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Abstract

This paper presents a general multiperiod optimization model, which simultaneously solves the design and planning decisions in multiproduct
batch plants. Therefore, the trade-offs between both problems are taken into account as well as variations due to seasonal effects, demand patterns, etc.
From the design point of view, the model is formulated considering batch and semicontinuous units, the allocation of intermediate storage, and
structural decisions. Following the usual procurement policy, equipment is provided using discrete sizes. From the planning point of view, the
formulation takes into account both products and raw materials inventories, product demands and raw materials supplies that vary seasonally in a

multiperiod approach.

The objective is the maximization of an economic function, which considers incomes, and both investment and operation costs. A plant that

produces five oleoresins in seven stages is used to illustrate this approach.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last years, the growing importance of batch processing
has been widely known. The rapid development of new products,
the suitability of these processes to produce complex and high
value products in low volume and its flexibility have encouraged
a rapid development in this area.

Multiproduct batch plants are characterized by the production
of multiple products with similar recipes. In the design problem,
the production requirement of each product and the total pro-
duction time available are specified. A procedure is generated
in order to determine the plant configuration and the equipment
sizes to minimize the capital cost. Several works have consid-
ered this problem assuming several conditions: given recipes,
generally single product campaigns, only one time period, etc.
Using these assumptions, several models were developed and
solved through different methodologies: mathematical program-
ming (Montagna, Vecchietti, Iribarren, Pinto, & Asenjo, 2000;
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Ravemark & Rippin, 1998), heuristics methods (Dietz, Azzaro-
Pantel, Pibouleau, & Domenech, 2006; Huang & Wang, 2002;
Jayaraman, Kulkarni, Karale, & Shelokar, 2000; Patel, Mah,
& Karimi, 1991; Wang, Quan, & Xu, 1996) or simulation
(Maruejouls, Azzaro-Pantel, Schirlin, Pibouleau, & Domenech,
2002; Petrides, Koulouris, & Lagonikos, 2002). The develop-
ment of this area was called “filling in the hole” by Rippin (1993),
from works that achieved small successive improvements.

Several works have recognized the trade-offs between design
decisions and synthesis, operation and scheduling problems, and
have developed more complex models to assess them. For exam-
ple, Birewar and Grossmann (1989, 1990) have considered the
relationship between design, synthesis and scheduling problems.
Voudouris and Grossmann (1993) have addressed a model to
determine the optimal configuration and cyclic operation of mul-
tiproduct batch plants. Xia and Macchietto (1997) have solved
the design and synthesis of batch plants through a stochastic
method. Iribarren et al. (2004) have posed a model using dis-
junctive programming to solve the synthesis and design for the
production of multiple recombinant proteins.

Most of the works formulate the models considering a time
horizon composed by only one period. This approach hinders
to consider processes that operate under variations in the model
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Nomenclature

Ay

B ijt
Ci

dj

IM;,
IP;

binary variable that denotes if equipment at
semicontinuous stage k has size u

batch size of product i in stage j in period ¢
amount of raw material for producing i purchased
in period ¢

binary variable that indicates if the tank is allo-
cated in position j

duty factor of product i in stage k in period ¢
demand for product i in period ¢

extent of extraction for product i

continuous variable that represents the product of
the variables g;;st j,

product concentration in the solid feed P
product concentration in the extraction solvent L
parameter that accounts for the process conver-
sion of i in period ¢

number of semicontinuous units in parallel in
phase in stage k

continuous variable that represents the product of
the variables g;rag,xig

time horizon

net available production time for all products in
period ¢

inventory of raw material i at the end of a period ¢
inventory of final product i at the end of a period
t

extraction solvent

number of discrete sizes available for stage k
number of batch units in parallel out of phase in
stage j

number of batches of product i in stage j in period
t

number of discrete sizes available for stage j
price of product i in period ¢

number of discrete sizes available for storage
tanks

solid feed

factor that accounts the loss of raw materials
productivity of i in time period ¢

amount of product i to be produced in period ¢
amount of product i sold at the end of period ¢
continuous variable that represents the product of
the binary variables zj;y;

size of semicontinuous item k

raw material inventory for product i in period ¢
binary variable that denotes if storage at position
Jj has size v

size factor of product i in stage j for each period ¢
size factor for product i for an intermediate storage
tank in the location j

processing time of product i in batch stage j in
period ¢

total time for producing product i in period ¢

TLf; limiting cycle time of product i for a subprocess
p in period ¢

Tijs time required to process a batch of product i in
stage j in period ¢

Vi size of a batch unit at stage j

VT; size of the intermediate storage tank allocated in
position j

Witjk continuous variable that represents the product of
the variables njyjx

Xig binary variable that denotes if semicontinuous
stage k has g units of the same size in parallel

Yjm binary variable that denotes if batch stage j has m
units of the same size in parallel

Zjs binary variable that denotes if equipment at batch
stage j has size s

Greek letters

j cost coefficient for a batch unit in stage j

Bj cost exponent for a batch unit at stage j

Vi cost coefficient for a semicontinuous unit in stage
k

Sk cost exponent for the semicontinuous unit in stage
k

& inventory cost coefficient for raw material i

ni extraction factor for product i

Oitr processing time of product i for semicontinuous
unit k in period ¢

Kit price for the raw material of product i in period ¢

Aijur continuous variable that represents the product of
the variables n;j;st j,

Wipjme ~ continuous variable that represents the product of
the variables &;pyjm

Vjs standard volume of size s for batch unit at stage j

Eibt variable that represents the product of ¢y

i cost coefficient for an intermediate storage tank
allocated in position j

Pkgu continuous variable that represents the product of
the binary variables ay,xy,

o; inventory cost coefficient for product i

T; cost exponent for an intermediate storage tank
allocated in position j

Ujy standard volume of size v for storage tank allo-
cated in position j

bivt operating time of a semicontinuous subtrain b for
product i in period ¢

@ Maximum ratio allowed between consecutive
batch sizes

Wy Standard size u for semicontinuous unit at stage k

Subscripts

b semicontinuous subtrain

g number of parallel units at semicontinuous stages

i product

J batch stage

k semicontinuous stage
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number of parallel units at batch stages
discrete sizes for batch stages

time period

discrete sizes for semicontinuous stages
discrete sizes for storage tanks

==~ w3

Superscripts
d downstream

f final

i initial

L lower bound

n number of stages in the extraction
p subprocess

u upstream

U upper bound

parameters along the time horizon. Costs, raw materials and
demands typically vary from period to period due to market or
seasonal reasons. Some authors have posed solutions consider-
ing the uncertainty in the model parameters (Petkov & Maranas,
1998; Tarifa & Chiotti, 1995). For example, Ierapetritou and
Pistikopoulos (1996) proposed a formulation using stochas-
tic programming for simultaneously solving the design and
operation of batch plants with uncertainty in process param-
eters and product demands. Another approach to consider
variability is the development of multiperiod optimization mod-
els that involve designing plants that operate under variations
in the model parameters along all the periods in time hori-
zon. Costs and demands typically vary from period to period.
Varvarezos, Grossmann, and Biegler (1992) resorted to decom-
position methods to solve multiperiod MINLP. Van den Heever
and Grossmann (1999) considered a general disjunctive multi-
period nonlinear optimization model for the design, operation
planning and capacity expansion of general chemical process
systems.

Taking into account these previous efforts, a new formula-
tion is considered for the design of multiproduct batch plants.
The proposed model considers simultaneously design and plan-
ning decisions on a multiperiod context. In this way, variations
of prices, costs and product demands due to seasonal reasons
are considered. Also, the multiperiod approach presented with
different period lengths overcomes the strong limitation posed
by previous models that considered single product campaigns.
Here, a long time horizon can be decomposed in shorter periods
where the single product campaigns assumption is reasonable.
From the design point of view, all the units usually considered
in batch process are involved: storage tanks, batch and semicon-
tinuous units.

Also, the proposed model considers discrete sizes for the
units. This is ausual procurement policy in this industry. Besides,
it is an assumption used by other authors (Dietz, Azzaro-Pantel,
Pibouleau, & Domenech, 2005; Ierapetritou & Pistikopoulos,
1996; Sparrow, Forder, & Rippin, 1975; Tan & Mah, 1998;
Voudouris & Grossmann, 1992) that, from the mathematical

point of view, allows a mixed integer linear program (MILP) for-
mulation. Therefore, a realistic design case is posed, which can
be solved to global optimality with reasonable computational
effort.

The paper is organized as follows. First, the description of the
problem is presented. Then, a multiperiod model is formulated
which incorporates all the elements of the design and operation
planning problems. Finally, the solution of the MILP is illus-
trated with a specific example of a multiperiod batch plant that
produces Oleoresins.

2. Problem description

The multiperiod design and operation planning problem for
a multiproduct noncontinuous plant can be stated as follows.
It is assumed that a total of I products is to be produced in a
multiproduct batch plant which consists of J batch processing
stages, K semicontinuous stages that form L semicontinuous
subtrains. Intermediate storage tanks can be allocated between
batch stages. The products are manufactured over a time horizon
H, which is divided in T time periods of specified length H; not
necessarily equal.

The basic data for units are the size/duty factors for each
batch/semicontinuos stage for each product i in every period
t, Sij/Dixs; the processing times for each product i at a
batch stage j, ;. For each product 7, the lower and upper
bounds on its demands in every period f, DEII.;/ DES, are
known.

The objective function ¥ to be maximized is the net present
value of the profit along the global time horizon, taking into
account incomes from product sales, expenditures from raw
materials purchases, inventory and investments costs.

Following are the key assumptions, which are usual for this
kind of problem:

. The size/duty factors are constant for each product.
. When multiple parallel units are considered at a stage, they
have the same size.

3. The plant operates in single product campaign (SPC) mode
in each time period.

4. Batch units in parallel operate out of phase, while semicon-
tinuous units operate in phase.

5. When storage tanks are not allocated, ZW (zero wait) policy
is employed.

6. If intermediate storage tanks are employed in the process,

their role is only to decouple the operations of the stages

upstream from those downstream to the tank; they do not act

as a long-term storage, so FIS (finite intermediate storage)

policy is adopted.

DN —

Three levels of decisions are considered in the solution of this
problem:

1. Structural decisions.
2. Design decisions.
3. Production planning decisions.
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The first two decisions are independent from the time periods,
and involve investment costs, while the last one is valid for every
time period. The first level decides the number of parallel units,
which operates out of phase at batch stage j and the number of
parallel units that operate in phase at the semicontinuous stage k.
The allocation of intermediate storage tank is made at this level
too. The allocation and sizing of intermediate storage has been
included in the model to obtain a more efficient plant design.
For this reason, a multiproduct plant can be viewed as a series
of subprocesses, which are separated by intermediate storage.
Design decisions involve the selection of equipment sizes for
both batch and semicontinuous units, and intermediate storage
tanks among available discrete sizes.

Finally, the last level determines at each period ¢ and for each
product i the amount to be produced, the number of batches
at stage j, and the total time to produce product i. Further-
more, inventory considerations are taken into account in the
plant operation because of the possible seasonal variations of
raw materials availability and product demands. They may be
maintained in stock until they are consumed. Then, for each
product and raw material at the end of every period ¢, inventories
levels are obtained. Moreover, total sales, amount of raw mate-
rial purchased, and raw material to be used for the production of
product i in each period ¢ are determined with this formulation.
In this model two cases are considered, i.e., when the elaboration
of product i depends on only one raw material, and the general
case, when production requires several raw materials.

3. Model formulation

The problem involves optimizing the process over all time
periods =1, ..., T and has the object of maximizing the profit
subject to the constraints described below.

3.1. Batch equipment

The general batch process literature (Biegler, Grossmann, &
Westerberg, 1997) describes the batch unit size of stage j, V;
through a sizing equation that is applied for each product i as
follows:

Vi = SijBi, Vi, j ()

where B; is the batch size for product i, e.g. kg of product exiting
from the last stage; and Sj; is the size factor of product i for stage
J» 1.e., the size needed at stage j to produce 1 kg of final product
i.

The allocation of a storage tank decouples the process into
two subprocesses: one upstream from the tank, and the other
downstream. This in turn allows batch sizes on either side of
the tank to be chosen independently. Therefore, the previously
unique B; is changed to batch sizes Bj; defined for product i in
stage j. Appropriate constraints adjust the batch sizes among
different units. Considering the multiperiod character, the size
of a unit in a batch stage j is given by:

Vi = SiiBijr, Vi, j.t )

where Bjj; and S;;; denote the batch size and size factor, respec-
tively of product i in stage j for each period 7.

The amount of product i produced in time period ¢, g;; depends
on the number of batches n;;, as defined by:

qir = Bijnij, Vi, ji t 3

By combining Eqs. (2) and (3) the following constraints are
obtained:

i > Sijiqit
1 - )

Vi, j,t “4)

As already mentioned, variable V; is restricted to take values
from the set SV; = {v;,vj,, ..., vjnj}, where vj; represents
the discrete size s for batch equipment j and n; is the given
number of discrete sizes available for stage j. Torigorously tackle
this situation for batch stages, the following binary variable is
introduced:

1 if equipment at batch stage j has size s
Z js = .
0 otherwise
Using the above definition, 1/V; can be expressed in terms of
the defined discrete variables as follows:

1 Zjs .
— =) —, Vj ®)]
Vj vjé
D =1, Vj (6)
)

In this way, by substituting Eq. (5) into Eq. (4), new constraints
can be formulated that restrict the volumes to discrete sizes

mﬁz§:( W%>;m Vi, j.t @)
S

Vjs

Constraint (7) is nonlinear because of the bilinear terms g;zjs.
In order to eliminate these bilinearities, a new nonnegative con-
tinuous variable e, is defined to represent this cross-product
(Ierapetritou & Pistikopoulos, 1996; Voudouris & Grossmann,
1992). Then the following linear constraints are obtained:

Sij .
nijr > Z (vm> eijst, Vi, Jt 3
)

Js

U ..
eijst < qi;%js, Vi, J, St 9)

g =Y eijs. Vi j.t (10)
N
where q}lj represents the upper bound for g;;.

3.2. Semicontinuous equipment

Semicontinuous units operate continuously with periodic
startups and shutdowns. The processing time of product i for
semicontinuous unit & in period ¢, 6;3;, considering that Gy par-
allel units in phase are available, can be calculated by:

Dixt Bije

» Vi kt 11
GiRe i an

Oike =
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where j is the batch stage adjoining unit k, Dj the duty factor
of product i in period ¢, i.e. the size needed in stage k to obtain
1 kg of final product i, and Ry, is the size of the semicontinuous
item k, usually a processing rate. This size depends on the type
of unit, for example, in pumps it is the power, in heat exchangers
is the exchange area, etc.

A series of semicontinuous equipment with no batch unit or
intermediate storage among them is a semicontinuous subtrain.
All the units belonging to subtrain b must operate for the same
length of time to avoid accumulation of material. In this way,
the operating time of a semicontinuous subtrain is the maximum
operating time of all the semicontinuous units that belong to that
subtrain. Thus, the operating time of a semicontinuous subtrain
b for product i in period ¢, ¢;ps, is given by:
bive = maX(szz) Vi, b, t (12)
By substituting Eq. (3) into Eq. (11), the above relation can be
expressed as

Dikqi
¢1bt ,

> Vi,b,keb,t (13)
GkRknlﬂ

By setting the operating time of a semicontinuous subtrain to
be equal to the longest operating time of all the stages in the
subtrain, the requirement that all the stages operate for the same
length of time can be satisfied. The rates of the remaining semi-
continuous stages in the semicontinuous subtrain can always be
reduced during the operation of the plant by increasing their
operating time.

In a similar way, the size of the semicontinuous unit
R, is restricted to take values from the set SRy =
{wj1,wjp, ..., Wgn,}, Where wy, denote discrete size u for semi-
continuous unit k and my, is the number of discrete sizes available
for stage k. Thus, the following binary variable is defined:

1 if equipment at semicontinuous stage k has size u
Ak = .
! 0 otherwise

Again, the inverse of the semicontinuous sizes can be
expressed in terms of discrete variables as

1 Aku
— =" w (14)
Ry Zu:wku
Zaku=1, vk 15)
u

As suggested by Kocis and Grossmann (1988), parallel units
can be treated by introducing the discrete variable:

1 if semicontinuous stage k has g units
Xkg = of the same volume in parallel

0 otherwise

These constraints are used to represent an integer number for
Gy where the available and feasible options g are considered for

each stage:

1 Xkg

— = —, Vk 16

- 0
8

> xwg =1, Vk 17)

g

Then, introducing (14) and (16) into Eq. (13), the following
expression is obtained:

¢lblnljl = ZZ (

In order to reformulate the constraints for the operating time
of semicontinuous subtrains as linear ones, first a new variable
has to be introduced in the formulation

iktqit

) AguXrg, Vi, b,keb,t (18)
8Wku

Eibt = Pipnij, Vi, bt (19)

where n;j; corresponds to the stage j which is immediately adjoin-
ing the subprocess b.
Constraint (18) can now be written as

= S5 (5

The cross-product g;ax,xig can be eliminated by introducing
the following variable

qi
hikugt = {0”

with which constraint (20) can be replaced by the linear expres-
sion:

ki .
&m>22:<10 ikugr:  Vi.b.keb,t 1)

8wk,

iktqit
8 Wy

) QruXig, Vi.b keb,t (20)

if ag, and xyg are 1

otherwise

To define the variables Ay, the following equivalence con-
straints are introduced (Voudouris & Grossmann, 1993):

> hitugt < gk, Vikou.t (22)
8
> hikugt < @ijxig,  Vick, gt (23)
u

Vi k.t (24)

qit = Zzhikugly
g u

3.3. Time constraints

A batch unit is periodically operated with steps of filling, pro-
cessing, discharging, and possibly waiting. The time required to
process a batch of product i in stage j in each period ¢, Tjj, is the
sum of the processing time of product i in batch stage j, t;;;, and
both the filling time ¢ib‘;t’ and the emptying time qbl.b;(t, corre-

sponding to the upstream b;‘- and downstream b‘; semicontinuous
subtrains, respectively, if they are included in the plant. Consid-
ering the existence of M; parallel units operating out of phase in
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a batch stage j and, upstream and downstream semicontinuous
subtrains, Tj; is given by:

Gintr + tije + ¢,~b?,
M;

Tijt = ) Viv js t (25)

The following discrete variables are introduced in order to
treat parallel units in at batch stages
1 if batch stage j has m units of the same
Vjm = volume in parallel
0 otherwise

To represent an integer number for M; the following con-
straints are posed where the available and feasible options m are
considered for each stage:

My=3"20 (26)
" m

> Vim=1. Vj 27)

m

The limiting cycle time for product i in a subprocess p in a
periodt, TL{; represents the time between two successive batches
of product i in the subprocess p. It can be calculated as the
maximum of all stage cycle times in that subprocess, thus:

TL{; = max (Tijp, ¢dipr), Vi, p,t (28)
jepbep

that can be expressed as:

Gipts + Liji + ¢l-bcj(,

TL! > 7 , Vi, p, jep.t (29)

Ashas been mentioned, the allocation of storage tanks divides
the process into two subprocesses. In this way, every subprocess
can have different number of batches and limiting cycle times.
Tank allocation would increase the cost of the plant, but due to
the decoupling of subprocesses, subprocesses with smaller TLf;
can operate with smaller equipment sizes.

As Modi and Karimi (1989) noted, the subprocesses are cou-
pled through the requirement that the production time allocated
to product i be the same for all the subprocesses. Therefore, the
total times for producing i, T}, or alternatively, production rates
PRj;, in each time period # must be equal in all the subprocesses
in order to avoid accumulation of material. The total time for
producing product i in time period ¢ is defined as:

Ty =niTLL, Vi p,jep,t 31)

The productivity of i in time period ¢ is

PR, = DU i p e pit (32)
TL?

In expressions (31) and (32), the number of batches n;; and
the batch size Bjj;; must be the same in all the units, which belong
to each subprocess.

By introducing Eq. (3) the above equations can be expressed
as
Qic it

PR;; = =1
T LY T T

Vi, t (33)

The fact that g;; and T}, are equal for all the subprocesses
ensure that the production rate upstream and downstream of the
storage tank be the same.

By multiplying Egs. (29) and (30) by n;j, and taking into
account Egs. (26), (31) and (19), these constraints can be
expressed as

§ih5z+fi,/znijz+§,-b;{t o
Yjm, Vi, jt

TitZ;( .

Vi, b, t (35)

(34)

Tt = &ipr,

The nonlinearities in constraint (34) are eliminated by intro-
ducing new variables wjgjk, (ipjm: t0 TEpresent the cross-product
nijtyjk and &;pryjm, respectively. This equation can now be written
as

ik jme tiir Mipd jmy
T->§: i 2:(11) y Z i ’
it = . ( " ) + m Wijmt + - "

m

Vi, ji t (36)

Wijme < Mgy Yjms Vi, jom,t (37)

nij = Zwi,-mt, Vi, j t (38)
”

Wibjmt < EipyYjm> Vi b, jym,t 39)

Vi b, jt (40)

Eibt = Y Mibjmi>
m

where ng-, and S}ét represent upper bounds for the variables nj;

and &;;;, respectively. The upper bound for &;;,; can be obtained
analytically from the constraint (20).

Considering the case of SPC-ZW policy in the period ¢, the
production time horizon constraint can be expressed as:

Y Tu<H, Vi (41)
i

The length of each time period H; can vary and it is possible
to aggregate many periods or divide them as necessary. For this
reason the constraint of SPC is not too restrictive from a practi-
cal point of view. With this approach it is possible to get more
flexible production programs and a more realistic formulation
for the design problem.

3.4. Intermediate storage

The allocation of an intermediate storage tank between two
batch stages causes the process to be divided into two subpro-
cesses upstream and downstream of the tank. Therefore, for J
batch stages there exist, at most J— 1 possible positions for
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storage tanks to be allocated between two consecutive batch
stages.

The capacity constraints for the storage tanks are simplified
mass balances around the storage vessels. Different expressions
have been proposed. Modi and Karimi (1989) presented a rela-
tively tight upper bound for the size of storage vessels given by
the following constraint:

VT, > ST;(Bij + Bi j+1), Vi, j=1,...,0—1 42)

where VT; is the size of the storage tank allocated after batch
stage j, and STj; is the size factor corresponding to the interme-
diate storage tank.

Another expression to obtain an upper bound for the storage
vessels, but not as tight as the previous expression, is given
by the following constraints (Ravemark, 1995; Voudouris &
Grossmann, 1993) applied to every time period #:

VT]' > ZSTij[Bijtdj, Vi,j=1,...,J—1,t 43)

VTj > ZSTilei’j+1’tdj, Vi, j = ,....,J—1,t (44)

Here, as no a priori tank allocation is given, binary variables d;
are used to select them. The value of variable d; is 1 if a tank is
placed in position j, or zero otherwise.

These last Egs. (43) and (44) are preferred. Even though they
are less tight than (42), simpler transformations exist for these
expressions.

If the storage tank does not exist between two consecu-
tive stages, then their batch sizes are constrained to be equal.
This effect is imposed by the following constraints (Ravemark,
1995):

1 Bij
1+<—1>d~§"§1+(q§—1)d~,

@ 77 B i !
Vi,j=1,....,J—1 (45)

where @ is a constant value corresponding to the maximum
ratio allowed between consecutive batch sizes. If no storage is
available (i.e. d; = 0) the ratio of consecutive batch sizes is one. If
a storage tank is allocated (i.e. d; = 1) the ratio can vary between
1/® and @.

By introducing Eq. (3), Egs. (43)—(45) can be expressed as:

STijeqit .
nij,EZ(Vlfrjl dj, Vi,j=1,....,J—1,1 (46)

STijiqir
nijrle > 2 ( VT

)dj Vi,j=1,....,J—1,t 47)
J

nij+1,0 < njjr + (@ — Dnyjd;,

Vi,j=1,...,J—1,¢
(43)

1
”i,j+1,t2nijt+(d)_l)nijtd', Vi,j=1,...,J—1,¢t
(49

where Eq. (45) has been split into two expressions.

As has been previously mentioned, variable VT is restricted
to take values from the set ST; = {v;1, vj2, ..., Ujp_,.}, where
v, represents discrete size v for storage tank at position j and p;
is the given number of discrete sizes available for storage tanks.
Then, the following binary variables are introduced:

1 if storage at position j has size v
Sty =
7 0 otherwise

The following constraint holds,

dstp=1, Vj=1,....J-1 (50)
v

In this model it has been assumed that in all the positions j
the alternative v = 1 represents size 0, or in other words that no
storage tank is allocated. Right side of Eqs. (46) and (47) involves
the inverse of the tank sizes. So, the following expression is
posed:

1 Sty

. Vj=1,...,J-1 (51)

VT j vl Ujvy
where v # 1 stands for the nonzero volume sizes. The number
of batches n;;; and n; jy1, are given by Eqs. (46) and (47). Tak-
ing into consideration Eq. (51), the following storage capacity
constraints are obtained:

n,-jtzzz(zj’f‘l”>stjv, Viij=1,....0-1.1 (52
v#£1 Jv

STiiqgi

ni’j+l’t22z <l:/tC]1t) stj, Vi,j=1,...,J—1,¢
v#£1 Jv

(53)

By introducing the new continuous nonnegative variable f;;, to
represent the cross-product g;,stj,, Egs. (52) and (53) are then
replaced by the following linear constraints:

ST;;
nmﬂz(fﬁmwvu=uw14n (54)

V£l Ujp
STy .
nijeez2) (”’) Sy Vi j=1,..,0—1,1 (55
bl \ Ui
fijt < @stiy, Viov, j=1,...,J— 1,1 (56)
Gt =Y fiju, Vij=1,...,J—11 (57)
v

By using the binary variable stj, in place of the variable d;
the constraints (48) and (49) can be written as

1
N j+1,t = Rijr + (q) - 1) ZStjvnijta

v#£1
Vi,j=1,....,J—1,t (58)

nl.,j+1,l = nljt + (® - I)ZSt]vnl_]ly Vl, ,] = 17 L) J— 1’ t

v#l
(59)
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The nonlinearity in these equations is eliminated with the
definition of a new variable A,;;,,. In this way the following linear
constraints are obtained:

1 -
nlj+1l2nlj[+(¢_l) Z)Lijvt, Vlvjzla""J_lvt

v#£1

(60)

nijra < nge+ (@ = DY Aiju. Vioj=1,.... 0 =11
v#£1

(61)
hiju S ngstj,  Viov, j=1,...,J =11 (62)
nig =Y kip Vij=1,....J—11 (63)

v

Taking into account the structure of the plant, its batch and
semicontinuous stages, different constraints must be considered
depending on the position for the allocation of a storage tank.
For example, if there are semicontinuous subtrains and the stor-
age tanks are allocated immediately after a batch stage, before
its downstream semicontinuous subtrain, Eq. (34), and then (36)
should be modified. In this case, it is necessary to formulate the
following constraints to replace Eq. (34):

Eivey + tijehije
mzZ( : Yim. Vi, jt (64)
m

m

vty + tijeije + é,'br;,

Titi;( "

Vi, j=1,...,.J—1,1 (65)

> yjm —BM( — stj),

Constraint (65) is of the Big-M type, where BM is a large con-
stant that has an appropriate value that will ensure that if the
storage tank does not exist, then Eq. (34) is considered. Formu-
lations considering other structural alternatives are also feasible.

3.5. Planning constraints

Two cases are presented taking into account the relation
between products and raw materials.

Case a: In this case, it is assumed that the elaboration of each
product requires a unique raw material that it is not shared by
other products. This assumption is valid for the solved example,
an oleoresins plant.

IP;;, the inventory of final product i at the end of a period ¢
depends on the inventory that is left from the previous interval,
IP; ,_1, the quantity produced g;;, and the total sales, QS;;:

IP;y =1P; ;1 + gir — QSyy, Vi, t (66)

Sales depend on the lower and upper bounds for products
demands, DE%/DE}]. Then:

DEL < QS;, < DEY, Vit (67)

IP;; has an upper bound, which corresponds to the maximum
inventory capacity for each product in the plant.

0<1IP, < IPY, Vi (68)

In the same way, the inventory of raw material IM;; at the end
of a time period ¢, depends on the inventory that is left from the
previous interval, IM;,_1, the quantity purchased Cj;, and the
amount used in the production process, RM;;:

IM;; =PE;;—1IM; ;-1 + Ciy —RM;;, Vit (69)

The parameter PE;;_; is a factor smaller than or equal to 1
that takes into account the loss of raw materials between two
consecutive periods, to consider the degradation of natural raw
materials.

IM;; has an upper bound, which is the maximum inventory
capacity for each raw material in the plant.

0<IM; < IM}, Vit (70)

The initial amount of raw material in the inventory IM;q for
each product at the beginning of the time horizon is assumed to
be given. Idem for the initial product inventory, IP;o. The use of
IM;p and IP;y have a strong impact when this model is only used
for operation planning without considering design, for example
in an existing plant.

The raw material necessary for the production of the product
i is obtained from a mass balance:

RM;; = Fitqir, Vi, t (71)

where Fj; is a parameter that accounts for the process conversion,
e.g. ratio of solvent to solids, time of contact, etc.

Case b: The approach is generalized for cases which involve
several raw materials for producing each product, as occurs in
several industries. Then, the process handles c=1, .. ., CT ingre-
dients to manufacture the products. Let F;; be a parameter that
accounts for the process conversion of raw material ¢ to make
product i during period t. RM.;, the amount consumed of raw
material ¢ in period 7 to elaborate product i, is obtained from a
mass balance. Then,

RMc'il = Fcit‘]it’ ch iv t (72)

The total consumption of raw material ¢ for production in period
t, RM,; is obtained from

RM,, = ZRMC,»t, Ve, t (73)
i

In this case, Egs. (69) and (70) must be rewritten considering
each ingredient ¢ in period ¢, i.e. C¢, and IM4.

3.6. Objective function

The objective function to be optimized is,

Y= npuQSiu— Y > KkuCii— Y Mja;VF
r roi j

J—1
> G SR} = mVTY
k j
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The first term corresponds to the incomes due to sales, where
npj; is the price of product i in period ¢. The second term is
the cost of raw materials with «;; the price for the ingredi-
ent of product i in period ¢, which takes into account market
fluctuations for harvest, transportation, cooling facilities, etc.
Here the case (a) posed in the Planning Constraints has been
considered. Similar expression can be posed for case (b). The
third, fourth and fifth terms are investment cost correspond-
ing to batch units, semicontinuous units, and storage tanks in
the plant, where «;, Bj, vk, o, 7; and T; are appropriate cost
coefficients that depend on the type of equipment being consid-
ered (Ravemark & Rippin, 1998). As proposed by Birewar and
Grossmann (1990) the inventory can be expressed as an average
at each period. So, the last two terms correspond to both raw
materials and final products inventory costs, where ¢; and o;
are inventory cost coefficients for raw materials and products,
respectively.

Let ygq be the term of capital costs for all equipments in
function (74).

(74)

J—1
YEQ = Y MoV + ) G R + > mVThst,  (75)
j k j

In a general approach, it is calculated through a power law
expression where the sizes Vj, Ry and VT, are considered as con-
tinuous values. However, in this work, units are selected from a
set of available discrete sizes. Thus, maintaining the law expres-
sion and considering the available discrete sizes, the term of
capital cost is posed as follows:

VEQ = ZZZmO‘jV%yﬂnZﬁ + ZZZgykw,‘z’;xkgaku
j m s k g u
J—1
B3 s

(76)
Jj v#l
to obtain finally:
VEQ = ZZZijmsrjms + Zzzcskgupkgu
Jj m s k 8§ u
J—1
+ Y ctpstiy (77)

J vl
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where the terms ¢b s =m - o - v‘fsf represent the cost of stan-
dard batch vessels, csggu = g vk - @3 the cost of standard
semicontinuous sizes and ctj, = 7 - v;{) the cost of standard
storage vessels. New variables 7y, prgy are introduced to elim-
inate the product of binary variables zjsyjm, Xk, respectively,

through the constraints:
(78)
)

rjmsZst+yjm_1a Vjm,s

Pkgu = Xkg + Qju — 1, Vk,gu

These new variables can be settled as continuous if the following
bounds are added:

Ofrjmsfl

(80)

0=< Pkgu = 1 (81)

The final model is a MILP which consists of maximizing
the objective function represented by Eq. (73) using Eq. (76) as
the term of capital cost and subject to constraints (6), (8)—(10),
(15), (A7), 2D)-(24), (27), (35)—(41), (50), (54)~(57), (60)—~(63),
(66)—(71), (78)—(81) and the necessary bounds for the case (a)
of planning constraints. A similar model should be posed for the
case (b).

Animportant feature of the model is that the discrete variables
only depend on plant design and are independent of time periods,
which allows handling large problems with less computational
effort.

4. An illustrative example: computational results

In order to illustrate the multiperiod MILP model, a mul-
tiproduct batch plant is considered that manufactures five
oleoresins (/=5), sweet bay (A), oregano (B), pepper (C),
rosemary (D), and thyme (E) oleoresins. All the products are
obtained via the following processing stages: (1) grinding, where
a size reduction is realized; (2) extraction in a four stages
countercurrent arrangement which produces the dissolution of
active principles into an organic solvent; (3) expression, where
hydraulic pressing is used for the recovery of liquid extract;
(4) evaporation, solvent separation from fluid end products; (5)
thickening, solvent separation from semisolid end products; (6)
blending, task in which the extract is mixed with diluents, sol-
ubilizing agents, and/or essential oils to strength the aroma and
(7) canning, packing of end products (Fig. 1). Stages 1,4, 5 and
7 are semicontinuous stages and they can be duplicated up to
three items. Stages 2, 3 and 6 are batch stages, each of them
may consist of up to two parallel units. Storage tanks can be
allocated after batch stages 2 (position 1) and 3 (position 2).
This model corresponds to the case (a) previously posed in the
Planning Constraints Section.

Products

5 Thickening 7 Packing

A,B,C,D,E f i i A,B,C,D.E

1 Grinding

3 Expression 4 Evaporation

6 Blending

Fig. 1. Flowsheet of the multiproduct batch plant for the production of oleoresins.



1168

Table 1
Data for the example

M.S. Moreno et al. / Computers and Chemical Engineering 31 (2007) 1159-1173

i Size factors, S (L/kg) Processing time, #;;; (h)

Duty factor, Djj,

Storage size factor, STj;, (L/kg)

2 3 6 2 3 6 1 4 5 7 Position 1~ Position 2

A 20 15 1.5 1.5 1 0.5 0.3 0.045 0 0.023 25 20

B 80 55 1.5 1.5 1 0.5 1.2 0.18 0 0.094 90 60

c 20 15 1.5 25 2 2 0.3 0.045 0.110 0.023 25 18

D 40 25 1.5 1.5 1 1 0.6 0.090 0.225 0.047 50 25

E 30 20 1.5 1.5 1 1 0.43 0.065 0.160 0.034 35 30
Bj=0.6 Bj=0.6 Bj=0.6 yi=022  y;=040 ;=062 =04 1;=05 7;=0.5
aj=592 ;=582 ;=457 8r=370 8 =250 8k=210 =250 ;=450 =450

Table 2

Prices and demand bounds for the example

t Costs of raw materials, «;; ($/kg) Prices of products, np;, ($/kg) Bounds on demands, DEZ.L, — DE},J (x10% kg)
A B C D E A B C D E A B C D E
1 2.2 0.5 1.2 0.6 0.7 55 45 40 42 48 3.5-20 4.5-25 2.5-30 3.5-25 3.0-25
2 2.2 0.5 1.2 0.6 1.6 55 48 40 42 48 2.0-20 4.0-24 3.0-25 3.5-25 3.5-24
3 2.2 0.5 1.2 0.6 1.6 55 48 40 42 48 3.0-24 4.0-20 2.0-30 3.5-25 3.0-24
4 2.2 1.5 1.2 0.6 1.6 55 48 40 42 48 3.5-20 4.0-20 4.0-30 3.5-25 2.5-30
5 1.5 1.5 2.5 1.8 1.6 52 48 44 45 52 2.5-15 3.5-20 3.0-24 3.5-24 2.0-35
6 1.5 1.5 2.5 1.8 1.6 52 48 44 45 52 3.0-15 4.0-24 4.0-25 3.0-24 2.0-35
7 1.5 1.5 2.5 1.8 1.6 52 48 44 45 52 4.0-20 4.0-24 2.0-24 3.0-24 2.5-30
8 1.5 1.5 2.5 1.8 1.6 52 48 44 45 52 4.0-20 3.5-24 2.0-25 4.0-24 2.0-35
9 2.2 1.5 2.5 0.6 1.6 55 48 44 42 48 3.5-20 3.5-24 3.5-20 4.0-25 2.0-24
10 2.2 1.5 2.5 0.6 1.6 55 48 44 42 48 3.0-15 4.0-30 2.0-24 4.0-25 2.0-25
11 2.2 1.5 1.2 0.6 0.7 55 45 40 42 48 2.5-15 4.0-25 2.5-30 4.0-25 4.5-20
12 2.2 1.5 1.2 0.6 0.7 55 45 40 42 48 3.0-15 3.5-25 4.0-30 4.0-25 3.0-24
Table 3

Standard sizes available for each stage

Discrete volumes, vjg

Discrete sizes, wyy,

Discrete sizes, vy

2 3 6 1 4 5 7 Storage
1 500 500 50 5 0.7 0.7 2.5 0
2 1000 750 100 10 1 1 5 1000
3 1500 1000 150 15 1.5 1.5 10 2000
4 2000 1200 200 20 2 2 15 4000
5 2500 1500 250 25 25 2.5 20 5000
6 3000 2000 500 30 3 3 30

In order to obtain the parameter Fj;, Eq. (71), the next equa-
tions are used:

SO+ Ei(L = 0]l = b1+ E; — ) + i fxly, Vit

1

it = g
where E; is the extraction factor, n; the extent of the extrac-
tion and fx;; is the product concentration in the vegetable solid
feed. The index n is the number of each stage for the n staged
countercurrent extraction (see Appendix A).

Tables 1-4 contain the data for this example. The duty factors
in Table 1 are in kW/(kg h) for stages 1 and 7, in m?/(kg h) for
stages 4 and 5. The final product inventory cost coefficient is
$1.5/(th) and the raw material inventory cost is $1/(th) for all
products. The parameter PE; ; is taken equal to 1 for this example.

Fit Vl, t

The developed MILP model has been solved on a Pentium(R)
4 CPU 3.00 GHz with the GAMS package, using the CPLEX
solver, with the data shown in Tables 1-4. A time horizon
of 6000h has been considered, that has been divided in 12
equal periods, as shown in Table 2. The example results for the

Table 4
Data for the example

Extraction parameters Initial inventory

ot E n M,
A 0.1 1 0.85 2000
B 0.025 12 0.99 2000
C 0.1 0.9 0.90 2000
D 0.05 1.4 0.95 2000
E 0.07 1 0.75 2000




Table 5

Results for example considering 12 time periods

E (x10%kg)

D (x10%kg)

C (x10%kg)

B (x10%kg)

A (x10%kg)

QS;; IP; IM;; qir QS; IP; IM;, qir QS;; IP; IM; it QS;; 1P; IM;;

qit

74

QS 1P;, IM;,

qit

1670
0.0
0.0
0.0

57.8
116.5

82.8 25.0

0.0

0.0
0.0

25.0 25.0
47.0

0.0
0.0
0.0

371.9

0.0
16.6

30.0 30.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

70.3 25.0 453

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
30.2

20.0

20.0

82.8 24.0

0.0

25.0

25.0

24.0 85.6 41.6 25.0
118.8

64.3

20.0

20.0

0.0 24.0 92.5
0.0

0.0
715

30.0

0.0

30.0 65.8 72.0 25.0
115.1
118.0

79.3

20.0

53.2

24.0

24.0

62.5

30.0

25.0 96.0 0.0

74.0

30.0

79.3

98.8

20.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

20.0

20.0
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<
S

275

35.0

72.0 0.0

24.0

0.0
0.0
0.0
0.0

25.0

24.0

26.9

78.8

20.0

15.0

15.0

<
S

0.0
0.0
0.0
0.0
0.0
0.0
0.0

35.0

0.0 24.0 48.0 0.0
0.0
0.0
0.0
0.0

0.0
0.0

93.0

25.0

0.0

54.8

24.0

15.0

15.0

<
S

30.0

24.0 0.0

24.0

24.0 69.0

0.0

30.8

24.0

20.0

50.2

<
S

35.0 35.0

0.0

0.0
0.0
0.0
0.0
0.0

24.0

25.0 44.0

0.0

15.0

15.8

20.0 65.0

54.7

<
S

24.0 24.0

0.0

25.0

20.0 24.0

0.0

11.5

35
4.0

45.0

20.0

<
S

25.0 25.0

0.0

0.0 25.0 25.0

0.0
0.0

24.0

0.0
30.0

7.5

30.0

15.0

10

11

<
S

20.0 20.0

0.0

25.0

25.0

30.0

35
0.0

4.0

15.0

15.0

<
S

24.0 24.0

0.0

25.0

25.0

30.0

30.0

15.0

12

Table 6
Optimal solution problem with intermediate storage tank
Stage
1 2 3 4 5 6 7
Vi 2500L 2000L 150L
Ry 25 HP 3m?>  3m? 30HP
VT; 5000L
M; 2 1 2
Gy 3 2 3 1

products are summarized in Table 5. Table 6 shows the optimal
sizes and number of parallel units obtained. Also, Fig. 2 illus-
trates the optimal plant structure of the problem. For this case,
two parallel units have been selected for the extractor and the
mixer and a tank is allocated between expression and blending
batch stages. The selection of parallel units allows the reduction
of the idle time for the stages. For stages of grinding and thick-
ening, three parallel units have been selected and two units for
the evaporation. These semicontinuous units operate in phase
and are indicated by overlapped units in Fig. 2. The provision of
intermediate storage immediately after expression stage decou-
ples the plant operation which allows a size reduction, and thus in
the capital cost, of the equipments that belong to the downstream
subprocess.

The optimal solution for both products B and C are illustrated
in Figs. 3 and 4. They show inventory, production, sales and
purchase profiles at the optimal solution.

Product B is the less convenient to produce because it is in
a very small concentration in its raw material (see Table 4) and
its reduced profit. The first diagram of Fig. 3 shows that raw
material for B is purchased during the initial three periods where
prices of raw materials are lower. The second diagram shows that
the production of product B is made only during the first three
periods, because the costs are lower manly due to the lower raw
material price. Most of the amount produced in these periods
is held in inventory for satisfying maximum demands in the
seven subsequent intervals and minimum demands in the last
four periods.

On the other hand, in the optimal solution, the production of
C is larger (see Table 5), since it is one of the most profitable
products. The first diagram of Fig. 4 shows that the purchase
profile of C reaches the maximum value in the fourth period
because of the lower price of raw materials. When the price
suddenly rises the purchases are first stopped, but later restarted
when raw materials prices fall down in the last periods. The extra
amount of raw material purchased in fourth period is maintained
as inventory. The second diagram shows that the production of
C occurs in almost all of the time periods. Furthermore, prod-
uct C builds up inventory during the first five periods because
demands are lower than the production capacity of these periods,
and most of this amount is consumed to satisfy the demands in
the following periods when the production has stopped. Produc-
tion is restarted in the last two periods to satisfy the maximum
demands.

In order to assess the computational performance several
examples were also solved with different number of periods.
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Raw Materials Products
A,B,C,D,E A,B,C,D,E

Mill Extractor Press Tank Evaporator Thickener Mixer Packer

Fig. 2. Optimal configuration of the plant showing the units in parallel and intermediate storage tanks.
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Fig. 4. Results for product C.
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Table 7
Problem sizes for different time periods considered
Number of periods Objective $ Discrete variables Continuous variables Constraints CPU time (s) Relative gap (%)
3 3486336.44 70 2234 2102 4.203 0.0
5 3386141.62 70 3604 3420 11.187 0.0
10 3265426.40 70 7029 6715 82.390 0.0
12 3270299.45 70 8399 8033 118.406 0.0
15 3447807.24 70 10454 10010 458.906 0.0
20 3367474.89 70 13879 13305 408.500 0.0
24 3626317.35 70 16619 15941 547.687 0.0
The sizes of the different problems considered with respect to Table 9
the number of both discrete and continuous variables, the con- Different number of discrete units
straints and the CPU time as well as the number of time periods Number of Continuous Discrete CPU time
are shown in Table 7. It can be noted that, although the num- discrete units variables variables (s)
ber of continuous variables increases with the number of time 3 4300 45 13.078
periods considered, for a given number of available discrete 6 7029 70 82.390
sizes for the units, the number of discrete variables are the same 10 11139 108 405.375

for all the problems. The computational results show a signifi-
cant increase when a greater number of periods are considered.
However, reasonable computation times have been obtained.

In multiperiod problems where the binary variables increase
with each additional time period, Van den Heever and
Grossmann (1999) showed that the MILP solution time increases
nearly exponentially. Otherwise, the formulation here presented
is not as time consuming as their formulations because only the
number of continuous variables increases with the time periods
since there are not variations in the plant configuration during
the time horizon.

In order to assess the effect of the multiperiod scenario,
one example was solved considering a given demand over one
period. Then the obtained optimal plant was used for planning
plant operation over several periods. Assuming a multiperiod
formulation with five time periods which maximum demands
are summarized in Table 8, the corresponding total profit was
$1741459.91. The optimal plant structure is (V2, V3, Vg) = (1000,
750, 100) with two units in the first stage and one unit in the oth-
ers for batch stages, and (Ry, R4, Rs, R7)=(30, 2, 3, 30) for
semicontinuous stages, with 1, 2, 3 and 1 units operating in
parallel, respectively. A storage tank after second batch stage
(VT,)=(2000), is allocated. Considering only one period, this
problem s solved for the following cases: (i) the first time period,
where demands are the lowest ones, and (ii) the fifth time period
with the highest demands. The solution of the problem consid-
ering case (i) results in the selection of one unit for all batch
stages with sizes (V2, V3, V) =(500, 500, 50) and (R1, R4, R5,

Table 8
Example with five time periods
t Maximum demands DE}f

A B C D E
1 2000 2000 2000 2000 1000
2 3000 3000 3000 2000 2000
3 4000 3000 5000 1000 3000
4 3000 2000 3000 3000 4000
5 4000 4000 5000 3000 5000

R7)=(30, 1.5, 3, 2.5) for semicontinuous sizes, with 3, 1, 1
and 1 units operating in parallel respectively; and also a tank is
allocated after second batch stage with size (VT2)=(1000). On
the other hand, in case (ii) the optimal plant corresponds to the
selection of equipment sizes (V3, V3, V) = (1500, 1000, 100) for
batch stages with one unit in each, and (R, R4, Rs, R7)=(25,
2, 3, 5) for semicontinuous stages with 2, 2, 3 and 1 units in
parallel. No intermediate storage tank is selected here.

If the problem with five time periods is restricted to take the
values of the units obtained in the solution of case (i), it has a
total benefit of $1257581.96 corresponding to a 28% reduction,
whereas in case (ii) the profit was $1692670.513, which corre-
spond to areduction of 2.8%. In the first case, differences are due
to reduced production levels taking into account smaller units
because of the design considered the lowest demands. In the last
case, in spite of using equipment with the appropriate sizes to
satisfy the highest demands, a better planning is obtained using
the proposed methodology. Note that these lower values of total
profits demonstrate the superiority of the proposed multiperiod
approach, which takes into account fluctuations over demands
in every period.

The model performance is also affected by the number of
available discrete sizes for each stage. Considering the example
where the horizon time was divided into 10 time periods, Table 9
was performed by changing the number of available discrete
sizes for the units in every stage. It shows the number of both
continuous and discrete variables and CPU times obtained.

Table 10
Computational times

BM Number of periods

5 10 12
TV 11.187 82.390 118.406
21Y 15.531 88.531 105.750
57Y 18.593 91.468 124.984
107Y 15.796 105.546 162.140
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As Gupta and Karimi (2003) noted, the solution times depend
heavily on the value of parameters BM used in constrains as Eq.
(65). Thus, even though BM can be any large positive value it
has to be selected judiciously. In this work, several values of BM
were tried to evaluate its effect on CPU times. In general, the
smallest CPU time corresponds to the value of BM adopted as the
maximum of the time available for each period (see Table 10).

5. Conclusions

A multiperiod model for optimizing the simultaneous design
and operation planning of a multiproduct batch plant has been
developed. This model explicitly accounts for the effect of
seasonal or market variations of products demands and raw
materials availability. Both raw materials and products inven-
tory costs are readily accounted for. From the structure of the
plant point of view, the presented model is general, involving
batch, semicontinuous and storage tanks. The usual options to
increase the efficiency of the batch plant design, such as unit
duplication, are addressed.

Multiperiod MILP formulation involves discrete decisions
for structure selection and continuous decisions for operation
at each period at the plant. Furthermore, the model shows the
interaction between design decisions and commercial, produc-
tion, sales and inventory policies simultaneously. In general,
previous models only considered one period with fixed amounts
to be produced in the time horizon.

Results were obtained for a plant that produces five oleoresins
in seven processing stages. Solutions over an increasing number
of time periods were also provided and analyzed to assess the
model performance. Through this example, the effect of multi-
period context was evaluated in order to justify this approach.
Very different and poor solutions were obtained if only one
period is considered. On the other hand, planning decisions
severely affect the final design. So the simultaneous assessment
of design and planning decisions in a multiperiod context is a
useful approach.

Appendix A. Batch extraction

We want to predict final concentrations from the concentra-
tions in the initial feed. To do so, we need

> n¥P
Mme = fy— = -L the equilibrium constant (A1)
x> La¥
nge L .
E=—"—=m.| — the extraction factor (A2)
ny P
P
n’L + n’}, = n{ + n£
mass balance on the solute at finite time of contact (A3)

ny +n'p =nP +n¥

mass balance on the solute at infinite time of contact (A4)
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Fig. A.1. A staged countercurrent extraction.

f i i f
ny —n nh —n .
n= L L _ TP P the extent of extraction (A.5)
n® —ny  np—n%

where fy°° and fx*° are the product concentrations in the extrac-
tion solvent L and the solid feed P, respectively at infinite
time (equilibrium). By the symbols np and n;, we describe the
amounts (kg) of solute in P and L, and we call n% and n$° to
the amounts at the equilibrium.

The model is based in a staged countercurrent extraction as
shown in Fig. A.1.

We can combine Egs. (A.5) and (A.3), through the final
amount of solute in the solvent after finite time, and introducing
the extraction factor from Eq. (A.2), we get

niP - n£ ~|—niL = Enn% —i—niL(l -n) (A.6)

Let us obtain the product 1-np> from Eq. (A.5), which leads,
after algebraic manipulation to:

nio[l + E(1 — )] = nh(1 + E) — yn, (A7)
For the n stage, the result is
WS4+ EQ =)l =nb(1+E—n)+mb - (A8)

n+1 _ _ n _ 1 _ E 0
AT+ EQ—n]= X"+ E—n+nfx n- Iy
(A9)

This is the desired result. It relates the feed concentration
"1 to the exhausted effluent concentration fx!. In general, the
solvent that enters to the first stage does not contain solute, so
=0 and:

A+ EQ—n)] = "1+ E —n) + nfx! (A.10)
The total mass balance in Fig. A.1, is
LA" + Pfx' = PRt + LA® (A.11)
Lf" B
_ fy out (A12)

- fxn+1 _ fxl = fxn+1 _ fxl
To get the total raw material, we have to multiply the above

equation by the number of batches

_ 1

- fx"'H _ fxl q

Applying the above equation to several products and repre-
senting the ratio with the variable F; it can be expressed as

RM (A.13)

RM; = Fig; (A.14)
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