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Abstract

During their service life reinforced concrete structures can be exposed to mechanical loads and aggressive chemical or thermal agents that
produce degradation of their mechanical properties. This results in a loss of security and usually requires a prompt repair or retrofitting in order to
preserve the structural serviceability. In this case, the aid of a numerical tool for the assessment of different retrofit and repair systems would be
valuable. Nowadays, analytical and numerical capacity for the assessment of this type of systems is still limited.

A numerical model that can be used for the assessment of retrofit and repair systems based on the use of FRP for reinforced concrete columns
and beams is presented in this paper. A plastic damaged model that reproduces the behaviour even under high confinement pressures is used for
concrete.

Application examples concerning the behaviour of reinforced concrete columns and beams retrofitted with FRP are included in the paper. The
comparison with experimental results shows the ability of the proposed model to reproduce the problem simulated.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Strengthening reinforced concrete (RC) structures with
Fibre-Reinforced Polymer (FRP) composites is becoming
an attractive alternative for the construction industry and
rehabilitation of existing reinforced concrete (RC) structures
[1]. Rehabilitation of these structures can be in the form
of strengthening of structural members, repair of damaged
structures, or retrofitting for seismic deficiencies. In any case,
composite materials are an excellent option to be used as
external reinforcement because of their high tensile strength,
light weight, resistance to corrosion, high durability and easy
installation [2].

Externally bonded FRP reinforcement has been shown to be
applicable for the strengthening of many types of RC structures
such as columns, beams, slabs, walls, tunnels, chimneys and
silos. It can be used to improve flexural and shear capacities
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and also to provide confinement and ductility to compression
members [2].

It has been shown that wrapping FRP composites sheets
around the perimeter of both circular and rectangular concrete
columns improves ductility and strength [3]. The actual
analytical ability to quantify the behaviour of FRP confined
concrete columns is rather limited, especially with respect to
ductility. As a result, code requirements on reinforcement may
be too conservative in most cases, and may still be insufficient
for some situations of extensive deformations caused by severe
earthquake loads [4].

In the case of reinforced concrete beams, reinforcement
with composite materials enhances the flexural capacity and
shear strength. Nevertheless, in order to better understand the
flexural behaviour of these beams, a complementary analysis is
necessary. The reinforcement is made of several layers (steel
bars, adhesive, FRP). The behaviour of steel in concrete is well
known, but the association of concrete with FRP is difficult to
analyze as it implies an adhesive layer [5].

Although experimental data is valuable in understanding
the behaviour of this strengthening system, analytical and
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numerical solutions are also needed to further understand
and predict the behaviour and failure mechanism of the
strengthened beams [1]. Experimental studies have shown that
plated beams generally fail in a brittle and sudden manner
and therefore they are not able to reach their ultimate flexural
capacity [6]. Significant efforts have recently been made to
investigate and predict these kinds of failures that include the
‘peeling off’ of the FRP plate and shear failure of the concrete
layer between the plate and longitudinal reinforcement, but
this is not an easy task [7]. Although many finite element
analyses on plated RC beams have been carried out, little
success has been achieved in simulating brittle failures [6].
This is mainly due to the complexity of the problem. Yang
et al. [8] have developed a discrete crack model based on a
finite element analysis method for RC beam reinforced with
fibre reinforced polymer plates, which can simulate multiple
discrete crack propagation during the whole loading process
until the structures collapse. Perera et al. [9] have proposed
a nonlinear numerical model based on damage mechanics,
that permits consideration of the position and increase of
concrete cracks which have a very important influence on the
behaviour of strengthened beams. The model also affects the
stress distribution and the failure mechanism. Lopez [1] has
developed a numerical model approach that can reproduce the
global load–deflection response of RC beams strengthened with
CFRP laminates and the changes in strain along the length
of the FRP laminates. Buyle-Bodin et al. [10] have proposed
a finite element model to analyze and predict the flexural
behaviour of strengthened and repaired beams.

On the other hand, theoretical models for prediction of the
behaviour of laminate strengthened beams have been proposed
[11–13]. These models usually assume strain compatibility,
perfect bond between laminate and concrete, no tensile strength
in concrete and the fact that the sections remain plain before
and after bending. They also assume that the beam fails by
either concrete compression or tensile failure of the laminate.
Theoretical models can predict, with reasonable limits, the path
of the load–deflection curve and strains (both laminate and
concrete), but generally they are not able to reproduce the
ultimate moments for strengthened beams.

The behaviour of reinforced concrete columns and beams
externally reinforced with FRP is numerically modelled in this
paper. First a brief description of the behaviour of reinforced
concrete columns and beams retrofitted with FRP is presented.
Then, the numerical model developed for the evaluation
of concrete and the retrofitting system is described. The
behaviour of reinforced concrete columns confined with FRP
under uniaxial compression is numerically analyzed. Later the
flexural behaviour of reinforced concrete beams strengthened
with FRP is numerically studied. In all cases, numerically
results are compared with the experimental ones in order to
check the ability of the model presented to reproduce the system
behaviour.

2. Retrofit of RC concrete elements with FRP

The structural effectiveness of FRPs in the rehabilitation of
existing structural systems has repeatedly been demonstrated
with full or large-scale structural tests at the University of
California, San Diego (UCSD) [14]. Carbon fabric overlays
have been used to strengthen and retrofit reinforced and
unreinforced masonry walls for seismic loads, as well as to
restore and more than double the displacement capacity in the
repair of a full-scale five-story reinforced masonry building
tested to failure under simulated seismic loads. Carbon fibre
overlays and strips have also been used to strengthen reinforced
concrete slabs (with and without openings) and to strengthen
large diameter prestressed concrete pipelines to restore loss
of load (water pressure) carrying capacity due to corrosion of
the prestressing wires. Bridge columns have been seismically
retrofitted and repaired with fibreglass, carbon and hybrid
composite jackets which were shown to be as effective as
conventional steel jackets.

One of the methods for repair and retrofit of RC columns
is fibre wrapping. The wrap enhances shear strength, axial
strength and ductility of the column. It produces lateral strain
restrictions that react to the Poisson-type lateral expansion
tendencies of the concrete core, and generates side pressures,
i.e. confinement. For flexural strengthening, fibre-reinforced
polymer (FRP) sheets or near-surface-mounted FRP rods can
be bonded to the column in the axial direction [15].

Unlike steel-encased concrete, response of FRP-encased
concrete is almost bilinear with no descending branch [16]. This
difference is due to the elastic behaviour of FRP composites.
The response consists of three distinct regions. In the first
region, the behaviour is similar to that of plain concrete, since
lateral expansion of the core is insignificant. With the increase
in microcracks, a transition zone is entered where the tube
exerts a lateral pressure on the core to counteract the stiffness
degradation of concrete. Finally, a third region is recognized in
which the tube is fully activated and the stiffness is generally
stabilized around a constant rate. The response in this region is
mainly dependent on the stiffness of the tube.

Despite some volume expansion beyond the critical stress
of confined concrete, the linearly increasing hoop stress of
FRP eventually curtails the volume expansion and reverses
its direction. It is clear that with an adequate amount of
external fibre composites, lateral expansion of concrete can be
effectively avoided. The dilatation rate remains constant during
the early stages of loading, when concrete behaves elastically.
As severe microcracks develop, the dilatation rate begins to
increase. For unconfined concrete, with the growth of cracks
opening dilatation becomes unstable. However, dilatation of
FRP-encased concrete reaches a peak value after which it
decreases and finally stabilizes at an asymptotic value.

The stress–strain path obtained for monotonically increasing
load may serve as an envelope for the case of cyclic load
characterized by loading and unloading branches forming
loops. While the loops become wider beyond the peak strength
of unconfined concrete, stiffness degradation is not as severe as
that of steel-encased concrete [16,17].

Experimental tests performed on cylindrical specimens
confined with CFRP and GFRP [15,18], have revealed that the
failure modes are governed by the failure of the FRP and that
the failure of CFRP is more sudden and explosive than that of
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GFRP. For the same number of composite layers the CFRP [18]
confinement gives a greater increase in strength and ductility.

Recent studies have also shown that external bonding
of high-strength fibre-reinforced plastics (FRPs) to structural
concrete flexural members is an effective method for increasing
the structural capacity of such members. When effectively
bonded to a flexural member, FRPs provide increased strength
in the tension zone of a section that may have been determined
to be deficient because of an inadequate design or a structural
damage [19]. The increased in strength and ductility strongly
depends on the unsheeted length and on the amount of CFRP
laminates [5].

The study of this type of reinforcement has been centred on
failure modes because the flexural strength of a section depends
on the controlling failure mode [20]. From all these possible
failure mechanisms, ACI 440 recommends concrete crushing
as the most acceptable mode of failure.

In some particular cases, the strengthened beams showed
a ductile behaviour, e.g. beams of higher shear-span to depth
ratio (a/d > 2.5) and those provided with adequate end
anchorage. The common dominant failure mode of RC beams
strengthened with externally bonded CFRP laminates is the
premature one, either laminates-end shear or concrete cover
delamination. Therefore, the significant parameter affecting the
failure behaviour of a strengthened beam is the shear stress
in the adhesive layer between the external reinforcement and
the concrete. The critical section is located at the longitudinal
laminates-end region (cut-off point), where the shear stress
concentration occurs. Such a shear stress is partially due to the
variation of bending moment and the remaining part due to the
introduction of forces in the anchoring zones [5]. Laminates-
end shear starts at the cut-off point of the FRP and it is
originated by a high concentration of normal (out of plane)
and shear stresses. Concrete cover delamination starts from a
flexural crack between the outermost crack and the maximum
bending moment zone [7].

3. Modified plastic damage model for concrete

The model presented in this paper is thermodynamically
consistent and comes from a generalization of plasticity theory
[21–23] and isotropic damage theory. The plastic model
has been adapted to be able to reproduce the behaviour
of concrete under triaxial compression. Coupling of damage
and plastic strains is achieved by solving both problems
simultaneously [21,24]. In this way correct energy dissipation
is also assured.

The use of a second degree function in the components
of the stress tensor to define the elastic threshold and the
ultimate strength allows the accurate reproduction of the
variation of ultimate strength with hydrostatic pressure. The
hardening variable has also been improved to reproduce
energy dissipation in triaxial compression. The reproduction
of dilatational response and ductility under high confinement
pressure is achieved with the introduction of damage for levels
of stress close to the ultimate strength in uniaxial compression.
The fulfillment of inequality of Clausius Planck for a given
thermodynamic state is guaranteed if the stress is obtained as
follows:

σi j =
∂Ψ e

∂εe
i j

= (1 − d)
∂Ψo

∂εe
i j

= Ci jklε
e
kl = (1 − d)Co

i jklε
e
kl (1)

where σi j is the stress tensor, εe
i j is the elastic strains tensor,

Ψ e is the elastic part of free energy density, Ψo represents the
elastic free energy density for the virgin material, Ci jkl(d) =

(1 − d)Co
i jkl is the secant constitutive tensor affected by the

evolution of damage, Co
i jkl is the elastic constitutive tensor of

the virgin material. The damage variable d varies from 0, for
the undamaged virgin material, to a maximum value dc, for the
completely damaged material, i.e. 0 ≤ d ≤ dc.

3.1. Plastic process

The plastic process is described by a generalization of
classical plasticity theory that takes into account many aspects
of geomaterials behaviour. Elastic threshold is defined by a
yield function:

F p(σi j ; κ p) = f p(σi j ) − K p(σi j , κ
p) = 0 (2)

where σi j is the stress tensor, f (σi j ) is the equivalent stress,
K p(σi j , κ

p) is the yielding threshold and κ p is the plastic
hardening variable.

The following rule is used for the evolution of plastic strains
ε̇

p
i j :

ε̇
p
i j = λ̇

∂G(σmn; κ p)

∂σi j
(3)

where λ̇ is the plastic consistency factor, G is the plastic
potential function.

The plastic hardening variable κ p is obtained normalizing
energy dissipated by the plastic process to unity and varies from
0, for the virgin material, to 1, when the maximum energy is
plastically dissipated. The original definition in Ref. [21] has
been modified to take into account the plastic energy dissipation
process under triaxial compression.

κ̇ p
=

[
r

g∗p
f

+
(1 − r)

g∗p
c

]
σi j ε̇

p
i j = λ̇h p

i j
∂G
∂σi j

;

h p
i j =

[
r

g∗p
f

+
(1 − r)

g∗p
c

]
σi j (4)

where r represents a measure of the ratio between tensile and
compressive stresses and can be evaluated as follows,

r =

3∑
i=1

〈σi 〉

3∑
i=1

|σi |

〈σi 〉 =
1
2
[σi + |σi |] (5)

σi are the principal stresses.
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g∗p
f =


3∑

i=1
|σi |Rop

f p(σi j )


1+H(−r)

g p
f

g∗p
c =


3∑

i=1
|σi |

f p(σi j )


1+H(−r)

g p
c H(−r)

{
= 0 if r > 0
= 1 if r = 0.

(6)

Rop is the relation between the yielding thresholds in uniaxial
compression and that corresponding to uniaxial tension; g p

f
and g p

c are the maximum energy densities dissipated by the
plastic process in uniaxial tension and compression processes
respectively. In the case of a thermodynamic process with no
damage dissipation, they can be evaluated as follows,

g p
f =

G f

lc
and g p

c =
Gc

lc
(7)

where G f and Gc are the fracture and crushing energies
respectively [22] and lc is an external parameter that depends
on the characteristic size of the finite element mesh. This
parameter is introduced in order to obtain objectivity of the
solid response respect to the mesh size [25].

The following evolution equation is proposed for the
equivalent yielding threshold [21,24]:

K (σi j , κ
p) = rσt (κ

p) + (1 − r)σc(κ
p) (8)

where σt (κ
p) and σc(κ

p) represent the evolution of the yielding
threshold in uniaxial tension and compression tests

Loading/unloading conditions are derived from the
Kuhn–Tucker relations formulated for problems with unilateral
restrictions:

λ̇ ≥ 0 F p
≤ 0 λ̇F p

= 0. (9)

3.2. Damage process

The damage threshold is described by a damage function in
the following way [21,24]:

Fd
= f d(σi j ) − K d(σi j , κ

d) = 0 (10)

where f d(σi j ) is the equivalent tension, K d(σi j , κ
d) is the

equivalent damage threshold and κd is the degradation variable.
The equivalent tension f d(σi j ) can be evaluated using

known yielding functions (Tresca, Von-Mises, Mohr–Coulomb
or Drucker–Prager) or any function specially developed for
damage.

The degradation variable κd varies from 0, for the virgin
material, to 1, for the completely damaged material and is
obtained normalizing energy dissipated by damage to unity [21,
24],

κ̇d
=

[
r

g∗d
f

+
(1 − r)

g∗d
c

]
Ψoḋ = hd ḋ;
hd
=

[
r

g∗d
f

+
(1 − r)

g∗d
c

]
Ψo (11)

g∗d
f =


3∑

i=1
|σi |Rod

f d


1+H(−r)

gd
f ;

g∗d
c =


3∑

i=1
|σi |

f d


1+H(−r)

gd
c . (12)

Rod is the relation between the damage thresholds in uniaxial
compression and that corresponding to uniaxial tension and gd

f
and gd

c are the maximum energy densities dissipated by damage
in uniaxial tension and compression processes [21,24].

The following evolution equation is proposed for the
equivalent damage threshold [21,24],

K d(σi j , κ
d) = rσt (κ

d) + (1 − r)σc(κ
d) (13)

where σt (κ
d) and σc(κ

d) represent the evolution of the damage
threshold in uniaxial tension and compression tests respectively.

The loading/unloading conditions are derived from the
Khun–Tucker relations and are analogous to the ones
corresponding to the plastic process:

ḋ ≤ 0 Fd
≤ 0 ḋ Fd

= 0. (14)

3.3. Consistency conditions

Evolution of permanent strains and damage is obtained from
the simultaneous solution of the following equations called the
consistency conditions of the problem:{

Ḟ p
= 0

Ḟd
= 0.

(15)

Eq. (15) are two linear equations in λ̇ and ḋ that can be easily
solved.

3.4. Yielding function

The elastic threshold criterion proposed for concrete is
a modification of the Lubliner–Oller [22,26] criterion to
reproduce the behaviour of concrete under high hydrostatic
pressures. In order to have curve meridians [27] a second-
degree function of the first invariant was introduced:

F p
=

√
3J2 + α I1 + β〈σmax

〉 − γ 〈−σmax
〉

+
δ

σc(κ p)
(1 − α)I 2

1 − σc(κ
p)(1 + α)(1 + δ) ≤ 0 (16)

where α, β, γ and δ are constants that define the shape of the
yielding function, I1 is the first invariant of the stress tensor, J2
is the second invariant of the deviatoric stress tensor, σmax is
the maximum principal stress.
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Fig. 1. Proposed yielding surface — Plane σ2 = 0. Comparison with
experimental results [28].

Fig. 2. Proposed yielding surface — Octahedral plane.

Parameter α
·

takes into account the relation between strength

in uniaxial compression f ′
c and biaxial compression fcb, Rcb =

fcb/ f ′
c , see Fig. 1. The shape of the yielding surface on plane

σ2 = 0 and its comparison with the original surface with
straight meridians [22,26] and experimental results by Kupfer
et al. [28] are presented in Fig. 1.

Parameter β takes into account the ratio between the strength
in uniaxial compression f ′

c and uniaxial tension ft , R0
=

f ′
c/ ft .

Parameter γ is a function of the ratio between maximum
octahedral radius in compression and tension rmax

oct and appears
only in triaxial compression states, i.e. σ3 ≤ σ2 ≤ σ1 = σmax

≤

0. The ratio between octahedral radius is constant along the
hydrostatic axis and between the range 0.5 ≤ rmax

oct ≤ 1.0.
Fig. 2 shows the shape of the proposed elastic threshold

in octahedral planes corresponding to different octahedral
stresses. It is represented by a convex curve with three corners
corresponding to the three compression meridian planes.

Parameter δ ≥ 0 is related to the curvature of the
meridians. The ultimate surface can be used to define δ, if
Fig. 3. Proposed yielding and ultimate strength surfaces — Compression
meridian plane. Comparison with triaxial compression experimental re-
sults [29].

the compression meridian is forced to pass through the point
corresponding to a triaxial compression with ph hydrostatic
pressure and σcu compression strength under that confinement
as shown in Fig. 3. For δ = 0 the original yielding criterion
of Lubliner–Oller [26] with straight meridians is recovered.
Experimental results by Sfer [29] are also plotted on Fig. 3 in
order to show that they can be approximately reproduced by the
second order polynomial proposed.

The same value of parameter δ obtained for the ultimate
strength can be used for the elastic threshold. As a result,
the curve describing the initial elastic threshold has more
curvature than that defining the ultimate strength. This fact is
in accordance with experimental results which show that the
difference between the elastic limit and the ultimate strength
grows with hydrostatic pressure. See Fig. 3.

The function described by Eq. (16), with curve meridians,
can also be used as a plastic potential function to control
dilatation for high confinement pressures. A Von Mises
function can be used to describe damage due to changes in
porous structure of concrete taking place under high confining
pressures.

3.5. Model parameters

The model proposed includes many parameters because it
has been conceived as a general model that can be calibrated
for different types of materials by setting appropriate values
for the parameters. Nevertheless, as the paper is focused on
the application to concrete, some guides on how to obtain the
parameters for concrete are given below [30].

The parameters used for the model depend on the type of
concrete and they are valid for any kind of stress combination.
Most of the parameters of concrete depend on the compressive
strength f ′

c and the other parameters take almost fix values. The
compression strength is the key value for the model. The model
cannot be calibrated without this value.

The elasticity modulus and Poisson’s ratio of concrete can
be obtained from a uniaxial compression test. Nevertheless,
there are many empirical equations that could be used for
the estimation of the elastic modulus as a function of the
compressive strength f ′

c , in case the stress–strain curve for the
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(a) Unconfined and confined with six GFRP layers. (b) Confined with 10 and 14 GFRP layers.

Fig. 4. Stress–strain response of GFRP confined concrete. Comparison with experimental results [16].
uniaxial test is not available. The Poisson’s ratio of concrete can
be approximate as 0.19 or 0.20 [22].

The compression elastic limit can be obtained from the
stress–strain curve of a uniaxial compression test. For the sake
of simplicity, the behaviour can be supposed to be elastic up to
the discontinuity level that is defined as the point at which the
Poisson’s ratio begins to increase and occurs at about 75% of
the ultimate strength [22].

The plastic damage variable for the peak stress κ
p
comp can be

obtained from an uniaxial compression stress–strain curve but
it always ranges from 0.1 to 0.20.

The compression/tension strength ratio, R0
= f ′

c/ ft can
be obtained if uniaxial compression and tension strengths are
available. According to experimental results [28], the value of
R0 is 9.1, 11.1 and 12.5 for compressive strengths of 19 MPa,
32 MPa and 60 MPa respectively and can be approximate as 10
for a normal strength concrete.

The biaxial compression/uniaxial compression strength ratio
Rcb = fcb/ f ′

c can be obtained from biaxial tests [28] and it
ranges from 1.10 to 1.16.

Experimental results indicate that rmax
oct tends to a constant

value of about 0.65, from which results γ = 3.5 [22,26].
The compression meridian’s curvature is defined from

triaxial compression tests results. If these results are not
available, there are many empirical equations for the prediction
of compressive strength as a function of confinement pressure
[18].

Fracture energy of concrete can be obtained from three
point bend tests on notched beams [31]. It ranges from 100 to
300 Pa m [19]. Crushing energy [19] can be approximated as:
Gc ≈ (R0)2G f .

The damage threshold in uniaxial compression can be
obtained from a cyclic compression test but, according to
application examples presented later, it can be approximately
taken as 0.90 f ′

c . The damage hardening curve σc(κ
d) can be

obtained from uniaxial cyclic tests but it can be approximated
as linear with a slope equal to 0.008–0.015E .
4. Application examples

4.1. Introduction

The model previously described was implemented in a
nonlinear finite element plane code. This program was used
for the numerical simulation of the behaviour of concrete and
reinforced concrete columns confined with fibre CFRP and
GFRP and reinforced concrete beams retrofitted with FRP
laminas.

The concrete model parameters are obtained from uniaxial
compression data. In all the cases the compression strength
is given in the papers from which experimental results were
obtained. Some of them include the value of the elastic
modulus. When it is not available it is estimated by the
empirical equations suggested in Section 3.5. The rest of the
mechanical properties were estimated following the guidelines
given in Section 3.5.

The composite is modelled as an orthotropic elastic brittle
material for compression tests, while an isotropic elastic brittle
law is enough to model flexural tests because in this case the
composite only works in fibres’ direction.

4.2. Behaviour cylindrical concrete filled GFRP tubes under
compression

Cylindrical (152.5 × 305 mm) concrete filled GFRP tubes
were analyzed [16]. The mechanical properties of concrete are
condensed in Table 1. FRP tubes consist of a filament-wound
angle ply of polyester resin with unidirectional E-Glass fibres at
±15◦ winding angle. Three distinct jacket thicknesses of 6, 10
and 14 plies (layers) were tested. The thickness, hoop strength
and modulus of elasticity of the FRP tubes are presented in
Table 2.

Stress–strain curves and volumetric response obtained for
plain concrete and the three types of FRP tubes are plotted in
Figs. 4 and 5, together with experimental results corresponding
to batch C [16]. The predicted response matches experimental
results in all cases. Fig. 6 shows the dilatation response curves
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(a) Unconfined and confined with six GFRP layers. (b) Confined with 10 and 14 GFRP layers.

Fig. 5. Volumetric response of GFRP confined concrete. Comparison with experimental results [16].
Table 1
Mechanical properties of concrete [16,32,33,10,34,5]

Properties Test by
Mirmiran and
Shahawy [16]

Test by Lin and
Liao [32]

Test by Demers and Neale [33] Tests by Buyle-Bodin
et al. and David
et al. [10,34]

Test by Ahmed
et al. [5]

C1 C2

Elasticity modulus, E 23 273 MPa 23 148 MPa 25 800 MPa 22 300 MPa 29 000 MPa 30 000 MPa

Poisson ratio, ν 0.2 0.2 0.2 0.2 0.2 0.2

Compression ultimate strength, σuc 31 MPa 23.91 MPa 25 MPa 25 MPa 40 MPa 41 MPa

Uniaxial compression elastic
threshold, σ f c

28 MPa 18 MPa 15 MPa 15 MPa 20 MPa 27 MPa

Elastic threshold ratio, R p
0 8 8 8 8 10 10

Rbc 1.16 1.16 1.16 1.16 1.16 1.16

γ 3 3 3 3 3 3

Confined compression

ph 30 MPa 30 MPa 30 MPa 30 MPa 30 MPa 30 MPa

σccu 120 MPa 91 MPa 91 MPa 91 MPa 91 MPa 91 MPa

Plastic damage variable for the
peak stress, κ

p
comp

0.15 0.15 0.15 0.15 0.20 0.20

Crushing energy, G p
c 1.5E−2 MPa m 1.0E−2 MPa m 1.E−2 MPa m 1.2E−2 MPa m 2.5E−2 MPa m 3.2E−2 MPa m

Fracture energy, G p
f 1.5E−4 MPa m 1.0E−4 MPa m 1.E−4 MPa m 1.2E−4 MPa m 2.5E−4 MPa m 3.2E−4 MPa m

Uniaxial compression damage
threshold, σ d

c

30 MPa 23 MPa 20 MPa 20 MPa 39 MPa 40 MPa

Damage hardening slope 190 MPa 270 MPa 300 MPa 270 MPa 320 MPa 330 MPa
for plain concrete and for the different thickness of FRP
confinement. Numerical results show the same variation of
experimental ones in all cases. Dilatational effect is reversed
by the confinement and the dilatation rate reaches a maximum,
then decreases and finally stabilizes at an asymptotic value.

To evaluate stiffness degradation and compare it with
experimental results, a cyclic compression test of 14-layer
specimen (DA32) was reproduced. The specimen was subjected
to four unloading–reloading cycles. The stress–strain response
obtained with the proposed model and that recorded in the test
are plotted in Fig. 7. It can be concluded that, although the
numerical model is not able to reproduce the loops registered
in the tests, it accurately reproduces the average stiffness
degradation due to damage.
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Table 2
Mechanical properties of FRPs [16,32,33,10,34,5]

Properties Tests by
Mirmiran and
Shahawy [16]
GFRP

Tests by Lin and Liao [32] GFRP Tests by
Demers and
Neale [33]
CFRP

Tests by
Buyle-Bodin
et al. and
David
et al. [10,34]
CFRP

Buyle-
Bodin
et al. [10]
GFRP

Test by
Ahmed
et al. [5]
CFRP

1 layer 2 layers

Longitudinal elasticity modulus, El 37 233 MPa 238 253 MPa 224 579 MPa 84 000 MPa 150 000 MPa 11 700 MPa 240 000 MPa

Transversal elasticity modulus, Et 12 400 MPa 7942 MPa 7486 MPa 10 500 MPa – – –

Longitudinal–transversal Poisson
ratio, νlt

0.26 0.26 0.26 0.23 0.29 0.28 0.33

Transversal–longitudinal Poisson
ratio, νtl

0.1 0.1 0.1 0.032 0.29 0.28 0.33

Transversal–transversal Poisson
ratio, νt t

0.29 0.29 0.29 0.30 0.29 0.28 0.33

Circumferential tensile strength,
σ u

long

524 MPa 455.44 MPa 403.14 MPa 873 MPa – – –

Tensile strength, σt – – – – 2400 MPa 55 MPa 3500 MPa

Layer thickness 0.21 mm 1.84 mm 3.89 mm 0.3 mm 1.2 mm 6 mm 0.167 mm
Fig. 6. Dilatation ratio curves for GFRP-confined concrete. Comparison with
experimental results [16].

4.3. Compressive strength of reinforced concrete columns
confined by glass composites

The proposed model is used here for the evaluation of
the strength of six sets of tests carried out over concrete
and reinforced concrete columns confined by glass composites
[32]. The dimensions of the concrete columns are 100 mm ×

200 mm and the diameter of the reinforcing steel bars is
3.5 mm. Concrete was modelled as an elastic–plastic damaged
material with mechanical properties presented in Table 1.
Only one quarter of the cylindrical specimen was modelled
with axial symmetrical finite elements. Glass composite
was modelled as an elastic brittle orthotropic material with
the mechanical properties presented in Table 2. Steel was
modelled as an elastic–plastic hardening material with the
mechanical properties presented in Table 3. Bar buckling was
not considered. Table 4 shows the reinforcement of every set
of experiments and summarizes the experimental [32] and
numerical results in terms of fracture stresses. Comparison
between experimental stress and the stress predicted using the
model proposed indicates that the present model can predict
the fracture stress of FRP-wrapped concrete columns with good
accuracy.

4.4. Behaviour of CFRP confined reinforced concrete columns

Circular reinforced concrete columns confined with carbon
fibre reinforced polymers, subjected to monotonic axial
loading, were studied [33] using the proposed model. The
dimensions of the columns and the reinforcement are indicated
in Fig. 8. Due to symmetry only one quarter of each column
was modelled. Fig. 8 shows the finite element mesh used.
Concrete was modelled as an elastic–plastic damaged material
with mechanical properties indicated in Table 1. A bilinear
curve with strain hardening was used to model steel in
compression and tension. Mechanical properties of steel are
summarized in Table 3. Bar buckling was not considered.
CFRP was modelled as an elastic brittle orthotropic material
with mechanical properties presented in Table 2. The axial
stress–axial strain curves for the two columns modelled are
presented and compared with experimental results in Fig. 9.
The numerical curves can match the experimental ones with
reasonable accuracy [33], showing thus the capability of
the proposed model to reasonably predict pre and post-peak
behaviour, stiffness degradation and strength enhancement. It
can also be seen that the predicted peak strain is coincident with
the experimental peak strain in both cases.
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Table 3
Mechanical properties of steel [32,33,10,34,5]

Properties Test by Lin and
Liao [32]

Test by Demers and
Neale [33]

Tests by Buyle-Bodin et al.
and David et al. [10,34]

Test by Ahmed et al. [5]

φ6 φ8

Elasticity modulus, E 212 405 MPa 200 000 MPa 200 000 MPa 195 000 MPa 185 000 MPa
Poisson ratio, ν 0.3 0.3 0.3 0.3 0.3
Yielding stress, σ f 422.97 MPa 400 MPa 500 MPa 553 MPa 568 MPa
Yielding function Von Mises Von Mises Von Mises Von Mises Von Mises
Plastic potential function Von Mises Von Mises Von Mises Von Mises Von Mises

Table 4
Comparison of numerical strength with experimental results [32]

Name C1a C2b C3c C4d C5e C6f

Figure

Experimental stress (MPa) 23.91 61.98 91.08 31.92 70.00 102.36
Numerical stress (MPa) 23.97 62.06 89.27 31.25 69.32 101.97
Num./Exp. 1.002 1.001 0.980 0.979 0.990 0.996

a Plain Concrete.
b Plain Concrete confined by 1GFRP layer.
c Plain Concrete confined by 2 GFRP layers.
d Axial RC.
e Axial RC confined by 1 GFRP layer.
f Axial RC confined by 2 GFRP layers.
Fig. 7. Uniaxial cyclic response of GFRP-encased concrete under compression. Comparison with experimental results [16].
4.5. Flexural behaviour of externally bonded FRPs reinforced
concrete beams

Simple supported RC beams with and without external
FRP reinforcement and loaded monotonically in four points
bending moment are considered here [10,34]. Four specimens
were analyzed: an unstrengthened RC beam, called control
beam, two RC beams externally bonded with one and two
layers of CFRP sheets and a RC beam strengthened with a
GFRP plate. CFRP sheets consisted of unidirectional carbon
fibres, while GFRP plate was a glass fibre mat (short fibres
arranged in all directions). The geometry of the beams and
arrangement of the different FRP reinforcements are shown in
Fig. 10. A two-dimensional plane-stress analysis was carried
out. Concrete was modelled as an elastic–plastic damaged
material with the mechanical properties presented in Table 1.
A perfectly elastic–plastic law with hardening was used for the
steel bars, and an isotropic elastic brittle law was sufficient to
model FRP reinforcement because it is only working in fibres
direction. Mechanical properties of steel and FRPs are indicated
in Tables 2 and 3. Fig. 11(a) and (b) show experimental [10,
34] and numerical load-vs-deflection curves for RC beams
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Fig. 8. Details of reinforced concrete columns [32] and finite element used for the analysis.
Fig. 9. Axial stress–axial strain curve for CFRP RC columns. Comparison with
experimental results [32].

strengthened with CFRP sheets and GFRP plate respectively.
The finite element mesh used in all cases can also be seen
in Fig. 11(a). Numerical curves predict with good agreement
not only the response of control beam but also the behaviour
of FRP strengthened beams. In this sense the model was able
to reproduce the significant increase in flexural stiffness and
ultimate capacity achieved by those beams. FRP strengthened
beams failed in a brittle manner, while control beam failed due
to concrete crushing. These failure modes of concrete, called
shear and crushing failure, were reasonable reproduced by the
present model, as can be seen in Fig. 11(a) and (b).

4.6. Flexural behaviour of externally bonded CFRP reinforced
concrete beams with different unsheeted lengths

Simple supported RC beams tested under two point load-
ing bending are studied [5]. Three beams were analyzed: an
Fig. 10. Details of RC beams and arrangement of different FRP reinforce-
ments [10,33].

unstrengthened RC beam, called control beam, and two RC
beams strengthened with two layers of longitudinal CFRP lam-
inates bonded symmetrically onto the bottom of their surface.
The parameter taken into account here is the distance be-
tween the cut-off point of the CFRP laminates and the nearer
support, the so-called unsheeted length [5]. Hence two un-
sheeted lengths were considered: L = 150 mm, L = 100 mm.
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(a) Beams reinforced with one and two layers of CFRP laminates [10]. (b) Beam reinforced with a 6 mm GFRP plate [33].

Fig. 11. Load-vs-mid-span deflection for RC beams reinforced with different FRP composites sheets. Comparison with experimental results [10,33].
Fig. 12. Details of RC beams and arrangement of CFRP reinforcement [5].

Geometry of the control beam and the reinforced beams and the
arrangement of CFRP laminates are shown in Fig. 12. Concrete,
steel and CFRP laminates were modelled using the same laws
as in example 4.5 and mechanical properties of these materials
are summarized in Tables 1–3 respectively. A two-dimensional
plane-stress analysis was performed. The finite element mesh
used can be observed in Fig. 13. Experimental [5] and numer-
ical total load applied vs mid-span deflection curves for con-
trol beam and CFRP strengthened beams are shown in Fig. 13.
Numerical curves can reproduce with good accuracy the ul-
timate rupture load and the increase in stiffness and strength
achieved by strengthened beams, as well as the behaviour of
control beam. In addition, the failure modes of all specimens,
the flexural one for control beam and shear failure for strength-
ened beams, could be predicted by the model with reasonable
accuracy.

5. Conclusions

A numerical simulation of reinforced and unreinforced
concrete columns and RC beams retrofitted with FRP laminates
Fig. 13. Load-vs-mid-span deflection for RC beams of different unsheeted
lengths L .

was carried out using the plastic damage model presented. The
following conclusions can be derived from the analysis:

The model presented accurately reproduces the behaviour of
confined concrete, not only in the axial direction but also in
the transverse one, as well as the response of flexural concrete
members.

The adequate computation of transverse strains in confined
concrete columns plays a crucial role in the evaluation of
the FRP retrofitting system. FRP behaves elastically, so the
confinement pressure is always increasing until the tensile
failure of the FRP layers. As the stress state in the composite
mainly depends on the transverse deformation of the concrete
core, it might be properly evaluated in order to predict the
ultimate load capacity of the retrofitted column.

The numerical response obtained with the plastic damage
model is closer to experimental results than that obtained with
a plastic model with the same yielding function and hardening
variable. The difference between the two types of models is
stronger in the case or triaxial compression.

The modification of the plastic hardening variable proposed
leads to a better representation of concrete ductility under
triaxial compression and shear.
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The use of a yielding criteria based on a second-degree
function defines a yielding surface with curve meridians
that accurately reproduces the variation of compression
strength with the confinement pressure. The comparison with
experimental results shows that this yielding surface is able to
reproduce ultimate strength under compression for a fairly wide
range of pressures.

Finally the model was also capable of reproducing the shear
and crushing failure of concrete.
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