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bstract

This paper presents a general multiperiod optimization model, which simultaneously solves the design and planning decisions in multiproduct
atch plants. Therefore, the trade-offs between both problems are taken into account as well as variations due to seasonal effects, demand patterns, etc.

From the design point of view, the model is formulated considering batch and semicontinuous units, the allocation of intermediate storage, and
tructural decisions. Following the usual procurement policy, equipment is provided using discrete sizes. From the planning point of view, the
ormulation takes into account both products and raw materials inventories, product demands and raw materials supplies that vary seasonally in a

ultiperiod approach.
The objective is the maximization of an economic function, which considers incomes, and both investment and operation costs. A plant that

roduces five oleoresins in seven stages is used to illustrate this approach.
2006 Elsevier Ltd. All rights reserved.
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. Introduction

In the last years, the growing importance of batch processing
as been widely known. The rapid development of new products,
he suitability of these processes to produce complex and high
alue products in low volume and its flexibility have encouraged
rapid development in this area.

Multiproduct batch plants are characterized by the production
f multiple products with similar recipes. In the design problem,
he production requirement of each product and the total pro-
uction time available are specified. A procedure is generated
n order to determine the plant configuration and the equipment
izes to minimize the capital cost. Several works have consid-
red this problem assuming several conditions: given recipes,
enerally single product campaigns, only one time period, etc.

sing these assumptions, several models were developed and

olved through different methodologies: mathematical program-
ing (Montagna, Vecchietti, Iribarren, Pinto, & Asenjo, 2000;
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avemark & Rippin, 1998), heuristics methods (Dietz, Azzaro-
antel, Pibouleau, & Domenech, 2006; Huang & Wang, 2002;
ayaraman, Kulkarni, Karale, & Shelokar, 2000; Patel, Mah,

Karimi, 1991; Wang, Quan, & Xu, 1996) or simulation
Maruejouls, Azzaro-Pantel, Schirlin, Pibouleau, & Domenech,
002; Petrides, Koulouris, & Lagonikos, 2002). The develop-
ent of this area was called “filling in the hole” by Rippin (1993),

rom works that achieved small successive improvements.
Several works have recognized the trade-offs between design

ecisions and synthesis, operation and scheduling problems, and
ave developed more complex models to assess them. For exam-
le, Birewar and Grossmann (1989, 1990) have considered the
elationship between design, synthesis and scheduling problems.
oudouris and Grossmann (1993) have addressed a model to
etermine the optimal configuration and cyclic operation of mul-
iproduct batch plants. Xia and Macchietto (1997) have solved
he design and synthesis of batch plants through a stochastic

ethod. Iribarren et al. (2004) have posed a model using dis-
unctive programming to solve the synthesis and design for the

roduction of multiple recombinant proteins.

Most of the works formulate the models considering a time
orizon composed by only one period. This approach hinders
o consider processes that operate under variations in the model
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Nomenclature

aku binary variable that denotes if equipment at
semicontinuous stage k has size u

Bijt batch size of product i in stage j in period t
Cit amount of raw material for producing i purchased

in period t
dj binary variable that indicates if the tank is allo-

cated in position j
Dikt duty factor of product i in stage k in period t
DEit demand for product i in period t
Ei extent of extraction for product i
fijνt continuous variable that represents the product of

the variables qitstjν
fx product concentration in the solid feed P
fy product concentration in the extraction solvent L
Fit parameter that accounts for the process conver-

sion of i in period t
Gk number of semicontinuous units in parallel in

phase in stage k
hikugt continuous variable that represents the product of

the variables qitakuxkg
H time horizon
Ht net available production time for all products in

period t
IMit inventory of raw material i at the end of a period t
IPit inventory of final product i at the end of a period

t
L extraction solvent
mj number of discrete sizes available for stage k
Mj number of batch units in parallel out of phase in

stage j
nijt number of batches of product i in stage j in period

t
nj number of discrete sizes available for stage j
npit price of product i in period t
pj number of discrete sizes available for storage

tanks
P solid feed
PEi,t−1 factor that accounts the loss of raw materials
PRit productivity of i in time period t
qit amount of product i to be produced in period t
QSit amount of product i sold at the end of period t
rjms continuous variable that represents the product of

the binary variables zjsyjm

Rk size of semicontinuous item k
RMit raw material inventory for product i in period t
stjv binary variable that denotes if storage at position

j has size ν
Sijt size factor of product i in stage j for each period t
STijt size factor for product i for an intermediate storage

tank in the location j
tijt processing time of product i in batch stage j in

period t
Tit total time for producing product i in period t

TLpit limiting cycle time of product i for a subprocess
p in period t

Tijt time required to process a batch of product i in
stage j in period t

Vj size of a batch unit at stage j
VTj size of the intermediate storage tank allocated in

position j
witjk continuous variable that represents the product of

the variables nijtyjk
xkg binary variable that denotes if semicontinuous

stage k has g units of the same size in parallel
yjm binary variable that denotes if batch stage j has m

units of the same size in parallel
zjs binary variable that denotes if equipment at batch

stage j has size s

Greek letters
αj cost coefficient for a batch unit in stage j
βj cost exponent for a batch unit at stage j
γk cost coefficient for a semicontinuous unit in stage

k
δk cost exponent for the semicontinuous unit in stage

k
εi inventory cost coefficient for raw material i
ηi extraction factor for product i
θikt processing time of product i for semicontinuous

unit k in period t
κit price for the raw material of product i in period t
λijνt continuous variable that represents the product of

the variables nijtstjν
μibjmt continuous variable that represents the product of

the variables ξibtyjm

νjs standard volume of size s for batch unit at stage j
ξibt variable that represents the product of φibtnijt

πj cost coefficient for an intermediate storage tank
allocated in position j

ρkgu continuous variable that represents the product of
the binary variables akuxkg

σi inventory cost coefficient for product i
τj cost exponent for an intermediate storage tank

allocated in position j
υjν standard volume of size v for storage tank allo-

cated in position j
φibt operating time of a semicontinuous subtrain b for

product i in period t
Φ Maximum ratio allowed between consecutive

batch sizes
ωku Standard size u for semicontinuous unit at stage k

Subscripts
b semicontinuous subtrain
g number of parallel units at semicontinuous stages
i product
j batch stage
k semicontinuous stage
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m number of parallel units at batch stages
s discrete sizes for batch stages
t time period
u discrete sizes for semicontinuous stages
ν discrete sizes for storage tanks

Superscripts
d downstream
f final
i initial
L lower bound
n number of stages in the extraction
p subprocess
u upstream
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arameters along the time horizon. Costs, raw materials and
emands typically vary from period to period due to market or
easonal reasons. Some authors have posed solutions consider-
ng the uncertainty in the model parameters (Petkov & Maranas,
998; Tarifa & Chiotti, 1995). For example, Ierapetritou and
istikopoulos (1996) proposed a formulation using stochas-

ic programming for simultaneously solving the design and
peration of batch plants with uncertainty in process param-
ters and product demands. Another approach to consider
ariability is the development of multiperiod optimization mod-
ls that involve designing plants that operate under variations
n the model parameters along all the periods in time hori-
on. Costs and demands typically vary from period to period.
arvarezos, Grossmann, and Biegler (1992) resorted to decom-
osition methods to solve multiperiod MINLP. Van den Heever
nd Grossmann (1999) considered a general disjunctive multi-
eriod nonlinear optimization model for the design, operation
lanning and capacity expansion of general chemical process
ystems.

Taking into account these previous efforts, a new formula-
ion is considered for the design of multiproduct batch plants.
he proposed model considers simultaneously design and plan-
ing decisions on a multiperiod context. In this way, variations
f prices, costs and product demands due to seasonal reasons
re considered. Also, the multiperiod approach presented with
ifferent period lengths overcomes the strong limitation posed
y previous models that considered single product campaigns.
ere, a long time horizon can be decomposed in shorter periods
here the single product campaigns assumption is reasonable.
rom the design point of view, all the units usually considered

n batch process are involved: storage tanks, batch and semicon-
inuous units.

Also, the proposed model considers discrete sizes for the
nits. This is a usual procurement policy in this industry. Besides,

t is an assumption used by other authors (Dietz, Azzaro-Pantel,
ibouleau, & Domenech, 2005; Ierapetritou & Pistikopoulos,
996; Sparrow, Forder, & Rippin, 1975; Tan & Mah, 1998;
oudouris & Grossmann, 1992) that, from the mathematical

1
2
3
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oint of view, allows a mixed integer linear program (MILP) for-
ulation. Therefore, a realistic design case is posed, which can

e solved to global optimality with reasonable computational
ffort.

The paper is organized as follows. First, the description of the
roblem is presented. Then, a multiperiod model is formulated
hich incorporates all the elements of the design and operation
lanning problems. Finally, the solution of the MILP is illus-
rated with a specific example of a multiperiod batch plant that
roduces Oleoresins.

. Problem description

The multiperiod design and operation planning problem for
multiproduct noncontinuous plant can be stated as follows.

t is assumed that a total of I products is to be produced in a
ultiproduct batch plant which consists of J batch processing

tages, K semicontinuous stages that form L semicontinuous
ubtrains. Intermediate storage tanks can be allocated between
atch stages. The products are manufactured over a time horizon
, which is divided in T time periods of specified length Ht not
ecessarily equal.

The basic data for units are the size/duty factors for each
atch/semicontinuos stage for each product i in every period
, Sijt/Dikt; the processing times for each product i at a
atch stage j, tijt. For each product i, the lower and upper
ounds on its demands in every period t, DEL

it/DE
U
it , are

nown.
The objective function ψ to be maximized is the net present

alue of the profit along the global time horizon, taking into
ccount incomes from product sales, expenditures from raw
aterials purchases, inventory and investments costs.
Following are the key assumptions, which are usual for this

ind of problem:

. The size/duty factors are constant for each product.

. When multiple parallel units are considered at a stage, they
have the same size.

. The plant operates in single product campaign (SPC) mode
in each time period.

. Batch units in parallel operate out of phase, while semicon-
tinuous units operate in phase.

. When storage tanks are not allocated, ZW (zero wait) policy
is employed.

. If intermediate storage tanks are employed in the process,
their role is only to decouple the operations of the stages
upstream from those downstream to the tank; they do not act
as a long-term storage, so FIS (finite intermediate storage)
policy is adopted.

Three levels of decisions are considered in the solution of this
roblem:
. Structural decisions.

. Design decisions.

. Production planning decisions.
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The first two decisions are independent from the time periods,
nd involve investment costs, while the last one is valid for every
ime period. The first level decides the number of parallel units,
hich operates out of phase at batch stage j and the number of
arallel units that operate in phase at the semicontinuous stage k.
he allocation of intermediate storage tank is made at this level

oo. The allocation and sizing of intermediate storage has been
ncluded in the model to obtain a more efficient plant design.
or this reason, a multiproduct plant can be viewed as a series
f subprocesses, which are separated by intermediate storage.
esign decisions involve the selection of equipment sizes for
oth batch and semicontinuous units, and intermediate storage
anks among available discrete sizes.

Finally, the last level determines at each period t and for each
roduct i the amount to be produced, the number of batches
t stage j, and the total time to produce product i. Further-
ore, inventory considerations are taken into account in the

lant operation because of the possible seasonal variations of
aw materials availability and product demands. They may be
aintained in stock until they are consumed. Then, for each

roduct and raw material at the end of every period t, inventories
evels are obtained. Moreover, total sales, amount of raw mate-
ial purchased, and raw material to be used for the production of
roduct i in each period t are determined with this formulation.
n this model two cases are considered, i.e., when the elaboration
f product i depends on only one raw material, and the general
ase, when production requires several raw materials.

. Model formulation

The problem involves optimizing the process over all time
eriods t = 1, . . ., T and has the object of maximizing the profit
ubject to the constraints described below.

.1. Batch equipment

The general batch process literature (Biegler, Grossmann, &
esterberg, 1997) describes the batch unit size of stage j, Vj,

hrough a sizing equation that is applied for each product i as
ollows:

j ≥ SijBi, ∀i, j (1)

here Bi is the batch size for product i, e.g. kg of product exiting
rom the last stage; and Sij is the size factor of product i for stage
, i.e., the size needed at stage j to produce 1 kg of final product
.

The allocation of a storage tank decouples the process into
wo subprocesses: one upstream from the tank, and the other
ownstream. This in turn allows batch sizes on either side of
he tank to be chosen independently. Therefore, the previously
nique Bi is changed to batch sizes Bij defined for product i in
tage j. Appropriate constraints adjust the batch sizes among

ifferent units. Considering the multiperiod character, the size
f a unit in a batch stage j is given by:

j ≥ SijtBijt, ∀i, j, t (2)

s
a

θ
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here Bijt and Sijt denote the batch size and size factor, respec-
ively of product i in stage j for each period t.

The amount of product i produced in time period t, qit depends
n the number of batches nijt, as defined by:

it = Bijtnijt, ∀i, j, t (3)

By combining Eqs. (2) and (3) the following constraints are
btained:

ijt ≥ Sijtqit

Vj
, ∀i, j, t (4)

As already mentioned, variable Vj is restricted to take values
rom the set SVj = {νj1 , νj2 , . . . , νjnj }, where νjs represents
he discrete size s for batch equipment j and nj is the given
umber of discrete sizes available for stage j. To rigorously tackle
his situation for batch stages, the following binary variable is
ntroduced:

js =
{

1 if equipment at batch stage j has size s

0 otherwise

Using the above definition, 1/Vj can be expressed in terms of
he defined discrete variables as follows:

1

Vj
=
∑
s

zjs

νjs
, ∀j (5)

s

zjs = 1, ∀j (6)

n this way, by substituting Eq. (5) into Eq. (4), new constraints
an be formulated that restrict the volumes to discrete sizes

ijt ≥
∑
s

(
Sijtqit

νjs

)
zjs, ∀i, j, t (7)

onstraint (7) is nonlinear because of the bilinear terms qitzjs.
n order to eliminate these bilinearities, a new nonnegative con-
inuous variable eijst is defined to represent this cross-product
Ierapetritou & Pistikopoulos, 1996; Voudouris & Grossmann,
992). Then the following linear constraints are obtained:

ijt ≥
∑
s

(
Sijt

νjs

)
eijst, ∀i, j, t (8)

ijst ≤ qU
it zjs, ∀i, j, s, t (9)

it =
∑
s

eijst, ∀i, j, t (10)

here qU
it represents the upper bound for qit.

.2. Semicontinuous equipment

Semicontinuous units operate continuously with periodic
tartups and shutdowns. The processing time of product i for

emicontinuous unit k in period t, θikt, considering that Gk par-
llel units in phase are available, can be calculated by:

ikt = DiktBijt

GkRk
, ∀i, k, t (11)
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here j is the batch stage adjoining unit k, Dikt the duty factor
f product i in period t, i.e. the size needed in stage k to obtain
kg of final product i, and Rk is the size of the semicontinuous

tem k, usually a processing rate. This size depends on the type
f unit, for example, in pumps it is the power, in heat exchangers
s the exchange area, etc.

A series of semicontinuous equipment with no batch unit or
ntermediate storage among them is a semicontinuous subtrain.
ll the units belonging to subtrain b must operate for the same

ength of time to avoid accumulation of material. In this way,
he operating time of a semicontinuous subtrain is the maximum
perating time of all the semicontinuous units that belong to that
ubtrain. Thus, the operating time of a semicontinuous subtrain
for product i in period t, φibt, is given by:

ibt = max
k ∈ b

(θikt), ∀i, b, t (12)

y substituting Eq. (3) into Eq. (11), the above relation can be
xpressed as

ibt ≥ Diktqit

GkRknijt
, ∀i, b, k ∈ b, t (13)

y setting the operating time of a semicontinuous subtrain to
e equal to the longest operating time of all the stages in the
ubtrain, the requirement that all the stages operate for the same
ength of time can be satisfied. The rates of the remaining semi-
ontinuous stages in the semicontinuous subtrain can always be
educed during the operation of the plant by increasing their
perating time.

In a similar way, the size of the semicontinuous unit
k is restricted to take values from the set SRk =
ωj1, ωj2, . . . , ωkmk }, whereωku denote discrete size u for semi-
ontinuous unit k and mk is the number of discrete sizes available
or stage k. Thus, the following binary variable is defined:

ku =
{

1 if equipment at semicontinuous stage k has size u

0 otherwise

Again, the inverse of the semicontinuous sizes can be
xpressed in terms of discrete variables as

1

Rk
=
∑
u

aku

ωku
, ∀k (14)

u

aku = 1, ∀k (15)

As suggested by Kocis and Grossmann (1988), parallel units
an be treated by introducing the discrete variable:

kg =

⎧⎪⎨
⎪

1 if semicontinuous stage k has g units

of the same volume in parallel
⎩0 otherwise

These constraints are used to represent an integer number for
k where the available and feasible options g are considered for

b

s
s
e

al Engineering 31 (2007) 1159–1173 1163

ach stage:

1

Gk
=
∑
g

xkg

g
, ∀k (16)

g

xkg = 1, ∀k (17)

Then, introducing (14) and (16) into Eq. (13), the following
xpression is obtained:

ibtnijt ≥
∑
g

∑
u

(
Diktqit

gωku

)
akuxkg, ∀i, b, k ∈ b, t (18)

In order to reformulate the constraints for the operating time
f semicontinuous subtrains as linear ones, first a new variable
as to be introduced in the formulation

ibt = φibtnijt, ∀i, b, t (19)

here nijt corresponds to the stage j which is immediately adjoin-
ng the subprocess b.

Constraint (18) can now be written as

ibt ≥
∑
g

∑
u

(
Diktqit

gωku

)
akuxkg, ∀i, b, k ∈ b, t (20)

The cross-product qitakuxkg can be eliminated by introducing
he following variable

ikugt =
{
qit if aku and xkg are 1

0 otherwise

ith which constraint (20) can be replaced by the linear expres-
ion:

ibt ≥
∑
g

∑
u

(
Dikt

gωku

)
hikugt, ∀i, b, k ∈ b, t (21)

To define the variables hikugt, the following equivalence con-
traints are introduced (Voudouris & Grossmann, 1993):

g

hikugt ≤ qU
it aku, ∀i, k, u, t (22)

u

hikugt ≤ qU
it xkg, ∀i, k, g, t (23)

it =
∑
g

∑
u

hikugt, ∀i, k, t (24)

.3. Time constraints

A batch unit is periodically operated with steps of filling, pro-
essing, discharging, and possibly waiting. The time required to
rocess a batch of product i in stage j in each period t, Tijt, is the
um of the processing time of product i in batch stage j, tijt, and

oth the filling time φibu

j
t , and the emptying time φibd

j
t , corre-

ponding to the upstream buj and downstream bdj semicontinuous
ubtrains, respectively, if they are included in the plant. Consid-
ring the existence of Mj parallel units operating out of phase in
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batch stage j and, upstream and downstream semicontinuous
ubtrains, Tijt is given by:

ijt =
φibu

j
t + tijt + φibd

j
t

Mj

, ∀i, j, t (25)

The following discrete variables are introduced in order to
reat parallel units in at batch stages

jm =

⎧⎪⎨
⎪⎩

1 if batch stage j has m units of the same

volume in parallel

0 otherwise

To represent an integer number for Mj the following con-
traints are posed where the available and feasible options m are
onsidered for each stage:

j =
∑
m

yjm

m
, ∀j (26)

m

yjm = 1, ∀j (27)

The limiting cycle time for product i in a subprocess p in a
eriod t, TLpit represents the time between two successive batches
f product i in the subprocess p. It can be calculated as the
aximum of all stage cycle times in that subprocess, thus:

Lpit = max
j ∈p,b∈p

(Tijt, φibt), ∀i, p, t (28)

hat can be expressed as:

Lpit ≥
φibu

j
t + tijt + φibd

j
t

Mj

, ∀i, p, j ∈p, t (29)

Lpit ≥ φibt, ∀i, p, b∈p, t (30)

As has been mentioned, the allocation of storage tanks divides
he process into two subprocesses. In this way, every subprocess
an have different number of batches and limiting cycle times.
ank allocation would increase the cost of the plant, but due to

he decoupling of subprocesses, subprocesses with smaller TLpit
an operate with smaller equipment sizes.

As Modi and Karimi (1989) noted, the subprocesses are cou-
led through the requirement that the production time allocated
o product i be the same for all the subprocesses. Therefore, the
otal times for producing i, Tit, or alternatively, production rates
Rit, in each time period t must be equal in all the subprocesses

n order to avoid accumulation of material. The total time for
roducing product i in time period t is defined as:

it = nijtTLpit, ∀i, p, j ∈p, t (31)

The productivity of i in time period t is

Rit = Bijt
p , ∀i, p, j ∈p, t (32)
TLit

In expressions (31) and (32), the number of batches nijt and
he batch size Bijt must be the same in all the units, which belong
o each subprocess.

b
c
b
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By introducing Eq. (3) the above equations can be expressed
s

Rit = qit

nijtTL
p
it

= qit

Tit
, ∀i, t (33)

The fact that qit and Tit are equal for all the subprocesses
nsure that the production rate upstream and downstream of the
torage tank be the same.

By multiplying Eqs. (29) and (30) by nijt, and taking into
ccount Eqs. (26), (31) and (19), these constraints can be
xpressed as

it ≥
∑
m

(
ξibu

j
t + tijtnijt + ξibd

j
t

m

)
yjm, ∀i, j, t (34)

it ≥ ξibt, ∀i, b, t (35)

The nonlinearities in constraint (34) are eliminated by intro-
ucing new variableswitjk, μibjmt to represent the cross-product
ijtyjk and ξibtyjm, respectively. This equation can now be written
s

Tit ≥
∑
m

(μibu
j
jmt

m

)
+
∑
m

( tijt
m

)
wijmt +

∑
m

(μibd
j
jmt

m

)
,

∀i, j, t (36)

ijmt ≤ nU
ijtyjm, ∀i, j,m, t (37)

ijt =
∑
m

wijmt, ∀i, j, t (38)

ibjmt ≤ ξU
ibtyjm, ∀i, b, j,m, t (39)

ibt =
∑
m

μibjmt, ∀i, b, j, t (40)

here nU
ijt and ξU

ibt represent upper bounds for the variables nijt

nd ξibt, respectively. The upper bound for ξibt can be obtained
nalytically from the constraint (20).

Considering the case of SPC-ZW policy in the period t, the
roduction time horizon constraint can be expressed as:

i

Tit ≤ Ht, ∀t (41)

The length of each time period Ht can vary and it is possible
o aggregate many periods or divide them as necessary. For this
eason the constraint of SPC is not too restrictive from a practi-
al point of view. With this approach it is possible to get more
exible production programs and a more realistic formulation
or the design problem.

.4. Intermediate storage
The allocation of an intermediate storage tank between two
atch stages causes the process to be divided into two subpro-
esses upstream and downstream of the tank. Therefore, for J
atch stages there exist, at most J − 1 possible positions for
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torage tanks to be allocated between two consecutive batch
tages.

The capacity constraints for the storage tanks are simplified
ass balances around the storage vessels. Different expressions

ave been proposed. Modi and Karimi (1989) presented a rela-
ively tight upper bound for the size of storage vessels given by
he following constraint:

Tj ≥ STij(Bij + Bi,j+1), ∀i, j = 1, . . . , J − 1 (42)

here VTj is the size of the storage tank allocated after batch
tage j, and STij is the size factor corresponding to the interme-
iate storage tank.

Another expression to obtain an upper bound for the storage
essels, but not as tight as the previous expression, is given
y the following constraints (Ravemark, 1995; Voudouris &
rossmann, 1993) applied to every time period t:

Tj ≥ 2STijtBijtdj, ∀i, j = 1, . . . , J − 1, t (43)

Tj ≥ 2STijtBi,j+1,tdj, ∀i, j = 1, . . . , J − 1, t (44)

ere, as no a priori tank allocation is given, binary variables dj

re used to select them. The value of variable dj is 1 if a tank is
laced in position j, or zero otherwise.

These last Eqs. (43) and (44) are preferred. Even though they
re less tight than (42), simpler transformations exist for these
xpressions.

If the storage tank does not exist between two consecu-
ive stages, then their batch sizes are constrained to be equal.
his effect is imposed by the following constraints (Ravemark,
995):

1 +
(

1

Φ
− 1

)
dj ≤ Bijt

Bi,j+1,t
≤ 1 + (Φ− 1)dj,

∀i, j = 1, . . . , J − 1 (45)

here Φ is a constant value corresponding to the maximum
atio allowed between consecutive batch sizes. If no storage is
vailable (i.e. dj = 0) the ratio of consecutive batch sizes is one. If
storage tank is allocated (i.e. dj = 1) the ratio can vary between
/Φ and Φ.

By introducing Eq. (3), Eqs. (43)–(45) can be expressed as:

ijt ≥ 2

(
STijtqit

VTj

)
dj, ∀i, j = 1, . . . , J − 1, t (46)

i,j+1,t ≥ 2

(
STijtqit

VTj

)
dj, ∀i, j = 1, . . . , J − 1, t (47)

i,j+1,t ≤ nijt + (Φ− 1)nijtdj, ∀i, j = 1, . . . , J − 1, t

(48)

(
1

)

i,j+1,t ≥ nijt +

Φ
− 1 nijtdj, ∀i, j = 1, . . . , J − 1, t

(49)

here Eq. (45) has been split into two expressions.

n

al Engineering 31 (2007) 1159–1173 1165

As has been previously mentioned, variable VTj is restricted
o take values from the set STj = {υj1, υj2, . . . , υjpj }, where
jν represents discrete size ν for storage tank at position j and pj

s the given number of discrete sizes available for storage tanks.
hen, the following binary variables are introduced:

tjν =
{

1 if storage at position j has size ν

0 otherwise

The following constraint holds,

ν

stjν = 1, ∀j = 1, . . . , J − 1 (50)

In this model it has been assumed that in all the positions j
he alternative ν = 1 represents size 0, or in other words that no
torage tank is allocated. Right side of Eqs. (46) and (47) involves
he inverse of the tank sizes. So, the following expression is
osed:

1

VTj
=
∑
ν �=1

stjν
υjν

, ∀j = 1, . . . , J − 1 (51)

here ν �= 1 stands for the nonzero volume sizes. The number
f batches nijt and ni,j+1,t are given by Eqs. (46) and (47). Tak-
ng into consideration Eq. (51), the following storage capacity
onstraints are obtained:

ijt ≥ 2
∑
ν �=1

(
STijtqit
υjν

)
stjν, ∀i, j = 1, . . . , J − 1, t (52)

i,j+1,t ≥ 2
∑
ν �=1

(
STijtqit
υjν

)
stjν, ∀i, j = 1, . . . , J − 1, t

(53)

y introducing the new continuous nonnegative variable fijvt to
epresent the cross-product qitstjν, Eqs. (52) and (53) are then
eplaced by the following linear constraints:

ijt ≥ 2
∑
ν �=1

(
STijt
υjν

)
fijνt, ∀i, j = 1, . . . , J − 1, t (54)

i,j+1,t ≥ 2
∑
ν �=1

(
STijt
υjν

)
fijνt, ∀i, j = 1, . . . , J − 1, t (55)

ijνt ≤ qU
it stjν, ∀i, ν, j = 1, . . . , J − 1, t (56)

it =
∑
ν

fijνt, ∀i, j = 1, . . . , J − 1, t (57)

By using the binary variable stjν in place of the variable dj

he constraints (48) and (49) can be written as

ni,j+1,t ≥ nijt +
(

1

Φ
− 1

)∑
v�=1

stjνnijt,

∀i, j = 1, . . . , J − 1, t (58)
i,j+1,t ≤ nijt + (Φ− 1)
∑
v�=1

stjνnijt, ∀i, j = 1, . . . , J − 1, t

(59)
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The nonlinearity in these equations is eliminated with the
efinition of a new variable λijνt . In this way the following linear
onstraints are obtained:

ij+1t ≥ nijt +
(

1

Φ
− 1

)∑
ν �=1

λijνt, ∀i, j = 1, . . . , J − 1, t

(60)

ij+1t ≤ nijt + (Φ− 1)
∑
ν �=1

λijνt, ∀i, j = 1, . . . , J − 1, t

(61)

ijνt ≤ nU
ijtstjν, ∀i, ν, j = 1, . . . , J − 1, t (62)

ijt =
∑
v

λijνt, ∀i, j = 1, . . . , J − 1, t (63)

aking into account the structure of the plant, its batch and
emicontinuous stages, different constraints must be considered
epending on the position for the allocation of a storage tank.
or example, if there are semicontinuous subtrains and the stor-
ge tanks are allocated immediately after a batch stage, before
ts downstream semicontinuous subtrain, Eq. (34), and then (36)
hould be modified. In this case, it is necessary to formulate the
ollowing constraints to replace Eq. (34):

it ≥
∑
m

(
ξibu

j
t + tijtnijt

m

)
yjm, ∀i, j, t (64)

Tit ≥
∑
m

(
ξibu

j
t + tijtnijt + ξibd

j
t

m

)
yjm − BM(1 − stj1),

∀i, j = 1, . . . , .J − 1, t (65)

onstraint (65) is of the Big-M type, where BM is a large con-
tant that has an appropriate value that will ensure that if the
torage tank does not exist, then Eq. (34) is considered. Formu-
ations considering other structural alternatives are also feasible.

.5. Planning constraints

Two cases are presented taking into account the relation
etween products and raw materials.

Case a: In this case, it is assumed that the elaboration of each
roduct requires a unique raw material that it is not shared by
ther products. This assumption is valid for the solved example,
n oleoresins plant.

IPit, the inventory of final product i at the end of a period t
epends on the inventory that is left from the previous interval,
Pi,t−1, the quantity produced qit, and the total sales, QSit:

Pit = IPi,t−1 + qit − QSit , ∀i, t (66)
Sales depend on the lower and upper bounds for products
emands, DEL

it/DE
U
it . Then:

EL
it ≤ QSit ≤ DEU

it , ∀i, t (67)
al Engineering 31 (2007) 1159–1173

Pit has an upper bound, which corresponds to the maximum
nventory capacity for each product in the plant.

≤ IPit ≤ IPU
it , ∀i, t (68)

In the same way, the inventory of raw material IMit at the end
f a time period t, depends on the inventory that is left from the
revious interval, IMi,t−1, the quantity purchased Cit, and the
mount used in the production process, RMit:

Mit = PEi,t−1IMi,t−1 + Cit − RMit , ∀i, t (69)

The parameter PEi,t−1 is a factor smaller than or equal to 1
hat takes into account the loss of raw materials between two
onsecutive periods, to consider the degradation of natural raw
aterials.
IMit has an upper bound, which is the maximum inventory

apacity for each raw material in the plant.

≤ IMit ≤ IMU
it , ∀i, t (70)

The initial amount of raw material in the inventory IMi0 for
ach product at the beginning of the time horizon is assumed to
e given. Idem for the initial product inventory, IPi0. The use of
Mi0 and IPi0 have a strong impact when this model is only used
or operation planning without considering design, for example
n an existing plant.

The raw material necessary for the production of the product
is obtained from a mass balance:

Mit = Fitqit, ∀i, t (71)

here Fit is a parameter that accounts for the process conversion,
.g. ratio of solvent to solids, time of contact, etc.

Case b: The approach is generalized for cases which involve
everal raw materials for producing each product, as occurs in
everal industries. Then, the process handles c = 1, . . ., CT ingre-
ients to manufacture the products. Let Fcit be a parameter that
ccounts for the process conversion of raw material c to make
roduct i during period t. RMcit, the amount consumed of raw
aterial c in period t to elaborate product i, is obtained from a
ass balance. Then,

Mcit = Fcitqit, ∀c, i, t (72)

he total consumption of raw material c for production in period
, RMct is obtained from

Mct =
∑
i

RMcit, ∀c, t (73)

n this case, Eqs. (69) and (70) must be rewritten considering
ach ingredient c in period t, i.e. Cct, and IMct.

.6. Objective function

The objective function to be optimized is,

=
∑
t

∑
i

npitQSit −
∑
t

∑
i

κitCit −
∑
j

MjαjV
βj
j

∑ J−1∑

−

k

Gkγk ≤ Rδkk −
j

πjVTτjj
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may consist of up to two parallel units. Storage tanks can be
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−
∑
t

∑
i

εi

(
IMi,t−1 + IMit

2

)
Ht

−
∑
t

∑
i

σi

(
IPi,t−1 + IPit

2

)
Ht (74)

The first term corresponds to the incomes due to sales, where
pit is the price of product i in period t. The second term is
he cost of raw materials with κit the price for the ingredi-
nt of product i in period t, which takes into account market
uctuations for harvest, transportation, cooling facilities, etc.
ere the case (a) posed in the Planning Constraints has been

onsidered. Similar expression can be posed for case (b). The
hird, fourth and fifth terms are investment cost correspond-
ng to batch units, semicontinuous units, and storage tanks in
he plant, where αj, βj, γk, δk, πj and τj are appropriate cost
oefficients that depend on the type of equipment being consid-
red (Ravemark & Rippin, 1998). As proposed by Birewar and
rossmann (1990) the inventory can be expressed as an average

t each period. So, the last two terms correspond to both raw
aterials and final products inventory costs, where εi and σi

re inventory cost coefficients for raw materials and products,
espectively.

Let ψEQ be the term of capital costs for all equipments in
unction (74).

EQ =
∑
j

MjαjV
βj
j +

∑
k

GkγkR
δk
k +

J−1∑
j

πjVTτjj stjν (75)

In a general approach, it is calculated through a power law
xpression where the sizes Vj, Rk and VTj are considered as con-
inuous values. However, in this work, units are selected from a
et of available discrete sizes. Thus, maintaining the law expres-
ion and considering the available discrete sizes, the term of
apital cost is posed as follows:

EQ =
∑
j

∑
m

∑
s

mαjν
βj
js yjmzjs +

∑
k

∑
g

∑
u

gγkω
δk
kuxkgaku

+
J−1∑
j

∑
v�=1

πjυ
τj
jνstjν (76)

o obtain finally:

EQ =
∑
j

∑
m

∑
s

cbjmsrjms +
∑
k

∑
g

∑
u

cskguρkgu
+
J−1∑
j

∑
v�=1

ctjνstjν (77)
a
T
P

Fig. 1. Flowsheet of the multiproduct batch
al Engineering 31 (2007) 1159–1173 1167

here the terms cbjms = m · αj · νβjjs represent the cost of stan-
ard batch vessels, cskgu = g · γk · ωδkku the cost of standard
emicontinuous sizes and ctjν = π · υτjjν the cost of standard
torage vessels. New variables rjms, ρkgu are introduced to elim-
nate the product of binary variables zjsyjm, akuxkg, respectively,
hrough the constraints:

jms ≥ zjs + yjm − 1, ∀j,m, s (78)

kgu ≥ xkg + aku − 1, ∀k, g, u (79)

hese new variables can be settled as continuous if the following
ounds are added:

≤ rjms ≤ 1 (80)

≤ ρkgu ≤ 1 (81)

The final model is a MILP which consists of maximizing
he objective function represented by Eq. (73) using Eq. (76) as
he term of capital cost and subject to constraints (6), (8)–(10),
15), (17), (21)–(24), (27), (35)–(41), (50), (54)–(57), (60)–(63),
66)–(71), (78)–(81) and the necessary bounds for the case (a)
f planning constraints. A similar model should be posed for the
ase (b).

An important feature of the model is that the discrete variables
nly depend on plant design and are independent of time periods,
hich allows handling large problems with less computational

ffort.

. An illustrative example: computational results

In order to illustrate the multiperiod MILP model, a mul-
iproduct batch plant is considered that manufactures five
leoresins (I = 5), sweet bay (A), oregano (B), pepper (C),
osemary (D), and thyme (E) oleoresins. All the products are
btained via the following processing stages: (1) grinding, where
size reduction is realized; (2) extraction in a four stages

ountercurrent arrangement which produces the dissolution of
ctive principles into an organic solvent; (3) expression, where
ydraulic pressing is used for the recovery of liquid extract;
4) evaporation, solvent separation from fluid end products; (5)
hickening, solvent separation from semisolid end products; (6)
lending, task in which the extract is mixed with diluents, sol-
bilizing agents, and/or essential oils to strength the aroma and
7) canning, packing of end products (Fig. 1). Stages 1, 4, 5 and

are semicontinuous stages and they can be duplicated up to
hree items. Stages 2, 3 and 6 are batch stages, each of them
llocated after batch stages 2 (position 1) and 3 (position 2).
his model corresponds to the case (a) previously posed in the
lanning Constraints Section.

plant for the production of oleoresins.
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Table 1
Data for the example

i Size factors, Sijt (L/kg) Processing time, tijt (h) Duty factor, Dikt Storage size factor, STijt (L/kg)

2 3 6 2 3 6 1 4 5 7 Position 1 Position 2

A 20 15 1.5 1.5 1 0.5 0.3 0.045 0 0.023 25 20
B 80 55 1.5 1.5 1 0.5 1.2 0.18 0 0.094 90 60
C 20 15 1.5 2.5 2 2 0.3 0.045 0.110 0.023 25 18
D 40 25 1.5 1.5 1 1 0.6 0.090 0.225 0.047 50 25
E 30 20 1.5 1.5 1 1 0.43 0.065 0.160 0.034 35 30

βj = 0.6 βj = 0.6 βj = 0.6 γk = 0.22 γk = 0.40 γk = 0.62 γk = 0.4 τj = 0.5 τj = 0.5
αj = 592 αj = 582 αj = 457 δk = 370 δk = 250 δk = 210 δk = 250 πj = 450 πj = 450

Table 2
Prices and demand bounds for the example

t Costs of raw materials, κit ($/kg) Prices of products, npit ($/kg) Bounds on demands, DEL
it −DEU

it (×102 kg)

A B C D E A B C D E A B C D E

1 2.2 0.5 1.2 0.6 0.7 55 45 40 42 48 3.5–20 4.5–25 2.5–30 3.5–25 3.0–25
2 2.2 0.5 1.2 0.6 1.6 55 48 40 42 48 2.0–20 4.0–24 3.0–25 3.5–25 3.5–24
3 2.2 0.5 1.2 0.6 1.6 55 48 40 42 48 3.0–24 4.0–20 2.0–30 3.5–25 3.0–24
4 2.2 1.5 1.2 0.6 1.6 55 48 40 42 48 3.5–20 4.0–20 4.0–30 3.5–25 2.5–30
5 1.5 1.5 2.5 1.8 1.6 52 48 44 45 52 2.5–15 3.5–20 3.0–24 3.5–24 2.0–35
6 1.5 1.5 2.5 1.8 1.6 52 48 44 45 52 3.0–15 4.0–24 4.0–25 3.0–24 2.0–35
7 1.5 1.5 2.5 1.8 1.6 52 48 44 45 52 4.0–20 4.0–24 2.0–24 3.0–24 2.5–30
8 1.5 1.5 2.5 1.8 1.6 52 48 44 45 52 4.0–20 3.5–24 2.0–25 4.0–24 2.0–35
9 2.2 1.5 2.5 0.6 1.6 55 48 44 42 48 3.5–20 3.5–24 3.5–20 4.0–25 2.0–24

10 2.2 1.5 2.5 0.6 1.6 55 48 44 42 48 3.0–15 4.0–30 2.0–24 4.0–25 2.0–25
11 2.2 1.5 1.2 0.6 0.7 55 45 40 42 48 2.5–15 4.0–25 2.5–30 4.0–25 4.5–20
12 2.2 1.5 1.2 0.6 0.7 55 45 40 42 48 3.0–15 3.5–25 4.0–30 4.0–25 3.0–24

Table 3
Standard sizes available for each stage

Discrete volumes, νjs Discrete sizes, ωku Discrete sizes, υjv

2 3 6 1 4 5 7 Storage

1 500 500 50 5 0.7 0.7 2.5 0
2 1000 750 100 10 1 1 5 1000
3 1500 1000 150 15 1.5 1.5 10 2000
4
5
6

t

f

F

w
t
f
c

i
s
$
p

4 CPU 3.00 GHz with the GAMS package, using the CPLEX
solver, with the data shown in Tables 1–4. A time horizon
of 6000 h has been considered, that has been divided in 12
equal periods, as shown in Table 2. The example results for the

Table 4
Data for the example

Extraction parameters Initial inventory

fxn+1 E η IM0

A 0.1 1 0.85 2000
2000 1200 200 20
2500 1500 250 25
3000 2000 500 30

In order to obtain the parameter Fit, Eq. (71), the next equa-
ions are used:

xn+1
it [1 + Ei(1 − ηi)] = fxnit(1 + Ei − ηi) + ηifx

1
it , ∀i, t

it = 1

fxn+1
it − fx1

it

, ∀i, t

here Ei is the extraction factor, ηi the extent of the extrac-
ion and fxit is the product concentration in the vegetable solid
eed. The index n is the number of each stage for the n staged
ountercurrent extraction (see Appendix A).

Tables 1–4 contain the data for this example. The duty factors

n Table 1 are in kW/(kg h) for stages 1 and 7, in m2/(kg h) for
tages 4 and 5. The final product inventory cost coefficient is
1.5/(t h) and the raw material inventory cost is $1/(t h) for all
roducts. The parameter PEi,t is taken equal to 1 for this example.

B
C
D
E

2 2 15 4000
2.5 2.5 20 5000
3 3 30

The developed MILP model has been solved on a Pentium(R)
0.025 1.2 0.99 2000
0.1 0.9 0.90 2000
0.05 1.4 0.95 2000
0.07 1 0.75 2000
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Table 6
Optimal solution problem with intermediate storage tank

Stage

1 2 3 4 5 6 7

Vj 2500 L 2000 L 150 L
Rk 25 HP 3 m2 3 m2 30 HP
VTj 5000 L
M
G

p
s
t
t
m
b
o
e
t
a
i
p
t
s

i
p

a
i
m
p
t
p
m
i
s
f

C
p
p
b
s
w
a
a
C
u
d
a
t
t
d

e

j 2 1 2

k 3 2 3 1

roducts are summarized in Table 5. Table 6 shows the optimal
izes and number of parallel units obtained. Also, Fig. 2 illus-
rates the optimal plant structure of the problem. For this case,
wo parallel units have been selected for the extractor and the

ixer and a tank is allocated between expression and blending
atch stages. The selection of parallel units allows the reduction
f the idle time for the stages. For stages of grinding and thick-
ning, three parallel units have been selected and two units for
he evaporation. These semicontinuous units operate in phase
nd are indicated by overlapped units in Fig. 2. The provision of
ntermediate storage immediately after expression stage decou-
les the plant operation which allows a size reduction, and thus in
he capital cost, of the equipments that belong to the downstream
ubprocess.

The optimal solution for both products B and C are illustrated
n Figs. 3 and 4. They show inventory, production, sales and
urchase profiles at the optimal solution.

Product B is the less convenient to produce because it is in
very small concentration in its raw material (see Table 4) and

ts reduced profit. The first diagram of Fig. 3 shows that raw
aterial for B is purchased during the initial three periods where

rices of raw materials are lower. The second diagram shows that
he production of product B is made only during the first three
eriods, because the costs are lower manly due to the lower raw
aterial price. Most of the amount produced in these periods

s held in inventory for satisfying maximum demands in the
even subsequent intervals and minimum demands in the last
our periods.

On the other hand, in the optimal solution, the production of
is larger (see Table 5), since it is one of the most profitable

roducts. The first diagram of Fig. 4 shows that the purchase
rofile of C reaches the maximum value in the fourth period
ecause of the lower price of raw materials. When the price
uddenly rises the purchases are first stopped, but later restarted
hen raw materials prices fall down in the last periods. The extra

mount of raw material purchased in fourth period is maintained
s inventory. The second diagram shows that the production of

occurs in almost all of the time periods. Furthermore, prod-
ct C builds up inventory during the first five periods because
emands are lower than the production capacity of these periods,
nd most of this amount is consumed to satisfy the demands in
he following periods when the production has stopped. Produc-

ion is restarted in the last two periods to satisfy the maximum
emands.

In order to assess the computational performance several
xamples were also solved with different number of periods.
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Fig. 2. Optimal configuration of the plant showing the units in parallel and intermediate storage tanks.

Fig. 3. Results for product B.

Fig. 4. Results for product C.
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Table 7
Problem sizes for different time periods considered

Number of periods Objective $ Discrete variables Continuous variables Constraints CPU time (s) Relative gap (%)

3 3486336.44 70 2234 2102 4.203 0.0
5 3386141.62 70 3604 3420 11.187 0.0

10 3265426.40 70 7029 6715 82.390 0.0
12 3270299.45 70 8399 8033 118.406 0.0
1 4 10010 458.906 0.0
2 9 13305 408.500 0.0
2 9 15941 547.687 0.0

T
t
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w
e
s
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t
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5

Table 9
Different number of discrete units

Number of
discrete units

Continuous
variables

Discrete
variables

CPU time
(s)

3 4300 45 13.078

1

R
a
a
t
s
b
2
p

v
t
w
s
t
b
c
s
t
p
a
i

5 3447807.24 70 1045
0 3367474.89 70 1387
4 3626317.35 70 1661

he sizes of the different problems considered with respect to
he number of both discrete and continuous variables, the con-
traints and the CPU time as well as the number of time periods
re shown in Table 7. It can be noted that, although the num-
er of continuous variables increases with the number of time
eriods considered, for a given number of available discrete
izes for the units, the number of discrete variables are the same
or all the problems. The computational results show a signifi-
ant increase when a greater number of periods are considered.
owever, reasonable computation times have been obtained.
In multiperiod problems where the binary variables increase

ith each additional time period, Van den Heever and
rossmann (1999) showed that the MILP solution time increases
early exponentially. Otherwise, the formulation here presented
s not as time consuming as their formulations because only the
umber of continuous variables increases with the time periods
ince there are not variations in the plant configuration during
he time horizon.

In order to assess the effect of the multiperiod scenario,
ne example was solved considering a given demand over one
eriod. Then the obtained optimal plant was used for planning
lant operation over several periods. Assuming a multiperiod
ormulation with five time periods which maximum demands
re summarized in Table 8, the corresponding total profit was
1741459.91. The optimal plant structure is (V2, V3, V6) = (1000,
50, 100) with two units in the first stage and one unit in the oth-
rs for batch stages, and (R1, R4, R5, R7) = (30, 2, 3, 30) for
emicontinuous stages, with 1, 2, 3 and 1 units operating in
arallel, respectively. A storage tank after second batch stage
VT2) = (2000), is allocated. Considering only one period, this
roblem is solved for the following cases: (i) the first time period,

here demands are the lowest ones, and (ii) the fifth time period
ith the highest demands. The solution of the problem consid-

ring case (i) results in the selection of one unit for all batch
tages with sizes (V2, V3, V6) = (500, 500, 50) and (R1, R4, R5,

able 8
xample with five time periods

Maximum demands DEU
it

A B C D E

2000 2000 2000 2000 1000
3000 3000 3000 2000 2000
4000 3000 5000 1000 3000
3000 2000 3000 3000 4000
4000 4000 5000 3000 5000

a
w
w
s
c

T
C

B

T
2
5
1

6 7029 70 82.390
0 11139 108 405.375

7) = (30, 1.5, 3, 2.5) for semicontinuous sizes, with 3, 1, 1
nd 1 units operating in parallel respectively; and also a tank is
llocated after second batch stage with size (VT2) = (1000). On
he other hand, in case (ii) the optimal plant corresponds to the
election of equipment sizes (V2, V3, V6) = (1500, 1000, 100) for
atch stages with one unit in each, and (R1, R4, R5, R7) = (25,
, 3, 5) for semicontinuous stages with 2, 2, 3 and 1 units in
arallel. No intermediate storage tank is selected here.

If the problem with five time periods is restricted to take the
alues of the units obtained in the solution of case (i), it has a
otal benefit of $1257581.96 corresponding to a 28% reduction,
hereas in case (ii) the profit was $1692670.513, which corre-

pond to a reduction of 2.8%. In the first case, differences are due
o reduced production levels taking into account smaller units
ecause of the design considered the lowest demands. In the last
ase, in spite of using equipment with the appropriate sizes to
atisfy the highest demands, a better planning is obtained using
he proposed methodology. Note that these lower values of total
rofits demonstrate the superiority of the proposed multiperiod
pproach, which takes into account fluctuations over demands
n every period.

The model performance is also affected by the number of
vailable discrete sizes for each stage. Considering the example

here the horizon time was divided into 10 time periods, Table 9
as performed by changing the number of available discrete

izes for the units in every stage. It shows the number of both
ontinuous and discrete variables and CPU times obtained.

able 10
omputational times

M Number of periods

5 10 12

U 11.187 82.390 118.406
TU 15.531 88.531 105.750
TU 18.593 91.468 124.984
0TU 15.796 105.546 162.140
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As Gupta and Karimi (2003) noted, the solution times depend
eavily on the value of parameters BM used in constrains as Eq.
65). Thus, even though BM can be any large positive value it
as to be selected judiciously. In this work, several values of BM
ere tried to evaluate its effect on CPU times. In general, the

mallest CPU time corresponds to the value of BM adopted as the
aximum of the time available for each period (see Table 10).

. Conclusions

A multiperiod model for optimizing the simultaneous design
nd operation planning of a multiproduct batch plant has been
eveloped. This model explicitly accounts for the effect of
easonal or market variations of products demands and raw
aterials availability. Both raw materials and products inven-

ory costs are readily accounted for. From the structure of the
lant point of view, the presented model is general, involving
atch, semicontinuous and storage tanks. The usual options to
ncrease the efficiency of the batch plant design, such as unit
uplication, are addressed.

Multiperiod MILP formulation involves discrete decisions
or structure selection and continuous decisions for operation
t each period at the plant. Furthermore, the model shows the
nteraction between design decisions and commercial, produc-
ion, sales and inventory policies simultaneously. In general,
revious models only considered one period with fixed amounts
o be produced in the time horizon.

Results were obtained for a plant that produces five oleoresins
n seven processing stages. Solutions over an increasing number
f time periods were also provided and analyzed to assess the
odel performance. Through this example, the effect of multi-

eriod context was evaluated in order to justify this approach.
ery different and poor solutions were obtained if only one
eriod is considered. On the other hand, planning decisions
everely affect the final design. So the simultaneous assessment
f design and planning decisions in a multiperiod context is a
seful approach.

ppendix A. Batch extraction

We want to predict final concentrations from the concentra-
ions in the initial feed. To do so, we need

e = fy∞

fx∞ = n∞
L P

Ln∞
P

the equilibrium constant (A.1)

= n∞
L

n∞
P

= me

(
L

P

)
the extraction factor (A.2)

niL + niP = n
f
L + n

f
P

mass balance on the solute at finite time of contact (A.3)
niL + niP = n∞
L + n∞

P

mass balance on the solute at infinite time of contact (A.4)

s

R

Fig. A.1. A staged countercurrent extraction.

= n
f
L − niL

n∞
L − niL

= niP − n
f
P

niP − n∞
P

the extent of extraction (A.5)

here fy∞ and fx∞ are the product concentrations in the extrac-
ion solvent L and the solid feed P, respectively at infinite
ime (equilibrium). By the symbols nP and nL we describe the
mounts (kg) of solute in P and L, and we call n∞

P and n∞
L to

he amounts at the equilibrium.
The model is based in a staged countercurrent extraction as

hown in Fig. A.1.
We can combine Eqs. (A.5) and (A.3), through the final

mount of solute in the solvent after finite time, and introducing
he extraction factor from Eq. (A.2), we get

i
P − n

f
P + niL = Eηn∞

P + niL(1 − η) (A.6)

Let us obtain the product η·nP
∞ from Eq. (A.5), which leads,

fter algebraic manipulation to:

i
P [1 + E(1 − η)] = n

f
P (1 + E) − ηniL (A.7)

or the n stage, the result is

n+1
P [1 + E(1 − η)] = nnP (1 + E − η) + ηn1

P − ηn0
L (A.8)

xn+1[1 + E(1 − η)] = fxn(1 + E − η) + ηfx1 − η
E

me
fy0

(A.9)

This is the desired result. It relates the feed concentration
xn+1 to the exhausted effluent concentration fx1. In general, the
olvent that enters to the first stage does not contain solute, so
y0 = 0 and:

xn+1[1 + E(1 − η)] = fxn(1 + E − η) + ηfx1 (A.10)

The total mass balance in Fig. A.1, is

fyn + Pfx1 = Pfxn+1 + Lfy0 (A.11)

= Lfyn

fxn+1 − fx1 = Bout

fxn+1 − fx1 (A.12)

To get the total raw material, we have to multiply the above
quation by the number of batches

M = 1

fxn+1 − fx1 q (A.13)
Applying the above equation to several products and repre-
enting the ratio with the variable Fi it can be expressed as

Mi = Fiqi (A.14)
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