod scenarios. In general, these

works follow the same trend only focusing on one problem at a time. Multiproduct batch facilities in a multiperiod scenario
have been studied by Birewar and Grossmann [9] that presented a multiperiod linear programming model for production
planning of batch plants that considers benefits and product inventory cost, but design decisions are not included in that
approach. Voudouris and Grossmann [10] developed a cyclic MILP problem where synthesis, sizing and scheduling issues
were integrated, including intermediate storage sizing and allocation. Van den Heever and Grossmann [11] considered a
multiperiod nonlinear optimization model posed through general disjunctive programming for the design, and capacity
expansion of general chemical process systems. They proposed two algorithms for the solution of the model in order to
reduce the solution times of MINLP problems.
Taking into account modeling and resolution difficulties in previous works in process industry, problems are generally

decomposed into simpler steps: design, operation, planning, scheduling, etc. These problems, however, are related and they
should be solved together, at least some of them. The trade-offs among them depend on several elements: time horizon,
product lifetime, characteristics of facilities, supply policies, etc. Most of these works used to pose models working with
only one time period with constant conditions. These alternatives can be improved if the problem elements can vary over
time in a multiperiod context.
Two main contributions have been addressed in this work. On one hand, concurrent design and production planning

decisions for multiproduct batch plants have been simultaneously posed, so as to assess the trade-offs between them. On
the other hand, the multiperiod effect has been explicitly taken into account. In this way, the changes caused by market
and seasonal fluctuations in decision variables in every period are considered, using deterministic values proposed by the
decision maker.
In contrast to previous works, the optimal design is determined by considering the units available in discrete sizes which

correspond to the real procurement of equipment. In order to get an MILP model, a linearization method is applied over
bilinear terms. In this way, the original nonlinear and non-convex model is transformed to obtain a linear formulation that
can be solved to global optimality with reasonable computational effort. In short, this general model handles deterministic
seasonal variations of product demands and prices, the rawmaterial and investment costs, takes into account discrete sizes
of batch units and storage tanks, and considers inventories of both final products and raw materials. This is a valuable
MILP model since it corresponds to a more realistic case. Decision makers can simultaneously assess different elements
from the strategic and tactic points of view of the operations management. The implementation of the proposed model is
demonstrated through its application in several examples.
The paper is structured as follows. The main characteristics of the problem are discussed in Section 2. Section 3 presents

a description of the proposed mathematical formulation. Illustrative examples are included in Section 4 and their results
are discussed. Finally, some concluding comments are presented in Section 5.
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Fig. 1. Flowsheet of the batch plant.

2. Overall description

This approach poses amodel for the simultaneous production planning and design of noncontinuousmultiproduct plants
on a multiperiod scenario. The plant includes j = 1, 2, . . . , J batch processing stages to produce i = 1, 2, . . . , I products
over t = 1, 2, . . . , T time periods. In every period t , the production of product i in batch stage j requires a given processing
time ptijt , and a material balance factor Sijt , called the Size Factor, which specifies the volume (or mass) of material which
must be processed at stage j to produce a unit volume (or mass) of final product i. Both processing times and size factors are
known values that depend on the production recipe. Time horizon H is discretized into a number of time periods T with a
specified length Ht not necessarily equal.
In each period t , the limiting cycle time of product i, TLit , is the largest processing time in the plant for product i, (i.e.

TLit = maxj{ptijt}) and corresponds to the time between two consecutive batches. Thus, the production rate for each product
is determined by the largest processing time at stage j and the remaining stages that must operate at this rate has idle times.
These idle times can be reduced in either of the following twoways. In the first, a duplication of units in parallel at the batch
stage j with the longest processing time is adopted. If Mj units operate out-of-phase, then the processing time is divided
by the number of units at that stage. Another way to reduce idle times consists of the introduction of intermediate storage
tanks. Storage tanks do not act as long term storage, so the Finite Intermediate Storage (FIS) policy is adopted.
The plant operates in single product campaign (SPC) mode in every time period. With the single product campaign

approach, all batches of a product are successively processed without overlapping with other products. When storage tanks
are not allocated, batches are transferred from stage to stage without delay. This is called Zero Wait transfer policy (ZW) in
the scheduling context.
This model considers design decisions, involving the selection of sizes for batch units Vj and storage tanks VTj and the

number of units to be duplicated in batch stages. Following the usual procurement policy, the batch unit size of stage j, Vj,
is restricted to take values from the set SVj =

{
vj1, vj2, . . . , vjkj

}
, where kj is the given number of available discrete sizes

from the commercial point of view for that stage. In the same way, variable VTj is restricted to take values from the set
SIj =

{
vtj1, vtj2, . . . , vtjgj

}
, where gj is the given number of discrete sizes available for the storage tank in that position. The

available values in SVj and SIj are proposed by the designer.
On the other hand, production planning decisions allow specifying at each period t and for each product i, the amount to

be produced qit , the number of batches nijt at stage j, and the total time Tit to produce product i. Furthermore, at the end of
every period t , the inventory levels of both final products i, IPit , and rawmaterials c , IMct , are obtained. Total sales of product
i, QS it , the amount of purchased raw material c , Cct , and the amount of raw material c to be used for the production, RMct ,
in each period t are included in this formulation.
The performance criterion of this model is to maximize the net present value of the profit along the global time horizon,

taking into account incomes from product sales, expenditures from raw material purchases and inventory, sales penalty
costs and investment costs. If time periods are equal, waste disposal costs are also added to the objective function.

3. Mathematical formulation

This section presents an MILP formulation that simultaneously solves design and planning problems in a multiperiod
context.

3.1. Batch equipment

At batch stage j, the available unit size Vj must be sufficient to process a batch Bijt of product i over all time periods t , as
follows:

Vj ≥ Sijt Bijt ∀i, j, t (1)
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where Sijt is the size factor corresponding to product i at stage j which can vary in each period t due seasonal effects (e.g.
variable solute concentrations).
Let qit be the amount of product i produced at time period t and nijt the number of batches of product i to be processed

in batch stage j over time period t . Then,

qit = Bijt nijt ∀i, j, t. (2)

By combining Eqs. (1) and (2) the following constraints are obtained:

nijt ≥
Sijt qit
Vj

∀i, j, t. (3)

In this work, unit sizes Vj for batch stages are considered available in discrete sizes vjs, with s = 1, 2, . . . , kj, which
corresponds to the usual commercial procurement of equipments. To rigorously tackle this situation, a binary variable zjs
is introduced whose value is one if equipment at batch stage j has size s; otherwise zero. Using these discrete variables the
following expressions hold:

1
Vj
=

∑
s

zjs
vjs
∀j (4)∑

s

zjs = 1 ∀j. (5)

By substituting Eq. (4) into (3), new constraints can be formulated that restrict the unit sizes to discrete values. This operation
generates bilinear products qit zjs, with continuous and discrete variables, which can be eliminated by introducing the
nonnegative continuous variable eijst that represents those bilinear products in order to reformulate the constraints as linear
ones [12]:

nijt ≥
∑
s

(
Sijt
vjs

)
eijst ∀i, j, t (6)

eijst ≤ qUit zjs ∀i, j, s, t (7)

qit =
∑
s

eijst ∀i, j, t (8)

where qUit represents the upper bound for qit .

3.2. Intermediate storage

When an intermediate tank is allocated, the original process is decoupled into two subprocesses, upstream and
downstream of the tank, each one presenting its own batch size and limiting cycle time for each product. For this reason,
a multiproduct plant can be viewed as a series of subprocesses p which are separated by intermediate storage tanks, each
one with the same batch size and limiting cycle time for every product i. In this way, there are J − 1 possible positions for
a storage tank, where the j-th location is between batch stages j and j+ 1. Productivity of both batch subprocesses must be
the same to avoid material accumulation in the storage tank.
The storage sizing constraint proposed by [1] implies that storage vessel size, VTj, has to be twice as large as the largest

of the up and downstream batch sizes. As no a priori tank allocation is given, binary variables dj are used to select their
allocation, with value one if the tank is allocated, or zero otherwise.

VTj ≥ 2 STijt Bijt dj ∀i, j = 1, 2, . . . , J − 1, t (9)

VTj ≥ 2 STijt Bi,j+1,t dj ∀i, j = 1, 2, . . . , J − 1, t. (10)

The parameter STijt refers to the size factor for storage tank and its value depends on the production recipe. Thus, previous
equations specify the capacity of the tank (if any).
Without any intermediate storage allocation, the number of batches is equal for consecutive stages. If a storage tank is

located between stages j and j+ 1, the number of batches of the two stages is allowed to be different. The difference is not
allowed to be larger than a given valueΛi,j dependent on the problem. This can be expressed mathematically as:

nijt −Λi,j dj ≤ ni,j+1,t ≤ nijt +Λi,j dj ∀i, j = 1, 2, . . . , J − 1. (11)

If no storage is allocated in position j (i.e. dj = 0) there is no difference between consecutive numbers of batches. If a
storage tank is allocated (i.e. dj = 1) the difference should not be more or less than Λi,j, and then Eqs. (9) and (10) must
be fulfilled.
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By introducing Eq. (2), the above Eqs. (9) and (10) can be expressed as

nijt ≥ 2
(
STijt qit
VTj

)
dj ∀i, j = 1, 2, . . . , J − 1, t (12)

ni,j+1,t ≥ 2
(
STijt qit
VTj

)
dj ∀i, j = 1, 2, . . . , J − 1, t (13)

ni,j+1,t ≥ nijt −Λi,j dj ∀i, j = 1, 2, . . . , J − 1, t (14)

ni,j+1,t ≤ nijt +Λi,j dj ∀i, j = 1, 2, . . . , J − 1, t. (15)
Here, Eq. (11) has been split into two expressions.
The size of the storage tank, VTj, is also considered to be available in standard sizes. For this reason the binary variable

stjv is one if storage at position j has size v, zero otherwise. Thus, variable VTj is restricted to take values from the set
SIj =

{
vtj1, vtj2, . . . , vtjgj

}
, where vtjv represents discrete size v for storage tank at position j. It is assumed that v = 1

represents size 0, or, in other words, that no storage vessel is used. Thus, the binary variable dj is replaced by the variable stjv .
The following constraints are posed to define the storage tank size:∑

v

stjv = 1 ∀j = 1, 2, . . . , J − 1 (16)

1
VTj
=

∑
v 6=1

stjv
vtjv

∀j = 1, 2, . . . , J − 1. (17)

After Eq. (17) is introduced into Eqs. (12) and (13), there arise cross products qit stjv which are then replaced by continuous
nonnegative variables fijvt , that represents those products, and the following linear constraints are obtained:

nijt ≥ 2
∑
v 6=1

(
STijt
vtjv

)
fijvt ∀i, j = 1, 2, . . . , J − 1, t (18)

ni,j+1,t ≥ 2
∑
v 6=1

(
STijt
vtjv

)
fijvt ∀i, j = 1, 2, . . . , J − 1, t (19)

fijvt ≤ qUit stjv ∀i, v, j = 1 . . . J − 1, t (20)

qit =
∑
v

fijvt ∀i, j = 1 . . . J − 1, t. (21)

By using the binary variables stjv replacing variables dj, the constraints (14) and (15) can be written as:

ni,j+1,t ≥ nijt −Λi,j
(
1− stj1

)
∀i, j = 1, 2, . . . , J − 1, t (22)

ni,j+1,t ≤ nijt +Λi,j
(
1− stj1

)
∀i, j = 1, 2, . . . , J − 1, t. (23)

When binary variable stj1 is 1 this indicates that a storage tank with size 0 is selected, i.e. no tank is allocated after stage j, so
the number of batches between stages j and j+ 1 has to be equal. Whereas, if binary variable stj1 is 0 a storage tank with a
size different of zero is allocated between stages j and j+ 1, then the difference on number of batches cannot be larger that
the parameterΛi,j.

3.3. Time constraints

A batch is processed to completion in a unit on a batch stage j during a processing time ptijt and transferred to the next
stage. The shortest possible time between two batches of a product i leaving a stage j is called the limiting cycle time TLit .
As was already mentioned, the allocation of intermediate storage tanks allows the limiting cycle times of the subprocesses,
TLpit , can be chosen independently of each other. Moreover, ifMj identical parallel units operating out of phase are added in
stage j so as to reduce the limiting cycle time, the following expression holds:

TLpit ≥
ptijt
Mj

∀i, p, j ∈ p, t. (24)

In this way, every subprocess can have different number of batches and cycle times. Tank allocation would increase
the cost of the plant, but due to the decoupling of subprocesses, subprocesses with smaller TLpit can operate with smaller
equipment sizes.
In order to avoid material accumulation, the production time assigned to product i at each period t , Tit , has to be equal

to the production time that is assigned to this product i in every subprocess p. Then, the following expression holds:

Tit = nijt TL
p
it ∀i, p, j ∈ p, t. (25)
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Production rates (ratio of amount produced and total time to produce product i) of all subprocesses in each time period
must be the same to avoid material accumulation in the storage tank. Taking into account that qit and Tit are equal for all
the subprocesses, the production rate upstream and downstream of the storage tank must be the same.
Also, the total production time for all products cannot exceed the total available time horizon for period t .∑

i

Tit ≤ Ht ∀t. (26)

For the continuous variables Mj to take integer values, binary variables yjm are used. Their value is 1 if batch stage j has
m identical units in parallel; otherwise zero. So the following constraints are posed:

1
Mj
=

∑
m

yjm
m
∀j (27)∑

m

yjm = 1 ∀j. (28)

By multiplying Eq. (24) by nijt , and taking into account Eqs. (25) and (27) these constraints can be expressed as

Tit ≥
∑
m

ptijt nijt
m

yjm ∀i, j, t. (29)

The nonlinearities in constraint (29) are eliminated by introducing new variables wijmt to represent the cross product
nijtyjm. These equations can now be written as

Tit ≥
∑
m

(
ptijt
m

)
wijmt ∀i, j, t (30)

wijmt ≤ nUijtyjm ∀i, j,m, t (31)

nijt =
∑
m

wijmt ∀i, j, t (32)

where nUijt represent upper bounds for the variables nijt .

3.4. Planning and inventory constraints

The following constraints manage inventories and force total production to meet product demands, over all the time
periods t . This model assumes that the process handles c = 1, 2, . . . , CT common ingredients for producing each final
product i.
The stock of product i at the end of period t, IPit , is equal to the amount in storage at end of the previous period, IPi,t−1,

plus the production during this period qit , less the amount sold QSit and less the waste due to expired product shelf life,
PWit :

IPit = IPi,t−1 + qit − QSit − PWit ∀i, t (33)
where the amount sold QSit is bounded by maximum demands DEUit .
Eq. (34) poses the inventory of rawmaterial c at the end of a time period t , IMct , that is equal to the stock in the previous

period, IMc,t−1, plus the purchases during period t , Cct , less the consumption for production, RMct , and less the waste due to
limited product lifetime, RWct .

IMct = IMc,t−1 + Cct − RMct − RWct ∀c, t. (34)
When the problem takes into account time periods of equal length, lifetime considerations of both raw materials and

product can be added into the formulation [13]. Let ζc and χi be the given time periods for raw material c and product i,
respectively, during which they have to be used. Thus, to guarantee that the stock of both rawmaterial and product in each
period cannot be used after the next ζc or χi time periods respectively, the following constraints are imposed:

IPit ≤
t+χi∑
Ω=t+1

QSiΩ ∀i, t (35)

IMct ≤
t+ζc∑
Ω=t+1

RMcΩ ∀c, t. (36)

Eq. (35) ensures the lifetime of product i by enforcing that it is sold in less than χi time periods from when it is stored
while Eq. (36) ensures that raw material c is processed in less than ζc time periods. It should be mentioned that the above
constraints make sense only when time periods are equal in length, as well as the corresponding term in the objective
function and the last terms in Eqs. (33) and (34).
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Furthermore, stocks of both final product i and raw material c stored during period t cannot exceed the respective
maximum available storage capacities, IPUit and IM

U
ct :

0 ≤ IPit ≤ IPUit ∀i, t (37)

0 ≤ IMct ≤ IMUct ∀c, t. (38)

The initial inventories of both raw material and product IMc0, IPi0, at the beginning of the time horizon are assumed
to be given. The use of IMc0 and IPi0 have a strong impact when this model is only used for production planning without
considering design, for example in an existing plant.
The amount consumed of raw material c in period t to manufacture product i, RMcit , is obtained from a mass balance:

RMcit = Fcit qit ∀c, i, t (39)

where Fcit is a given parameter that accounts for the process conversion of rawmaterial c to produce product i during period
t . This parameter may suffer variations in every period t because of changes in composition of raw materials.
The total consumption of raw material c for production in period t , RMct is obtained from the following expression:

RMct =
∑
i

RMcit ∀c, t. (40)

If a given batch of product i late meeting a minimum product demand DELit , then a late delivery ϑit take place in that
period [13]. Late deliveries are undesirable; therefore they can be quantified by an appropriate penalty cost term which is
minimized in the objective function. This term takes into account expenditures due to delay in satisfying the agreed demand.

ϑit ≥ ϑi,t−1 + DELit − QSit ∀i, t. (41)

3.5. Objective function

The objective function (42) of the problem is the maximization of the benefit of the net present value of the project
taking into account the difference between total sales and costs. Total costs include purchases of rawmaterials, investments,
inventories, operation, late delivery penalties and waste disposal costs.

ψ =
∑
t

∑
i

npit QSit −
∑
t

∑
c

κct Cct −
∑
j

Mj αj V
βj
j −

J−1∑
j

πj VT
τj
j

−

∑
t

[∑
c

εct

(
IMc,t−1 + IMct

2

)
Ht +

∑
i

σit

(
IPi,t−1 + IPit

2

)
Ht

]
−

∑
t

∑
i

(coit qit + cpit ϑit + wpit PWit)−
∑
t

∑
c

wrct RWct . (42)

Final products i are sold at price npit and raw materials c are acquired at price κct in every period t . Investment costs
correspond to batch units and storage tanks and are calculated using a power law expression on the capacity [1]. Parameters
αj, and πj are cost factors and βj, τj are cost exponents for batch and stage tanks respectively. Inventory costs are assessed
using an expression used by [9] and include both raw material and final product inventories with its corresponding cost
coefficients εct and σit . Operating costs include energy consumption in the process (steam, electricity, etc.) which are
proportional to the production through cost coefficients coit . Late delivery penalties are included with a cost coefficient cpit .
Finally, if time periods are equal, waste disposal costswpit per product i andwrct per raw material c are also considered.
The previous expression considers continuous sizes for units in the investment costs. In order to restrict it to the available

discrete sizes, earlier defined binary variables are included in these terms. Thus, considering the equipment costs ψEQ
separately,

ψEQ =
∑
j

Mj αj V
βj
j +

J−1∑
j

πj VT
τj
j stjv (43)

and replacing with the appropriate discrete variables:

ψEQ =
∑
j

∑
m

∑
s

m αj v
βj
js yjm zjs +

J−1∑
j

∑
v 6=1

πj vt
τj
jv stjv. (44)

Applying suitable transformations, the following expression is obtained:

ψEQ =
∑
j

∑
m

∑
s

cbjms rjms +
J−1∑
j

∑
v 6=1

ctjv stjv. (45)
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Table 1
Data for example 1.

Batch stage Processing time, ptijt (h) Storage
Size factors, Sijt (L/kg) Size factor, STijt (L/kg)

i 1 2 3 4 5 6 1 2 3 4 5 6 St1 St2 St3 St4 St5

P1 5.0 2.6 1.6 3.6 2.2 2.9 9.3 5.4 4.2 2.0 1.5 1.3 2.0 2.5 1.2 2.4 3.0
P2 4.7 2.3 1.6 2.7 1.2 2.5 8.5 5.8 4.1 2.5 1.4 1.5 2.5 2.0 1.2 2.5 1.2
P3 4.2 3.6 2.4 4.5 1.6 2.1 9.7 5.5 4.3 2.1 1.2 1.3 2.0 3.3 1.4 2.2 1.6

The terms cbjms = m αj v
βj
js represent the cost of standard batch vessels and ctjv = πj vt

τj
jv the cost of standard storage

vessels. New variables rjms are introduced to eliminate the product of binary variables zjsyjm through the constraints:

rjms ≥ zjs + yjm − 1 ∀j,m, s. (46)

Variable rjms is equal to one when both variables yjm and zjs take the value one. These new variables can be settled as
continuous if the following bounds are added:

0 ≤ rjms ≤ 1. (47)

3.6. Formulation summary

In conclusion, the entireMILP formulation described in this paper is themaximization of the objective function (42) using
Eq. (45) as the term of investment costs, subject to constraints (5)–(8), (16), (18)–(23), (26), (28), (30)–(41), (46) and (47)
and the necessary bounds.
An important feature of thismodel is that the discrete variables only depend on plant design and are independent of time

periods, which allows handling large problems with less computational effort.

4. Examples

The presented model can be applied in very different cases and contexts. Depending on product lifetime, characteristics
of the production facilities, management objectives, etc., different elements of the model can be emphasized, not taken
into account or even rejected. For example, in a very long term problem, with one-year periods, inventory policies are less
significant. On the other hand, in a short term model, with one-week periods, equipment investment is likely to be less
valuable for inclusion. Nevertheless, the cases with a close integration between design and planning are here emphasized.
Then, several factors must be analyzed when the model is formulated. The significance of the elements contemplated in the
model and the trade-offs among them are strongly related with the specific modeled scenario. Several model assumptions
are affected, for example by the number of time periods and their length.
In this section, an example is proposed to illustrate the key features of the approach described in the previous sections for

multiproduct batch plant design and operation planning in a multiperiod scenario. Different approaches can be posed with
this model depending on the manager requirements and objectives. Here, using the same data, two problems are presented
in order to show the versatility and usefulness of this formulation. Also, the computational performance is assessed.

4.1. Example 1

A multiproduct batch plant is considered that involves the production of three products P1–P3 using two raw materials
C1 and C2 processed in six stages over a planning horizon of 2 years. Due to the seasonal provision of raw materials, a
discretization interval of 3 months is used for the multiperiod MILP model, resulting in 8 time periods (Ht = 1500 h). Size
factors and processing times for every product are given in Table 1. As was already mentioned, the units in each stage can
be duplicated, thus, batch stages may consist of up to two parallel items. Available discrete sizes to perform every stage
involved in the plant are shown in Table 2. Data for rawmaterials as well as parameters Fcit , which are assumed to be equal
for all time periods, are shown in Table 3. Bounds on demands, prices of products, and costs of each ingredient in every
period are presented in Table 4.
The inventory cost coefficient for all final products is $0.4/(ton h) and the product lifetime in number of periods is 4. Cost

coefficients for late delivery it is assumed as a 50% of product prices.
The problem involves 2088 continuous and 67 binary variables in 3136 constraints. Results and optimal sizes are

summarized in Table 5. Fig. 2 shows the plant structure where batch stage 1 has two parallel units which operate out of
phase and one in the others stages. In this way, the limiting cycle time determined by stage 1 is reduced. Finally, a storage
tank is allocated between batch stages 3 and 4 which decouples the plant operation, allowing a reduction in the size units
of the equipments that belong to the downstream subprocess. Thus the capital cost is also decreased. Table 6 shows the
optimal production qit for each product during the time horizon. A detailed analysis of the economic results is summarized
in Table 7. The solution was obtained using GAMS/CPLEX 9.0 in a CPU time of 29.20 s with a 0% margin of optimality in a
Pentium(R) IV CPU (3.00 GHz).
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Table 2
Available standard sizes.

Batch stages Storage tanks
Discrete volumes, vjs (L) Discrete sizes, vtjv (L)

Option 1 2 3 4 5 6

1 2000 1500 1000 1000 500 500 0
2 2500 2000 1250 1500 750 750 1500
3 3000 2500 1500 2000 1000 1000 2000
4 3500 3000 2000 2500 1250 1250 2500
5 4000 3500 2500 3000 1500 1500 3000

Cost coefficient αj 1250 πj 950
Cost exponent βj 0.6 τj 0.6

Table 3
Parameters, initial inventories and cost of raw materials.

Parameter Fci Initial inventory (kg) Storage cost ($/(ton h)) Lifetime (time periods)
c P1 P2 P3 IMc0 εc ζc

C1 0.5 1.0 0.7 20000 0.05 3
C2 1.5 1.2 1.0 40000 0.05 3

Table 4
Costs, prices and demand bounds for example 1.

Costs of raw materials, ($/kg) Prices of products, ($/kg) Bounds on demands, (×103 kg)
κct npit DELit − DE

U
it

t C1 C2 P1 P2 P3 P1 P2 P3

1 1.0 0.5 2.05 2.60 2.00 25–50 22.5–45 20–40
2 1.5 0.8 2.25 2.60 2.20 26.5–53 24–48 21–42
3 1.5 0.5 2.25 2.40 2.20 27.5–55 25.5–51 22.5–45
4 1.0 0.8 2.05 2.40 2.00 28.5–57 26.5–53 24–48
5 1.0 0.5 2.05 2.60 2.00 31.5–63 28.5–57 26–52
6 1.5 0.8 2.25 2.60 2.20 34–68 29.5–59 26.5–53
7 1.5 0.5 2.25 2.40 2.20 36–72 31–62 27.5–55
8 1.0 0.8 2.05 2.40 2.00 36–72 31–62 27.5–55

Table 5
Results of example 1.

Stage
1 2 3 4 5 6

Vj 3000 2000 1250 1000 500 750
VTj 1500
Mj 2 1 1 1 1 1

Fig. 2. Optimal flowsheet of the plant.

Table 6
Example 1—Optimal productions of each product in every period.

i Period Total (kg)
1 2 3 4 5 6 7 8

A 50000 53000 98608 13391 63000 68000 72000 58909 476908
B 67629 25370 51000 53000 82396 33603 31000 44640 388638
C 40000 73814 13185 84056 15943 54560 53439 39111 374108

Assessing the computational performance, a critical point in multiperiod models is the number of time periods. Table 8
compares number of variables, number of constraints and CPU time for the solution of this problem considering different
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Table 7
Example 1—Economic evaluation results.

Description Optimal value

Sales incomes 2789021.86
Supply costs 1626893.70
Investment cost for batch units 711922.07
Investment cost for storage tanks 76450.15
Raw material inventory costs 102498.80
Product inventory costs 24159.99
Operating costs 123966.02
Waste disposal costs 0.00
Late delivery penalties 0.00

Total: Profit ($) 123131.12

Table 8
Example 1—Comparison for different time periods considered.

Number of periods Binary variables Continuous variables Constraints CPU time (s)

4 67 1108 1680 3.750
8 67 2088 3136 29.203
12 67 3068 4592 95.296
16 67 4048 6048 136.828

Fig. 3. Profiles for raw materials.

number of periods. It can be noted that the number of binary variables remain the same in all cases since they do not depend
on time periods, and the problems can be solved on a PC in a few seconds.
Finally, the detailed optimal production plan is shown through Figs. 3–6. Namely, they show the results for products

and raw materials in which production, inventory, purchases and sales profiles are disaggregated by periods at the optimal
solution.
Fig. 3 is divided in two diagrams corresponding to raw materials C1 and C2. The first diagram shows that purchases of

C1 are made only on periods 1, 4, 5 and 8 where costs have the lowest value. Also, the extra material purchased in periods
1 and 5 is kept as inventory for production in the subsequent periods. Note that material purchased in periods 4 and 8 is
totally consumed in those time periods. In the second diagram, costs of rawmaterial C2 have a cyclical variation that results
in purchases being made only in periods where the cost is lower and the extra material is kept as inventory to be used in
production in the following period.
Fig. 4 shows that product P1 is produced in all time periods; but in time period 3, the amount in excess is stored in order

to satisfy maximum demand in the next time period where production reaches its lowest value. Also, maximum demands
are satisfied in all periods except in the last one.
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Fig. 4. Profile for product P1.

Fig. 5. Profile for product P2.

Fig. 6. Profile for product P3.
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Table 9
Costs, prices and demand bounds for example 2.

Costs of raw materials, ($/kg) Prices of products, ($/kg) Bounds on demands, (×103 kg)
κct npit DELit − DE

U
it

t C1 C2 P1 P2 P3 P1 P2 P3

1 1.0 0.5 2.05 2.60 2.00 8–16 8.43–16.8 7.5–15
2 1.5 0.8 2.25 2.60 2.20 8.55–17.1 9–18 7.87–15.7
3 1.5 0.5 2.25 2.40 2.20 8.92–17.8 9.56–19.1 8.43–16.8
4 1.0 0.8 2.05 2.40 2.00 9.25–18.5 9.93–19.8 8.5–17
5 1.0 0.5 2.05 2.60 2.00 9.52–19 9.75–19.5 8.75–17.5
6 1.5 0.8 2.25 2.60 2.20 10–20 10–20 8.9–17.8
7 1.5 0.5 2.25 2.40 2.20 10.5–21 10–20 8–16
8 1.0 0.8 2.05 2.40 2.00 11–22 10–20 8.75–17.5
9 1.0 0.5 2.05 2.60 2.00 11.7–23.5 10.5–21 8.75–17.5
10 1.5 0.8 2.05 2.60 2.00 12.2–24.5 10.8–21.7 9.62–19.2
11 1.5 0.5 2.25 2.60 2.20 12.5–25 11.2–22.5 10–20
12 1.0 0.8 2.25 2.60 2.20 13.5–27 11.6–23.2 10.5–21

Table 10
Example 2–Optimal production planning.

P1 (×103 kg) P2 (×103 kg) P3 (×103 kg) C1 (×103 kg) C2 (×103 kg)
t qit QSit IPit qit QSit IPit qit QSit IPit Cct IMct Cct IMct

1 16.00 16.00 0.0 21.29 16.87 4.42 15.00 15.00 0.0 94.89 75.09 87.34 62.78
2 17.10 17.10 0.0 13.58 18.00 0.0 20.84 17.75 5.09 0.0 38.37 0.0 0.0
3 22.00 17.85 4.15 19.12 19.12 0.0 11.78 16.87 0.0 0.0 0.0 130.7 63.02
4 14.34 18.50 0.0 19.87 19.87 0.0 17.65 17.00 0.65 39.41 0.0 0.0 0.0
5 19.05 19.05 0.0 25.35 19.50 5.86 8.82 9.47 0.0 114.7 73.66 132.6 64.84
6 20.00 20.00 0.0 14.14 20.00 0.0 17.87 17.87 0.0 0.0 37.00 0.0 0.0
7 21.00 21.00 0.0 15.30 15.30 0.0 16.00 16.00 0.0 0.0 0.0 133.8 68.02
8 22.00 22.00 0.0 20.00 20.00 0.0 11.02 11.02 0.0 38.71 0.0 0.0 0.0
9 17.22 17.22 0.0 27.22 21.00 6.22 8.75 8.75 0.0 121.3 79.35 128.8 61.60
10 12.25 12.25 0.0 19.66 21.75 4.14 19.62 9.62 10.0 0.0 39.83 0.0 0.0
11 29.90 25.00 4.90 24.87 22.50 6.51 0.0 10.00 0.0 0.0 0.0 141.7 67.03
12 22.09 27.00 0.0 16.74 23.25 0.0 13.81 13.81 0.0 37.45 0.0 0.0 0.0

Fig. 5 illustrates product P2 profile, where clearly can be seen that production in time periods 1 and 5 are higher than
demands because the prices of both raw materials are lower. The extra amount is held as inventory to meet maximum
demands in the following intervals. Maximum demands are not satisfied only in the last two periods where minimum
demands are covered because of the lower price.
Results for product P3 are shown in Fig. 6. The excess of production made in periods 2, 4 and 6 is carried forward as

inventory for satisfying demands in subsequent periods. Only in the last period, do sales of product P3 not satisfy maximum
demands.
It should be noted that late deliveries andwastage of rawmaterial or final product are not fined in any of the time periods

in this case.
Using the results of example 1, the managers can assess different alternatives taking into account demand forecasts,

products, market structure, time horizon, prices, etc. working with the same model, that are not contemplated in this
article. In the first version, these alternatives must be evaluated through deterministic data. Future versions should include
probability distribution functions to assess fluctuations of the problem parameters.

4.2. Example 2

In order to demonstrate the versatility of this approach, only the case of production planning is considered. It is assumed
that plant structure is given by the optimal solution obtained for Example 1, and the other problem elements can vary. In
the example 2, the same products as in the previous example are processed over a planning horizon of 1 year divided into
12 equal time periods (Ht = 500 h) allowing managers to get a detailed plan of production for each month.
Data related to demand patterns, raw materials costs and product prices are given in Table 9. The data for parameters

Fcit , processing times, size factors, and cost coefficients are the same in example 1.
Themodel involves 3068 continuous variables and 4592 constraints. It is worth mentioning that the problemwas solved

in CPU time of only 0.12 s since binary variables are not involved, so a linear problem is formulated.
An optimal objective function value of $537306.30 was obtained. The detailed production planning decisions, i.e.

purchases, production, sales, and inventories for each product and rawmaterials to bemade in every period, are summarized
in Table 10. The economic results of the optimal solution for this problem are summarized in Table 11.
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Table 11
Example 2—Economic evaluation results.

Description Optimal value

Sales incomes 1445442.64
Supply costs 824137.77
Raw material inventory costs 18266.02
Product inventory costs 2 597.82
Operating costs 63134.73
Waste disposal costs 0.00
Late delivery penalties 0.00

Total: Profit ($) 537306.30

From Table 10, it can be seen that raw materials C1 and C2 are purchased during periods where their costs are the
lowest ones. Also, the extra amount acquired in those periods is held as inventory for the production of final products in
the following periods. All products are produced in all time periods except product P3 in the eleventh period, where the
minimum demand is satisfied with the amount in inventory from the previous period.

5. Conclusions

A general model has been presented in this paper to simultaneously address the problems of multiproduct batch plant
production planning and design over a multiperiod scenario. The original non-linear formulation has been transformed so
as to obtain a mixed integer linear programming formulation which can be solved to global optimality.
Several features can be stressed. The model considers design and production planning decisions at the same time.

Previous efforts used to solve these problems separately which hinders the interactions between both types of decisions.
Also, the model considers a multiperiod scenario. Then, seasonal and market variations can be taken into account.
From the design point of view, the model considers several interesting elements: different configuration options are

included (duplication of batch units, intermediate storage tanks allocation) and a real procurement policy is adopted, with
units available in discrete units. From the production planning point of view, all the usual decisions are contemplated:
inventories, sales, purchases, etc. In this first approach, deterministic fluctuations have been considered.
This is an interesting formulation that allows managers to have a feedback about the impact of his or her decisions,

considering interactions between design, commercial, production, sales and inventory policies simultaneously.
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